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Observer-Based PID Security Control for Discrete
Time-Delay Systems under Cyber-Attacks

Di Zhao, Zidong Wang, Daniel W. C. Ho and Guoliang Wei

Abstract—This paper deals with the observer-based
proportional-integral-derivative (PID) security control problem
for a kind of linear discrete time-delay systems subject to cyber-
attacks. The cyber-attacks, which include both Denial-of-Service
and deception attacks, are allowed to be randomly occurring
as regulated by two sequences of Bernoulli distributed random
variables with certain probabilities. A novel observer-based PID
controller is proposed such that the closed-loop system achieves
the desired security level and the quadratic cost criterion (QCC)
has an upper bound. Sufficient conditions are derived under
which the exponentially mean-square input-to-state stability
is guaranteed and the desired security level is then achieved.
Subsequently, an upper bound of the QCC is obtained and
the explicit expression of the desired PID controller is also
parameterized. Finally, the validity of the developed design
approach is verified via an illustrative example.

Index Terms—Observer-based PID control, security control,
Denial-of-Service attacks, deception attacks, exponentially mean-
square input-to-state stability.

I. I NTRODUCTION

FOR several decades, the proportional-integral-derivative
(PID) control scheme has been playing an important

role in industry due to its simplicity in controller structure,
robustness to external disturbances, and convenience for pa-
rameter tuning. The synthesis problem of the PID controller
has received particular research interest and a large number
of design methods have been developed, see e.g. [1], [9],
[15], [46] and the references therein. With the ever-increasing
complexity of the controlled plants in the modern industry,
conventional PID parameter tuning approaches might not be
able to cope with demanding engineering requirements, and
much effort has then been devoted to the enhancement of the
PID control performance by combining with other advanced
control schemes, see e.g. adaptive PID control algorithm [5],
intelligent PID control strategy [19], fuzzy PID control method
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[2] and neural network PID control approach [8]. Up to now,
the research on the PID control problem has attracted a great
deal of attention from the communities of systems science and
control engineering.

Most literature concerning PID control has been based on
the state feedback. In practice, however, the system states
might be immeasurable because of economic constraints or
technological limitations, and therefore the observer-based
control schemes have become more and more appealing to
engineers. For instance, the observer-based control issue has
been discussed in [36] for nonlinear stochastic systems in
order to achieve the exponential mean-square stability and
the variance constraints are also satisfied. The observer-type
event-triggered control approach has been presented in [38]
to solve the finite-horizonH∞ consensus problem for multi-
agent systems. In [6], the asynchronous observer-basedH∞
controller has been constructed for switched stochastic systems
subject to mixed delays, signal quantization as well as packet
dropouts. Nevertheless, despite its clear engineering insight,
the observer-based PID control problem has not been ade-
quately addressed yet due probably to the observer-induced
complexity in parameter tuning, and this situation gives rise
to the primary motivation of the present research.

The concept of asymptotic stability has been dominantly
used in traditional control theory. In the presence of persistent
external inputs including noises/perturbations, asymptotic sta-
bility might be inapplicable [10], [16]–[18], and the so-called
input-to-state stability (ISS) is well suited to characterize
the response of systems to bounded exogenous disturbances.
In this regard, many excellent results have been available
in the literature. For instance, the input-to-state stabilization
problem has been discussed in [20] for a kind of delay
differential systems under exogenous disturbances. A matrix
inequality approach has been proposed in [14] to analyze the
ISS of time-delay systems. In [44], the exponentially mean-
square ISS has been addressed for stochastic Cohen-Grossberg
neural networks. So far, most ISS-related results have been
obtained for continuous-time systems and their discrete-time
counterparts have been much fewer due mainly to the lack of
appropriate methodologies.

With the quiet revolution of network technologies, the
past decade has seen increasing popularity and usage on
the networked control systems (NCSs) in practice [21], [34],
[37], [39], [42]. However, in comparison with the traditional
point-to-point control systems, NCSs are more susceptible to
network-induced phenomena including communication delay
[7], [26], [27], [32], [43], [47], packet dropout [22], [28], [33],
signal quantization [12], fading channel [41]. Furthermore,
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owing to the inherent opening-up characteristic of network
links, the information transmission in NCSs is vulnerable
to cyber threats which are likely to result in performance
degradation or even instability [25], [29], [30]. In this case,
the security protection becomes a vitally important issue and
the so-called security control problem has received some
initial research attention, see [3], [11], [31] and the references
therein. Generally speaking, the main idea of the security
control is to design a control law such that a desired security
level is achieved for the closed-loop system under cyber-
attacks that include, but are not limited to, Denial-of-Service
(DoS) attacks [4], replay attacks [45] and deception attacks
[13].

In the context of cyber defence, the attacks initiated by
opponents might be unsuccessful in NCSs due to the installed
devices or software for security protection. As such, from the
defenders’ perspective, the cyber-attacks are likely to take
place in a random manner and the occurrence mechanism
of the attacks can be mathematically modeled by Bernoul-
li/Markov processes with certain statistical property, see [13],
[24] and the references therein. For cyber-physical systems, in
addition to the basic security, one would expect that certain
system performance can be maintained for necessary system
operation. In this case, the quadratic cost behaves as an
adequate performance index and a realistic criterion would
be to ensure an upper bound on the quadratic cost function
for the closed-loop system in spite of the randomly occurring
cyber-attacks, which leads to the so-called cost-guaranteed
security control [13], [31]. It should be pointed out that,
the observer-based PID security control problem for NCSs
has not been investigated yet, not to mention the case that
the quadratic performance index is also a major concern for
system designers. Therefore, the main purpose of this paper
is to narrow such a gap.

Summarizing the above discussion, we come to the conclu-
sions that: 1) the observer-based PID control problem is of
both theoretical significance and practical importance; 2) the
notion of ISS is quite suitable in examining the effect from the
cyber-attacks on the system performance; and 3) it is strongly
desired to have the cost-guaranteed performance apart from the
usual security protection. In view of the above observations,
in this paper, we make the first attempt to deal with the PID
observer-based control issue for a kind of discrete-time linear
systems with time-varying delays under the randomly occur-
ring DoS/deception attacks so as to ensure both the security
performance in mean-square sense and the bounded quadratic
cost index. It is worth noting that the addressed security control
problem is rather challenging due primarily to the analytical
complexity resulting from the random occurrence of cyber-
attacks and the subsequent PID parameter tuning.

