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Abstract 

Safety-critical systems are typically assessed for their adherence to specified safety 

properties. They are studied down to the component-level to identify root causes of any 

hazardous failures. Most recent work with model-based safety analysis has focused on 

improving system modelling techniques and the algorithms used for automatic analyses 

of failure models. However, few developments have been made to improve the scope of 

reusable analysis elements within these techniques. The failure behaviour of 

components in these techniques is typically specified in such a way that limits the 

applicability of such specifications across applications. The thesis argues that allowing 

more general expressions of failure behaviour, identifiable patterns of failure behaviour 

for use within safety analyses could be specified and reused across systems and 

applications where the conditions that allow such reuse are present. 

This thesis presents a novel Generalised Failure Language (GFL) for the specification 

and use of component failure patterns. Current model-based safety analysis methods are 

investigated to examine the scope and the limits of achievable reuse within their 

analyses. One method, HiP-HOPS, is extended to demonstrate the application of GFL 

and the use of component failure patterns in the context of automated safety analysis. A 

managed approach to performing reuse is developed alongside the GFL to create a 

method for more concise and efficient safety analysis. The method is then applied to a 

simplified fuel supply and a vehicle braking system, as well as on a set of legacy models 

that have previously been analysed using classical HiP-HOPS. The proposed GFL 

method is finally compared against the classical HiP-HOPS, and in the light of this 

study the benefits and limitations of this approach are discussed in the conclusions. 
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Some of the work presented in this thesis has already been published in conference 

proceedings and journal papers. An earlier revision of the Generalised Failure Language 

can be found in (Wolforth et al., 2008). An extended version of this paper including the 

brake-by-wire case study from Chapter 4 can be found in (Wolforth et al., 2010b). The 

current version of the language developed in this thesis, with additional details of 

language semantics, can be found in (Wolforth et al., 2010a). 
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1 Introduction 

1.1 Safety critical systems 

The modern world is increasingly filled with technology to provide tools and 

automation for a wide variety of tasks. This diversity ranges from small scale embedded 

devices to very large scale industrial sites. As people become more dependent on 

technology, the safety and reliability of systems becomes paramount. Reliability is the 

ability of a system to operate uninterrupted by failures, while the concept of system 

safety is the ability of a system to avoid causing hazards to people and the environment. 

The term safety critical system refers to those systems whose operation or failure causes 

such hazards (Leveson, 1995). 

The nature of many safety critical systems generally requires that some element of 

human interaction or control is in place, rather than complete automation of every 

function.  For the foreseeable future, some level of manual input will still be required 

for these kinds of systems as complete automation in many cases is simply not trusted. 

Certain legal requirements will apply to some extent with regards to safe operation for 

the protection of the people who interact with the system, but there is also the economic 

factor in the simple desire to have systems work reliably over the course of their 

operational life, with minimal „downtime‟ for any repair or modification which would 

otherwise affect productivity or provision of service. The increasing reliance on 

technology combined with the costs and potential risks of failure mean that safety and 

reliability become increasingly more important factors in system design. 

Safety critical systems are checked for their safety and reliability properties before they 

are deployed for operation. The process of safety analysis, the assessment of these 

criteria, begins during the design of the system and continues throughout the lifecycle. 
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A safety case (Wilson et al., 1997) for instance is incrementally built in step with the 

design and must be kept updated so far as the system is eventually decommissioned. 

Any changes to the system during its life will mean the safety case must be re-evaluated 

to assess the effects and implications of change, thus the safety analysis process is 

continual. Indeed, results of a safety assessment may necessitate further design changes 

if for example potential hazards are found.  

The aim of the safety analysis is to identify potential hazards associated with the 

operation or failure of a system and to explore the events that cause such hazards within 

the architecture of the system and in the environment. Hazardous states typically arise 

from system failures, i.e. conditions in which correct system function is not delivered 

(Avižienis et al., 2001). Failures can occur at the component level, the low-level 

constituent parts of a system, or at a system-wide level. Component level failures can 

propagate or combine with other, less severe failures to cause potentially hazardous 

system level failures.  

Thus the basis for predicting safety comes from identifying potential system failures, 

relating them to potential causes, and determining their likelihood from the likelihood of 

those causes. 

According to the standard terminology in this field of research, an error is the 

difference between the expected and actual system state that can lead to a failure, with 

the cause of an error ultimately being a fault (Avižienis et al., 2001). There are many 

types of faults, but generally a fault can arise from internal or external factors, for 

example a simple electronic component may malfunction over time due to wear, or from 

interference received from another source. Even the most rigorous design processes 

cannot always guarantee that a fault will not occur within a system, thus any system of 

any construction can experience failure at some point during its operational lifetime. 
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Faults can be random, being unexpected events brought about by a physical cause (e.g. 

wear or corrosion of components), but can be predicted using statistical data gathered 

from testing or prior knowledge from previous use. Alternatively faults can be 

systematic, a problem with the design or construction of the system (which could be 

introduced at any point in the lifecycle) meaning, once discovered, the fault occurs 

predictably during operation.  

Prediction of safety properties is now common and indeed mandatory for safety critical 

systems such as aircraft and nuclear power systems (Vesely et al., 1981). In the case of 

nuclear power systems for instance, electricity is generated from a highly radioactive 

source, direct exposure to which would be fatal to people. In the instance of a critical 

failure in the control system, lives are potentially put at risk and due to this potential 

hazard, safety features are incorporated into the system so that in the event of control 

failure, fail-safe and backup systems come online to prevent the escalation of the fault 

to a hazardous failure. Of course this adds complexity to the system, and these fail-safe 

features must themselves be checked for safety properties.  

In a well designed and constructed system, root causes of hazardous failures should 

have a very low probability of occurring during its operation. Component faults can be 

tolerated in certain circumstances when they do not contribute directly to hazards, 

otherwise they must have very low probability of occurrence or measures must be taken 

to stop the propagation of errors caused by such faults. Reliability statistics such as 

„mean-time-to-failure‟ are often provided by component manufacturers, so that system 

builders can be advised on when a component is expected to have reached the end of its 

safe operational lifespan. These figures can range from thousands of hours for the 

mechanical components in a typical domestic car, to only a few hours in a motorsport 

racing car where components operate in extreme conditions. This type of data is 
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essential when analysing a system for failures; when a potential hazard is found, the 

root causes are checked for their probability of occurrence. Knowing the likelihood of 

occurrence will influence decisions about the cost-effectiveness of implementing 

improved safety features for avoiding hazards. Sufficiently unlikely hazards do not 

demand design iterations while likely hazards with severe consequences necessitate 

redesign, the aim of which should be either to remove the hazard if possible, or to 

decrease the likelihood of the hazard for example via incorporation of fault tolerant 

architecture that can prevent the direct propagation of the component faults that cause 

the hazard.   

To improve efficiency and cost, modern systems rely increasingly on electronics and 

computers (Ferguson, 2007). This can result in new types of failure occurring, which 

can compromise safety and complicate safety analysis. For example, a hydraulic control 

for a vehicle braking system can only ever allow braking pressure to be applied to 

wheels when pressure is applied to the brake pedal. If the hydraulic system were 

replaced with an electronic control, braking control signals would be sent to actuators to 

apply the braking pressure. Now this new system is potentially susceptible to erroneous 

control signals, possibly caused by interference to the electronics, leading to undesired 

application of the brakes. Conversely, undesired application of braking pressure is 

impossible with a hydraulic system. 

To summarise, there exists a class of systems that are considered safety critical, whose 

requirements for operational safety must be checked before they can be used by people. 

No system is free from faults, so they are analysed for potential hazardous failures 

which could arise from the occurrence of specific faults, or combinations of faults. 

Quantitative data is used to supplement this analysis to determine the likelihood of 

failures. Finally, design changes can be made in response to analysis results in order to 
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eliminate or mitigate the effects of a hazardous failure. This complete process is known 

as safety analysis. 

1.2 Safety Analysis 

Modern safety analysis has been heavily influenced by the nuclear power industry 

which is forced to deal with a high level of complexity and stringent legal requirements 

of operational safety. However, the challenge of identifying hazards remains, as does 

the consequence of making design changes to reduce the risk and the severity of the 

hazardous states. 

Many techniques for safety analysis have been developed, the earliest being tabular 

methods of compiling information about potential failures such as Failure Mode and 

Effects Analysis (FMEA) (IEC 60812, 2006) and Hazard and Operability Studies 

(HAZOP) (Kletz, 1997). These are generally now supplemented by powerful graphical 

methods such as Fault Tree and Event Tree Analysis (FTA, ETA) (IEC 61025, 1990) 

which are founded on logic and probabilistic analyses. For example a fault tree diagram 

is a graphical means to display the root causes and propagation of failures, showing how 

basic events can combine and propagate to cause a hazard (Vesely et al., 1981). The 

success of these methods has meant they are now widely used outside of the nuclear 

industry, such as in the automotive (Papadopoulos and Grante, 2005) and aerospace 

(Vesely et al., 2002) industries. 

Safety analysis is a field that has seen a lot of research and development since its 

conception, but the core aspects have not changed considerably over time. A common 

approach, used for example in fault tree analysis, begins with the identification of 

potential system failures that have a hazardous consequence. A specific failure will be 

chosen for detailed investigation and is traced back through the system to its root 

causes, which will typically be component level faults; this is known as a deductive 
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approach. Some other techniques work in the opposite way, an inductive approach, 

where effects are determined from causes. For example, FMEA begins with tabulating 

the potential failures that can be experienced and then examines their effects on the 

system. 

Safety analysis is traditionally a manual, arduous task. Analyses are performed by a 

team of specialist analysts on a system implementation. If safety and reliability aspects 

are deemed inadequate, then costly redesigns may be essential. Furthermore, subject to 

the effect on the system of such a change, analyses may then need to be performed 

again. A complex system design can make the process even more difficult, and as a 

result several software tools have been developed to help with analyses. The common 

aim with these is to automate as much of the process as possible, which is often the 

focus in the development of contemporary safety analysis methods. 

In theory, the safety analysis process should start as early as possible so that checking 

the system for potential failures occurs at early design stages. This way, problems can 

be identified earlier in the development lifecycle, meaning unnecessary redesign cost 

could be reduced. The difficulty is that without the complete knowledge of component 

interactions at each stage when analysis is applied, this approach is not possible. In 

order to analyse for safety at design stages, a model of the complete system is required. 

With appropriate software tools, models can be mechanically interpreted, enabling a 

form of model-based safety analysis (MBSA). 

The model that provides the basis of analysis may be architectural and provide the 

topology of the system as a diagram showing the interconnected components, each 

assigned information about their function and failure behaviour. It can also be a 

representation of behaviour and show transitions of components and the system from 

normal to degraded and failed states.  
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An example of a model-based analysis technique is HiP-HOPS (Hierarchically 

Performed Hazard Origin and Propagation Studies), a method and tool that performs a 

semi-automatic safety analysis on system designs (Papadopoulos et al., 2001) that are 

represented as architectural topologies augmented with failure data. Using a model-

based approach, components in the system hierarchy can be annotated with logical 

expressions of failure behaviour. In HiP-HOPS, these component-level annotations are 

interpreted by the tool and in combination with the topology of the system, used to 

automatically synthesise fault trees and FMEAs for the model. 

1.2.1 Reuse in designs and safety analysis 

Managing complexity in engineering projects is a problem in itself, especially as more 

functionality is demanded from contemporary systems. To ease development, there is a 

tendency to reuse solutions that have been successful in one project to aid the 

development of another. This can take the form of reusing particular hardware 

components or subsystems, or even software where there is a computer-controlled 

element. This has varying degrees of success due to reuse being susceptible to 

inappropriate application. For instance, a problem could be identified by an engineer as 

being „similar enough‟ to one seen in a previous system that a prior solution is deemed 

adequate. In this situation, the ad hoc „cut & paste‟ approach to reuse may lead to an 

unsatisfactory implementation, with costly consequences. A more appropriate method is 

to control and manage reuse through a systematic process (Kelly and McDermid, 1998). 

Being able to appropriately reuse a solution means the design process can be completed 

more quickly, bringing time and cost saving benefits. In addition, by applying well-

known solutions to problems, the result is a design which can be considered more 

„trusted‟, which is a very desirable factor when developing safety critical systems. 
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In the pursuit of reusing as much design knowledge as possible, there are established 

concepts to manage the various levels and type of reuse. The most common forms of 

reusable design elements are components, frameworks and patterns (Johnson, 1997). 

Each of these provides a certain level of abstraction, allowing reuse across various 

applications. Components are self-contained „blocks‟ of well-known design, 

frameworks provide a reusable basis to build upon, and patterns define generic 

behaviour which can be adapted to context. Each of these is used within the field of 

engineering and can be very useful concepts to aid and speed up design and 

development of new systems. The concept of patterns can be found for example within 

software engineering as design patterns (Gamma et al., 1995), and is established as a 

technique that can enable robust, consistent design of common software solutions. They 

promote good engineering practice and a certain degree of reusability, for example in 

class design and interaction. Design patterns take the form of documentation showing 

an implementation of the solution, plus additional information listed for guiding its 

application; the documentation as a whole becomes the „pattern‟. In another context, the 

notion of patterns can be used to guide the construction of arguments in a safety case 

(Kelly and McDermid, 1997), in this case the pattern provides an abstract, reusable 

guide to building the arguments, with flow diagrams and explanatory text, together 

constituting the „pattern‟. Not all aspects of a design can be reused of course, nor would 

such blanket reuse be desirable, for many systems require bespoke components. 

However, attempting to further extend the scope and ease of reusability is a worthwhile 

cause, as it undoubtedly yields an improvement in productivity (Kehren et al., 2004). 

Knowing that reuse is an important feature of modern system design, including safety 

critical design, leads to the question: can reusable design elements, particularly patterns, 

be brought into safety analysis methods, allowing some degree of reuse of information 

about safety properties? 
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Contemporary MBSA methods, for example HiP-HOPS and other methods examined in 

this thesis, do enable some reuse of safety analyses. These tend to base their reuse on 

the compositional nature of the systems they analyse. Systems in general are developed 

via decomposition into more manageable parts, and can be represented in design as 

hierarchies of subsystems and basic components. Reflecting this compositional 

architecture, many modern safety analysis methods rely on component failure models to 

predict system failure. These component models can in theory be reused across 

applications in the analyses of systems that incorporate the corresponding components. 

While such reusability is highly desirable, the expected level of reuse that compositional 

analyses should bring is currently very difficult to achieve. The limiting factor is that 

this kind of reuse depends on the fact that the reused components have not been 

modified in any way which affects their operation and thus their safety properties. 

However, even for simple components this may not be possible due to context changes; 

information about specific failures may become irrelevant within a new application. An 

example of this can be seen in an automotive brake-by-wire system. Here, the 

components have a specific application context; communication buses for example 

carry signals that relate to activation of the brakes or the amount of pressure to be 

applied. In most MBSA approaches, the component models that define the failure 

behaviour of a component like a bus in a given application make application-specific 

references to the errors propagated through the bus, in this example, deviations of 

braking messages. This is despite the fact that a bus component can be designed to 

propagate signals without needing to know the meaning or context. In summary, while a 

communication bus can work in various application contexts, information about its 

failure behaviour maintains its context specificity and cannot necessarily be reused 

along with the physical component. Thus one of the major obstacles to achieving 

greater reusability within compositional model-based safety analyses is this context-
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specific nature; in particular the context-specific definitions of component failure 

behaviour. 

There are cases where a component will behave consistently and independently of its 

system context, giving an opportunity to investigate context-independent failure 

behaviour. In a rudimentary example of this, a pipe enables the flow of material without 

needing to know what is flowing. A total blockage of the pipe will always result in a 

loss of output flow, again regardless of the material. With regards to electronic 

components, they too can exhibit this type of context-independent behaviour. An 

electronic data bus designed to propagate signals can experience the same type of 

failure, omission of output signals, regardless of the system and meaning of the signals. 

There are many more cases where context-independent behaviour is expressed by 

individual components. When such context-independent behaviour exists, it can be 

identified as a reusable element, a pattern of behaviour that holds in any application. If 

capture and reuse of such patterns were possible, then the safety analysis of complex 

systems could also benefit from reusing well-established and thoroughly studied 

component failure behaviour. Not only would this save time, money and effort, but it 

would potentially improve the dependability of designs by incorporating aspects which 

are proven to be effective and are essentially „trusted‟ elements. The difficulty however 

in capturing such patterns lies in the current inability to define generalised failure 

behaviour in most techniques that define the state-of-the-art in model-based safety 

analysis. 
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1.3 Research hypothesis and Objectives 

The hypothesis put forward and tested in this thesis is that: 

 “More efficient safety analyses can be achieved via a new approach to 

generalising descriptions of failure behaviour. This approach will allow in 

practice the more concise specification and limited reuse of patterns of 

failure behaviour” 

The above hypothesis raises two research questions that the thesis attempts to address: 

1. How can descriptions of failure behaviour be generalised?  

2. To what extent can patterns of behaviour be used within safety analysis? 

Testing the hypothesis requires meeting several objectives. The first of these is to 

examine relevant MBSA techniques to evaluate the current extent of achievable reuse. 

There are several MBSA methods which aim to promote reuse in safety analysis and 

which, therefore, need to be examined in order to inform the objectives and direction of 

this work.  

The second objective is to develop a concept for generalised annotation and demonstrate 

that the proposed concept works by extending an existing safety analysis method to 

enable specification and reuse of patterns. The candidate method for this extension, 

HiP-HOPS, is an established tool and already provides some support for reuse. Systems 

can be hierarchically decomposed within HiP-HOPS to allow component level 

descriptions of failure, but the annotations themselves are generally restricted to the 

particular context of the system. This immediately limits the scope of reusability of 

failure annotations within HiP-HOPS. Here the aim is to achieve an extension of the 

existing component annotation syntax with language features that enable specific 

context to be eliminated from annotations. The result is an annotation language that 
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enables more generalised descriptions of component failure behaviour (Wolforth et al., 

2010a). 

The final objective in this thesis is to validate the proposed method. Case studies 

provide an opportunity to show how the method is applied, and to evaluate the 

contribution brought by the new approach. In the study included in this thesis, several 

example models are analysed to compare the extended HiP-HOPS method that includes 

capabilities for patterns with the classical HiP-HOPS. These are relatively simple 

models based on prototype systems provided by industry, comprising various types of 

components; mechanical, electrical and programmable. In the course of these case 

studies, equivalent specifications are developed in classical and extended HiP-HOPS 

and the results are compared.  The use of patterns is demonstrated to lead to shorter 

specifications that can be reused within the same application.  

To quantify the effectiveness of the new approach, data mining techniques are used to 

identify patterns of failure behaviour in legacy safety analyses that have been carried 

out using classical HiP-HOPS in a number of industrial case studies. It is shown that the 

number of component level annotations can be significantly reduced via the proposed 

extensions to HiP-HOPS, and that it is possible to capture patterns of behaviour which 

can then be reused within the same model. This data forms the basis of the evaluation of 

the pattern method; the amount of reuse that can be expected and the effectiveness of 

the reuse. 

To summarise, this thesis makes the case for the development and application of 

patterns of failure behaviour in model-based safety analysis. The improvement to the 

efficiency of analyses is investigated, as is the overall effectiveness of the approach. To 

support the argument put forward, the thesis: 
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1. Develops a language extension for HiP-HOPS to enable patterns of behaviour to 

be specified 

2. Implements tool support that enables analyses of component failure patterns and 

derivation of specific instances of failure behaviour from such patterns 

3. Develops a managed approach for the application of patterns and investigates 

the potential for reuse 

4. Evaluates the feasibility of patterns on a series of case studies 

5. Compares and contrasts the new method with the classical HiP-HOPS process 

1.3.1 Structure of the thesis 

The thesis consists of three main chapters describing the background, theory, and 

validation of the concept being argued. Chapter 2 presents a review of available 

literature on classical and contemporary safety analysis techniques, with an evaluation 

of reuse attainable in safety analysis and more generally in the wider field of 

engineering. Chapter 3 sets out the concept for patterns and proposes the linguistic 

constructs necessary for enabling generalised failure descriptions. Chapter 4 discusses 

the application of patterns and how they can be managed to enable greater levels and 

more appropriate reuse. A series of case studies are performed, the results of which are 

used for validating the new technique. Chapter 5 concludes the thesis, evaluating the 

contributions of the work along with the limitations, and finally discusses further work. 
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2 Background 

This chapter reviews available, relevant literature in the field of safety analysis to 

provide a more detailed view of the research problem. The first part explores the 

methods used in safety analysis; the original, classical techniques which are still in use 

today, through to the contemporary methods developed to deal with the more complex 

designs which are typical among modern systems. The techniques are discussed and 

evaluated, with the emphasis on their benefits and shortcomings with respect to the 

reusability within their processes, such as the scope, ease and potential for reuse. The 

focus here is on the qualitative aspects of safety analysis; studies of probability are 

essential in rigorous analyses, but this work only considers extension to the core 

qualitative process which is primarily concerned with identification and establishment 

of relationships between causes and effects of failures. 

The second part of this chapter discusses the concept and scope of reusability in general, 

as found in the wider field of engineering, with a focus on those techniques applied in 

software development. The aim is to highlight which aspects can or could be transferred 

into and applied within safety analysis. In conclusion, this study of available literature 

highlights the important aspects to consider in developing a contemporary approach to 

reuse in safety analysis. 

