465 research outputs found

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Non-fragile estimation for discrete-time T-S fuzzy systems with event-triggered protocol

    Get PDF
    summary:This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on [0,1][0,1], is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper

    Brief Survey on Attack Detection Methods for Cyber-Physical Systems

    Get PDF

    Cooperative Control of Nonlinear Multi-Agent Systems

    Get PDF
    Multi-agent systems have attracted great interest due to their potential applications in a variety of areas. In this dissertation, a nonlinear consensus algorithm is developed for networked Euler-Lagrange multi-agent systems. The proposed consensus algorithm guarantees that all agents can reach a common state in the workspace. Meanwhile, the external disturbances and structural uncertainties are fundamentally considered in the controller design. The robustness of the proposed consensus algorithm is then demonstrated in the stability analysis. Furthermore, experiments are conducted to validate the effectiveness of the proposed consensus algorithm. Next, a distributed leader-follower formation tracking controller is developed for networked nonlinear multi-agent systems. The dynamics of each agent are modeled by Euler-Lagrange equations, and all agents are guaranteed to track a desired time-varying trajectory in the presence of noise. The fault diagnosis strategy of the nonlinear multi-agent system is also investigated with the help of differential geometry tools. The effectiveness of the proposed controller is verified through simulations. To further extend the application area of the multi-agent technique, a distributed robust controller is then developed for networked Lipschitz nonlinear multi-agent systems. With the appearance of system uncertainties and external disturbances, a sampled-data feedback control protocol is carried out through the Lyapunov functional approach. The effectiveness of the proposed controller is verified by numerical simulations. Other than the robustness and sampled-data information exchange, this dissertation is also concerned with the event-triggered consensus problem for the Lipschitz nonlinear multi-agent systems. Furthermore, the sufficient condition for the stochastic stabilization of the networked control system is proposed based on the Lyapunov functional method. Finally, simulation is conducted to demonstrate the effectiveness of the proposed control algorithm. In this dissertation, the cooperative control of networked Euler-Lagrange systems and networked Lipschitz systems is investigated essentially with the assistance of nonlinear control theory and diverse controller design techniques. The main objective of this work is to propose realizable control algorithms for nonlinear multi-agent systems

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis
    • …
    corecore