The main contributions of this paper are summarized as
follows: 1) an observer-based PID controller is, for the first
time, constructed for the linear discrete-time system with
time-varying delays; 2) the concept of exponentially mean-
square ISS is considered in response to randomly occurring
DoS/deception attacks; and 3) an upper bound is obtained on
the quadratic cost criterion (QCC) of the controlled system in
addition to the basic security requirement. The remaining of

this paper is organized as follows. Section II formulates the
observer-based PID control problem for the linear discrete-
time systems subject to time-varying delays, where the ran-
domly occurring DoS/deception attacks are introduced in a
novel yet unified measurement model. In Section III, the
mean-square ISS is first analyzed and sufficient conditions
are then derived to ensure both the desired security level
and the bounded QCC. A simulation example is shown in
Section IV to demonstrate the usefulness and applicability of
the controller design algorithm. Finally, we conclude the paper
in Section V.

Notation. The notation utilized here is quite normative
except where otherwise declared.‖x‖ denotes the Euclidean
norm of a random variablex. The symbol⊗ represents the
Kronecker product and the symbol∗ stands for the ellipsis
for symmetric terms. Moreover, we denote the maximum and
minimum eigenvalue of matrixG by λmax(G) andλmin(G),
respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following linear discrete-time system with time
delays:







x(k + 1) =Ax(k) +Aσx
(
k − σ(k)

)

+Bu(k) +Dw(k)

y̌(k) =Cx(k)

x(l) =ϕ(l), l = −σM , · · · , −1, 0

(1)

wherex(k) ∈ R
nx , u(k) ∈ R

nu and y̌(k) ∈ R
ny represent

the system state, the control input and the sensor measure-
ment, respectively.w(k) ∈ R

nw is the bounded disturbance
satisfying

wT (k)w(k) 6 ̟ (2)

where̟ > 0 is a given scalar.A, Aσ, B, C andD are known
real constant matrices with appropriate dimensions.σ(k) is a
positive integer that denotes the time-varying delay satisfying

σm 6 σ(k) 6 σM , k ∈ N
+ (3)

where σm and σM are known positive integers.ϕ(l) (l =
−σM , · · · , −1, 0) are the initial conditions.

In this paper, the data transmission over the measurement
channel (sensor-to-observer) is subject to randomly occurring
DoS/deception attacks characterized in the following model:

y(k) =y̌(k) + α(k)β(k)µ(k)

+ α(k)(1 − β(k))υ(k)
(4)

wherey(k) is the received signal by the observer subject to
attacks,µ(k) ∈ R

ny andυ(k) ∈ R
ny stand for, respectively,

the deception attack and the DoS attack launched by the
attackers described by

µ(k) = −y̌(k) + ς(k) (5)

and

υ(k) = −y̌(k) (6)
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whereς(k) 6= 0 denotes an arbitrary bounded signal satisfying

ςT (k)ς(k) 6 ζ (7)

and ζ is a given positive scalar. The mutually uncorrelated
stochastic variablesα(k) and β(k), which take values on0
or 1, are two Bernoulli distributed white sequences with the
following probabilities:

Prob{α(k) = 1} =ᾱ, Prob{α(k) = 0} = 1− ᾱ

Prob{β(k) = 1} =β̄, Prob{β(k) = 0} = 1− β̄

whereᾱ ∈ [0, 1) and β̄ ∈ [0, 1) are two known constants.
Remark 1:According to their implementation manners,

cyber-attacks can be categorized into three types, i.e., DoS
attacks [4], replay attacks [45] and deception attacks [13]. To
be specific, DoS attacks occupy a communication channel to
prevent the transmission of measurement or control signals. In
replay attacks, the effective data transmission is fraudulently or
maliciously delayed or repeated. In case of deception attacks,
some false information is sent to sensors/controllers so as
to degrade or even devastate the performance of the overall
systems.

Remark 2: It is worth noticing that the cyber-attacks
launched by adversaries might not be always successful due
to the defense from the protection institution as well as
complicated network environment and, from the defender’s
perspective, the attacks might occur in a random manner with
certain ‘success’ rate. In this paper, we adopt two sequences
of Bernoulli sequences to characterize the random occurrence
of the cyber-attacks. In this setup, it is apparent from (4)
that the observer receives the normal signals from the sensor
when α(k) = 0. When α(k) = 1 and β(k) = 0, the data
transmission suffers from the DoS attacks and, whenα(k) = 1
and β(k) = 1, the data transmission faces the deception
attacks.

To estimate the states of system (1), an observer is con-
structed in the following form:







x̂(k + 1) =Ax̂(k) + L
(
y(k)− Cx̂(k)

)

+Aσx̂
(
k − σ(k)

)
+Bu(k)

x̂(l) =0, l = −σM , · · · , −1, 0

(8)

where x̂(k) ∈ R
nx is the state estimate andL is the gain

matrix of the observer that is to be determined.
In this paper, for the linear discrete-time system (1), we

adopt the following observer-based PID control law:

u(k) =KP x̂(k) +KI

k−1∑

i=k−d

x̂(i)

+KD

(
x̂(k)− x̂(k − 1)

)

(9)

whereKP , KI andKD are three PID controller gain matrices
to be designed andd is a given scalar representing the time
length. For simplicity and without loss of generality, we
assume thatd > σM .

Remark 3: In the development and application of automatic
control, various control algorithms have been proposed to meet
the different requirements in practical systems, among which
the proportional-integral-derivative (PID) control scheme has

proven to be the arguably most widely used one due mainly
to the simple structure of the PID controllers. In this paper,
we further consider the observer-based PID controller whose
structure consists of three loops: the proportional loop (pro-
portional to the state estimation), the integral loop (integral
to the state estimation), and the derivative loop (derivative to
state estimation). The gain matrices of the above three loops
are to be designed so as to meet the specified performance
requirements of the closed-loop system. Note that, in the
traditional PID controller, the integral loop makes use of
all historical information, which incurs huge computational
burden. In this paper, the integral operation is set to be
performed over a limited but adjustable time length.