2.1 Classical Safety Analysis 

There are many approaches and techniques used for safety analysis, varying from 

relatively simple data tabulation, through to highly complex, computerised simulations 

of functional prototypes. This is largely in response to the variation of system designs; 

the variety of complex systems in today‟s industries means one specific analysis 

technique is simply not sufficient (Kaiser et al., 2003). As a result, new techniques are 
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developed to meet the demands of contemporary system designs, and it is notable that a 

significant amount of these tend to be variations of a small number of classical analysis 

methods (Gould et al., 2000). 

It is often the case that the basic principles of the classical methods are still valid in 

modern approaches, but some limitations inherent in the original methods also still hold 

in the newer ones. It is important to discuss these original methods so to observe the 

evolution of the more recent techniques by highlighting the successful features from the 

classical methods that have been carried over into contemporary approaches.  

2.1.1 Failure Mode and Effects Analysis 

Failure Mode and Effects Analysis (FMEA) (IEC 60812, 2006) is a widely used, tabular 

process for checking the safety and reliability properties of a system. FMEA and its 

variants are used across a large range of industries, and this level of adoption has 

occurred despite the difficulties encountered when using this classical method. 

An FMEA is typically a manual, labour intensive process for finding the effects of 

component failures on a system. For each component in the system and for each failure 

mode of that component, analysts investigate the effects on the system and record 

results in an FMEA table. The linear, tabulated form of the information gives a 

straightforward representation, making it simple for manual inspection of results and 

identification of critical component failure modes that cause severe effects with high 

probability. Variants of FMEA tables contain different attributes including contributing 

factors, failure probability or failure rate, detectability, controllability and other 

parameters of interest. For example Failure Mode, Effects, and Criticality Analysis 

(FMECA) (ARP 926, 1967) is a commonly used extension of FMEA which includes the 

criticality of failures in the assessment, for analysing their probability and severity.  
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Table 1 gives an example of a row in an FMEA of a vehicle braking system. Here the 

brake pedal can experience the failure mode „No signal‟, leading to the effect „Omission 

of braking‟. The detail of the cause and its failure rate (probability per unit time) are 

given along with the severity, giving clear information so that the analyst‟s attention can 

be focused towards those failure modes deemed most critical. Because the FMEA 

process requires a lot of detail about a system before it can be performed, it is mainly 

done when all details of the design are known. 

Component Failure 

mode 

Failure cause Failure effect Severity Failure 

rate 

Pedal No signal Pedal failure Omission of 

braking 

Catastrophic 5e
-5 

... ... ... ... ... ... 

Table 1 Example FMEA table 

Like other classical methods, traditional FMEA suffers from scalability problems. The 

first of which is that an FMEA table only describes failures that have a single cause. 

Multiple-cause failures, which are not uncommon in today‟s complex systems, are not 

considered in the analysis process. The reason for this, and the root of the second 

problem, is that the consideration of every possible combination of component failure 

modes can lead to extremely large tables. Even relatively simple systems with a large 

number of failure modes can suffer this problem during the analysis, e.g. in a system 

with 100 component failure modes, there are approximately 5,000 combinations of two 

of those failure modes to be considered. Clearly, the manual interpretation of such large 

volumes of data, often ranging into hundreds of thousands of combinations of failures, 

is not feasible within the time or budget allowed for such analyses.  

The traditional FMEA process is capable of finding multiple-cause failures, but they are 

generally not considered within a study because they are too numerous. Being a manual 
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process, the effort required for a complete multiple-cause FMEA in most cases is too 

great. However, recent developments to FMEA production (Parker et al., 2006) have 

enabled automation and improved tool support which have made feasible the discovery 

of multiple-cause failures. In this approach, multiple failure mode FMEAs are 

constructed from a set of automatically constructed fault trees. Given the deductive 

nature of fault tree analysis, is it possible in this approach to generate multiple failure 

mode FMEAs without exhaustive enumeration and evaluation of all possible 

combinations of component failure modes.  Price and Taylor (2002) have also 

developed an approach to FMEA synthesis via fault simulation in which results of 

automated FMEAs may be „pruned‟ to extract combinations which are deemed 

significant.  

Potentially, some data from an FMEA can be reused, though effects must be carefully 

checked. If an FMEA only contains simple failure modes, it may be the case that a 

particular component would exhibit the same standard behaviour regardless of context, 

and if operating conditions are identical, also likely to maintain the same failure rate. 

The obstacle to achieving more reuse is the informal, manual nature of the analysis; 

descriptions of failures (the entries within a table) are subject to the engineer‟s 

consistency with the formatting. Without a systematic approach to developing 

consistent FMEA tables, efforts to reuse information across analyses have limited 

success. 

2.1.2 Hazard and operability studies 

Hazard and operability studies (HAZOP) (Kletz, 1997) was one of the earliest methods 

created for checking system safety and is still widely used, especially in the chemical 

industry. It aims to be a generic technique to find causes and effects of hazards, 

meaning it is both a deductive and inductive method. These are specified as deviations 
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from the original design intent; for example the flow of material through pipes can 

deviate from its normal operation as a result of „no flow‟ (a blockage), which could 

ultimately lead to a hazardous state.  This method been adopted throughout safety-

critical industries with very little change to the original method, due to its generalised 

format and overall relative ease of use. 

A HAZOP study is performed by manually searching for hazards in a systematic way 

and tabulating the results. The basis is to use identifying keywords to describe potential 

hazards and then to derive their potential causes. This keyword concept was an attempt 

to allow some form of reuse within safety checking. Giving classifications to failures, a 

common keyword, allows the analyst to make general statements about failure types. 

For example, the following keywords are valid in a HAZOP study and are typical of the 

types of failures considered within other types of safety analysis: 

OMISSION or COMMISSION: e.g. the absence or presence of an expected message 

HIGH or LOW: e.g. an out-of-range signal 

EARLY or LATE: e.g. a message has arrived before or after it was expected 

The result of a HAZOP study is a table bringing together all the gathered information on 

the system relating hazardous failures to their cause(s). Table 2 gives a partial HAZOP 

table; the example shown is of a generic system where a signal node fails to deliver an 

output, leading to a system wide failure. The resolution to this hazard is to replicate the 

critical node to provide some backup redundancy in event of node failure. 

HAZOP was created and is useful for identifying specific failures which can occur in 

large scale industrial sites. For modern computer controlled systems, it is very difficult 

to manage a HAZOP study with the high numbers of potential component failures. The 

tabular format of the results can make it simple to quickly identify the causes of 
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hazards, but with a large table it becomes less practical, for instance trying to find the 

information for a particular hazard among hundreds of table entries.  Furthermore, 

classical HAZOP studies only determine single-cause hazards, making it unsuitable for 

thorough analyses that must consider all possible hazards. 

Keyword Deviation Cause(s) Consequence(s) Resolution 

OMISSION No signal Node failure System failure Replicated 

node 

... ... ... ... ... 

Table 2 Example HAZOP table 

 Hazard analyses are performed throughout the life of a system (Redmill et al., 1997). 

Early studies can take place when design detail of components and interconnections is 

available. A preliminary hazard analysis (Vesely et al., 1981) can provide useful 

information that can be carried over to more detailed analyses that take place at later 

stages when more detailed designs are available. HAZOP studies then continue 

throughout the lifecycle of a safety critical system, as it is necessary to reassess 

potential hazards whenever operating parameters or conditions change. Thus any scope 

for employing reusable elements across HAZOP studies would be beneficial.Smith and 

Harrison (2002) have investigated techniques to enable reuse of descriptive arguments 

for hazard classification. A row in a HAZOP table can form an argument based on the 

consequence and resolution columns; the basis for the reuse lies in the similarity in 

argument structure. Reuse candidates are identified by matching keywords or 

consequences from previously defined arguments. Case studies have shown a 

„considerable amount‟ of achievable reuse, but a difficulty still remains in determining 

the suitability of arguments for a particular context. 



30 

 

2.1.3 Fault Tree Analysis 

The problems encountered in classical FMEA motivated the development of fault tree 

analysis (FTA) (Vesely et al., 1981), currently one of the most prominent safety 

analysis techniques. FTA was first developed in 1961 by Bell Laboratories, in 

connection with a U.S. Air Force contract, to investigate the potential causes of an 

inadvertent missile launch. Once the results were seen, fault tree analysis was 

recognised by Boeing as being a significant system safety analysis tool, eventually 

being used on the design and evaluation of commercial aircraft. Following the 

aerospace industry, the nuclear power industry began using fault tree analysis in the 

design of nuclear power stations. It was the nuclear power industry which is responsible 

for the development of many fault tree analysis tools. In 1967, NASA hired Boeing to 

undertake a comprehensive fault tree analysis on the entire Apollo system, following the 

Apollo 1 launch pad fire. The Challenger space shuttle disaster in 1986 resulted in a 

safety evaluation of the main engines, which highlighted the applied benefits of fault 

tree analysis. Today, fault tree analysis is widely recognised as a robust and useful 

process which helps to develop insight into the failure behaviour of a system. 

A fault tree diagram represents the propagation of failures through a hardware or 

software system in terms of subsystem or component failures. These „basic events‟ are 

linked into a tree structure using Boolean logic, representing diagrammatically the 

logical relation between events. The paths through the fault tree from bottom to top 

determine which of these combinations of basic events cause the top event. The Fault 

Tree Handbook (Vesely et al., 1981) is widely accepted as the definition of the 

standards for fault tree notation and method. An example fault tree is given in Figure 1. 
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Figure 1 A small fault tree (Andrews, 1998) 

Fault tree analysis (FTA) is a technique that can be applied to a fault tree to determine: 

 all the necessary and sufficient combinations of basic events that cause the top 

event of  the fault tree (qualitative analysis) 

 the probability of occurrence of these combinations and that of the top event 

(quantitative analysis) 

Combinations of basic events that cause the top event (i.e. system failure) are known as 

cut sets. By identifying critical design elements, cut sets help to focus the design. For 

example, the design can then be improved by incorporating redundant components that 

can automatically replace critical components when they fail. 
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An interesting and useful property of a fault tree is that it is essentially a graphical 

representation of a complex Boolean expression, meaning the whole or sub-trees can be 

expressed textually, which also extends to the cut sets. A cut set can be considered then 

as a written expression relating a failure to its causes; from the Figure 1 example: 

Protection Fail = Smoke Fail AND Heat Fail OR Pump Fail OR Nozzle Fail 

Much of the recent innovation into the fault tree method has come from the analysis 

side; various algorithms for the automatic extraction of minimal cut sets exist 

(Wolforth, 2005), and research continues into finding faster and more efficient methods. 

In addition, fault tree notation is being continually improved and extended so that more 

detailed representation can be made within a diagram, allowing fault trees to remain a 

powerful tool today. For instance, traditional fault trees cannot accurately model 

dynamic behaviour, where the order of events is critical, so many attempts have been 

made to extend the notation for creating temporal fault trees (Walker, 2009). 

Because fault trees only give a system-wide view of failure, one difficulty with using 

the method is that any redesign made to a system, even small changes, may require that 

the entire fault tree is reconstructed and reanalysed. Also cut sets describe very specific 

events within a particular system, so reuse of cut sets i.e. analysis results is not feasible 

across designs. 

Dehlinger and Lutz have shown that reuse of fault trees within a „family‟ of systems is 

possible. A product line (or family) is a set of systems that are all developed from a core 

specification, where members of the product line differ only in a small number of 

allowed variables. The reuse benefits from an engineering perspective (shared design 

elements, architecture, etc. within the family) can also be related to safety analysis 

through modelling extensions to classical fault tree analysis (Lutz et al., 1998). In 

product line fault tree analysis (PLFTA), design variables are associated with the tree‟s 
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leaf nodes. An analysis can then derive a fault tree for each product as the variables 

change. A semi-automated tool „PLFaultCAT‟ has been developed for PLFTA, however 

the manual effort of the analysts and engineers, as with classical FTA, is still the main 

factor in the accuracy and completeness of analyses and therefore the extent of 

reusability (Dehlinger and Lutz, 2006). 

2.1.4 The Safety Case 

A higher level approach for arguing convincingly that a system will safely perform its 

operations is the concept of the safety case (Wilson et al., 1997). The purpose is to give 

a documented assurance that system safety requirements are met. Indeed the safety case 

is a legal requirement in many regulated industries in order to provide such assurances 

to a regulating body. The safety case report which argues the case is a set of complex 

documents, manually constructed by a team of analysts, which summaries results of 

safety assessments. 

The exact constituents of a safety case document vary with application and are not 

subject to a common specification (Wilson et al., 1997), but a safety case must at least 

include clear, well-defined arguments, supported by evidence, that a system will be 

acceptably safe throughout its life (Wilson et al., 1995). These are the key elements of 

the safety case; an argument without supporting evidence is unconvincing, and evidence 

without an argument makes it difficult to distinguish how safety requirements have been 

met. Below is an example of a safety argument from (Kelly and Weaver, 2004): 



34 

 

The Defence in Depth principle (P65) has been addressed in this system through 

the provision of the following:  

•     Multiple physical barriers between hazard source and the environment (see 

Section X)  

•     A protection system to prevent breach of these barriers and to mitigate the 

effects of a barrier being breached (see Section Y)  

The evidence for an argument may be for example fault trees or FMEAs for the system. 

Because safety case evidence is often based on the results of prior safety analyses 

(Wilson et al., 1997), a safety case is not itself a means to discover failure behaviour, 

rather it is a useful means to present safety information in a structured manner.  

Developing the safety case is no easy task, the most pertinent difficulty being their 

potential size, in terms of their construction, management and subsequent analysis, 

particularly for large studies. This can lead to difficulties in maintaining a complete 

document, necessitating a significant manual effort. Addressing these problems, recent 

improvements to the construction and management of safety cases have been made in 

the form of software tool support with the Safety Argument Manager (SAM) 

(McDermid, 1994) and the Goal Structuring Notation (GSN) (Kelly, 1998). SAM is a 

tool for performing various classical safety analyses, which provide the results 

(evidence) for use in the subsequent safety case development. The GSN, as part of 

SAM, is used to help set out the claims of the arguments, aiding the most difficult part 

of developing the safety case. Following the goals gives a progression through the 

argument, typically formed as a hierarchy of lower level arguments. 

Because of the complexity involved in their production, individuals responsible for 

creating the document will often take elements of previous safety cases to help their 

development (Kelly and McDermid, 1997). The danger is that successful, convincing 

arguments are taken as „trusted‟ and can be reused without thorough investigation of the 
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applicability (Kelly and McDermid, 1998). This kind of reuse is based on the manual 

observation that two elements are similar enough to be used in another design, with few 

changes needed. Clearly when this is handled manually by people, errors and 

inconsistencies can easily be introduced through improper reuse. Despite the 

difficulties, skilled safety engineers can successfully produce rigorous safety cases to 

give the evidence that even a complex system is safe to operate.  

2.2 Contemporary Safety Analysis 

Modern systems bring new challenges to safety analysis. These are caused by the large 

scale (many components, e.g. small sensors and micro switches) and increasing 

complexity (e.g. programmable/software components introducing new types of failures) 

of these systems. 

Clearly the manual nature of classical techniques poses problems. It makes it 

increasingly difficult to achieve a complete analysis within the time and budget 

constraints of most projects. The lack of mechanisms for safe reuse of analyses is 

another problem. For example, subsystems and components may be reused to perform 

the same or similar function across applications. However, with the lack of a proper 

framework for reuse, it cannot be assumed that their respective safety analysis can be 

safely reused across applications. Part of the problem is the separation of classical safety 

analysis from the design process, which makes it difficult to trace the effects of design 

modifications in the analysis. 

This section reviews several modern safety analysis techniques that attempt to address 

some of these problems. Most of these techniques integrate design with analysis and 

derive system safety analyses from a model of the system. Some of these techniques 

follow a compositional approach in which system safety analyses are constructed from 

component safety analyses via a process of composition. This enables a greater scope 
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for reuse of analysis elements within their methods. Many of these techniques have their 

foundations in the classical methods, often making improvements over the original and 

solving some of their drawbacks highlighted in the previous discussion. 

2.2.2 Model-Based Safety Analysis 

Many contemporary approaches use a model of a system and its behaviour to improve 

and automate (to a degree) some aspects of the safety analysis. Generally, a model is a 

representation of a system describing architecture and/or functional behaviour. 

Interconnected components in an architectural model also determine the flow of failures 

through a system, which some methods exploit to create a corresponding failure logic 

model (Lisagor et al., 2006).  

 Many tools exist to help develop models; some rely on text-based descriptions whereas 

others allow a model to be developed visually, for example in MATLAB/Simulink 

(Mathworks, 2009). When a system is under design, a model can be produced with 

varying levels of detail. For example early design may only yield a relatively simple 

model consisting of blocks of interconnected components. As more detail is provided, 

for example when functions are allocated to components, more detailed models can be 

produced. Models can be updated throughout the lifecycle to reflect function or 

architecture changes in the system. The implication for safety analyses is that effects of 

design changes can be more quickly assessed. As models are defined using formal and 

semi-formal languages and notations, they can be mechanically interpreted (parsed) and 

therefore used as the basis for automated analysis. This type of automation, while being 

able to speed up the overall process, has the potential to reduce the opportunity for 

manual errors in the analysis. This is a major benefit and one of the main motivations 

for new model-based analysis methods which provide as much automation as possible. 

It is important to note however that none of the contemporary methods reviewed in this 
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chapter provide fully automated analyses; some manual effort is still required, mainly at 

early stages of their process where the modelling must be done. 

2.2.3 FPTN 

Failure Propagation and Transformation Notation (FPTN) (Fenelon and McDermid, 

1993) was developed to allow a compositional approach to safety analysis and has 

influenced the development of subsequent methods. The motivation for its development 

was to solve some of the problems of the classical methods while also creating a more 

integrated approach to safety analysis (Fenelon et al., 1994). FPTN was primarily 

developed to aid fault tree analysis and FMECA when applied to software, but can be 

applied to any system with a compositional architecture. A component failure can be 

traced through the system to determine its effects (inductively) to create an FMECA. 

Alternatively an output failure can be traced to its root causes (deductively) to create a 

fault tree for analysis. The method aims to give a generalised view of system failure 

behaviour and provide a link between such deductive and inductive analyses. 

An FPTN module directly represents an architectural component in a model. A 

complete diagram will show how failures flow through the system through the 

interconnected components (modules), thus creating the failure model. Each module 

may then contain a number of sub-modules to create a component hierarchy (Grunske 

and Neumann, 2002). The result is that both deductive and inductive analyses can be 

performed with an FPTN diagram, as failure modes can be traced backwards to discover 

causes, or forwards to discover effects. 

Each module contains the name of the component, a criticality level and where 

applicable, any recovery mechanisms („exception handlers‟). These are included within 

the header of a module, as shown in the example module in Figure 2. Each module also 

contains the failure modes of the component (internal failures), expressions relating 
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input and output failure modes, and may be modelled such that modules are nested 

hierarchically. SHARD-style classifiers (Ezhilchelvan  and  Shrivastava, 1989) are used 

for definition of failure types, i.e. timing (t), value (v), etc. 

Figure 2 Example FPTN module (Fenelon et al., 1993)  

It is possible to reproduce the failure expressions contained in a module in a simplified 

„sum-of-products‟ form, which are equivalent to the minimal cut sets generated in FTA, 

where the output failure mode is considered as the top event. This means that an 

individual FPTN module can be considered an abstraction of the set of fault trees for the 

component represented by the module. 

The main benefit of FPTN is the end-to-end modelling, linking deductive (e.g. FTA) 

and inductive (e.g. FMECA) approaches. As the modelling reflects the system 

architecture, faults can be seen to propagate through components, arguably making root 

cause identification easier. The drawbacks of FPTN though, are that it is strictly a 

descriptive notation and cannot be used to analyse failure propagation (Wallace, 2005), 

and has struggled to receive tool support (Paige et al., 2009). Also an FPTN module 

represents only known failure propagation between components, so connections 

between modules are not made unless a known failure propagates between architectural 

components. Finally, with regards to reusability, a key problem with the FPTN method 
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is that the detail of the modules is context specific; they need to be reconstructed 

whenever a change takes place in a component, because a change may alter the type of 

failure propagated and also to where the failure is propagated. This limits their 

reusability despite the compositionality of the diagram, but recent improvements to the 

notation (discussed in the following section) have allowed more generalisation and 

improved reusability. 

2.2.4 FPTC 

Influenced by FPTN, FPTC (Fault Propagation and Transformation Calculus) is a 

similar method to its predecessor for compositional analysis of systems (Wallace, 

2005). A significant contribution of this approach is the enhanced syntax for the system 

failure modelling. The FPTC notation adds useful abstractions and generalisations, for 

example a wildcard character can be included to indicate any type of failure, rather than 

listing every type individually. Variables can be used, which can also represent any 

type, but their main purpose is to indicate propagation within an expression: 

( late ,  _  ) → ( low ) 

( omission ,  f  ) → (  f  ) 

This example set of expressions would be used to define the behaviour of a single 

component. The first expression describes that a late failure on the first input and any 

(specified as a wildcard, „_‟) failure on the second input causes a low failure on the 

output, and the second expression describes that a failure f is propagated to the output if 

there is an omission of the first input and failure f on the second input. The use of 

wildcards and variables make it possible to create generic expressions, a very powerful 

abstraction which achieves a greater level of reusability, certainly improved over FPTN.  
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The FPTC method requires an architectural model of the system (example in Figure 3), 

into which the components and connections have an FPTC expression assigned to them 

to describe behaviour. FPTC is designed for the domain of real-time software and 

requires that architectural descriptions are in the form of graphs, consisting of nodes 

that represent hardware and arcs that represent communication protocols. One available 

notation for developing such graphs is the Real-Time Networks formalism (Paynter et 

al., 2000). Once annotated, automated analysis can proceed with the system acting as a 

token-passing network, where tokens representing the possible failures flow from one 

component to another (Paige et al., 2009). Propagation and transformation of failure 

tokens happens at the components or connections in the model. Expressions are „run‟ 

using the tokens, and the system continues to run until the tokens no longer change.  

Failure information can thus be obtained by studying the tokens at output or specific 

points in the system. Recent work further extends the syntax of FPTC to allow 

probabilistic analysis of failures (Ge et al., 2009). This adds a probability value to each 

expression so that calculated probabilities are passed through the model in addition to 

the failure tokens. 

 

Figure 3 Example Real-Time Networks architecture (Wallace, 2005) 

The development of FPTC addresses some key deficiencies in its predecessor FPTN, 

such as the requirement to reconstruct modules due to architecture changes and the 
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context-specific nature of the failure expressions. However a difficulty is encountered 

with the propagation algorithm of FPTC; the algorithm is inductive (forward analysis 

from causes to effects) and can suffer effects of combinatorial explosion when assessing 

combinations of failures (Wolforth et al., 2010a). 

2.2.5 HiP-HOPS 

The automation of safety analysis can be very beneficial, especially considering the 

potential for elimination of any human errors in traditionally manual processes, such as 

fault tree construction. HiP-HOPS (Hierarchically Performed Hazard Origin and 

Propagation Studies) is a tool that performs a semi-automatic safety analysis on system 

designs (Papadopoulos et al., 2001). It is capable of synthesising fault trees and FMEAs 

from a system model which can then be used for further study within HiP-HOPS. These 

steps are fully automated, but a manual effort remains in the initial system modelling 

and failure annotation. 

In the course of the design life-cycle, HiP-HOPS can operate with progressively more 

detailed models as they are produced and refined. Thus opportunities can arise to reuse 

information gained from earlier analyses and enables a consistent and continuous 

assessment of the system as the model evolves. At the earliest stages, such a model may 

be an abstract block diagram which shows the composition of the system from a purely 

functional point of view, for instance input and output transactions among functions, 

which can be decomposed into lower level sub-functions. When functions are allocated 

to hardware components at a later stage in the development, the model will then be a 

representation of the physical architecture of the system in its entirety. Each refinement 

of the model that increases the available information about the system will yield more 

detailed analysis results from HiP-HOPS. 



42 

 

HiP-HOPS requires that potential component failures are first identified using a 

variation of the classic HAZOP technique. This initial study is used to describe 

component failure behaviour as a set of Boolean expressions relating output failures to 

their causes, such as internal malfunctions or input failures. Failures are defined by the 

analyst into classifications, typically following HAZOP types (omission, commission, 

etc.), but can be more specific if required. In the form of the expression, a class of 

failure occurring on a port (component input or output connections) is known as a 

deviation, for example: 

Omission-output = Omission-input OR Internal_malfunction 

The above expression defines a component failure where an omission of the input, or an 

internal malfunction of the component, causes an omission of the output. Sets of these 

expressions of failure behaviour are manually annotated to components in the model; 

tool support has been developed to enable this within commercial modelling software
1
. 

Once components have been annotated, their failure behaviour in combination with the 

topology of the system (from the model) is used to determine the failure propagations 

through the system, and used to automatically construct a set of fault trees for the 

system. Following this, the fault trees are automatically analysed, resulting in a table of 

minimal cut sets. Such a table is analogous to a multiple failure mode FMEA as it 

shows direct relationships between component and system failures (Papadopoulos et al., 

2004). The complete HiP-HOPS process can be seen in Figure 4. 

                                                      
1
 The HiP-HOPS tool has been shown to work with EAST-ADL2 (Chen et al., 2008), 

MATLAB/Simulink (Papadopoulos and Maruhn, 2001), and Simulation X (Uhlig et al., 2007), and is 

currently being harmonised with AADL (Feiler and Rugina, 2007). 
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The effectiveness of HiP-HOPS depends upon the component annotations; it is essential 

that appropriate failure data is used. As the only manual step, it is also susceptible to 

error. Reusability within HiP-HOPS is limited by the context-specific component failure 

behaviour expressions, though if a component expresses a general behaviour and is 

annotated thus, the expression could be reused safely along with the component. 

2.2.6 Component Fault Trees 

Though methods like HiP-HOPS give a model of the failure behaviour of a system 

represented as a set of fault trees, in the pursuit of compositional analysis, modelling 

systems at the component-level cannot be done accurately with traditional fault trees. 

Fault trees can be modularised (Wolforth, 2005), but these modules do not necessarily 

represent architectural components. The reason for this is that fault trees model paths of 

failure propagations to a root hazard, rather than the system architecture itself. 

Independent sub-trees can be extracted from a fault tree and defined as modules 

Figure 4 The HiP-HOPS process 
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(specifically sub-trees which contain no repeated events), however components are 

often influenced by other components and therefore cannot be modelled as an 

independent entity in this way. 

Component Fault Trees (CFTs) (Kaiser et al., 2003) are an extension to the traditional 

fault tree concept to allow compositional modelling and analysis. The extension is to the 

fault tree notation, so that component ports can be included within the diagram. 

Otherwise, they are the same as traditional fault trees and can have the same qualitative 

and quantitative analysis methods applied to them. Using the new notation, 

componentised fault trees are linked by input and output ports, represented as a solid 

triangle, as shown in Figure 5. Basic events are now stored in their own components as 

independent events (even if they have the same name), which manages to avoid the 

„repeated event‟ issues from traditional fault tree analysis. 

Figure 5 An example CFT 

The fault trees used in CFT are in fact a generalised form of standard fault trees (Mäckel 

and Rothfelder, 2001) called Cause Effect Graphs (CEGs). These allow the common-

cause failures (repeated events) to only need a single representation, and they also allow 

multiple top events. CEGs make CFTs smaller, clearer and easier to analyse, which are 
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significant benefits particularly when modelling larger systems. In (Heilmann et al., 

2007), CFTs are used in an industrial case, analysing a railway braking system. In this 

report, the automatic generation of CFTs helped to manage complexity arising from a 

large number of combinations of subsystems.  

As components are independent, their behaviour is encapsulated and they can be 

developed separately, assuming the necessary ports for fault tree components have been 

determined. These features come together to create a reusable component concept for 

fault trees and analysis, with the added advantage that the decomposition is from system 

to sub-components, which is generally more intuitive than from top event to basic 

events.  

2.2.7 State-Event Fault Trees 

Traditional fault trees do not have the ability to model the temporal order of events, i.e. 

sequences of events or states and transitions; they only model static behaviour. State-

Event Fault Trees (SEFTs) (Kaiser and Gramlich, 2004) are an evolution of CFTs and 

allow the modelling of dynamic failure behaviour
2
. The ability to represent system 

states and state transitions within a fault tree leads to a much more in-depth and accurate 

analysis. This is particularly important for systems with a real-time element, where the 

traditional combinatorial fault tree is not suitable for modelling such dynamic 

behaviour. It allows a true representation of the actual functioning of a typical system, 

for example the sequence of events and their effect on the failure behaviour. The 

difficulty however lies in capturing, representing and analysing the SEFTs. An example 

SEFT is shown in Figure 6. 

                                                      
2
 Modelling of dynamic behaviour and associated temporal analysis is beyond the scope of this thesis, 

nevertheless it is worth mentioning as an example of contemporary safety analysis. 
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Figure 6 Example SEFT from (Kaiser et al., 2007) 

SEFTs extend the standard fault tree notation and add graphical elements for the 

representation of states and events, and also temporal and causal edges to the graph; an 

important distinction here is that states and events are not necessarily failures of a 

component. This extended notation also includes and extends the port concept from 

component fault trees, where they are now refined into state ports and event ports. 

Therefore the level of achievable reuse is similar to that found in CFTs. 

Traditional fault trees can be analysed with various methods by manipulation of the 

underlying Boolean expression structure. However SEFTs are only analysed by first 

transforming the tree into Deterministic and Stochastic Petri Nets (DSPNs) (Ciardo and 

Lindermann, 1993). Currently, further analysis of the DSPNs is performed by external 

tools e.g. TimeNET (German and Mitzlaff, 1995), but work is being done on the 

integration and automation of these methods (Kaiser et al., 2007). The detail required 

for analysis using SEFTs mean that the technique is susceptible to state-space explosion 

problems and so performance suffers (Grunske et al., 2005). This problem can be 

addressed to some extent by a dual-analysis technique, whereby the static parts of the 

system are analysed with combinatorial FTA algorithms and the dynamic parts analysed 
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by the more powerful methods mentioned previously. The effectiveness of this 

approach is however highly dependent on the type of system under analysis. 

2.2.8 Safety Case Patterns and composable safety cases 

The traditional safety case is a document that argues and presents evidence for the 

safety of a system, however when the system is large and complex, the safety case is 

generally large and complex also. Managing changes to the safety case throughout the 

life of a system can be challenging, with changes to regulatory requirements, additional 

safety evidence and changing designs all affecting the original argument (Kelly and 

McDermid, 2001). Successful arguments from prior studies are often reused in order to 

simplify the construction of the safety case, but problems can arise with its management 

when an ad hoc, „cut & paste‟ approach has been employed in the development (Kelly 

and McDermid, 1998). To address these problems, the concept of Safety Case Patterns 

(Kelly and McDermid, 1997) has been developed to ease the production of safety cases 

by using a more abstract approach to the general construction principles. Along with a 

graphical notation to help guide the development of safety cases, these extensions to the 

method aim to promote reuse and resolve some issues of the manual construction 

process. 

Safety Case Patterns (example Figure 7) are essentially templates for the construction of 

safety case arguments, given in the GSN format, with added documentation. The overall 

format is based on design patterns (Gamma et al., 1995) with some adaptation for the 

description. For instance, included in the documentation is applicability information for 

describing the circumstances under which the pattern should be applied. Also sample 

text is given for the safety case under development, similar to example source code in 

design patterns.  
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Figure 7 Hazard Avoidance Pattern from (Kelly and McDermid, 1997) 

Safety Case Patterns can certainly enable a degree of reuse and aid in the development 

of safety cases, but despite these additions, safety case construction is still a laborious 

manual process.  

To achieve a greater benefit from the compositional design of safety critical systems, a 

compositional approach to safety case development is required (Kelly, 2001). The GSN 

has been extended further with elements that enable the modular construction and 

representation of safety cases. The interfaces between modules are the crucial element 

for composable safety cases. A safety case module interface, as specified by (Kelly, 

2001), must contain: 

1. Objectives addressed by the module 

2. Evidence presented within the module 

3. Context defined within the module 

4. Arguments requiring support from other modules 
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Inter-module dependencies: 

5. Reliance on objectives addressed elsewhere 

6. Reliance on evidence presented elsewhere 

7. Reliance on context defined elsewhere 

These elements are required for an interface to be properly defined and thus to ensure 

the composed argument will be consistent, especially when modules are reused across 

applications. The principal benefit to modularising a safety case is managing change, 

i.e. maintainability. With a compositional approach, changes can be isolated to a set of 

modules, as opposed to traditional safety cases where changes may have an impact that 

necessitates the safety case be reassessed. Clearly, Safety Case Patterns and composable 

safety cases address some of the main difficulties with safety case maintenance, and 

achieve an improved and managed approach to reuse. 

2.2.9 AADL 

The Architecture Analysis and Design Language (AADL) (Feiler et al., 2006) forms the 

core of what is an extensive tool for the specification and analysis of dependable 

systems. It was originally developed for formally describing real-time embedded 

avionic systems, thus it includes modern features such as the capability for hierarchical 

modelling of software and hardware components and their interactions. It is an industry 

standard for avionics and other embedded real-time systems. The language is 

extendable, and one such extension which is of particular interest is the Error Model 

Annex (Feiler and Rugina, 2007). This provides a sub-language for the creation of error 

models, describing errors and failure behaviours of components, which are then 

associated with components in an architectural model. The intention of the error model 

annex is to provide support for qualitative and quantitative analysis of dependability 

attributes (Rugina, 2005).  
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An AADL model can represent hierarchies of components or subsystems, and so an 

error model‟s representation also extends from the system to component level. An error 

model will describe the state changes a component will experience when presented with 

a particular fault, either from an internal source or propagated from another component. 

An example of an AADL Error Model is given in Figure 8.  

 

 

When a system‟s architectural model is combined with the system‟s error model, 

automated analysis can be performed by one of several available methods, or by other 

AADL extensions. These include, for example, fault tree generation (Joshi et al., 2007) 

and Generalised Stochastic Petri Nets (Rugina et al., 2007), the latter used for 

modelling dynamic or state-based behaviour. 

error model Example1 

features 

ErrorFree:  initial error state; 

Failed: error state; 

Fail, Repair: error event; 

CorruptedData: out error propagation 

{Occurrence => fixed 0.8}; 

end Example1; 

 

error model implementation Example1.basic 

transitions 

ErrorFree-[Fail]->Failed; 

Failed-[out CorruptedData]->Failed; 

Failed-[Repair]->ErrorFree; 

properties 

Occurrence => poisson 1.0e-3 applies to Fault; 

Occurrence => poisson 1.0e-4 applies to Repair; 

end Example1.basic; 

Figure 8 Example AADL Error Model (Feiler and Rugina, 2007) 
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A useful feature is that error models can be stored in a library, which provides a 

repository for the component association and thus provides a degree of managed reuse. 

There are two types of reusable error model; the basic model, which defines component 

error states and how they change due to error events and propagations, and the derived 

model which defines the error state of a component in terms of the error states of its 

subcomponents. The error models that are reusable, as far as the annex allows, still have 

architecture dependencies due to component-specific properties in the model definition. 

The onus then remains on the analyst to ensure that error models are reused 

appropriately. 

2.2.10 Formal Verification for Safety Analysis  

The contemporary methods discussed so far are similar in that they are all capable of 

compositional safety analyses. There is however another class of methods used for 

safety analysis that must be discussed; these are formal verification techniques which 

support safety analysis. Like other compositional methods, these use a model as input, 

but can perform an analysis with simpler information about failures; only local failure 

modes are required, with propagation of failures inferred from the model.  

Formal verification techniques are widely used and provide a greater degree of 

automation, but are not without their drawbacks. Generally, formal verification 

techniques are inductive, working from cause to effect. In contrast to a deductive 

approach, this can lead to combinatorial explosion when combinations of failure modes 

are analysed. The processing requirements for these methods are also far more 

computationally expensive due to the extensive checking that must be performed. 

Nevertheless, these methods are valid and have their place among the contemporary 

safety analysis techniques (Lisagor et al., 2006). 



52 

 

One such method, simulation, automatically derives failure information about a system 

from the algorithmic execution of a functional model. The aim is to find out how the 

system may perform if it were operating as designed, providing information about 

reliability, availability and maintainability. The simulation process may require a 

considerable amount of time, particularly as a model must be subjected to repeated 

executions in order to gain reliable data. The multiple runs can generate large sets of 

results, but the main drawback here is that potentially not all failures are found even 

with multiple executions (Price and Taylor, 2002).  

Another common method used in industry for formal verification is model checking. 

The basic principle of the process requires that a system and its properties are expressed 

as a mathematical model and are checked for meeting safety requirements through 

computational algorithms. Model-checking can be used to automatically prove safety 

properties at any stage of a model‟s development. A general view of the process is given 

in Figure 9. The „model‟ here refers to a representation of system requirements (what 

the system does) or design (how it does it), which along with the system properties (the 

properties to be checked, i.e. safety properties that must be „true‟) are used as input to a 

model-checking tool. The result of the evaluation outputs positive if the model satisfies 

these properties, or if they are not satisfied, a counter-example is produced by the tool. 

Through detailed examination of the counter-example, problems can be pin-pointed and 

a model can be manually corrected so that the system properties will be satisfied on 

repeated application of the model-checker.  
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Figure 9 Process of model-checking 

Model-checking can be useful in safety analyses, one such ability being the formal 

checking of fault trees (Thums and Schellhorn, 2003). Thums and Schellhorn define 

fault tree semantics which formalise fault tree events; logic gates in a tree are assigned a 

„correctness‟ and a „completeness‟. Correctness is a guarantee that sub-events lead to 

the top event and completeness is a guarantee that only those sub-events lead to the top 

event, i.e. no causes have been missed during the analysis. Any omissions in the tree are 

found as a counter-example by the model checker. In another example, model-checking 

was used very successfully on NASA‟s DEEP SPACE 1 system (Havelund et al., 

1999), finding several previously unknown errors. 

FSAP/NuSMV (Formal Safety Analysis Platform, Symbolic Model Verifier) (Bozzano 

and Villafiorita, 2003), for example, is a tool for automating safety analyses which 

combines several techniques. It can perform automatic fault tree generation and model 

verification and aims to provide a platform that can be used throughout the development 

of a safety critical system from its design through to the assessment of its safety 
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properties. The platform requires a formally-written model of the system for validating 

the functional requirements, which can be extended to include component failure modes 

for safety analyses. A useful feature is that generic safety requirements are stored in a 

library included with the tool, from which predefined failure modes can be included into 

a model.  

A key drawback of model-checking techniques are that output results require manual 

verification, due to the fact that „false negatives‟ can occur with an incorrect input 

model or specification (Clarke et al., 1999), e.g. a mistake in the input can lead to the 

model checker producing a negative result based upon the erroneous input. Thus the 

result has to be verified against the input to determine if it is a valid counter-example.  

Another approach which is based upon model checking is failure injection. In this 

method, failure modes are added to a model in the same manner as a component (hence 

„injected‟).  When a model is executed/run, a failure mode can be active or not, with the 

model checker controlling the activation of the failure modes, for example if all failure 

modes are deactivated, the model will exhibit its normal behaviour. The model checker 

will produce a list of failure modes that violate a requirement, which is similar to a list 

of minimal cut sets produced from FTA.  

Formal verification provides „true‟ automated analysis (Lisagor et al., 2006), and 

provides an implicit guarantee of „correctness‟ of analysis results. Early lifecycle 

models can be used by these techniques however the problem faced by such methods is 

the potential complexity of input models, resulting in a computationally expensive 

process.  
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2.2.11 Comparison of classical and contemporary safety analysis 

Classical safety analysis methods were developed primarily to support analysts working 

in the aerospace and nuclear industries. The techniques have found lasting success by 

providing straightforward methods that yield useful results for safety assessment.  

Some of the earliest methods, for example FMEA and its variants, are still usefully 

employed for hazard identification and relating causes of failure to their effects. Fault 

tree analysis improves on the inductive tabular methods by providing a deductive 

analysis of failure combination and propagation throughout a system. This and the 

subsequent analysis of fault trees provide effective means for identification and analysis 

of root causes of hazardous failures and their likelihood. FTA has become one of the 

most widely used safety analysis methods today.  

Methods that are simpler to perform generally yield less detailed results, but as safety 

critical systems have tended to become far larger and more complex over time, the 

classical methods have encountered problems when faced with the increased complexity 

found in modern systems. The general difficulties shared by all the classical methods 

are: 

 the manual production of results and their potential to be of great volume; such 

large sets of data make the manual interpretation and adequate management of 

results very difficult. This also makes errors more likely in very large analyses. 

 the maintainability of analyses; when changes are made to a system, analyses 

have to be performed again, or results reconstructed, either way resulting in 

substantial extra effort. 

Another issue is the time required and high cost of analyses; due to these factors, a 

safety analysis is typically only performed after a design is finalised. Although this will 
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yield the required safety information about the final system, it leads to further increases 

in costs and development time when problems are found and redesigns are necessary. 

As complexity inevitably continues to increase, the difficulty in applying classical 

methods increases further (Papadopoulos et al., 2001). 

The contemporary approaches bring into safety analysis improvements, extensions and 

new techniques developed to address those drawbacks of the classical methods. The 

modern compositional approach to safety analysis began in the mid-1990s. Since then, 

continuing developments have been made resulting in several different methods, each 

tackling the problems of managing complexity in their own way. Compositionality is a 

common feature; with the trend for complex systems to have a composable design 

incorporating reusable, off-the-shelf components, compositional analysis seems to be a 

reasonable way of rationalising complex safety assessments. As a result, contemporary 

methods are capable of performing analyses at the component or subsystem level and 

aim to provide some reuse via their compositionality.  

It is common for compositional safety analysis methods to make use of an early 

architectural design model of a system to perform their analyses, which saves time, 

effort and cost. A major benefit over the classical methods is this allows a degree of 

automation in analyses. An alternative approach is to have safety properties formally 

verified using model-checkers. However, in this approach the analysis is typically 

inductive or requires exhaustive state-space exploration, which makes the analysis 

prone to combinatorial explosion and reduces the scalability of the approach (Wolforth 

et al., 2010a). At a higher level there is the safety case; a set of complex documents 

which put forward arguments and evidence of a systems‟ dependability, gathered from 

sources including the results of other analyses. Here there have been significant 

developments with regards to reusability and compositionality. 
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In summary, there are many approaches to checking that a system meets its safety 

requirements. The classical methods developed from various industries (chemical, 

nuclear) have yielded useful methods that are still used today. Recognising some of 

their drawbacks, improvements have been made to allow more manageable analyses of 

larger scale, more complex systems, typical of those found in modern day safety critical 

systems. The most important improvements seen with contemporary approaches are: 

 enhanced failure notation 

 improved representation of failures and architecture 

 compositionality 

 automation to reduce the manual effort and improve accuracy 

Clearly, improving reusability and managing reuse effectively are important and current 

areas of research modern safety analysis techniques. To help better understand the 

issues of reuse, the next section examines successful techniques for reuse found in 

other, more mature domains. 
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2.3 Reuse 

Reuse is a widely used and very useful concept in many areas of modern engineering. 