Denotingx̃(k) , x(k)−x̂(k), the estimation error dynamics
is governed by:







x̃(k + 1) =
(
A− LC

)
x̃(k) +Aσx̃

(
k − σ(k)

)

+Dw(k) − L
(
α(k)β(k)ς(k)

− α(k)Cx(k)
)

x̃(l) =ϕ(l), l = −σM , · · · , −1, 0

(10)

wherex̃(l) denotes the initial error.
For the purpose of simplicity, we introduce the following

notations:

η(k) =
[
xT (k) x̃T (k)

]T
, ϑ(k) =

[
wT (k) ςT (k)

]T
.

Implementing the PID control law (9) to system (1), we
obtain the closed-loop system as follows:







η(k + 1) =
(
A1 + α̃(k)A2

)
η(k)

+Aση
(
k − σ(k)

)
+ Bχ(k)

+
(
L1 + τ(k)L2

)
ϑ(k)

η(l) =ψ(l), l = −d, · · · , −1, 0

(11)

where

χ(k) =
[

ηT (k − 1) ηT (k − 2) · · · ηT (k − d)
]T

ψ(k) =
[
ϕT (k) 01×nx

]T
, α̃(k) = α(k)− ᾱ

A11
1 = A+BKP +BKD, β̃(k) = β(k)− β̄

A12
1 = −B(KD +KP ), A13

1 = ᾱLC

A14
1 = A− LC, τ(k) = α̃(k)β̃(k) + α̃(k)β̄ + ᾱβ̃(k)

A1 =

[
A11

1 A12
1

A13
1 A14

1

]

, A2 =

[
0nx×nx

0nx×nx

LC 0nx×nx

]

Aσ =

[
Aσ 0nx×nx

0nx×nx
Aσ

]

, B =

[
BK

0nx×2dnx

]

L1 =

[
D 0nx×ny

D −ᾱβ̄L

]

, L2 =

[
0nx×nw

0nx×ny

0nx×nw
−L

]

K =
[

KI −KD KI KI · · · KI
︸ ︷︷ ︸

d−1

]

KI =
[
KI −KI

]
, KD =

[
KD −KD

]
.

It follows from (2) and (7) that

ϑT (k)ϑ(k) 6 δ, δ = ̟ + ζ. (12)
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Furthermore, the quadratic cost criterion (QCC) associated
with (11) is defined as follows:

J(k) = lim sup
N→∞

1

2N

N∑

k=0

E{ηT (k)Qη(k)

+ uT (k)Ru(k)}
(13)

where Q and R are two given positive-definite weighting
matrices.

Before proceeding further, we introduce the following def-
initions and lemma.

Definition 1: System (11) is said to be exponentially input-
to-state stable in mean square if there exist constantsǫ > 0,
0 < θ < 1, and ℏ > 0 such that the system dynamicη(k)
satisfies

E{‖η(k)‖2} 6 ǫθk sup
l∈[−d,0]

E{‖ψ(l)‖2}

+ ℏ‖ϑ(k)‖2∞, ∀k > 0
(14)

where‖ϑ(k)‖∞ = supk{‖ϑ(k)‖}.
Definition 2: Let the desired security level be specified as

̺ > 0. The closed-loop system (11) is said to be̺-secure in
mean-square sense if the inequalityE{‖η(k)‖2} 6 ̺ holds for
all k > −d+ 1.

Remark 4: It should be pointed out that the concept of
input-to-state stability (ISS) presented in Definition 1 is
suitable in reflecting the impact from external interferences
(e.g. cyber-attacks) on the dynamical performance of the
closed-loop system. By resorting to the ISS property, the
state trajectory of the closed-loop system could converge to
the equilibrium point in the disturbance-free case and could
enter a bounded domain under bounded disturbances. Clearly,
if (11) is ̺-secure in mean-square sense, then it must be
exponentially input-to-state stable in mean square. Here, the
parameter̺ > 0 indicates the level of the security expressed
by the boundedness of the system states.

Lemma 1: (Matrix Inverse Lemma). Let matricesF , G ,
H andW be given with appropriate dimensions. IfF , G and
G−1 +WF−1H are invertible, then the following condition
holds

(F +HGW )−1

=F−1 − F−1H(G−1 +WF−1H)−1WF−1. (15)

The objective of this paper is to design an observer-based
PID controller of the form (9) for system (1) such that the
following requirements are met simultaneously:

• Q1) the closed-loop system (11) is̺-secure in mean-
square sense;

• Q2) the QCC (13) has an upper boundedJ̄ .

III. M AIN RESULTS

In this section, we begin with analyzing the security perfor-
mance of the closed-loop system (11) suffering from cyber-
attacks. Then, a sufficient condition is established to derive an
upper bound for the QCC (13). Finally, the desired observer-
based PID controller gain matrices are obtained with the aid
of the matrix orthogonal decomposition.

A. Security Analysis

In this subsection, we shall give a sufficient condition to
examine the security performance of the closed-loop system
(11). The exponentially mean-square ISS is first analyzed and
then a sufficient condition is proposed to ensure the̺-security
of the closed-loop system (11) in mean-square sense.

Theorem 1:Let the positive scalar̺ and the matricesKP ,
KI , KD, L be given. The closed-loop system (11) is̺-secure
in mean-square sense if there exist positive definite matrices
P1, P s

2 (s = 1, 2, · · · , d), P3, positive scalarsε, κ̃, γ̃ satisfying






Υ1 =

[
Υ11

1 ∗
Υ21

1 Υ22
1

]

< 0 (16a)

Υ2 =

[
Υ11

2 ∗
Υ21

2 Υ22
1

]

< 0 (16b)

and

κ̃r̄ − ρ̄1(r̄ − 1) + ρ̄

ρ
sup

l∈[−d, 0]

E{‖ψ(l)‖2}

+
r̄γ̃

ρ(r̄ − 1)
δ 6 ̺ (17)

where

Υ11
1 = diag{P + κ̃I,−P3,−P2}

Υ21
1 =







√
α̌A2 0 0√
εA2 0 0
A1 Aσ B√
εA1

√
εAσ

√
εB







Υ22
1 = −I4 ⊗ (P−1

1 ), Υ11
2 = −γ̃I

Υ21
2 =

[

LT
1

1√
ε
LT
1

√
τ̌LT

2

√
τ̌√
ε
LT
2

]T

P = −P1 +

d∑

s=1

P s
2 + (σM − σm + 1)P3

P2 = diag{P 1
2 , P

2
2 , · · · , P d

2 }, α̌ = ᾱ(1− ᾱ)

β̌ = β̄(1− β̄), τ̌ = α̌β̌ + α̌β̄2 + β̌ᾱ2

ρ = min{λmin(P1), λmin(P2), λmin(P3)}
ρ̄1 = λmax(P1), ρ̄2 = dλmax(P2)

ρ̄3 = (σM − σm + 1)λmax(P3), ρ̄ = max{ρ̄1, ρ̄2, ρ̄3}

and the constant̄r > 1 in (17) satisfies

− κ̃r̄ + ρ̄1(r̄ − 1) + ρ̄2d
2r̄d(r̄ − 1)

+ ρ̄3σM (σM − σm + 1)r̄σM (r̄ − 1) = 0. (18)

Proof: In order to analyze the stability of the closed-loop
system (11), we select the following Lyapunov-Krasovskii
functional:

V (k) =

4∑

i=1

Vi(k) (19)

where

V1(k) =η
T (k)P1η(k)

V2(k) =

d∑

s=1

k−1∑

q=k−s

ηT (q)P s
2 η(q)
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V3(k) =

k−1∑

q=k−σ(k)

ηT (q)P3η(q)

V4(k) =

k−σm∑

p=k−σM+1

k−1∑

q=p

ηT (q)P3η(q).

Along the trajectory of the closed-loop system (11), we
calculate the difference ofV (k) and take the mathematical
expectation to obtain

E{∆V (k)} =

4∑

i=1

E{∆Vi(k)} (20)

where

E{∆V1(k)}
=E

{

V1(k + 1)− V1(k)
}

=E

{

ηT (k + 1)P1η(k + 1)− ηT (k)P1η(k)
}

=E

{((
A1 + α̃(k)A2

)
η(k) +Aση

(
k − σ(k)

)

+ Bχ(k) +
(
L1 + τ(k)L2

)
ϑ(k)

)T

P1

×
((

A1 + α̃(k)A2

)
η(k) +Aση

(
k − σ(k)

)

+ Bχ(k) +
(
L1 + τ(k)L2

)
ϑ(k)

)

− ηT (k)P1η(k)
}

=ηT (k)
(

AT
1 P1A1 + α̌AT

2 P1A2 − P1

)

η(k) + ηT
(
k

− σ(k)
)
AT

σP1Aση
(
k − σ(k)

)
+ χT (k)BTP1Bχ(k)

+ ϑT (k)
(

LT
1 P1L1 + τ̌LT

2 P1L2

)

ϑ(k) + 2ηT (k)AT
1

× P1Aση
(
k − σ(k)

)
+ 2ηT (k)AT

1 P1Bχ(k) + 2ηT (k)

×
(

AT
1 P1L1 + α̌β̄AT

2 P1L2

)

ϑ(k) + 2ηT
(
k − σ(k)

)

×AT
σP1Bχ(k) + 2ηT

(
k − σ(k)

)
AT

σP1L1ϑ(k)

+ 2χT (k)BTP1L1ϑ(k) (21)

E{∆V2(k)}
=E

{

V2(k + 1)− V2(k)
}

=E

{ d∑

s=1

( k∑

q=k+1−s

ηT (q)P s
2 η(q)−

k−1∑

q=k−s

ηT (q)P s
2 η(q)

)}

=

d∑

s=1

E

{

ηT (k)P s
2 η(k)− ηT (k − s)P s

2 η(k − s)
}

E{∆V3(k)}
=E

{

V3(k + 1)− V3(k)
}

=E

{ k∑

q=k−σ(k+1)+1

ηT (q)P3η(q)−
k−1∑

q=k−σ(k)

ηT (q)P3η(q)
}

=E

{

ηT (k)P3η(k)− ηT (k − σ(k))P3η(k − σ(k))

+

k−1∑

q=k−σ(k+1)+1

ηT (q)P3η(q)−
k−1∑

q=k−σ(k)+1

ηT (q)P3η(q)
}

=E

{

ηT (k)P3η(k)− ηT (k − σ(k))P3η(k − σ(k))

+

k−1∑

q=k−σm+1

ηT (q)P3η(q) +

k−σm∑

q=k−σ(k+1)+1

ηT (q)P3η(q)

−
k−1∑

q=k−σ(k)+1

ηT (q)P3η(q)
}

6E

{

ηT (k)P3η(k)− ηT (k − σ(k))P3η(k − σ(k))

+

k−σm∑

i=k−σM+1

ηT (q)P3η(q)}

E{∆V4(k)}
=E

{

V4(k + 1)− V4(k)
}

=E

{ k−σm+1∑

p=k−σM+2

k∑

q=p

ηT (q)P3η(q)

−
k−σm∑

p=k−σM+1

k∑

q=p

ηT (q)P3η(q)
}

=E

{ k−σm∑

p=k−σM+1

(
ηT (k)P3η(k)− ηT (p)P3η(p)

)}

=E

{

(σM − σm)ηT (k)P3η(k)

−
k−σm∑

q=k−σM+1

ηT (q)P3η(q)
}

. (22)

Substituting (21)-(22) into (20) leads to

E{∆V (k)}
6ℵT (k)(Γ1 + Γ2)ℵ(k) + α̌ηT (k)AT

2 P1A2η(k)

+ ϑT (k)
(

LT
1 P1L1 + τ̌LT

2 P1L2

)

ϑ(k)

+ 2ηT (k)
(

AT
1 P1L1 + α̌β̄AT

2 P1L2

)

× ϑ(k) + 2ηT
(
k − σ(k)

)
AT

d P1L1ϑ(k)

+ 2χT (k)BTP1L1ϑ(k)

6ℵT (k)(Γ1 + Γ2)ℵ(k) + α̌ηT (k)AT
2 P1A2η(k)

+ 2ℵT (k)Γ3ϑ(k) + ϑT (k)Γ4ϑ(k) (23)

where

ℵ(k) =
[

ηT (k) ηT
(
k − σ(k)

)
χT (k)

]T

Γ1 =





P ∗ ∗
0 −P3 ∗
0 0 −P2





Γ2 =





AT
1 P1A1 ∗ ∗

AT
σP1A1 AT

σP1Aσ ∗
BTP1A1 BTP1Aσ BTP1B





Γ3 =ATP1L, Γ4 = LTP1L, P1 = I2 ⊗ P1

A =

[
A1 Aσ B
A2 0 0

]

, L =

[
L1√
τ̌L2

]

.