There are various methods, types and scope for reuse, but reuse can generally be defined 

as the repeated application of some aspect of a system within the same or across various 

designs. The major motivation for reuse is often financial; being able to reuse a solution 

can save large amounts of money on resources and implementation costs. As for the 

implementation itself, there is also the potential benefit of reusing the experience and 

knowledge of the operational factors such as reliability and maintainability of a 

particular component. This is a particularly important consideration when reusing 

mechanical components. For example, once the design of such a component had proven 

its robustness in an operating environment, identical components could be included in 

other systems with a degree of confidence. For safety critical applications, these factors 

are extremely important, so there is a motivation to reuse wherever possible. 

In the ideal scenario, reuse would allow the transfer of information across a variety of 

applications, but in practice it is very difficult to achieve. For a mechanical device, the 

operating environment can have a major influence on the performance of the 

components. Knowledge gained from one environment may not necessarily apply to 

another, for example due to a difference in ambient temperature. To overcome such 

practical problems, and in recognition of the benefits of reusability, mechanical 

components are typically designed to operate within tolerances. Designing a component 

to operate within a range of tolerances, rather than to fit a specific value, improves the 

likelihood that the component can be reused in other environments. This is an example 

where a generalisation of a property can increase the scope for reuse. This concept of 

generalisation is not limited to mechanical engineering; electronic and even software 
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components can be constructed with a more general specification meaning they can be 

more easily reused. 

In the remainder of this section, the scope of reuse within safety critical systems and 

safety analysis is summarised, and the level of reuse achievable in more mature domains 

is discussed, with a particular focus on software engineering. 

2.3.2 Reuse in safety critical systems and analyses 

Though careful design is essential, reuse (often ad hoc) still occurs within safety critical 

systems (Bush and Finkelstein, 2001). The reason is that the general advantages of reuse 

in other fields still apply, such as time and cost savings, but perhaps more importantly, 

the greater benefit of reuse within dependable systems is the „trusted‟ aspect. If a 

solution is known to be dependable, perhaps from an observation of its operation as part 

of another system over a period of time, then it is often justifiable to apply the solution 

to the same problem when it is encountered again. More generally, it is desirable to use 

components that have well-known safety properties. 

The assumption for subsequent safety analyses is that if components are reused, any 

associated information about safety properties can also be reused. However, because a 

change in the system context may introduce new factors, for example further influence 

from other components, it is not safe to assume that safety properties would hold. So 

even where component reuse is possible, failure behaviour will likely need to be 

reassessed in new applications. Re-specifying behaviour is no trivial task; despite 

attempts at generalising the descriptions of component failure behaviour, in most cases 

the methods still require context-specific descriptions. The FPTC method for example 

has improved on this by including some abstract syntax elements; generic references 

can be made using special symbols in expressions. Furthermore the compositional 
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approach of modern safety analysis methods includes reusable elements, but the actual 

level of reuse achievable is fairly limited.  

Levels of reuse can be put into classifications (Karunanithi and Bieman, 1993). If an 

element is reused without any modification, it is known as verbatim reuse. In other 

cases, reuse can take place subject to some modification, which is known as leveraged 

reuse. Trivial reuse is a variation of leveraged reuse, restricted to cases where only small 

modifications take place (Smith and Harrison 2005). Recognising this, allowing some 

flexibility with regards to what is reused makes at least some degree of reuse more 

feasible, but the difficulty then lies in how to carry out reuse appropriately.  

In (Kelly and McDermid, 1997), the problems of manual safety case construction are 

discussed. They highlight the ad hoc style reuse that is commonly found; an analyst 

decides if a problem is „similar enough‟ to another that a prior solution can be used in a 

new application. Though this may occasionally be successful, it ultimately becomes a 

„cut & paste‟ approach to reuse and is simply unreliable, potentially leading to bad 

implementations. The idea that this kind of reuse is common in other types of analysis is 

suggested in (Bush and Finkelstein, 2001). It can be inferred from this work that a lack 

of systematic management is a major obstacle towards improving the scope of reuse in 

safety analysis. 

Extensions to safety cases (Kelly and McDermid, 1998) have introduced a pattern 

concept to enable a degree of reuse by structuring how a safety case could be developed 

using prior arguments. It works by giving a documented solution to a common 

construction problem as a set of systematic guidelines for the analyst to follow. 

Although safety cases operate at a higher level, this approach to reuse can also apply to 

compositional safety analysis techniques. 
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There can still be some concerns even with a systematic approach to reuse however; 

supporting experience must be gathered first, and correctness must be rigorously 

checked. This still leaves the questions: where does responsibility lie if a problem is 

discovered? Are problems a result of a design fault or an inappropriately reused 

component? In the scope of this thesis, these concerns cannot be resolved; a certain 

degree of responsibility is assumed on the part of the analyst to ensure correctness.  

2.3.3 Reuse in Software Engineering 

Contemporary safety analysis introduces compositionality, along with partially 

automated techniques to improve the reusability and reliability of analyses, but their 

overall success has been limited. The focus of this thesis is to develop a language for 

describing failure behaviour that allows greater reuse of behaviour expressions than 

currently found in contemporary methods, along with a robust mechanism for the well-

managed application of reuse. Based on this, as the investigation leads to generalised 

and abstract language constructs, it is useful to look at developments in the field of 

software engineering, which is a more mature domain and includes extensive 

mechanisms for managed reuse of program code. 

Reusability is a very important and extensively used concept within software 

development. Modern software projects can be very complex and require programs with 

millions of lines of code. Creating programs of this size has forced developers to adopt 

more rigorous approaches to software design. 

Improving the scope of code reuse was the primary aim of developing object-oriented 

(OO) programming. Bringing functions and associated data together created the concept 

of classes, which is the core of the OO paradigm. The idea is that a class becomes a 

reusable element, possibly a trusted solution to a software problem. To an extent, OO 

design can bring compositionality to software. It also provides the foundation for the 



62 

 

more advanced reuse features. For example, a powerful technique for managed reuse 

within OO programming is the concept of inheritance. Inheritance allows new classes to 

be created from existing classes by specifying a hierarchy of relationships. When one 

class inherits from another, it means that certain properties are shared between them. A 

new class (the derived class) can inherit data and/or functions from an existing class (the 

base class) thereby reusing existing specifications. A class hierarchy can be constructed 

in several ways, giving rise to different types of inheritance. The simplest form is single 

inheritance, where there is a single base class inherited by a single derived class. This 

simple hierarchy can be extended further with the derived class itself being inherited to 

create another class, known as multi-level inheritance. A more complex hierarchy can 

go further and create classes which take attributes from more than one type, called 

multiple inheritance, where a derived class inherits from more than one base class. 

When these types of inheritance, multi-level and multiple, are used within the same 

hierarchy, it is known as hybrid inheritance.  As well as for code reuse, inheritance is a 

useful method for managing changes, for example any change made to the parent base 

class will be immediately inherited by all derived classes. 
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Figure 10 Inheritance in object-oriented programming 

For example in Figure 10, all derived classes contain function_x(). This is a useful 

feature for creating specialisations of a type which are all compatible within the 

inheritance hierarchy. 

At a higher level of software design, there is another type of reusable element, the 

design pattern (Gamma et al., 1995). These are structured combinations of interacting 

classes that when implemented, are known to provide solutions to recurring design 

problems. A design pattern consists of a diagram, illustrating the flow of control and 

data between classes, and documentation about how and when the pattern should be 

applied. Design patterns capture solutions that have evolved over time, based on 

acquired expertise, experience and successful approaches to prior software problems. 

By providing this knowledge in a structured way, with appropriate documentation to 

guide their usage, design patterns can speed up software development. 
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Choosing an applicable pattern for a solution is itself no easy task, so as a collection 

they are catalogued and organised into categories that define the purpose and scope of a 

pattern. Creating a catalogue like this makes it easier to find the solution to a problem, 

giving a good foundation to managing appropriate reuse. 

There are some drawbacks with using design patterns, the most obvious being that they 

are not directly implementable solutions; they serve as knowledge reuse rather than 

literal reuse and are therefore a template for developers to base their implementation on 

(Gamma et al., 1995). The idea is to show the interactions of classes for commonly 

occurring problems, but it is left up to the developer to follow the implementation 

guidelines and provide the actual program code. Potentially this undermines the 

reusability, at least in terms of a reliable solution, as it can easily introduce errors with 

the manual implementation. 
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2.4 Summary of literature review 

There are several methods that are used for safety analysis. The classical methods have 

evolved over time, leading to the state-of-the-art contemporary methods available today 

that are capable of modelling complex, compositional systems. Some are based on 

failure logic models, using deductive methods to trace failures through a system. 

Alternatively there are methods which perform formal verification of models to 

inductively check safety properties. 

Performing a safety analysis of these types of system typically requires a team of 

analysts. It is often expensive and time-consuming, yet it is still a necessary process. 

Some methods allow a degree of automation, to aid analyses and reduce the possibility 

for human error, but there is still a manual element to each technique. This is partly the 

motivation for attempts to improve the way safety analyses are performed, the most 

prominent being the model-based approach. 

Reusability has been a major influence in the development of these methods. To reflect 

the compositional architecture of designs, analysis techniques have themselves become 

compositional in response. The aim is to reflect the same type of literal reuse of 

architectural components as similarly reusable analysis elements, for example reusing 

associated definitions of „well-known‟ component failure behaviour across analyses 

without modification. This is particularly desirable in the domain of safety critical 

systems where there is the motivation to use „trusted‟ components within designs. 

However, achieving this type of reuse has proven very difficult with a suitable degree of 

confidence within current methods. State-of-the-art safety analysis methods, rather than 

focussing on literal component reuse, make some attempts to capture and reuse 

knowledge of component failure behaviour, often defined as a logical expression.  
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One aspect where problems arise is with context-specificity of definitions of failure 

behaviour which prevents information from one application being used in another 

design. Generalisation and abstraction seen in some methods are concepts used to 

improve reusability by attempting to remove the context dependence. The intention is 

that a more general analysis element would be applicable across a range of studies. 

However attempts at abstraction or generalisation in any scenario require additional 

documentation to guide the user in its application, thus it is also essential to consider 

how reuse is actually performed. 

The limiting factor here is an overall lack of a well-defined, managed approach to 

reusing safety analyses. The prime example is the „cut & paste‟ approach to reuse where 

the analyst makes the (possibly incorrect) observation that certain components are 

similar enough for failure data to be reused when in fact it is not appropriate to do so. 

The lack of rigour in the process means that when reuse is performed, it is often in an ad 

hoc manner. These are the two most important problems that must be considered in a 

new approach; enabling knowledge reuse of component failure behaviour and 

establishing a systematic method for performing reuse. 

The second part of the chapter focused on reuse in general, with attention paid to 

reusability concepts as found in software engineering. The concept of inheritance was of 

particular interest in this study, being a mechanism that can be used in order to manage 

reuse more effectively. Inheritance enables reuse by creating a specialisation derived 

from a more general base type. Employing this within safety analysis and component 

annotations,  creating a reuse mechanism based on inheritance may provide an effective 

way to manage the reuse process. Another useful feature found in software engineering 

is Design Patterns; reusable elements that capture general solutions to commonly 

occurring software problems, and provide documentation along with a diagram to guide 
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their implementation. They are not directly implementable themselves, rather they are 

an example of where knowledge has been captured and expressed in a reusable format. 

Attempting to enable these kinds of features within a safety analysis method 

necessitates that a more abstract approach to expressing failure behaviour is developed. 

Lessons learned from the literature review imply this can be done via the creation of a 

generalised language for the description of component failure behaviour within an 

established safety analysis method. Inductive methods (i.e. formal verification) were 

deemed unsuitable for this development, mainly due to their inherent problems of 

combinatorial explosion.  

The HiP-HOPS technique is a deductive method and a good candidate for this 

development because its annotation syntax can be easily extended and provide a more 

easily readable syntax. A generalised syntax will allow collective, generic statements to 

be made about failure behaviour which should hold in any application context, but it is 

important to realise this may not be possible for all components and failure types. As a 

final step to ensure appropriate and managed reuse, it is essential to develop a system of 

documentation to guide the application of generalised expressions. Taking all these 

points into account, the following requirements for an extended language are as follows: 

1. The syntax must allow generalisations to be made which can define 

behaviour, as far as possible, independently of context 

2.   Can be automatically parsed without sacrificing readability 

3.   Be well documented, including systematic rules for guiding reuse 

4.   Remain compatible with the current annotation language within HiP-HOPS 

In conclusion, the aims of the thesis have been focused and a set of requirements for 

what a new approach should include have been defined. In the next chapter, these 
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requirements are taken and developed into a new method for managed reuse alongside a 

robust safety analysis technique; a reusable, generalised language extension to the HiP-

HOPS tool. 
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3 A Generalised Failure Logic 
extension to HiP-HOPS 

The first part of this chapter explores the HiP-HOPS analysis process to discover the 

limitations of the classical component annotation syntax. Following this, it is shown 

how generalisations of component failure behaviour can be made, captured and 

expressed within an extended annotation syntax. Further, it is shown how sets of failure 

behaviour expressions created with the generalised syntax can be encapsulated and 

managed with documentation so that a pattern concept can be applied to component 

annotation.  

3.1 Safety Analysis in HiP-HOPS 

Performing a HiP-HOPS study on a system involves three main phases: 

 System modelling and failure annotation 

 Model parsing and fault tree synthesis  

 Fault tree analysis and FMEA generation 

The first stage is manual and comprises development of the system model and the 

establishment of the local failure behaviour for each component. The local behaviour 

describes how the component responds to failures generated internally or received at its 

inputs having been propagated from other components. In HIP-HOPS, this is expressed 

as effects of internal and input failures on the component‟s own outputs. A variant of 

HAZOP (Kletz, 1997) is used to initially identify the possible component output failures 

and their causes. During this preliminary study, the types of failures, the set of failure 

classes, to be examined can be defined. These types will depend upon the context and 
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application of the system, but in the general case these can be the familiar HAZOP-style 

classifiers, i.e. provision, value, timing. 

In the classical annotation syntax, there is the general assumption that every component 

has a set of inputs and delivers a set of outputs. This forms the basis of the logical 

expressions which relate deviations of output to their respective causes and allows the 

set of fault trees for the system to be synthesised. Component failure behaviour is 

annotated into a model as a set of logical expressions; these can include Boolean 

operators such as conjunction (AND) and disjunction (OR) to describe combinations of 

failures, for example: 

Omission-o1 = Omission-i1 OR Internal_Failure 

An expression like the above relates an output deviation (the left-hand side) to its causes 

(right-hand side), which can be deviations of inputs, internal malfunctions, or any 

combination of these. In this case, the output deviation, the omission of output o1, is 

caused by an omission of input i1 or by a basic event, an internal failure of the 

component. More detail can be included by specifying the parameters of the deviations; 

connections between components may have more than one attribute, which necessitates 

the definition of the extra detail. For example in a hydraulic system, the fluid flow, 

pressure and temperature may all need to be monitored between connected components, 

therefore expressions may be needed which refer specifically to an individual attribute, 

e.g. a low value for the pressure may cause a failure of the hydraulics to operate 

correctly. 

Once the modelling and subsequent annotation is complete, HiP-HOPS performs its 

automated analysis steps. The topology of the model is used to automatically determine 

how the local failure behaviour, specified by the component annotations, causes failures 

to propagate through connections in the model and ultimately cause functional failures 
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at the system output. This global view of failure is captured deductively (effects to 

causes) in a set of fault trees, synthesised from the model traversal. Finally, qualitative 

or quantitative analysis can be automatically performed on the fault trees to establish 

whether the system meets its safety or reliability requirements. A table equivalent to a 

multiple failure FMEA can then be automatically obtained from the fault tree logic, 

recording for each component in the system and for each failure mode of that 

component, any direct effects on the system and any further effects caused in 

conjunction with other failure events.  

As HiP-HOPS is capable of providing safety information at each stage in the evolution 

of a design, it would be useful to reuse expressions of failure behaviour, where possible, 

to save the effort of re-annotating components in all design iterations. The more general 

a failure expression is, the more easily it could be reused in this way. The major 

difficulty with this, and with deviation-based failure logic modelling in general, is that 

the modelling is dependent on the nominal behaviour of the system and the nominal 

behaviour is then dependent on the application context and state. In practice this means 

that the nominal behaviour can change and so reliable reuse of specific failure logic is 

difficult to achieve. However, creating generalisations of failure logic can be achieved 

and thus help guide and improve the efficiency of creating models in step with designs. 

3.1.1 Fuel System example 

An example of HiP-HOPS analysis of a simple fuel system is given in this section to 

highlight what is currently achievable with the annotation syntax, its limitations, areas 

where the syntax could be extended to enable a greater degree of generalisation and 

therefore where possibilities lie to achieve greater reuse of failure expressions. 
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Figure 11 Fuel System 

The fuel system in Figure 11 is designed to continually provide an output flow of fuel, 

with a provision for some fault tolerance. Pathways for power, control and fuel flow are 

replicated for redundancy, so that fuel will continue to flow as long as there is sufficient 

power to the system and a correct control signal is delivered to an operational pump. 

Control signals pass through an embedded logic system that can compensate for a 

permanent failure of one bus. Any missing control signal from one bus is synthesised 

from the other bus, meaning signal omissions are only propagated when both buses fail 

together. Commission failures (an unintended signal) cannot be detected or corrected 

with this logic system, so these will always propagate to the pumps. The use of two 

pumps means that an omission of output can only occur if both pumps fail, whereas a 

commission of output can occur if only one pump experiences a commission failure. 
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Table 3 Fuel System annotations 

The system as a whole is powered by a series of redundant power supply units (PSUs) 

routed through a single power bus. This design allows for additional redundant PSUs to 

be added as required, or for failed PSUs to be replaced without power disruption to the 

system. This feature also allows provision for a finalised number of PSUs to be 

specified in a later iteration of the design. Individual PSU failure can be tolerated, but 

multiple PSU failures will result in total power loss for the system. 

PSU 
 

Omission-out = PSU_failed 

 

Power Bus 
 
Omission-out1 = Omission-in1 AND Omission-in2 AND Omission-in3 

Omission-out2 = Omission-in1 AND Omission-in2 AND Omission-in3 

Omission-out3 = Omission-in1 AND Omission-in2 AND Omission-in3 

 

Computer 
 
Omission-out1-sig = Omission-power OR computer_failure 

Omission-out2-sig = Omission-power OR computer_failure 

Commission-out1-sig = memory_stuck 

Commission-out2-sig = memory_stuck 

 

Data Bus 
 
Omission-out-sig = Omission-in-sig OR bus_failed 

Commission-out-sig = Commission-in-sig 

 

Logic 
 
Omission-out-sig = Omission-in1-sig AND Omission-in2-sig 

Commission-out-sig = Commission-in1-sig OR Commission-in2-sig 

 

Valve 
 
Omission-out = Omission-in OR stuck_closed 

Commission-out = Commission-in OR stuck_open 

 

Pump 
 
Omission-out = Omission-in OR Omission-control OR 

      Omission-power OR stuck_closed 

Commission-out = Commission-control OR stuck_open 
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This case study focuses only on two classes of failure, omission and commission; 

therefore the system failure modes studied are the omission or commission of fuel flow. 

For example the manner in which failures propagate through the system means that PSU 

failure can lead to pump failure and hence an omission of output. The full failure 

behaviour for the system is given in Table 3.  

The PSU has a single failure mode with one application-independent cause; an internal 

failure stops the PSU from providing power at its output, which could occur within any 

system which uses the PSU. It is possible that as each PSU in the system is identical, 

they can share the same annotation, which is true in the context of this example. 

Likewise for other replicated components within the same system, they can share the 

annotations of their identical counterparts. Those expressions can be stored and re-

applied whenever the associated component is used in a model. 

The power bus has its failure behaviour described, as in Table 3, with three expressions. 

Observing the common structure within each of these expressions, there is a common 

behaviour; every output deviation is brought about by the same input deviation cause. 

Using natural language, it is possible to describe the component‟s behaviour in a more 

general manner „an omission of any output is caused by an omission of all inputs‟. This 

generic behaviour has no dependency on the application context and will therefore hold 

in any system that incorporates the power bus. Therefore it can be considered to be a 

very simple, reusable pattern of behaviour. Indeed it is possible to see more forms of 

general behaviour and patterns in the example system. 

The computer can experience omission and commission failures on both its outputs, and 

each type has the same cause on either port. For instance the commission failure on 

either output port is caused by the same internal „memory stuck‟ failure. In more 
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general terms, it could be said that the „memory stuck‟ failure causes a commission on 

any output port. 

The individual data buses in this system will propagate any type of failure received at its 

input to its output. In this case the activation signal „sig‟ for the fuel pumps can either 

be omitted or present though undesired; this is equally true for any other signal that the 

data bus component may transmit in any context, thus it can be generally said that the 

same erroneous input signal will be propagated to the output. Furthermore, for this 

example component, the behaviour will hold for any number of inputs and outputs the 

bus may have, so it can be said that an omission on any input of a signal will propagate 

as an omission of the same signal at a corresponding output, and likewise for 

commission failures. 

A logic controller in this system will only propagate an omission failure if it occurs on 

both its inputs. For instance an omission of output is caused when an omission occurs 

on all inputs, a conjunction of signal omissions on „in1‟ and „in2‟. A commission failure 

will propagate when at least one input, i.e. any input, receives an unintended signal. 

The valves controlling the input flow of fuel have a very basic failure behaviour which 

is valid for any system in which one is used. For instance the valve can experience basic 

failures of being either stuck open, leading to a potential commission of output flow, or 

stuck closed, leading to a potential omission of output flow. The precise material whose 

flow is being controlled is not relevant for an expression of the valve‟s failure 

behaviour, thus the existing annotations will hold in any application and do not need to 

be further generalised; they can be stored and reused along with the valve component. 

The pumps will fail to deliver an output in response to an omission of any of its inputs, 

the input flow, the control signal or the power source, or if the pump itself is stuck 
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closed. Undesired output from the pumps can occur if there is an undesired activation of 

the pump control or if the pump is stuck open. 

Under analysis in HiP-HOPS, potential design flaws in the system would be discovered, 

such as the single point of failure „computer failure‟. This may force design changes to 

be considered, leading for example to the addition of a redundant backup computer to 

provide a fail-safe mechanism in the event one computer suffers this failure, avoiding an 

otherwise complete system failure. 

3.1.2 Limits of HiP-HOPS component annotation 

The general case is that component annotations as in Table 3 have very limited 

applicability, e.g. the expressions only apply to this system and are not transferrable into 

another study, but there are situations, like with the PSU and valve components, where 

it is possible to reuse annotations developed with the current syntax. Even so, such 

reuse is somewhat ad hoc and clearly not subject to a rigorous process; an aspect 

identified previously as being essential to achieving a suitable method for reuse.  

Capturing behaviour using the original HiP-HOPS annotation syntax typically requires 

multiple expressions containing combinations of events. This is sufficient to fully 

describe a system‟s failure behaviour, as seen with the fuel system example; however it 

can become a burden, particularly with regard to reusability of expressions. For instance 

the power and data buses have a failure behaviour which is independent of the 

application context, however their annotations would have to be completely 

reconstructed if additional components were connected to them in a modified design to 

take into account the extra potential failure causes and effects. This highlights the limit 

of reusability within HiP-HOPS. The effort of reconstructing component annotations for 

every application should not be underestimated (this can easily range into the thousands 
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of expressions), so being able to have more general annotations, thus improving the 

scope of reuse, is very desirable. 

Most of the components in this example system can have their failure behaviour 

described in a general way using statements such as „any output‟ or „all inputs‟. Beyond 

this small example, many electromechanical and complex programmable components 

exhibit similar patterns of behaviour that would be useful to capture. The Time-

Triggered Protocol (TTP) communication controller (Kopetz and Grünsteidl, 1994) for 

instance is designed to always fail silent in response to detectable omission, commission 

and timing failures in received messages, and this behaviour is independent of the 

number, type or relative scheduling of these messages. Fail silent behaviour as in the 

TTP controller is a transformation of one failure type into an omission of output i.e. the 

failure type is not propagated. Generally speaking, the fail silent behaviour can be 

described as the transformation of any input failure class into an omission of output.  

Though it is possible to describe behaviour generally with natural language, the original 

annotation syntax of HiP-HOPS clearly does not have the ability to make such 

generalisations within failure behaviour expressions. In order to capture such patterns of 

behaviour, the syntax must be extended with more abstract terms. The potential to make 

generalisations within component annotations lies in making collective references, such 

as „any‟ or „all‟, to the terms in a given expression. Furthermore, an abstract definition 

of failure behaviour enables a far greater potential for reuse of component annotations, 

for instance in the scalability of expressions; a reference to „all inputs‟ has no 

dependency on the specific number of input ports and thus is unaffected by design 

changes that alter this quantity.  
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3.2 The Generalised Failure Language 

This section proposes the extensions to the HiP-HOPS syntax for component 

annotation, known as the Generalised Failure Language (GFL), which allows the 

creation of Generalised Failure Expressions (GFEs). GFEs make it possible to capture 

patterns of behaviour which can be automatically interpreted within a compositional 

safety analysis process.  

The syntax for the GFL is fully defined in section 3.2.1. Any annotation which employs 

the GFL must contain a component identifier, any inherited values and one or more 

generalised expressions. A generalised expression in this sense does not necessarily 

contain abstract generalised terms, as a classical HiP-HOPS expression may be 

sufficient in some cases. Alternatively it could be a more complex expression 

containing both classical and generalised terms, which is allowable in the syntax. 

3.2.1 Grammar of the GFL 

Below is the complete grammar for the new syntax, giving the rules on how to construct 

valid expressions in GFL format. Detail of the formal semantics of GFL can be found in 

(Wolforth et al., 2010a). 



79 

 

ComponentAnnotation = ComponentName [InheritDirective] GFE {GFE} 

ComponentName = "NAME" ComponentID 

InheritDirective = "INHERIT" ComponentID 

ComponentID = Identifier 

GFE  = GOD "=" InputExpression 

GOD = OutputFailureClass "-" OutputPort ["-" OutputParam] 

InputExpression = OrTerm { "OR" OrTerm } 

OrTerm = AndTerm { "AND" AndTerm } 

AndTerm = ["NOT"] (GID | "(" InputExpression ")" | BasicEvent) 

GID = InputFailureClass "-" InputPort ["-" InputParam] 

BasicEvent = Identifier 

OutputFailureClass = "FC" [Exception] | FCList | FailureClass  

InputFailureClass = Operator "(" ( ("FC" [Exception]) | FCList ) ")"  

 |  "SAME(FC)" | FailureClass 

FCList = "FC:" List 

FailureClass = Identifier 

OutputPort = "OP" [Exception] | OutPortList | PortName  

InputPort = Operator "(" (("IP" [Exception]) | InPortList )")"  

 |  PortName 

OutPortList = "OP:" List 

InPortList = "IP:" List 

PortName = Identifier 
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OutputParam = "PM" [Exception] | ParamList | ParamName  

InputParam = Operator "(" ParamList ")"  

 | "SAME(PM)"|ParamName  

ParamList = "PM:" List 

ParamName = Identifier 

Exception = "EXCEPT" List 

List = "{" Identifier { "," Identifier } "}" 

Operator = "ALL" | "ANY" | "MAJ" 

 

Where "Identifier" is a letter or underscore followed by zero or more letters, numbers, 

or underscores, that does not contain a case sensitive match of any of the reserved 

Keywords (NAME, INHERIT, OR, AND, NOT, FC, OP, IP, EXCEPT, 

ALL, ANY, MAJ) or their long versions. Terminals are presented in double quotes 

(""). For convenience or clarification, some terminals can be replaced as follows: 

 

FC  = FAILURE CLASS 

OP  = OUTPUT PORT 

IP  = INPUT PORT 

PM  = PARAMETER 

NOT = ! 

OR  = + 

AND = * 
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3.2.2 Sets of values 

A GFE, like a classical HiP-HOPS expression, consists of an output deviation (the left-

hand side) and its causes (the right-hand side), typically a combination of input 

deviations and/or basic events. Either side may be generalised by making collective 

references to failure class, port and parameter terms; these terms retain their meaning 

from classical HiP-HOPS as explained in section 3.1. Making these terms abstract is the 

core of the generalised syntax. However, an expression does not need to contain solely 

abstract terms in order to be general, or to be compatible with this extended syntax. If 

for example there is only one class of failure a component can experience, then it is 

sufficient to make this reference directly in the expression. 

The first term, the failure class, refers to the type of failure. Within HiP-HOPS, the 

generalisation is made that every component operates on a set of inputs and delivers a 

set of outputs, which means there are a limited number of failure types a component can 

experience. These fall under the category of Provision (e.g. Omission, Commission), 

Timing (e.g. Early, Late) and Value (e.g. High, Low). This work uses these generic 

categories for failure classes for explanation and demonstration; in practice these can be 

more specific if required. In the interests of improving reusability, the use of general 

categories and values should be encouraged where possible. 

Thus the language proposes the use of the abstract term to represent failure classes in an 

expression. This identifier will represent the set of valid failure classes the component 

can experience in any particular application. For example, the output deviation: 

Omission-out-sig 

could become: 

FC-out-sig 
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This abstract reference „FC‟ (for failure classes) will be replaced with a specific value 

when analysed, yielding the necessary application-specific expression; recursive 

instantiation with all set values will create a set of expressions. At this point the 

assumption is made that these values can be retrieved from the model when expressions 

are parsed during the automated analysis. The parser will instantiate expressions using 

all values that a set contains therefore sets do not need any specific ordering. 

Next there is an abstraction made for ports, working on the same basis as for failure 

classes. Input and output ports are represented with „IP‟ and „OP‟ respectively. Finally 

there is the optional parameter, which is made abstract with the „PM‟ term. Below are 

some examples of how these terms would be applied: 

Omission-o1 = Omission-i1 

Omission-o2 = Omission-i1 

Omission-o3 = Omission-i1 

Using sets, these expressions can be generalised as: 

FC-OP = Omission-i1 

where FC:{Omission} and OP:{o1, o2, o3}. 

Alternatively, the syntax allows values contained in a set to be manually specified 

within an expression: 

FC:{Omission}-OP:{o1,o2,o3} = Omission-i1 

The FC set as defined in the above expression contains only a single value. This is 

allowable in the syntax but not necessary as an abstraction; a specific value can be used 

directly as on the right-hand side (‟Omission‟ and „i1‟). Instantiation with all 
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possible values as referenced by each set would yield the original three expressions 

above
3
. 

The benefit of this notation becomes clear when for instance the data bus component as 

in Figure 11 were to be modified to have a hundred inputs and a hundred outputs. With 

the current syntax, it would require a hundred expressions. With the generalised syntax, 

the improved scalability of an abstract reference „OP‟ means only a single expression 

would be needed, with information about ports being automatically parsed from the 

model. 

3.2.2.1 EXCEPT 

By default, every value that a set contains is used to create expressions, but this process 

can be made more flexible by restricting the scope to a limited set of values in certain 

situations. For example, it may be more useful to define those values which do not 

apply, rather than listing all that do apply, so a special modifier is introduced to allow 

exceptions to be made. 

Consider a hypothetical bus component which has two inputs and ten outputs. An 

omission of the first input causes an omission of the first nine outputs, whereas an 

omission of the second input causes an omission only of the tenth output. Even using 

abstract terms, describing this behaviour would need ten separate expressions. Using 

sets with the additional EXCEPT modifier, the behaviour can be described with just two 

expressions: 

Omission-OP EXCEPT:{out10} = Omission-in1 

Omission-out10 = Omission-in2 

                                                      
3
 The process of instantiation is described in detail in section 3.2.5. 
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The set OP still represents all output port values, but the value out10 is excluded 

during instantiation of the first expression.  

3.2.3 Operations on sets 

Combinations of failure causes means that the size (i.e. the length) of expressions can 

grow very large, for example a component may have a hundred inputs, and an output 

failure caused by a combination of failures of all inputs. This aspect can be a hindrance 

to reuse, as longer expressions become more difficult to maintain. The next 

development in the GFL is focused on making generalisations where output deviations 

have more than one cause, for example a combination of causes as in the fuel system‟s 

power bus behaviour: 

Omission-out1 = Omission-in1 AND Omission-in2 AND Omission-in3 

Previously stated was the desire to capture general statements of behaviour with terms 

such as „any output‟ or „all inputs‟, which in the hypothetical case of a component with 

a hundred inputs could be very beneficial. Using sets, it is possible to reduce the number 

of individual expressions needed for specification. By manipulating sets with certain 

operators, the language becomes capable of contracting expressions to reduce their 

length. Contracting expressions is not a generalisation in order improve reusability per 

se, however it does make a useful contribution to the extended syntax by enabling a 

degree of scalability within GFEs and makes larger expressions more manageable.  

The accuracy of analyses is essential, so contraction is only ever performed where the 

logical meaning of an expression would not be altered. Therefore the proposed 

operators perform contraction as a type of „factorisation‟. No essential information is 

removed from the expression; the structure of the expression merely changes to a more 

compact form, while maintaining all values and logical combinations. Contractions are 
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made by grouping together common terms combined under the same logical operation, 

for example: 

Omission-in1 AND Omission-in2 AND Omission-in3 

can be „factorised‟ to create a contracted form: 

Omission-(in1 AND in2 AND in3) 

Further contraction can be made here if a set term is used to represent the list of input 

ports („IP‟) in conjunction with a specification of the common logical operator: 

Omission-AND(IP) 

Clearly, where an output deviation has many combined causes, using operators can 

significantly reduce the size of resulting expressions. 

Applying an operator to a set means they are given the same scalability as abstract sets 

while allowing the capture of general behaviour. There is also the option to apply the 

EXCEPT modifier here to limit the scope of an operator. The use of operators therefore 

conforms to the general format: 

operator(set except:{list}) 

Logical combinations only exist in an expression on the right-hand side. For this reason, 

operators only apply to input deviation terms and are never applied to sets in an output 

deviation. Moreover, any set term used in an input deviation must have an operator 

applied to it, because an abstract set in an input deviation always implies either a logical 

combination of values or a correspondence between input and output values (a special 

case which requires its own operator). When only a single specific value is needed 

however, a set and operator are not required. 
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Keeping to the overall aim of improving and encouraging reuse, keywords are used to 

define operators rather than abstract symbols. With carefully chosen and defined 

operators, the extended syntax is more easily readable and closer to a natural language. 

Many operators could be introduced into this syntax, but for this work the GFL has been 

developed with four operators deemed the most useful for investigation. Two of these 

are operators which generalise Boolean AND and OR logical combinations. Also 

included is an equivalence operator used to define a relation i.e. propagation of values 

across a component‟s input/output. Finally there is the majority voter operator to show 

how more complex logical behaviour, beyond that seen in the previous example system, 

can also be generalised in an expression. 

3.2.3.1 ANY 

An individual pump in the fuel system (Figure 11) continually receives three inputs; 

power, control and fuel and provides a single output, the fuel flow. The pump is 

designed such that an omission of any input or a ‟stuck closed‟ internal failure will 

result in an omission of its output: 

Omission-out = Omission-in OR Omission-control OR 

Omission-power OR stuck_closed 

It is possible to summarise this behaviour as „omission of output is caused by an 

omission of any input or by an internal failure‟. Here there is an abstract logical 

disjunction of input ports, described generally as „any input‟. 

The first operator added to the language is ANY, to represent a logical disjunction of a 

set‟s values. This is equivalent to combining values with OR logic, but this operator is 

applied to „loop‟ through all the possible values to automatically create combinations. 
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So applying the ANY operator to contract the above expression, it can be rewritten in 

the generalised form: 

Omission-out = Omission-ANY(IP) OR stuck_closed 

where the set IP contains the three input ports (in, control, power).  

3.2.3.2 ALL 

Returning to the power bus component as an example, the component experiences an 

omission failure in response to a combination of causes: 

Omission-out1 = Omission-in1 AND Omission-in2 AND Omission-in3 

Looking at this behaviour, it can be said that „omission of output is caused by an 

omission of all inputs‟. Here there is an abstract logical conjunction of input ports, 

described generally as „all inputs‟. 

The next operator in the language is ALL, which represents a logical conjunction of a 

set‟s values. It is equivalent to a series of values combined with AND logic. The power 

bus behaviour can now be rewritten in a generalised form: 

Omission-out1 = Omission-ALL(IP) 

where the set IP contains the three input ports (in1, in2, in3). In this example, if 

additional PSUs were attached to the power bus, the above generalised expression 

would remain valid. In most cases, ALL should not be applied to the FC set, as this may 

cause problems in the analysis to have a deviation which has more than one 

classification. For example, a semantic error can occur if ALL(FC) were used to form a 

conjunction of mutually exclusive failure classes, for instance omission and value; it is 

not possible to have no value and a value out of range on the same port simultaneously. 

Therefore the careful use of this operator is left to the discretion of the analyst. 
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3.2.3.3 SAME 

So far the operators have been introduced to contract the structure of expressions, 

making them more compact and at the same time more reusable. In the examples 

provided above, there is often an equivalence of values on either side of an expression; 

for instance the failure class „Omission‟ is shown propagating from input to output. This 

is not uncommon in typical component behaviour, for example where an omission 

failure propagates through a system. Consider a simple component whose behaviour can 

be expressed as follows: 

Omission-out = Omission-in 

High-out = High-in 

Low-out = Low-in 

This behaviour can be described generally as „any class of output failure is caused by 

the same class of failure at input‟. This type of propagation is captured in the syntax 

with the SAME operator. Unlike the previous operators, SAME reduces the overall 

number of expressions, rather than reducing the size of an individual expression, but is 

still very useful with regards reuse and scalability. Thus with the SAME operator, the 

component‟s behaviour as above can be rewritten: 

FC-out = SAME(FC)-in 

where the set FC contains the three failure classes (omission, high, low). The SAME 

operator describes a correspondence, therefore the set to which it is applied must also 

appear as a term in the output deviation, seen in this example with failure classes (FC). 

It is subject to the same instantiation rules as determined in section 3.2.5, thus with 

instantiation the SAME term is replaced with a specific corresponding value e.g. failure 

class. Only one value is used; the set is not „looped‟ as with other operators. 
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Additionally, SAME can only apply to failure class and parameter sets, as it cannot be 

assumed that there is a correspondence between ports; components do not always have 

the same number of inputs as outputs, nor do they necessarily provide the same 

function. 

3.2.3.4 MAJ 

 

Figure 12 Example voting component 

As a demonstration of more complex behaviour that can also be generalised, Figure 12 

shows an Adjudicator which monitors three separate inputs and delivers an output based 

on a majority combination of input values, i.e. a signal must be present at two or more 

inputs in order to be propagated to the single output. The failure behaviour of the 

Adjudicator can be expressed as follows: 

Omission-out  = Omission-in1 AND Omission-in2 OR 

  Omission-in1 AND Omission-in3 OR 

  Omission-in2 AND Omission-in3 

The behaviour can be described generally as „omission of output is caused by an 

omission of a majority of inputs‟. To represent majority voting behaviour, the MAJ 

operator is introduced. Thus the Adjudicator‟s behaviour can now be expressed as: 

Omission-out = Omission-MAJ(IP) 
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where the set IP contains the three input ports (in1, in2, in3). The MAJ operator is a 

useful example of how more complex operations can be represented in the new 

language, as the original expression to describe the behaviour is considerably longer and 

more complicated than the generalised form. 

3.2.4 Inheritance 

The reuse mechanism developed for use with GFL is called inheritance, influenced by 

the similar concept found in OO programming (Cardelli and Wegner, 1985). Inheritance 

works on the assumption that the analyst will have a source library from which patterns 

can be inherited and reused. The mechanism allows patterns to be reused, either singly 

or extended by a process of specialisation, by using the INHERIT directive in an 

annotation. 

The first type of reuse possible is where an existing set of expressions (a complete 

definition of a component‟s behaviour) is used with no changes to annotate a 

component. For example, the Direct Propagation pattern that defines propagation of 

failures is held in a library. A data bus component expresses this behaviour, and so 

brings this behaviour directly into its annotation: 

Direct Propagation 

FC-OP-PM = SAME(FC)-ANY(IP)-SAME(PM) 

 

Data Bus 

INHERIT Direct Propagation 

The second type of reuse, reuse via specialisation, is a more complex, yet more flexible 

approach. The mechanism is similar to that found in OO inheritance. Specialisation uses 

a stored pattern to annotate a component that expresses an extended version or variation 

of the pre-defined behaviour. This works by taking the original or base behaviour, 
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inheriting it into another component‟s annotation, and then defining any additional 

behaviour to make the new annotation a specialisation of the original behaviour, for 

example: 

Specialised Bus 

INHERIT Direct Propagation 

Value-OP-PM = Value-ANY(IP)-SAME(PM) OR InternalFailure 

Using this type of inheritance creates complications when a specialised component uses 

some, but not all of the base type behaviour. This leads to another feature of the method, 

the ability to override behaviour. Inherited values are the ones which are overridden, i.e. 

they have the lower precedence. Any expressions explicitly defined in the specialised 

pattern will override any conflicting inherited values. It is equivalent to using the 

EXCEPT modifier, though this time it is applied automatically. For example, in the 

Specialised Bus above, the „value‟ class of output deviations are overridden, making the 

pattern equivalent to: 

FC EXCEPT:{Value}-OP-PM = SAME(FC)-ANY(IP)-SAME(PM) 

Value-OP-PM = Value-ANY(IP)-SAME(PM) OR InternalFailure 

3.2.5 Instantiation of GFL expressions 

To accurately describe the way a component can fail, and therefore to provide the 

necessary detail for subsequent analysis, a component is required to have application-

specific information available. In the case of HiP-HOPS, specific information is only 

required for fault tree synthesis, but is not essential at the annotation phase. Therefore, 

generalisation can be employed for component annotations, provided that context-

specific information becomes available at later analysis stages.  
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In order to utilise a GFE, it must be instantiated by replacing abstract terms with 

application-specific values, automatically creating a set of failure expressions for a 

component under analysis. Any individual application-specific values may already be 

listed within a GFE, otherwise the values represented by sets can be automatically 

obtained from the model or defined by the analyst
4
. 