Applying the elementary inequalityaTPb + bTPa 6
εaTPa + 1

ε
bTPb (wherea and b are vectors of compatible

dimensions) to the term2ℵT (k)Γ3ϑ(k), one obtains

2ℵT (k)Γ3ϑ(k)
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=2ℵT (k)ATP1Lϑ(k)
=2ηT (k)

(

AT
1 P1L1 +

√
τ̌AT

2 P1L2

)

ϑ(k)

+ 2ηT
(
k − σ(k)

)
AT

σP1L1ϑ(k)

+ 2χT (k)BTP1L1ϑ(k)

6εℵT (k)Γ2ℵ(k) + εηT (k)AT
2 P1A2η(k)

+
1

ε
ϑT (k)Γ4ϑ(k). (24)

Subsequently, it implies from (23) and (24) that

E{∆V (k)}
6ℵT (k)(Γ1 + Γ2)ℵ(k) + α̌ηT (k)AT

2 P1A2η(k)

+ ϑT (k)Γ4ϑ(k) + εℵT (k)Γ2ℵ(k) + εηT (k)AT
2

× P1A2η(k) +
1

ε
ϑT (k)Γ4ϑ(k)

<ℵT (k)
(

Γ1 + (1 + ε)Γ2

)

ℵ(k) + (ε+ α̌)ηT (k)AT
2

× P1A2η(k) + (1 +
1

ε
)ϑT (k)Γ4ϑ(k)

=ℵT (k)Ω1ℵ(k) + ϑT (k)Ω2ϑ(k) (25)

where

Ω1 =(1 + ε)Γ2 +Ω3, Ω2 = (1 +
1

ε
)Γ4

Ω3 =





(α̌ + ε)AT
2 P1A2 + P 0 0
0 −P3 0
0 0 −P2



 .

By applying the Schur complement, one has from (16a) and
(16b) that

E{∆V (k)}
<ℵT (k)Ω1ℵ(k) + ϑT (k)Ω2ϑ(k)

<− κ̃‖η(k)‖2 + γ̃‖ϑ(k)‖2∞. (26)

We are now in a position to proceed with the exponentially
ISS analysis of the closed-loop system (11). Based on the
definition of V (k), we know that

V (k) 6ρ̄1E{‖η(k)‖2}+ ρ̄2

k−1∑

q=k−d

E{‖η(q)‖2}

+ ρ̄3

k−1∑

p=k−σM

E{‖η(p)‖2}. (27)

According to the above relation, for anyr > 1, it follows from
(26) that

E{rk+1V (k + 1)} − E{rkV (k)}
=rk+1

E{∆V (k)} + rk+1
E{V (k)} − rkE{V (k)}

<rk+1
(

− κ̃‖η(k)‖2 + γ̃‖ϑ(k)‖2∞
)

+ rk(r − 1)E{V (k)}

6π1(r)r
k
E{‖η(k)‖2}+ π2(r)

k−1∑

q=k−d

rkE{‖η(q)‖2}

+ π3(r)

k−1∑

p=k−σM

rkE{‖η(p)‖2}+ rk+1γ̃‖ϑ(k)‖2∞ (28)

where

π1(r) =− κ̃r + (r − 1)ρ̄1

π2(r) =d(r − 1)ρ̄2

π3(r) =(σM − σm + 1)r − 1)ρ̄3.

Next, for any integerS > d+1, taking summation on both
sides of (28) from0 to S − 1 with respect tok results in

E{rSV (S)} − E{V (0)}

<π1(r)

S−1∑

k=0

rkE{‖η(k)‖2}+ r(1 − rS)

1− r
γ̃‖ϑ(k)‖2∞

+ π2(r)

S−1∑

k=0

k−1∑

q=k−d

rkE{‖η(q)‖2}

+ π3(r)
S−1∑

k=0

k−1∑

p=k−σM

rkE{‖η(p)‖2}. (29)

The last two items in (29) can be computed as
S−1∑

k=0

k−1∑

q=k−d

rkE{‖η(q)‖2}

6
( −1∑

q=−d

q+d
∑

k=0

+

S−d−1∑

q=0

q+d
∑

k=q+1

+

S−1∑

q=S−d

S−1∑

k=q+1

)

rkE{‖η(q)‖2}

6d

−1∑

q=−d

rq+d
E{‖η(q)‖2}

+ d

S−d−1∑

q=0

rq+d
E{‖η(q)‖2}

+ d

S−1∑

q=S−d

rq+d
E{‖η(q)‖2}

6drd sup
l∈[−d, 0]

E{‖ψ(l)‖2}

+ drd
S−1∑

q=0

rqE{‖η(q)‖2} (30)

and
S−1∑

k=0

k−1∑

q=k−σM

rkE{‖η(q)‖2}

6
( −1∑

q=−σM

q+σM∑

k=0

+

S−σM−1∑

q=0

q+σM∑

k=q+1

+

S−1∑

q=S−σM

S−1∑

k=q+1

)

rkE{‖η(q)‖2}

6σM

−1∑

q=−σM

rq+σME{‖η(q)‖2}

+ σM

S−σM−1∑

q=0

rq+σME{‖η(q)‖2}
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+ σM

S−1∑

q=S−σM

rq+σME{‖η(q)‖2}

6σMr
σM sup

l∈[−σM , 0]

E{‖ψ(l)‖2}

+ σM rσM

S−1∑

q=0

rqE{‖η(q)‖2}. (31)

Then, substituting (30)-(31) into (29) yields

E{rSV (S)} − E{V (0)}

<
r(1 − rS)

1− r
γ̃‖ϑ(k)‖2∞ + p(r)

S−1∑

k=0

rkE{‖η(k)‖2}

+ q(r) sup
l∈[−d, 0]

E{‖ψ(l)‖2} (32)

where

p(r) =π1(r) + drdπ2(r) + σMr
σMπ3(r)

q(r) =drdπ2(r) + σMr
σMπ3(r).