The instantiation of GFEs is automated and, in keeping with existing HiP-HOPS 

convention, works through expression terms from left to right; individual terms and 

operators are instantiated in the order FC then OP/IP then PM. The process begins with 

the output (left-hand) side; in a generalised form, these are known as Generalised 

Output Deviations (GODs). A GOD can represent multiple output deviations. All sets in 

the GOD terms are iterated through, creating a new output deviation for each value 

encountered. Where there are multiple sets, every possible combination of values must 

be instantiated. Consider the following example GOD: 

FC-OP 

given the sets: 

FC:{Omission, Commission} and OP:{out1, out2} 

the GOD will instantiate the following output deviations: 

Omission-out1 

Omission-out2 

Commission-out1 

Commission-out2 

                                                      
4
 In the latter case, templates are used to guide the documentation of such information (section 3.3.1). 
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Thus the GOD and associated set values force the instantiation of four separate 

expressions. Following this, the input (right-hand) side of the generalised expression, 

which is referred to as a Generalised Input Deviation (GID), must then be expanded. 

Whereas the GOD represents and creates multiple instances, the GID expands into a 

single expression, though it is not necessarily identical for each instance (when SAME 

is used). Any set used in a GID must therefore be subject to an operation so that it is 

expanded rather than iterated. As a result their expansion follows the rules as given in 

the previous discussion of the operators i.e. values in the set are combined according to 

the logical rules imposed by the operator. Consider the following example GID: 

Omission-ALL(IP) 

given the set: 

IP:{in1, in2, in3} 

will expand as the following input deviation: 

 Omission-in1 AND Omission-in2 AND Omission-in3 

Any specific (non-generalised) terms are maintained throughout all instances. So a 

complete instantiation would proceed as shown in the following example steps: 

Given the GFE for a bus, propagating omission failures from input to output: 

Omission-OP-PM = Omission-ANY(IP)-SAME(PM) OR bus_failed 

Given the sets: 

OP:{out1, out2}, IP:{in1, in2}, PM:{x, y} 
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Result of GOD parse (set instantiation): 

Omission-out1-x = Omission-ANY(IP)-SAME(PM) OR bus_failed 

Omission-out1-y = Omission-ANY(IP)-SAME(PM) OR bus_failed 

Omission-out2-x = Omission-ANY(IP)-SAME(PM) OR bus_failed 

Omission-out2-y = Omission-ANY(IP)-SAME(PM) OR bus_failed 

Result of subsequent GID parse (operator expansion): 

Omission-out1-x = Omission-in1-x OR Omission-in2-x OR bus_failed 

Omission-out1-y = Omission-in1-y OR Omission-in2-y OR bus_failed 

Omission-out2-x = Omission-in1-x OR Omission-in2-x OR bus_failed 

Omission-out2-y = Omission-in1-y OR Omission-in2-y OR bus_failed 

This instantiation process is automated within the HiP-HOPS implementation
5
, 

essentially making a seamless transition from generalised expression to analysis results. 

3.3 GFL in practice 

GFL increases the potential for reuse, but without a managed approach to performing 

reuse, it does not improve much upon the current HiP-HOPS method. To successfully 

apply the GFL with the aim to reuse, a set of GFEs should be well documented and 

defined as a pattern. Therefore this section develops methods for ensuring appropriate 

capture and reuse of patterns, and also provides some examples of such patterns. 

3.3.1 Templates: Documenting Patterns 

Patterns must be properly documented with information about their purpose and 

application. This will still ultimately rely on the judgement of the user to interpret the 

documentation correctly, but the aim is to provide as much help as possible to ensure 

safe and appropriate reuse. In this respect, the goals are similar to those of software 

                                                      
5
 Implementation details can be found in the next chapter. 
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engineering design patterns; GFL patterns are described and documented in a consistent 

way via the use of templates. Fulfilling the requirements of the template mean the 

following information is included within a pattern: 

 The name of the pattern 

 A text description of the abstract behaviour the pattern represents 

 Guidance on the implementation/use of the pattern 

 The set of generalised expressions for the behaviour 

 Any inherited or overridden values (if this pattern is a specialisation) 

 Any values for the abstract sets needed to implement the solution/instantiate the 

pattern (e.g. what failure classes apply) 

 Examples of instantiated pattern(s) 

 Cross references to related patterns, or patterns that could be used in conjunction 

with the described pattern 

The name of the pattern should clearly and succinctly identify what the pattern 

represents, as it is the first step to selecting a pattern. Examples would be „Propagator‟ 

or „Majority Voter‟. The name should be kept as concise as possible, as the main detail 

is kept under the next heading, a specific description of the behaviour represented in the 

pattern. This should explain precisely what behaviour is captured by the pattern. In most 

cases however, there is a need to explain in more detail the specific circumstances for 

the pattern, thus included is a section for usage notes. Including these notes should clear 

any ambiguity about the pattern; it should be as long as deemed necessary to fully 

explain the pattern. 

The template should provide all the necessary documentation to guide a pattern‟s 

application. The detail of the template is for defining information used for annotation 
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and parsing by the tool or indeed for the user to study to gain a detailed insight of the 

pattern. This will include the full set of behaviour expressions, most likely in GFL 

format. Where inheritance is used, the declaration of inherited behaviour is given along 

with any overridden expressions. Next, applicable values for sets can be specified if the 

values themselves are general and do not need to be taken from the model (for example 

standard failure classes). Examples of instantiated expressions are given as a reference 

to ensure correctness. Finally, a list of related patterns is included mainly for the analyst 

as a provision to ensure correct pattern selection, as there may be times when a similar 

but more appropriate pattern may be available and should be considered. The following 

pages provide some example patterns in fully-documented form: 
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PATTERN Direct Propagation 

DESCRIPTION Propagates any failure at any input to every output. 

USAGE NOTES Designed for use with normal failure classes such as 

omission, value, commission, etc. and data-based 

input/output parameters. Can work with any number of 

input/output ports. 

FAILURE LOGIC FC-OP-PM = SAME(FC)-ANY(IP)-SAME(PM) 

FAILURE CLASSES Omission, Value, Commission, Timing 

INSTANTIATED 

EXAMPLES 

Omission-out-signal = Omission-in-signal 

Value-out-signal = Value-in-signal 

RELATED PATTERNS Multiplexer, Demultiplexer, Propagator Bus 

Table 4 Direct Propagation pattern 

In the Direct Propagation pattern, any failure of any input parameter will cause the same 

parameter failure at the output. This type of behaviour is found for example in bus 

components and multiplexers/demultiplexers. 
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PATTERN Global failure in the same mode 

DESCRIPTION Omission of every output is caused by a single common 

cause internal basic event. 

USAGE NOTES Designed for data-based input/output parameter. Only 

omission failure classes are compatible. Can work with 

any number of output ports/parameters. 

FAILURE LOGIC Omission-OP-PM = InternalFailure 

FAILURE CLASSES Omission 

INSTANTIATED 

EXAMPLES 

Omission-out-signal = InternalFailure 

Omission-monitor = InternalFailure 

RELATED PATTERNS Multiplexer, Demultiplexer, Propagator Bus 

Table 5 Global Failure pattern 

Global failure is used where an omission of each output parameter at each port is caused 

by a single failure mode of the component, for example an internal malfunction of a 

component resulting in a loss (omission) of all outputs. 
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PATTERN Fail Silent (Transformation of Failure) 

DESCRIPTION Any input failure class is transformed into an omission 

of the output. 

USAGE NOTES Designed for data-based input/output. Only omission 

failure classes are compatible. Can work with any 

number of output ports. 

FAILURE LOGIC Omission-OP = ANY(FC)-ANY(IP)  

FAILURE CLASSES Omission, Value, Commission 

INSTANTIATED 

EXAMPLES 

Omission-out = Value-in1 OR  

    Value-in2 OR  

    Commission-in1 OR 

    Commission-in2 

RELATED PATTERNS Common-cause failure, Bus failure 

Table 6 Fail Silent pattern 

This pattern is for components that can transform detected input failures into another 

type, in effect failing silently. For example, value or timing failures could be 

transformed into omissions. In another scenario, value failures for instance could be 

propagated, as by their nature are difficult to detect, whereas other types such as timing 

or commission failures are detected and transformed into omissions. Parameters are not 

specified as the output is an omission (i.e. there is no signal output). 
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PATTERN Standby Recovery 

DESCRIPTION For a standby component that monitors a primary input 

and activates standby in that case. Both primary and 

standby must fail for the subsystem to fail. 

USAGE NOTES Standby is assumed to be activated upon omission of 

output from the primary. Two inputs assumed, monitor 

(for the primary) and input (for the common input to both 

components), and a single output assumed. 

FAILURE LOGIC FC-output-PM = O-primary-SAME(PM) AND  

      SAME(FC)-standby-SAME(PM) 

FAILURE CLASSES Omission, Value, Commission, Timing 

INSTANTIATED 

EXAMPLES 

Omission-out = Omission-primary AND  

                          Omission-standby 

Commission-out = Omission-primary AND  

                               Commission-standby 

RELATED 

PATTERNS 

Fail Silent, Direct Propagation 

Table 7 Standby Recovery pattern 

The pattern for a Standby Recovery component captures behaviour where a 

combination of an omission of the primary input and any other type of failure at the 

secondary input will result in a failure at the single output of the same type as at the 

secondary input. This can model a component where a primary input is monitored, and 

in the case that an omission is detected, the secondary input takes over. Any failures of 

the secondary input would then be propagated to the output. 
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PATTERN Redundancy on Inputs 

DESCRIPTION All inputs must fail to cause a corresponding failure of 

output. 

USAGE NOTES Can work with any number of input or output 

ports/parameters. 

FAILURE LOGIC FC-OP-PM = SAME(FC)-ALL(IP)-SAME(PM) 

FAILURE CLASSES Omission, Value, Commission, Timing 

INSTANTIATED 

EXAMPLES 

Omission-out-signal = Omission-in1-signal AND 

    Omission-in2-signal 

Commission-out-signal = Commission-in1-signal AND 

        Commission-in2-signal 

RELATED 

PATTERNS 

Direct Propagation, Demultiplexer, Multiplexer 

Table 8 Redundancy on Inputs pattern 

Redundancy on Inputs can be used for components that can tolerate failure of some 

inputs, continuing to operate correctly until all inputs have suffered a failure. 
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PATTERN Majority Voter 

DESCRIPTION All majority of inputs must fail to cause an omission of 

output 

USAGE NOTES Can work with any number of input port/parameters but 

assumes a single output. Possible variation assumes same 

FC instead. 

FAILURE LOGIC Omission-out-PM = ANY(FC)-MAJ(IP)-SAME(PM) 

FAILURE CLASSES Omission, Commission, Value, Timing 

INSTANTIATED 

EXAMPLES 

Omission-out = Omission-in1 AND Omission-in2 OR 

    Omission-in1 AND Omission-in3 OR 

    Omission-in2 AND Omission-in3 

RELATED 

PATTERNS 

Redundancy on Inputs 

Table 9 Majority Voter pattern 

The Majority Voter is another type of „redundancy‟ pattern; here an omission of output 

(i.e. fails silent) is caused by a common failure occurring across a majority of input 

ports. 
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PATTERN Specialised Bus 

DESCRIPTION Propagates any failure at any input to every output; 

value failures also can be caused by an internal 

failure. 

USAGE NOTES Designed for use with normal failure classes such as 

omission, value, commission, etc. and data-based 

input/output parameters. Can work with any number 

of input/output ports. 

INHERITS Direct Propagation 

FC-OP-PM = SAME(FC)-ANY(IP)-SAME(PM) 

FAILURE LOGIC Value-OP-PM = Value-ANY(IP)-SAME(PM) OR 

      InternalFailure 

FAILURE CLASSES Omission, Value, Commission, Timing 

INSTANTIATED 

EXAMPLES 

Omission-out-signal = Omission-in-signal 

Value-out-signal = Value-in-signal OR 

          InternalFailure 

RELATED PATTERNS Multiplexer, Demultiplexer, Propagator Bus 

Table 10 Specialised Bus pattern 

The Specialised Bus pattern above is provided as an example of how inheritance (reuse 

via specialisation) works within a template. Here, the component would exhibit the 

behaviour of the Direct Propagation, but with the addition of a further cause for value 

failures at output. In practice the expressions from inherited patterns do not need to be 

shown, it is included here for clarity. 
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As a minimum, patterns of behaviour should be identified, specified according to the 

given template, and stored appropriately during the course of designing a system. A 

large store of patterns would eventually be available not just for the system under 

development, but for the design and analysis of other systems. However, developing 

methods for managing a library of patterns is not part of this work
6
. 

3.3.2 Steps for defining behaviour 

A difficulty that remains is the problem of choosing the correct pattern to apply in a 

given scenario. The most important point is that the incorrect pattern selection can lead 

to incorrect or incomplete analyses. Therefore it is essential now that a structured 

methodology is defined to guide the decision making process, so that the application 

and reuse of patterns is correct and consistent. This work hopes to encourage the analyst 

to study available patterns carefully, to minimise the chance of error. The process of 

choosing a pattern can be guided with the following general steps: 

1. Determine the component‟s failure behaviour 

The first and most important step is to make sure that it is known what behaviour the 

component is expressing. Following that, it is possible to make a decision about how 

this can be represented generally. To do this, consider the effects on all inputs and 

outputs of the component in conditions of failure. In particular, focus on those 

deviations of output which are caused by deviations of input, either directly or by some 

combination. Also consider any internal events generated by the component which 

affect output. Thinking about and defining the behaviour at the highest level of 

abstraction should make it easier to search for and relate to the exact or most 

appropriate pattern. 

                                                      
6
 This is discussed in section 5.2 Further Work. 
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2. Read the pattern‟s description 

The available pattern library must be consulted for appropriate candidate patterns. A 

pattern‟s documentation must then be consulted to ensure the correctness of the choice. 

Important here is that the behavioural features determined in step 1 must be contained 

within the detail of the given pattern description. If the documentation suggests 

otherwise, other patterns should be considered until the most appropriate is found. If 

there is no suitable pattern available, the situation would imply that a new pattern 

should be created to capture this component‟s behaviour. The remaining steps should 

still be taken before creating a new pattern, as it may be possible to combine existing 

patterns to reach the desired description. Even if creating a new pattern, the remaining 

steps are still valid, but with a change of purpose (creating rather than choosing a 

pattern). 

3. Look at related patterns  

Included in the documentation of every pattern is a list of related patterns; other 

behavioural types similar or within the same class as the chosen pattern. The purpose of 

this list is to direct the search towards the right pattern in cases where the chosen pattern 

may not be entirely suitable. The descriptions of related patterns should always be read 

before the selection is finalised, as it is important to use the most suitable pattern 

available. 

4. Choose the most abstract pattern 

Some patterns may contain expressions which appear to be very abstract and be difficult 

to interpret. In some cases there may be a pattern which contains a less abstract 

definition, one which is simpler for the analyst to understand by reading the expression, 

which will fit the requirements. Where possible, the most abstract pattern should be 
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chosen that can still represent the necessary behaviour. The reason is that once 

annotated, it will allow a greater scope for reuse of the component under analysis. For 

example if a component is likely to undergo a change where the number of inputs is 

altered, a good choice of pattern would be one that includes expressions with an abstract 

term for input ports. 

5. Make sure all behaviour has a definition 

The final step is to check that all behaviour identified in step 1 has been successfully 

represented within a pattern. This can be achieved via instantiation of the pattern and 

manual search of expressions generated. Every output deviation as defined in step 1 

must be listed in an expression with its input deviation cause(s). Instantiation can be 

done manually, however tool support can be employed for automation
7
.  

With a strong library of patterns, these steps to selecting a pattern should be sufficient. 

However it is possible that even if all of the previous steps to selecting a suitable pattern 

have been followed, there may still be situations where no appropriate pattern can be 

found. There are two likely scenarios: 

1) A pattern close to what is required, but lacking all the necessary detail 

2) No suitable pattern found 

In both scenarios, a possible cause is that the required behaviour is available across 

multiple patterns, but not within the same pattern. The simplest solution in this case is to 

search for all the individual patterns (starting again at step 1) and then to employ 

inheritance to capture all the required behaviour into a new pattern. This is the preferred 

option, but it is also possible to use overriding behaviours if an expression is not 

specific enough. Use of this approach should be limited, because if many overriding 

                                                      
7
 Automated instantiation is used in validation of the GFE concept (section 4.3). 
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expressions are needed, a likely better solution would be the creation of a new pattern 

that specifically includes all of the necessary behaviour. 

Even with inheritance, there are still situations where available patterns lack the 

required detail. The alternative solution is to create a new pattern by manually adding 

the extra behaviour to an expression. For example, given the base behaviour: 

Omission-out = Omission-in 

An extended version can be created by appending the required behaviour, for example: 

Omission-out = Omission-in OR InternalFailure 

Clearly, this is a case of trivial reuse however it is still more desirable to use this 

approach than to create a new pattern that is not based on an existing pattern of well-

known behaviour. 

This methodology is given only as a guideline and it would be expected in practice 

analysts would develop their own procedures along these lines. As such this guide does 

not aim to define the process, rather it tries to promote a structured method on which to 

base the selection of patterns.  

3.3.3 GFL applied to the fuel system case study 

Using the extended HiP-HOPS syntax, the previous fuel system case study is now 

revisited to demonstrate how the GFL can be applied to annotations. Table 11 has the 

GFL versions of the annotations found in Table 3. A comparison of these tables 

highlights the benefits of GFL annotation over that of classical HiP-HOPS. For example 

the computer can have all its behaviour defined with just two expressions because there 

is no need to create an expression for every output port. Not only does this reduce the 

workload of the analyst, but the increased level of abstraction also means that if the 
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computer were used in another system or design, the set of GFEs would likely need 

little or no alteration in order to be compatible, thus more easily reused. Another 

example is the power bus which previously required three expressions and can now be 

represented by one shorter general expression. The benefits also extend to the scalability 

of GFL expressions, such as the power bus expression being valid for any number of 

input connections, meaning the addition of more PSUs to the system would not result in 

re-annotation. 

PSU 
 

Omission-out = PSU_failed 

 

Power Bus 
 

Omission-OP = Omission-ALL(IP) 

 

Computer 

 

Omission-OP-PM = Omission-power OR computer_failure 

Commission-OP-PM = memory_stuck 

 

Data Bus 

 

Omission-OP-PM = Omission-ANY(IP)-SAME(PM) OR bus_failed 

Commission-OP-PM = Commission-ANY(IP)-SAME(PM) 

 

Logic 

 

Omission-out-PM = Omission-ALL(IP)-SAME(PM) 

Commission-out-PM = Commission-ANY(IP)-SAME(PM) 

 

Valve 
 

Omission-out = Omission-in OR stuck_closed 

Commission-out = Commission-in OR stuck_open 

 

Pump 
 

Omission-out = Omission-ANY(IP:{in, control, power}) OR 

      stuck_closed 

Commission-out = Commission-control OR stuck_open 

 

Table 11 Fuel system GFL annotations 
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3.4 Summary 

The investigation in this chapter has focused on component failure behaviour and how it 

is currently represented within a contemporary safety analysis tool, HiP-HOPS. Many 

components are designed to perform a function irrespective of the system they are used 

in, for example a component may propagate a signal without needing to know what the 

signal means, independently of the application context. Furthermore, there are 

components that exhibit patterns of behaviour which hold in any context. The HiP-

HOPS safety analysis tool is limited with regards to capturing such patterns within its 

component annotation syntax, limiting the reusability of failure behaviour expressions. 

Based on these factors, and to meet the thesis aim of improving the scope of reuse 

within safety analysis, the Generalised Failure Language (GFL) has been developed as 

an extension to the classical HiP-HOPS component annotation syntax. 

Development of the GFL involved breaking down expressions of failure behaviour into 

their constituent terms and replacing these, where possible, with more abstract, general 

terms which could represent a set of values, rather than a single specific value. In 

addition, a series of abstract operators have been added to the syntax which can make 

collective references to sets of values and enable more general statements of failure 

behaviour to be captured, such as „omission of all inputs‟. A small example system was 

used to demonstrate the practical benefits that GFL can bring to an analysis, particularly 

the reduction in the annotation effort and the scalability of generalised expressions. 

The GFL allows the capture of general behaviour and gives scope to reuse, but it is 

acknowledged that without further detail and systematic methods, performing reuse 

appropriately is a challenging task. Addressing this issue, this development has aimed to 

reduce the likelihood of ad hoc, „cut & paste‟ style reuse by ensuring that reuse is not 

seen as a shortcut and instead is treated as a way to safely use existing, proven failure 
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information in compatible situations in other systems. This has led the development of 

the concepts of GFL inheritance and guiding documentation, taking inspiration from 

software engineering and design patterns. A small set of example patterns has been 

provided which show the typical kinds of behaviour found in safety critical systems, 

such as fail-safe redundancy. Inheritance provides the benefit that a component could 

have a very simple annotation, such as „Inherit Bus‟. The danger is if the stored version 

of the Bus pattern is changed or lost, so as part of the implementation, behaviour is 

automatically brought into the local model. This way the annotation can retain its 

simplicity, but the analysis will still benefit from the reuse. 

The final point made was that all the generalisation and guiding documentation 

introduced is made irrelevant if appropriate procedures are not followed for carrying out 

reuse, e.g. the process of selecting a pattern. Addressing this issue, a set of guidelines 

has been provided on how to choose a pattern that is appropriate for a given component, 

but it remains a manual process and its success depends upon the expertise of the 

analyst.  
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4 Application 

This chapter demonstrates the application of the Generalised Failure Language (GFL) as 

proposed in Chapter 3. A working prototype of a GFL-extended HiP-HOPS tool has 

been developed in order to prove the concept. The discussion in this chapter is focused 

on the existing processes of HiP-HOPS which are extended as a result of the GFL 

integration. The new software is demonstrated on a real-world case study of an 

automotive brake-by-wire system and evaluations are made of the effectiveness and 

applicability of the GFL with regards to the original research criteria, based on a series 

of legacy case studies converted into GFL format and compared with classical HiP-

HOPS. 

4.1 Tools and process 

The failure annotation and the model parsing stages of HiP-HOPS are the processes 

which are the focus of the extended GFL method. During the second step, at the point 

which HiP-HOPS performs the fault tree synthesis, the current and GFL techniques 

converge and the remaining analysis process is the same for both methods. 
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4.1.1 Model annotation 

HiP-HOPS supports several commercial modelling tools. In this work, the 

implementation focuses on HiP-HOPS as used with MATLAB/Simulink (Mathworks, 

2009), hence a „model‟ refers to a Simulink model. 

In a typical model, components and subsystems are represented as „blocks‟ in the model 

diagram, so the topology of the system is displayed as a series of interconnected blocks 

(see example in Figure 13). To perform a safety analysis on a model, definitions of 

failure behaviour are first added to blocks manually, requiring the use of an external 

interface tool which runs in conjunction with MATLAB/Simulink. HiP-HOPS provides 

such an interface so that blocks can be selected from within the model and annotated 

with expressions of local failure behaviour
8
, as well as other statistical data for further 

probabilistic analyses. A prototype interface has been developed (shown in Figure 14) 

to support annotations using the existing or new generalised syntax, or any combination 

of these within a model. 

 

                                                      
8
 The reader is referred to section 2.2.5 and section 3.1 for more discussion of HiP-HOPS and the 

construction of failure behaviour expressions. 
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Figure 13 Example MATLAB/Simulink model view of a hypothetical fuel system 

 

 

Figure 14 Prototype GFL annotation interface 
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4.1.2 Model parsing 

The automated stage of an analysis under HiP-HOPS begins with the model being 

parsed. Part of this process is to check that failure behaviour has been described 

correctly according to the grammar of HiP-HOPS expressions. Assuming that 

components have been given appropriate annotations in the model, the information 

about failures in conjunction with the system topology is used to automatically 

construct the set of fault trees and FMEAs for the system.  

Extending the classical HiP-HOPS annotation syntax with GFL notation requires a 

modified parsing process. This must be capable of successfully interpreting abstract 

terms and instantiating „concrete‟ expressions, given any necessary application-specific 

values. This section demonstrates with a running example how GFEs can be 

automatically interpreted and where this fits in the overall analysis process. Consider 

the structure of the following GFE: 

FC-OP EXCEPT:{out2}-PM = ANY(FC)-ALL(IP)-SAME(PM) 

where  FC:{Omission, Commission}, OP:{out1, out2}, 

IP:{in1, in2, in3}, PM:{x, y} 

Additional processing of the extended parser amounts to sets being instantiated and 

operators being expanded. These processes follow the production rules as described by 

the GFL grammar so that the correct „concrete‟ expressions are always obtained from a 

given pattern. To integrate the GFL successfully with HiP-HOPS, any GFEs are parsed 

and transformed into classical HiP-HOPS expression format, which are then used as 



115 

 

input to HiP-HOPS‟s fault tree synthesiser for the remaining analysis steps
9
. It is during 

this phase that HiP-HOPS can automatically retrieve necessary application-specific 

information from the model (i.e. references to failure classes, ports and parameters) and 

substitute them for abstract terms where necessary. This way the GFL concept can be 

based upon the established HiP-HOPS fault tree synthesis method, allowing comparison 

and validation of fault trees generated from GFEs against those generated from legacy 

annotations. 

To parse a GFE, each side of the expression (output deviation (OD) and input deviation 

(ID)) must first be considered separately. The first step is to instantiate every possible 

OD from any abstract sets in the OD terms. This proceeds in the order FC > OP > PM; 

terms in an OD are parsed left-to-right. Each set is iterated through and every 

combination of values instantiates an OD. For example, the GFE above with the given 

values contained in each set would initially be instantiated into four ODs, each sharing 

the initial generalised ID: 

Omission-out1-x = ANY(FC)-ALL(IP)-SAME(PM) 

Omission-out1-y = ANY(FC)-ALL(IP)-SAME(PM) 

Commission-out1-x = ANY(FC)-ALL(IP)-SAME(PM) 

Commission-out1-y = ANY(FC)-ALL(IP)-SAME(PM) 

At this stage, if an INHERIT directive is specified in the pattern, any necessary 

behaviour is brought into the annotation from the library of available patterns. Also, if 

inheritance-overriding or EXCEPT on an output deviation term are used, this is the 

earliest opportunity for any of these „exclusions‟ can be carried out as required by the 

                                                      
9
 This approach was used to create the prototype of the extended HiP-HOPS tool presented in this thesis. 

Further development may render this step unnecessary. 
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pattern. For example, overriding a behaviour implies that an expression is made 

redundant and can be eliminated at this stage, similarly EXCEPT will reduce the 

amount of individual values to be processed; thus making the „exclusions‟ at an early 

stage can reduce the overall workload of the parser. In the above expressions, the term 

out2 has already been subject to an EXCEPT operation and has no further 

consideration in the remaining parse. Once the OD parse is complete, the set of 

expressions obtained will be the total number of expressions that can be produced by 

the GFE, as no more expressions can be added during the ID parse.  

The next step therefore is the expansion of the remaining generalised ID terms for each 

expression in the set. The first expansion necessary is to replace any instances of SAME 

with the appropriate value taken from the instantiated OD side. This is done first in 

order to improve efficiency, as expansion of other operators increases the number of 

instances which would need replacing later (as can be inferred from later steps in this 

example). Thus, continuing with the above example, expanding the SAME terms gives: 

Omission-out1-x = ANY(FC)-ALL(IP)-x 

Omission-out1-y = ANY(FC)-ALL(IP)-y 

Commission-out1-x = ANY(FC)-ALL(IP)-x 

Commission-out1-y = ANY(FC)-ALL(IP)-y 

The second step of ID expansion is to process any remaining operators, ANY, ALL and 

MAJ; again any set values excluded with EXCEPT are ignored from the parse. It is 

important to note that these operators do not decide the precedence in which terms in an 

ID are parsed, indeed parsing of IDs uses the same ordering as for ODs, i.e. FC > IP > 

PM. However, the resulting expanded expression must still obey standard Boolean 

precedence rules otherwise an expanded GFE can take a different meaning to its 

intended behaviour representation. For instance it is essential that within an expression, 
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precedence is given to conjunction (AND) over disjunction (OR) for any fault trees to 

have the correct structure i.e. the combination A AND B OR C should be interpreted as 

(A AND B) OR C, not as A AND (B OR C), as these expressions represent two 

different logical behaviours. Thus, continuing with the example, the next expansion is 

of the ANY(FC) term: 

Omission-out1-x = Omission-ALL(IP)-x OR Commission-ALL(IP)-x 

Omission-out1-y = Omission-ALL(IP)-y OR Commission-ALL(IP)-y 

Commission-out1-x = Omission-ALL(IP)-x OR Commission-ALL(IP)-x 

Commission-out1-y = Omission-ALL(IP)-y OR Commission-ALL(IP)-y 

Following this, ALL(IP) is expanded to give: 

Omission-out1-x = Omission-in1-x AND Omission-in2-x AND 

Omission-in3-x OR Commission-in1-x AND 

Commission-in2-x AND Commission-in3-x 

Omission-out1-y = Omission-in1-y AND Omission-in2-y AND 

Omission-in3-y OR Commission-in1-y AND 

Commission-in2-y AND Commission-in3-y 

Commission-out1-x = Omission-in1-x AND Omission-in2-x AND 

Omission-in3-x OR Commission-in1-x AND 

Commission-in2-x AND Commission-in3-x 

Commission-out1-y = Omission-in1-y AND Omission-in2-y AND 

Omission-in3-y OR Commission-in1-y AND 

Commission-in2-y AND Commission-in3-y 
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Once every abstract term in every expression has been instantiated and expanded, the 

full set of expressions is passed back to the fault tree synthesiser and the final 

processing continues as per the classical HiP-HOPS process. 
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4.2 Case study: brake-by-wire system 

The brake-by-wire (BBW) system is a design for applications in the automotive 

industry, developed by Daimler Research as part of the Time-Triggered Architectures 

(TTA) (Heiner and Thurner, 1998) project
10

. Figure 15 gives the general design of the 

system. The intended purpose of this architecture is to replace the traditionally hydraulic 

control of a vehicle‟s braking system with a more sophisticated electronic control, 

leading towards more advanced operation and hence improved safety features. This case 

study examines a simplified version of this system as a practical application of the GFL-

extended HiP-HOPS. 

 

Figure 15 The brake-by-wire system architecture (Papadopoulos et al., 2001) 

                                                      
10

 European Commission funded ESPRIT project 23396 (Papadopoulos et al., 2001). 
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The brake-by-wire system is constructed as a network of programmable nodes that 

communicate a braking signal. The brake pedal is continuously monitored for the signal 

to be initiated. When the brake pedal is depressed, the pedal node receives and 

broadcasts the braking signal over the network on two replicated buses (a fail-safe 

measure). The wheel nodes receive the signal and in response, activate the braking 

actuators. 

The provision of an electronic control enables further information such as the load on 

the wheel, the rotational acceleration and other sensory feedback to also be considered 

by the wheel node. Thus the aim of the system is to provide a more accurate and 

appropriate measure of the braking pressure required in the current state of the vehicle. 

Overall, more sophisticated management of the braking functions is provided, such as 

braking proportional to each wheel‟s load, in addition to anti-lock braking and 

electronic stability control. The Simulink model of the brake-by-wire system used in 

this study can be seen in Figure 16. 

All communications in the node network are done over the time-triggered 

communications protocol, TTP/C (Kopetz et al., 1989). The TTP/C controller 

component handles the communication of signals and is designed for fault-tolerance in 

the event of a failure. For example, in a time-triggered network where signals must be 

delivered to a predefined schedule, transforming the hazardous failure types such as 

timing failures into omission failures means the component will fail-silent. An abstract 

diagram of the TTP/C failure behaviour can be seen in Figure 17, which shows how the 

different failure types are handled and propagated by the controller network. 
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Figure 16 Simulink model of the brake-by-wire system 
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Figure 17 TTP/C failure behaviour (Kopetz and Grünsteidl, 1994) 

4.2.1 Analysis of the brake-by-wire system 

The safety assessment begins with a detailed investigation of each component‟s failure 

behaviour. The required information for the tool comes from an examination of 

deviations across component interconnections, as per the standard HiP-HOPS process. 

Where possible, behaviour is described using generalised terms to create the set of 

GFEs for each component, which are then be annotated to the blocks in the model. The 

expressions for each component are given in Table 12, however in the course of this 

case study the expressions have been simplified by assuming there is only one 

parameter associated with each port, the braking signal, and therefore abstract 

references to parameter terms are not included. 
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  Pedal 

Omission-out = PedalFailed 

ValHigh-out = PedalBiasedHigh 

ValLow-out = PedalBiasedLow 

TTP/C Controller 

Omission-out = ANY(FC EXCEPT:{ValHigh, ValLow})-in OR 

      ControllerFailed 

FC:{ValHigh, ValLow}-out = SAME(FC)-in 

Bus 

FC EXCEPT:{Val_Detectable, Omission}-OP = SAME(FC)-in 

Omission-OP = Omission-in OR BusFailed 

Val_Detectable-OP = EMI 

Wheel 

FC EXCEPT:{Omission}-out = SAME(FC)-ANY(IP) 

Omission-out = Omission-ALL(IP) OR BrakeFailed 

Car Braking 

NoBrake1-out = Omission-ANY(IP) 

NoBrake3-out = Omission-MAJ(IP) 

NoBrake4-out = Omission-ALL(IP) 

NoBrakeFront-out = Omission-FrontLeft AND Omission-FrontRight 

NoBrakeRear-out = Omission-RearLeft AND Omission-RearRight 

NoBrakeDiag-out = (Omission-FrontRight AND Omission-RearLeft) OR 

     (Omission-FrontLeft AND Omission-RearRight) 

ValHigh4-out = ValHigh-ALL(IP) 

ValLow4-out = ValLow-ALL(IP) 

Table 12 Brake-by-wire component annotations 

The simplest component in the system is the brake pedal which has only three possible 

output deviations: an omission of output caused by an internal failure of the pedal, or a 

value deviation (high or low) caused by a corresponding bias in the pedal. Commission 

failures (undesired braking signals), for the purpose of this case study, are equivalent to 

value deviations where a value of zero was expected (i.e. the value is nonzero). This 
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behaviour is relatively simple and does not contain any terms that can be generalised, so 

is expressed using the classic syntax. 

A virtual component „Car Braking‟ is used in the model to represent the braking 

function of the car as connected to all four wheel brakes. Output failures of the car 

braking are thus system-level brake failures the car can experience, such as single or 

multiple wheel brake failures. The only value failures affecting the system are those 

which encompass all four wheels, because it is not possible in this model for an 

individual wheel to experience a value failure. Brake pedal bias causes the high or low 

value failures in each wheel and so acts as a single common cause for each type of value 

failure. The complex failure modes of this component can be concisely represented with 

a set of GFEs, using the available operators to significantly reduce the length of the 

expressions. 

As can be seen in the Figure 16 model, the remaining components in this system are 

replicated to some degree; the Wheel nodes, TTP communications and Buses. This 

replication in the design represents literal component reuse within the same context, 

meaning identical architecture providing the same functions and, importantly for the 

analysis, exhibiting the same behaviour in conditions of failure with each instance of the 

component. Establishing patterns for these components can therefore make the 

annotation phase more efficient as there is no need to fully re-annotate for each 

instance.   

Signals from the Pedal are communicated to the braking subsystem via two busses, 

replicated for fail-safe redundancy. Each Bus propagates any failure received at its input 

to all of its outputs. Omission-type failures can also be caused by an internal failure of 

the Bus, whereas detectable value failures can only be generated if the Bus is subject to 

electromagnetic interference (EMI). Each Bus can therefore use the same set of GFEs, 
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which closely follows the Direct Propagation pattern, albeit with some modification, 

having two failure classes (detectable value and omission) listed as exceptions. 

The TTP/C controllers can act as a sender or receiver of signals; in both cases they 

propagate value failures while transforming any other class of failure into omissions of 

output. This type of transformation represents the fail-silent property of the TTP/C 

design, however the component will also omit output if it suffers an internal failure. 

Importantly the TTP/C controller is designed to express its fail-silent behaviour in any 

application, and can have the same set of GFEs for both sender and receiver functions. 

In this case a variation of the Fail Silent pattern can be extended to capture this general 

behaviour by including the „ControllerFailed‟ internal event to the causes of an 

omission failure. The detectable value failure must also be included as a separate 

definition, because this class of failure is propagated rather than transformed.  

The wheel brakes will fail to deliver the braking pressure to the wheel, an omission of 

braking, if the braking signal is omitted at all its inputs (i.e. both TTP/C receivers omit 

output), or if the brake suffers an internal failure. Insufficient or excess braking pressure 

will be applied if there is a value failure at any input. The wheel brakes therefore exhibit 

a variation of the Redundancy on Inputs pattern, whereby an omission of output is 

caused by an omission of all inputs, in this case with the additional cause of 

„BrakeFailed‟. 

The details of each possible braking failure the system can experience are given in 

Table 13, along with severity levels described with the standard severity classes of (IEC 

61508, 1997); catastrophic, critical, marginal and insignificant.  
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Failure Effect Severity Notes 

NoBrake1 Loss of braking in single 

wheel 

Critical Marginal unless car is 

braking while on a 

curved trajectory, in 

which case it may drift 

off course 

NoBrake3 Loss of braking in three 

wheels 

Catastrophic 80% loss of braking 

function 

NoBrake4 Loss of braking in all 

wheels 

Catastrophic 100% loss of braking 

function 

NoBrakeFront Loss of braking in front 

wheels 

Catastrophic 65% loss of braking 

function, 30% loss of 

car stability 

NoBrakeRear Loss of braking in rear 

wheels 

Critical 35% loss of braking 

function, 30% loss of 

car stability 

NoBrakeDiag Loss of braking in 

diagonally opposite 

wheels 

Critical 50% loss of braking, 

15% loss of stability, 

15% loss of steering 

ValHigh4 Excess braking in all 

wheels 

Critical Excess braking can lead 

to loss of steerability if 

wheels lock, but 

stability is mostly 

maintained 

ValLow4 Insufficient braking in 

all wheels 

Catastrophic Major loss of braking 

function 

Table 13 Effects of failure on the BBW system (Papadopoulos and McDermid, 1999) 

The GFL-extended version of HiP-HOPS successfully analysed the BBW model and 

produced a set of fault trees. A summary of the full analysis results is given in Table 14; 

this is a simplified FMEA table showing only single points of failure, as there are 

numerous effects of combinations of failures that HiP-HOPS produces, and for clarity 

have been omitted. 
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Component Failure Effect Severity 

Pedal BiasedHigh 

BiasedLow 

PedalFailed 

NoBrake1 

NoBrake3 

NoBrake4 

NoBrakeFront 

NoBrakeRear 

NoBrakeDiag 

ValHigh4 

ValLow4 

Critical 

Catastrophic 

Catastrophic 

Catastrophic 

Critical 

Critical 

Critical 

Catastrophic 

TTP/C Sender ControllerFailed NoBrake1 

NoBrake3 

NoBrake4 

NoBrakeFront 

NoBrakeRear 

NoBrakeDiag 

Critical 

Catastrophic 

Catastrophic 

Catastrophic 

Critical 

Critical 

Wheel_FrontLeft BrakeFailed NoBrake1 Critical 

Wheel_FrontRight BrakeFailed NoBrake1 Critical 

Wheel_RearLeft BrakeFailed NoBrake1 Critical 

Wheel_RearRight BrakeFailed NoBrake1 Critical 

Table 14 Simplified FMEA showing only single points of failure in the model 

The analysis results show that the duplication of the buses and TTP/C receivers has 

ensured that these components cannot be a single point of failure, hence they do not 

appear in this simplified FMEA. A brake failure can only derive from these components 

if both buses, both receivers at the wheel or one bus and one receiver fail in 

combination at any given wheel. It can also be seen that there is no protection from 

value/commission failures and that the TTP/C sender is a single point of failure. The 

sender could be replicated to solve the latter problem, allowing some provision of 

backup redundancy in the event one sender fails. Solving the value/commission 
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problem requires a different strategy. Incorrect or undesired braking pressure to some 

but not all wheels is a more severe failure than the same failure occurring in all wheels, 

as it can lead to a greater loss of car stability. For example the car could veer off course 

if braking is applied unevenly to the wheels. Though it is theoretically unnecessary to 

protect against such value/commission failures, as they are propagated from the pedal to 

all wheels, the nature of such electronic controls means it is still possible to experience 

individual wheel brake failures (unlike for instance a hydraulic system). Thus the design 

could still make use of improved detection, for example allowing the wheel to make use 

of replicated inputs and filtering out value errors via a majority voting procedure. 

The design of the BBW system has several elements which are reused, most 

prominently being the replicated wheel nodes and TTP controllers for the signal 

communications. The wheel nodes for example are literally reused components and 

have identical failure behaviour within this application. It is feasible then to define 

GFEs and create a pattern for a wheel so that all instances can use the established 

behaviour, enabling vertical reuse of the wheel pattern.  The BBW model contains 141 

annotated components, which under a classical HiP-HOPS analysis requires a system-

wide total of 1297 failure behaviour expressions. Using the GFL and patterns, the 

number of annotations can be reduced to 714, a 45% reduction in the total. 

The common behaviour for the reused components gives a significant improvement to 

the efficiency of the analysis. For instance the design includes nine TTP controllers, all 

sharing the same failure behaviour (in both sender and receiver modes), that can be 

quickly annotated to the model once defined as a TTP behaviour pattern. If the classical 

HiP-HOPS syntax were used, each TTP controller annotation would require a set of 

three expressions: 
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Omission-out = Omission-in OR Commission-in OR 

     Early-in OR Late-in OR ControllerFailed 

ValHigh-out = ValHigh-in 

ValLow-out = ValLow-in 

When expressed generally and defined as a pattern, each instance of the controller can 

be annotated with „INHERIT TTP Controller‟, a much simpler definition. This type of 

efficiency improvement was also seen with the Wheel nodes and Buses, though there 

were fewer repeated instance. 

In terms of the lifecycle, this approach to annotating identical replicated components 

means that where any changes are made that affect the failure behaviour, the GFEs can 

be quickly updated and the updated expressions will be automatically applied to each 

instance. If used carefully, ensuring that affecting changes are genuinely applicable to 

all instances, this can be a significant efficiency gain for all future analyses of the 

system. 

In the course of the analysis, several components were found to exhibit patterns of 

failure behaviour which were variations on the example patterns given in section 3.3.1. 

Where these components were reused in the model, it was possible to apply the patterns 

and therefore make the annotation process more efficient.   