Sincep(1) = −κ̃ < 0 and limr→∞ p(r) = +∞, we know
that there exists a scalar̄r > 1 such thatp1(r̄) = 0, which
implies that

E{r̄SV (S)} − E{V (0)}

<
r̄(1− r̄S)

1− r̄
γ̃‖ϑ(k)‖2∞

+ q(r̄) sup
l∈[−d, 0]

E{‖ψ(l)‖2}.
(33)

Noting
E{V (S)} > ρE{‖η(S)‖2} (34)

and
E{V (0)} 6 ρ̄ sup

l∈[−d, 0]

E{‖ψ(l)‖2}, (35)

we obtain

E{‖η(S)‖2}

<
q(r̄) + ρ̄

ρr̄S
sup

l∈[−d, 0]

E{‖ψ(l)‖2}+ γ̃r̄(1 − r̄S)

ρr̄S(1− r̄)
‖ϑ(k)‖2∞

<
q(r̄) + ρ̄

ρr̄S
sup

l∈[−d, 0]

E{‖ψ(l)‖2}+ γ̃r̄

ρ(r̄ − 1)
‖ϑ(k)‖2∞

=ǫ̃θ̃S sup
l∈[−d, 0]

E{‖ψ(l)‖2}+ ℏ̃‖ϑ(k)‖2∞ (36)

where ǫ̃ = ρ−1(q(r̄) + ρ̄), θ̃ = r̄−1 and ℏ̃ = γ̃r̄(ρ(r̄ − 1))−1.
This implies that the closed-loop system (11) is exponentially
input-to-state stable in the mean square.

Finally, taking (12) into account, it can be found from (17)
that

E{‖η(k)‖2}
<ǫ̃ sup

l∈[−d, 0]

E{‖ψ(l)‖2}+ ℏ̃‖ϑ(k)‖2∞

6̺ (37)

which means the closed-loop system (11) is̺-secure. The
proof is complete.

B. Guaranteed Cost Analysis

In this subsection, the analysis on the QCC (13) will be
conducted, and an upper bound of the addressed QCC will be
provided.

Theorem 2:Let the positive scalar̺ , the positive definite
matricesQ and R, the matricesKP , KI , KD and L be
specified. The closed-loop system (11) is̺-secure in mean-
square sense and the QCC (13) has an upper bound

J̄ =
1

2
(λmax(M) + γ̃)δ

if there exist positive definite matricesP1, P s
2 (s =

1, 2, · · · , d), P3, M , and positive scalarsε, κ̃ satisfying






Ξ1 =

[
Υ11

1 ∗
Ξ21
1 Ξ22

1

]

< 0 (38a)

Ξ2 =

[
Ξ11
2 ∗

Ξ21
2 Ξ22

1

]

< 0 (38b)

Ξ3 =

[
Ξ11
3 ∗

Ξ21
3 Ξ22

3

]

< 0 (38c)

Ξ4 =

[
Ξ22
1 ∗

Ξ21
4 Ξ11

2

]

< 0 (38d)

and
κ̃r̄ − ρ̄1(r̄ − 1) + ρ̄

ρ
sup

l∈[−d, 0]

E{‖ψ(l)‖2}

+
r̄γ̃

ρ(r̄ − 1)
δ 6 ̺ (39)

where

Ξ21
1 =

[
ε̌A2 0 0
ε̌A1 ε̌Aσ ε̌B

]

Ξ22
1 = −I2 ⊗ (P−1

1 ), Ξ11
2 = −M, ε̌ =

√
1 + ε

Ξ21
2 = L, Ξ21

4 = LT , γ̃ = (1 + ε−1)λmax(M)

Ξ11
3 = diag{P +Q− κ̃I, −P3, −P2}

Ξ21
3 =







KP +KD 0 K
A1 Aσ B
A2 0 0
0 0 0







Ξ22
3 =







−R−1 ∗ ∗ ∗
0 −P−1

1 ∗ ∗
0 0 −P−1

1 ∗
0 LT

1

√
τ̌LT

2 −M







and the constant̄r > 1 in (39) satisfies

− κ̃r̄ + ρ̄1(r̄ − 1) + ρ̄2d
2r̄d(r̄ − 1)

+ ρ̄3σM (σM − σm + 1)r̄σM (r̄ − 1) = 0. (40)

Proof: The inequality (16a) in Theorem 1 is obtained
readily from (38a). In (16b), by selecting̃γ = (1 +
1
ε
)λmax(M), one knows that (16b) holds if (38b) is true.

Therefore, the desired security level of the closed-loop system
(11) is achieved by (38a)-(38b) and (39).

In what follows, let us investigate the cost functional (13).
The combination of the controller (9) and the closed-loop
system (11) yields

u(k) = (KP +KD)η(k) +Kχ(k) (41)
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where

KP =
[
KP −KP

]
.

Then, it follows from (23), (26) and (41) that

E{2V (k + 1)− 2V (k) + ηT (k)Qη(k)

+ uT (k)Ru(k)}
6E{∆V (k)− κ̃‖η(k)‖2 + γ̃‖ϑ(k)‖2∞
+ ηT (k)Qη(k) + uT (k)Ru(k)}

6ℵT (k)(Γ1 + Γ2)ℵ(k) + α̌ηT (k)AT
2 P1A2η(k)

− κ̃‖η(k)‖2 + 2ℵT (k)Γ3ϑ(k) + ϑT (k)Γ4ϑ(k)

+ γ̃‖ϑ(k)‖2∞ + ηT (k)Qη(k) + ηT (k)(KP +KD)T

×R(KP + KD)η(k) + 2ηT (k)(KP +KD)TRKχ(k)
+ χT (k)KTRKχ(k)

6ℵT (k)(Γ1 +ATP1A)ℵ(k)− κ̃‖η(k)‖2 + 2ℵT (k)Γ3

× ϑ(k) + ϑT (k)Γ4ϑ(k) + γ̃‖ϑ(k)‖2∞ + ηT (k)Qη(k)

+ ηT (k)(KP +KD)TR(KP +KD)η(k) + 2ηT (k)