4.3 Validation: Comparison with HiP-HOPS 

The BBW case study demonstrated some efficiency gains while reducing the overall 

annotation burden, with more concise definitions and reducing the overall number of 

expressions needed. in this section the investigation is expanded by studying a series of 

legacy models that have been used in prior HiP-HOPS analyses to find a quantifiable 
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benefit of potential efficiency gains in other models and analyses. Comparisons are 

made according to the following criteria: 

 Reduction in the number of expressions 

 Reduction of the size/length of expressions 

Exploring the number of replicated (identical) components in a design to compare the 

scope for reusable expressions would not yield particularly meaningful results, because 

classical annotations could be reused in the same manner as GFEs, i.e. there is no 

difference between the two methods in terms of reusability.  

Furthermore, measuring the overall reusability of GFL expressions would involve 

investigating how often a particular GFE could be applied within and/or across models. 

However due to the nature of available models, it was not possible to reliably test this 

factor. Part of the reuse challenge is one of lexical consistency in the way models are 

annotated. For example, the failure class „omission‟ could be described as „omitted‟ or 

„none‟, or other similar names. Models used for this study were taken from a variety of 

sources and do show these kinds of differences. Therefore the algorithms developed to 

find patterns within a model cannot accurately compare patterns across models due to 

these inconsistencies. This type of problem could be solved by demanding consistency 

from the analyst, but it is unenforceable. It would likely be considered restrictive, and it 

could be argued that useful detail may be lost. This is partly the reason that templates 

for GFEs contain a section for typical failure classes that can be used, the aim being to 

encourage the use of the generic types or classes of failures. Indeed, the naming idiom 

that leads to quick annotation will, if used in this manner, intrinsically reuse the same 

failure classifications. 
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4.3.1 Generalisation of expressions in legacy models 

An algorithm has been developed to aid the validation process which can automatically 

make generalisations of a legacy model‟s existing annotations. Using this, it is possible 

to make a determination of how effective GFEs are in reducing annotation effort and 

further to get an indication of how typically patterns of behaviour occur within systems. 

The algorithm can reduce the number of expressions and also the size of expressions, 

though it may be possible that no generalisations can be made within a particular model, 

and thus no reduction be made.  

The algorithm works by identifying those characteristics and structures in expressions 

which can be abstracted and contracted with the GFE terms and operators. The 

algorithm is most effective for components that have multiple expressions to define 

their behaviour. The conversion of classical expressions to GFEs proceeds with the 

following steps: 

 Step 1: Re-order the set of expressions 

The first step can be considered as a preliminary pre-processing of the expression set. 

This is to group together common output terms, for example all expressions referring to 

the same output port would be grouped together, then within those groups, expressions 

would be ordered for failure class types and finally once again for any common 

parameters. The result should be a list of expressions which are in a more suitable order 

for the subsequent steps. 

 Step 2: Reduce the number of expressions 

This step detects where the SAME operator can be applied within an expression, based 

on common values found across a set of expressions. For example the following two 

expressions: 
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Omission-out1-x = Omission-in1-x 

Omission-out1-y = Omission-in1-y 

can be reduced via SAME to become: 

Omission-out1-PM = Omission-in1-SAME(PM) 

The SAME operator can only apply when there is more than one expression for a given 

component; if the annotation has only one expression, this step can be skipped. The aim 

of checking for instances of SAME before the contraction with operators (Step 4) is to 

reduce the overall processing i.e. reducing number of expressions that must be checked 

for contraction. 

 Step 3: Rearrange input deviation terms 

The purpose of this step is to sort and group together common logical combinations i.e. 

conjunctions and disjunctions, where allowable within rules of Boolean logic, so that 

the final contraction step can proceed more quickly while remaining accurate. This 

rearranges the right-hand side of an expression in accordance with the precedence rules, 

for example, the input deviation: 

Omission-in1 AND (Commission-in2 OR Commission-in3) AND Omission-in4 

would be rearranged to give: 

Omission-in1 AND Omission-in4 AND (Commission-in2 OR Commission-in3) 

 Step 4: Contract input deviation terms 

The final step detects where expressions can be contracted with the use of the remaining 

operators, reducing the overall size or length of an expression and making the final 
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generalisations. This initially checks where ANY or ALL could be applied, for example, 

the input deviation: 

Omission-in1 AND Omission-in4 AND (Commission-in2 OR Commission-in3) 

would be contracted to: 

Omission-ALL(IP:{in1,in4}) AND (Commission-ANY(IP:{in2,in3})) 

If an expression has a certain structure, and the required distribution and logical 

combinations of values, it can be possible to make further contraction for the MAJ 

operator. For example the input deviation: 

Omission-ALL(IP:{in1, in2}) OR 

Omission-ALL(IP:{in1, in3}) OR 

Omission-ALL(IP:{in2, in3}) 

can be contracted to: 

Omission-MAJ(IP:{in1, in2, in3}) 

4.3.2 Validation Results 

The validation study of legacy models showed that in terms of reducing the length of 

expressions via GFL, the overall reduction is mostly insignificant. For example, the 

models used in the study had typically fewer than ten expressions that could be subject 

to any significant reduction in length. This is simply due to there being very few 

instances where the operators could be applied. Conversely, there were many instances 

where the overall number of expressions could be reduced. Table 15 lists the results 
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from applying the generalisation algorithm. The example models used in this study were 

provided by Germanischer Lloyd, Daimler AG
11

 and Volvo. They include: 

A)  A ship engine cooling system
12

 

B&C)  Two blow-out prevention systems used in offshore platforms
13

  

D)  A fuelling system
14

  

E) An automotive brake-by-wire system
15

 (as used in prior case study)  

F)  A steer-by-wire system
16

  

 

Model Number of 

annotated 

components 

Total 

expressions 

Average 

number of 

expressions 

per 

component 

Reduction 

in 

expressions 

via 

generalised 

annotation 

New total 

expressions 

Average 

number of 

expressions 

per 

component 

after 

reduction 

Reduction 

Ratio 

A 109 776 7.1 314 462 4.2 41% 

B 20 75 3.7 26 49 2.4 35% 

C 27 100 3.7 33 67 2.5 33% 

D 65 175 2.7 60 115 1.8 34% 

E 141 1297 9.2 583 714 5.1 45% 

F 85 204 2.4 12 192 2.2 6% 

 

Table 15 Validation results 

The abstract nature of the GFL provides the greatest benefit when applied to those 

models that have been fully annotated with expressions that capture the complete range 

of failure behaviour. In such models, the large degree of duplication between multiple 

expressions can be reduced by using a smaller number of more abstract GFEs. Without 

                                                      
11 Formerly DaimlerChrysler 
12

 (Uhlig et al., 2007) 
13

 (Hamann et al., 2008) 
14

 (Papadopoulos and Petersen, 2003)  
15

 (Papadopoulos and McDermid, 1999) 
16

 (Papadopoulos and Grante, 2005) 
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generalisation, the classical HiP-HOPS syntax often leads to a degree of repetition in 

the expressions and terms, and is therefore a good example of a situation where the GFL 

can have a significant benefit. 

The study has shown that most models receive a significant reduction in the number of 

expressions needed. This reduction ratio for most models is in excess of 33%, meaning 

in most cases at least a third of expressions could be removed via the use of GFL 

annotation. A significant result is for the steer-by-wire system (model F), which only 

experienced a 6% reduction of expressions. This is a model which is annotated only for 

early development stage functional analysis, which uses less detailed annotation and 

considers a smaller number of input and output ports, in addition to only annotating for 

omission and commission failures. As such, the components in the model only contain 

on average 2.4 expressions and consequently provide far less scope for reduction via 

generalisation. 

Looking at the brake-by-wire system (model E), there is a 45% reduction, the highest 

level of all the examples in the study. This model contains a relatively high average 

number of expressions per component, which provides the greater scope for reduction. 

It can also be linked to the fact that the expressions mostly share a similar logical 

structure, making it an ideal candidate for GFL annotation. A manual inspection of this 

model revealed that the algorithm had successfully elicited a pattern for a central 

controller bus. This pattern effectively reduced a large number of expressions by 

generalising the behaviour: every omission delay or corruption of input messages 

propagates to the outputs, any bus malfunction causes omission of all messages, EMI 

during communication causes detectable corruption of all messages. Further inspection 

of the remaining models revealed that fail silence and fault tolerance patterns often 

occurred in the failure annotations created by analysts. 
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The results as shown give an indication of the success of the GFL, however the 

algorithm used to perform the reductions was a developmental prototype and may not 

have detected all possible applications, thus results may be an underestimation of the 

true extent of possible reduction. For example the algorithm does not detect complex 

patterns consisting of more than one GFE, patterns that incorporate EXCEPT clauses or 

any that use inheritance or overridden values. As such it is likely that in practical 

applications the annotation burden would be further reduced. This statement is 

supported by the fact that this validation study has worked only via reverse engineering 

of the models to process those expressions already present; if the GFL were used during 

the creation of the model, it would likely be far easier for the analyst to identify 

applications for patterns. Furthermore, the GFL is designed to operate alongside a 

library of well-known patterns; with access to such a resource, the extent of reuse would 

certainly be improved.  
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4.4 Summary and Discussion 

The introduction of abstract representation within failure behaviour expressions means 

that it must be investigated how such expressions will be interpreted and to determine 

whether or not it is possible to implement this as a useable language. This chapter 

showed that the GFL is implementable, by showing how it can be integrated with an 

existing contemporary safety analysis tool, HiP-HOPS. The details of all the required 

steps have been given, along with guides to an implementation and an algorithm for 

converting legacy expressions into the generalised format. The overall method has been 

subjected to a process of validation via a comparison with classical HiP-HOPS. 

When using the GFL method, the first challenge encountered is the problem of knowing 

whether or not a component‟s behaviour (annotation) can be expressed generally or not, 

or at least to know which expression terms may be represented generally. This would 

very much depend on the analyst‟s skill and experience of the GFL. Having a library of 

patterns available at this stage becomes very useful, though there is still considerable 

effort needed to firstly create such a library and secondly to search it for an appropriate 

pattern. If a well-known behaviour is not found in the library, the time and effort spent 

searching might well be better spent simply annotating the model in the classical syntax. 

This problem however is not quite as severe as it first appears; assuming a correct, full 

set of expressions for a given component, constructed in classical HiP-HOPS syntax, it 

is possible to use the algorithm developed in this chapter to automatically find many 

generalisations and reconstruct the annotation into a generalised format. The new 

generalised expressions can then be documented and stored for potential reuse later. 

Once a pattern has been established, it has been shown to make worthwhile efficiency 

gains for quick annotation when components are replicated within a system, and for 

managing and applying changes made in the course of the lifecycle. 
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Quantifying the benefits of the GFL approach is perhaps the most difficult challenge. 

What was deemed the most feasible approach, used in this chapter, was to examine and 

compare the numbers of annotations needed to fully describe behaviour at both the 

component level and the system as a whole. Doing this gave an indication of how 

effective GFEs are at lessening the annotation burden and also how often GFEs may be 

employed successfully within a model. The results of these studies showed that the total 

number of expressions needed could be reduced by about a third or more compared to 

using the classical annotation syntax, though it varies considerably depending on the 

model and component behaviours. 

Measuring achievable reuse with this method is difficult and has not been ascertainable 

with available models. It is feasible, for example, to evaluate how often a particular 

GFE is employed across various models, but the study in this chapter has been limited 

by the inconsistency in existing legacy model annotations. Any results gained from the 

available models in this way would unlikely be indicative of the true scope and scale of 

achievable reuse. A further significant study would be needed to draw more substantial 

conclusions. 
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5 Conclusion 

In this thesis, the following hypothesis has been tested: 

“More efficient safety analyses can be achieved via a new approach to 

generalising descriptions of failure behaviour. This approach will allow in 

practice the more concise specification and limited reuse of patterns of 

failure behaviour” 

Testing this required meeting several objectives. Those objectives set out in Chapter 1 

are restated below, with a discussion of how each was met. 

1. Examine relevant model-based safety analysis techniques to evaluate the current 

extent of achievable reuse. 

The review of classical and contemporary safety analysis techniques in Chapter 2 

provided the overall direction of this work. The original, classical techniques for safety 

analysis were not designed with today‟s complex systems in mind, and with most 

modern contemporary methods being based on classical techniques, they tend to carry 

over some of their inherent limitations. With regards to reusability, it is a major 

difficulty with most techniques, but this has lead to many advances in contemporary 

methods which reflect compositional system design within analyses. These have had 

some success, whereby analysis elements can be „componentised‟ and reused, but are 

still limited by a number of factors, most prominently the necessity for application-

specific information for each component.  

Thus in order to improve the scope for reuse, expressions of failure behaviour must be 

made more general so that they can have more than one application. This has been 

shown to work in the FPTC method, the argument is that there is scope to go further. 
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Looking at reuse in the wider field of engineering suggested that the overall efficiency 

of safety assessments can be improved in terms of quick annotation for reused 

components with a structured method for documenting and performing reuse.  

2. Develop a concept for generalised annotation and demonstrate that the proposed 

concept works by extending an existing safety analysis method to enable 

specification and reuse of patterns of failure behaviour. 

Over the course of Chapter 3, a new language for describing the way components fail 

has been introduced and developed. The new language was developed as a superset of 

an existing syntax found in the HiP-HOPS safety analysis tool; this was chosen as a 

candidate for extension because of the flexibility and extensibility of the existing 

component annotation syntax.  HiP-HOPS is also an advanced and widely published 

technique that offers a wide range of capabilities, including unique capabilities among 

safety analysis techniques for design optimisation and allocation of safety requirements 

(Papadopoulos et al., 2010). Since HiP-HOPS partly defines the state-of-the-art in this 

area, in this thesis it was considered that useful extensions to the method towards 

greater generalisation and reuse of failure behaviour would generally benefit research 

on contemporary work on compositional safety analysis. 

With the extended annotation syntax, failure behaviour expressions can now take a 

more abstract form, describing behaviour in a more general manner than classical HiP-

HOPS and other model-based safety analysis methods currently provide. The syntax of 

the language is designed so that generalised failure expressions (GFEs) can be 

constructed that remain valid across applications and in subsequent analyses. This 

extension introduces abstract terms and operators, and in combination with additional 

language features, forms the main contribution of this thesis, called the Generalised 

Failure Language (GFL). The implication is that GFEs can be reused along with any 
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component that exhibits a general behaviour in any system, but a larger study of this 

capability is required before more definitive conclusions can be made. The new 

approach also improves upon scalability of expressions, for example abstract references 

can be made to component interconnections (i.e. ports) so that an expression remains 

valid regardless of the amount of input or output connections the component has, or is 

modified to have. As a result, describing general behaviour using the newly developed 

GFL enables the creation of reusable analysis elements, consequently known as 

patterns. 

Examining this new development from a critical perspective, these extensions 

introduced new problems in the application of the tool, as the more abstract notation of 

patterns can be difficult to interpret manually. To mitigate this difficulty, mechanisms to 

perform reuse safely and appropriately, and for constructing and documenting patterns 

were developed in conjunction with the new language. A template for consistent 

documentation of patterns was developed and several examples were given. 

Furthermore an inheritance mechanism was developed and employed to manage the 

reuse of patterns; this feature also allows the creation of new patterns by a process of 

specialisation. 

3. Evaluate the extended method 

To demonstrate the overall concept, Chapter 4 works through an implementation of the 

new language integrated with HiP-HOPS and demonstrates analysis with the completed 

tool by performing a case study analysis, and gives further validation via a series of 

smaller studies. The implementation consisted of a combined parser for the generalised 

language and algorithm to instantiate patterns. The parser checks correctness while the 

instantiation is necessary for application-specific expressions to be automatically 

generated from the abstract pattern.  
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The main case study of the automotive brake-by-wire system demonstrates how GFEs 

can replace standard expressions with more concise annotation and how GFL patterns 

can be found, specified and used as an efficient means to annotate where there are 

replicated components in the design. This has however only been shown to work where 

there is literal component reuse within the same model and not across designs. 

Validation of the method is somewhat problematic; the difficulty in quantifying 

improved reusability has been discussed and resulted in the focus being put on 

validation by comparing the number of annotations required in legacy models compared 

to the amount needed when using patterns. For a practical demonstration of this, a 

legacy-expression converter was also developed to allow a retrospective investigation of 

older models and to evaluate the difference if patterns were applied. Comparing the 

newly implemented technique with the classical HiP-HOPS method was therefore 

limited to evaluating the reduction in annotation effort brought about by generalisation. 

On average, the number of annotations required could be reduced by around a third, but 

this figure varied enormously depending on the system. However, the case studies 

performed were severely limited by the availability of suitable examples. Available 

models were often incomplete and did not contain a full set of component annotations, 

meaning figures obtained for reduction ratios may not reflect accurately on real-world 

performance. Nevertheless, the results from the limited study were encouraging with 

values ranging from less than 10% to over 40% reduction in annotations, and it is 

reasonable to claim that the reduction ratio in more complex, completely annotated 

models could be higher than that seen in the course of the study. 

5.1 Limitations of the concept 

One shortcoming that is expected to create overheads in the application of the concept is 

the lack of pattern libraries that need to be developed to support this method. Clearly, 
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this additional resource of a library of patterns is needed for the method to achieve its 

full potential. More importantly, although in theory the proposed GFL enables greater 

context independence and reuse, ultimately the ability to reuse failure analyses is not 

dependent on the reusability of the linguistic constructs. Rather, it depends on the 

sensitivity of these analyses on the context in which the system is being deployed. This 

context may include different states within the same application or different application 

environments. This is not an issue that has been investigated in this thesis and little 

insight has been thrown to this problem which should be further investigated. 

There are also some issues relating to the process; these focus mainly on performing 

reuse with the GFL method. It has some notable limitations which undermine some of 

the effort made in developing a technique for improving reuse. The inheritance 

mechanism used at present can be cumbersome and is not as flexible as intended. The 

original intention was to enable both „verbatim‟ and „trivial‟ styles of reuse. Verbatim 

reuse, where expressions are not modified, is currently the only type possible, albeit 

with some flexibility with regards to overriding expressions. Trivial reuse of 

expressions, where only a slight change is made to an expression, is not possible with 

the proposed mechanism. For example, the TTP/C controller component examined in 

the case study, though expressing a general fail silent behaviour, could not be annotated 

with the standard Fail Silent pattern, due to the shortcomings of inheritance. The Fail 

Silent pattern can still be used as a guide for manual annotation, though a more capable 

reuse mechanism could allow reuse to take place where extended behaviour is defined 

within an expression; essentially an inline declaration of inherited values. Further study 

would be beneficial to investigate the feasibility of this approach. 

Another problem with the reuse mechanism in general is that allowing expressions to be 

overridden when behaviour is inherited brings about opportunities for new kinds of 
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manual errors. The intention is that expression overriding is used sparingly and 

carefully; a large number of overriding expressions is undesirable, difficult to manage 

and defeats some of the purpose of the inheritance mechanism. The issue is that there is 

no mechanism (e.g. syntax checking) at present to stop the analyst from overriding 

every behaviour from an inherited pattern within a specialisation, undermining the well-

known behaviour. At the same time, the method should remain as flexible as possible, 

and so this is a feature which may need improvement. Ultimately, as with other safety 

analysis methods, a certain level of expertise is assumed on behalf of the analyst to 

ensure the method is used correctly. 

5.2 Further work 

The aim of improving reuse within safety analysis has been achieved to some extent, 

but is far from solved. With regards to the solution presented in this thesis, though some 

improvement to reusability has been made, at the same time it has raised questions 

about the additional effort introduced. One contentious point is whether these extra 

requirements are worth the reduction in annotation effort. The validation study has 

given positive results, but additional research would be very beneficial. 

A definitive answer about the effectiveness of patterns of failure behaviour might only 

be gained through several full-scale analyses performed with the GFL method and 

comparing levels of achievable reuse with an identical analysis using the legacy 

annotation method (though it may be possible even then the result may be system or 

analysis specific, thus the need for several studies). It would be reasonable to expect to 

see in such a study that many common patterns of behaviour would be found, providing 

an opportunity to quantify the extent of reuse. Indeed as more general behaviours are 

discovered and more patterns created (expanding the library of available patterns), the 

method will be increasingly beneficial. Ultimately it was deemed impractical to perform 
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such a large scale study in the course of this thesis, having already gained positive 

results from the smaller case studies. 

If a wider study can confirm the efficacy of the new method, it would be reasonable to 

extend the language further with new operators, enabling the capture of other 

generalisations of potentially more complex behaviour. This was briefly investigated 

with the use of a „majority voting‟ operator to demonstrate this ability, and so could be 

expanded to include other common voting behavioural types, such as minority 

combinations. 

Recent developments in HiP-HOPS for temporal logic suggest that temporal operators 

could also be included in an extended generalised language. Based on work in the 

PANDORA project by Walker (2009), the definitions given to priority-logic could be 

incorporated into the GFL, for instance with operators that generalise the sequencing of 

events, like „before‟ and „after‟. The possibility is that dynamic patterns of behaviour, 

where the sequence of events is critical to the component‟s failure behaviour, could be 

captured, stored and reused. 

Finally, the important issues of dependence of safety analysis on state and application 

context and how it affects the use and reuse of GFL specifications are areas that need to 

be further investigated. 

A small step in extending a state-of-the-art technique for safety analysis towards 

enabling more generalisable and potentially reusable component failure specifications 

has been achieved.  Many more steps are required to realise some of the potential that 

this thesis hopes to have shown. 
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