× (KP +KD)TRKχ(k) + χT (k)KTRKχ(k)
=ℵT (k)(Γ1 +ATP1A)ℵ(k)− κ̃‖η(k)‖2 + 2ℵT (k)Γ3

× ϑ(k) + ϑT (k)(Γ4 −M)ϑ(k) + ηT (k)
(

(KP

+KD)TR(KP +KD) +Q
)

η(k) + 2ηT (k)(KP

+KD)TRKχ(k) + χT (k)KTRKχ(k) + ϑT (k)M

× ϑ(k) + γ̃‖ϑ(k)‖2∞. (42)

Taking (12) and (38b) into consideration, one has

E{2V (k + 1)− 2V (k) + ηT (k)Qη(k)

+ uT (k)Ru(k)}
6ℵT (k)(Γ1 +ATP1A)ℵ(k)− κ̃‖η(k)‖2 + ηT (k)

×
(

(KP +KD)TR(KP +KD) +Q
)

η(k)

+ 2ηT (k)(KP +KD)TRKχ(k) + χT (k)KTRK
× χ(k) + 2ℵT (k)Γ3ϑ(k) + ϑT (k)(Γ4 −M)ϑ(k)

+ (λmax(M) + γ̃)δ

=ℵT (k)Π1ℵ(k) + 2ℵT (k)Γ3ϑ(k)− ϑT (k)(M − Γ4)

× ϑ(k) + (λmax(M) + γ̃)δ

6ℵT (k)(Π1 +Π2)ℵ(k) + (λmax(M) + γ̃)δ (43)

where

Π0 =





−κ̃I + (KP +KD)TR(KP + KD) +Q

0
KTR(KP +KD)

0 (KP +KD)TRK
0 0
0 KTRK





Π1 =Γ1 +ATP1A+Π0

Π2 =Γ3(M − Γ4)
−1ΓT

3 .

In light of (38d) and Lemma 1, we obtain that

Π2 =Γ3(M − Γ4)
−1ΓT

3

=ATP1L(M − Γ4)
−1LTP1A

=ATP1L(M − LTP1L)−1LTP1A
=AT (P−1

1 − LM−1LT )−1A−ATP1A (44)

and, furthermore, it follows from (43) and (44) that

E{2V (k + 1)− 2V (k) + ηT (k)Qη(k)

+ uT (k)Ru(k)}
6ℵT (k)Π3ℵ(k) + (λmax(M) + γ̃)δ (45)

where

Π3 = Γ1 +Π0 +AT (P−1
1 − LM−1LT )−1A.

Next, by exploiting the Schur Complement Lemma, we
conclude from (38c) thatΠ3 < 0, which results in

sup
N∑

k=0

E{ηT (k)Qη(k) + uT (k)Ru(k)}

6 sup

N∑

k=0

E
{
ℵT (k)Π3ℵ(k) + (λmax(M) + γ̃)δ

− 2E{V (k + 1)− V (k)}
}

62V (0) + (N + 1)(λmax(M) + γ̃)δ

− 2E{V (N + 1)}
62V (0) + (N + 1)(λmax(M) + γ̃)δ. (46)

Finally, it implies from (13) and (46) that

J(k) = lim sup
N→∞

1

2N

N∑

k=0

E{ηT (k)Qη(k) + uT (k)Ru(k)}

6 lim sup
N→∞

1

2N

(
2V (0) + (N + 1)(λmax(M) + γ̃)δ

)

=
(λmax(M) + γ̃)δ

2
(47)

which completes the proof.

C. Observer-Based PID Controller Design

In this subsection, an observer-based PID control law will be
designed for system (1) such that the closed-loop system (11)
is ̺-secure in mean-square sense and the addressed QCC (13)
has an upper bound. It will be shown that the gain matrices
of the desired controller can be acquired via solving a set of
linear matrix inequalities (LMIs).

Theorem 3:Let the positive definite matricesQ, R and the
positive scalar̺ be specified. The closed-loop system (11) is
̺-secure in mean-square sense and the QCC (13) has the upper
bound J̄ = 1

2 (λ
−1
min(M̂) + γ̃)δ if there exist positive definite

matricesP̂1, P s
2 (s = 1, 2, · · · , d), P3, M̂ , positive scalars

κ̃, ε̃ > 1, and matricesΛ11, Λ12, Λ22, ǨP , ǨI , ǨD and Ľ
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satisfying






Ξ̃1 =

[
Υ11

1 ∗
Ξ̃21
1 Ξ̃22

1

]

< 0 (48a)

Ξ̃2 =

[
Ξ̃11
2 ∗

Ξ̃21
2 Ξ̃22

2

]

< 0 (48b)

Ξ̃3 =

[
Ξ11
3 ∗

Ξ̃21
3 Ξ̃22

3

]

< 0 (48c)

Ξ̃4 =

[
Ξ̃22
2 ∗

Ξ̃21
4 Ξ11

2

]

< 0 (48d)

and
κ̃r̄ − ρ̄1(r̄ − 1) + ρ̄

ρ
sup

l∈[−d, 0]

E{‖ψ(l)‖2}

+
r̄γ̃

ρ(r̄ − 1)
δ 6 ̺ (49)

where

Ξ̃21
1 =







0 0 0
ε̌Σ21 0 0
ε̌Σ31 ε̌Σ32 ε̌Σ33

ε̌Σ41 ε̌Σ42 0







Ξ̃22
1 = diag{−P̂1, −P̂1, P̃1, −P̂1}

Ξ̃11
2 = −M̂, Ξ̃21

2 =

[
Ľ1√
τ̌ Ľ2

]

Ξ̃22
2 = −P1, Ξ̃21

4 =
[
ĽT
1

√
τ̌ ĽT

2

]

Ξ̃21
3 =











ǨP + ǨD 0 Ǩ
Σ31 Σ32 Σ33

Σ41 Σ42 0
0 0 0

Σ21 0 0
0 0 0











Ξ̃22
3 =












R̃ ∗ ∗ ∗ ∗ ∗
0 P̃1 ∗ ∗ ∗ ∗
0 0 −P̂1 ∗ ∗ ∗
0 0 0 −P̂1 ∗ ∗
0 0 0 0 −P̂1 ∗
0 Σ62 Σ63 0

√
σ∗Σ65 −M̃












γ̃ =
ε̌2

λmin(M̂)(ε̌2 − 1)
, Σ21 =

[
ĽC 0

]

Σ31 =
[
ΛΘA+ K̄P + K̄D −K̄P − K̄D

]

Σ32 =
[
ΛΘAσ 0

]
, Σ42 =

[

P̂1Aσ 0
]

Σ41 =
[

ᾱĽC P̂1A− ĽC
]
, Σ33 = K̄

Σ62 =

[

P̂1D

0

]

, Σ63 =

[
P̂1D

−ᾱβ̄L̂

]

Σ65 =

[
0
−Ľ

]

, M̃ =M − 2P̂1

ǨP =
[
ǨP −ǨP

]
, ǨI =

[
ǨI −ǨI

]

ǨD =
[
ǨD −ǨD

]
, K̄P =

[
ǨT

P 0
]T

K̄I =
[
ǨT

I 0
]T
, K̄D =

[
ǨT

D 0
]T

K̄ =
[
ǨT 0

]T
, Ǩ =

[

ǨI − ǨD ǨI ǨI · · · ǨI
︸ ︷︷ ︸

d−1

]

Ľ1 =

[
P̂1D 0

P̂1D −ᾱβ̄Ľ

]

, L̂2 =

[
0 0
0 −Ľ

]

Λ =

[
Λ11 Λ12

0 Λ22

]

, R̃ = R− Λ11 − ΛT
11

P̃1 = P̂1 − ΛΘ−ΘTΛT , P1 = I2 ⊗ P̂1

Θ = [B(BTB)−1 (BT )⊥]T

and the constant̄r > 1 in (49) is the solution to the following
equation

− κ̃r̄ + ρ̄1(r̄ − 1) + ρ̄2d
2r̄d(r̄ − 1)

+ ρ̄3σM (σM − σm + 1)r̄σM (r̄ − 1) = 0. (50)

In addition, the gain matrices of the observer (8) and the PID
controller (9) are given by

KP = Λ−1
11 ǨP , KI = Λ−1

11 ǨI

KD = Λ−1
11 ǨD, L = P̂−1

1 Ľ.

Proof: Letting M̂ = M−1, we perform the congruence
transformation to the inequality (38b) by diag{M̂, P1, P1}
and to the inequality (38d) by diag{P1, P1, M̂}, respec-
tively. Then, we arrive at (48b) and (48d). Further-
more, by pre- and post-multiplying the inequality (38a) by
diag{I, I, I, P̂1, P̂1,ΛΘ, P̂1} and its transposition, we have

Ξ̄1 =

[
Υ11

1 ∗
Ξ̄21
1 Ξ̄22

1

]

< 0 (51)

where

Ξ̄21
1 =







0 0 0
ε̌Σ̄21 0 0
ε̌Σ̄31 ε̌Σ32 ε̌Σ̄33

ε̌Σ̄41 ε̌Σ42 0







Ξ̄22
1 = diag{−P̂1, −P̂1, −ΛΘP̂−1

1 ΘTΛT , −P̂1}
Σ̄21 =

[

P̂1LC 0
]
, Σ̄33 = ΛΘBK

Σ̄31 =

[
(ΛΘA+ ΛΘB(KP +KD))T

−(ΛΘB(KP +KD))T

]T

Σ̄41 =
[

ᾱP̂1LC P̂1A− P̂1LC
]
.

Similarly, pre- and post-multiplying the inequality (38c)
by diag{I, I, I,Λ11,ΛΘ, P̂1, P̂1, P̂1, P̂1} and its transposition,
one has

Ξ̄3 =

[
Ξ11
3 ∗

Ξ̄21
3 Ξ̄22

3

]

< 0 (52)

where

Ξ̄21
3 =











Λ11KP + Λ11KD 0 Λ11K
Σ̄31 Σ32 Σ̄33

Σ̄41 Σ42 0
0 0 0

Σ̄21 0 0
0 0 0











Ξ̄22
3 =











−Λ11R
−1ΛT

11 ∗
0 −ΛΘP̂−1

1 ΘTΛT

0 0
0 0
0 0
0 Σ62
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∗ ∗ ∗
∗ ∗ ∗ ∗

−P̂1 ∗ ∗ ∗
0 −P̂1 ∗ ∗
0 0 −P̂1 ∗

Σ̄63 0
√
σ∗Σ̄65 −P̂1MP̂1











Σ̄63 =
[

P̂1D −ᾱβ̄P̂1L
]
, Σ̄65 =

[

0 −P̂1L
]
.

It is clear that

ΛΘ+ΘTΛT − ΛΘP̂−1
1 ΘTΛT − P̂1

=− (ΛΘ− P̂1)P̂
−1
1 (ΛΘ− P̂1)

T 6 0

Λ11 + ΛT
11 − Λ11R

−1ΛT
11 −R

=− (Λ11 −R)R−1(Λ11 −R)T 6 0

P̂1 + P̂T
1 − P̂1MP̂T

1 −M−1

=− (P̂1 −M−1)M(P̂1 −M−1)T 6 0, (53)

which implies that

−ΛΘP̂−1
1 ΘTΛT 6 P̂1 − ΛΘ−ΘTΛT

−Λ11R
−1ΛT

11 6 R− Λ11 − ΛT
11

−P̂1MP̂T
1 6 M̂ − 2P̂1. (54)

Taking (54) into consideration and utilizing the variable
substitution

ǨP =Λ11KP , ǨI = Λ11KI

ǨD =Λ11KD, Ľ = P̂1L (55)

we conclude that (51) is ensured by (48a), and (52) is ensured
by (48c). Therefore, the rest of the proof follows immediately
from Theorem 2.

Remark 5: In this paper, by employing the orthogonal de-
composition, we introduce a free matrixΛ with an unique
structure and construct a matrixΘ = [B(BTB)−1 (BT )⊥]T

in order to cope with the coupling termsPBKP , PBKI and
PBKD in Theorem 2. It is clear that, when the parameterε̌

is fixed, inequalities (48a)-(48d) will be simplified to linear
matrix inequalities (LMIs) that are easy to solve by using
standard computational packages. Moreover, the introduction
of parameteřε provides additional flexibility for designing the
controller, which is also beneficial for improving the security
level of the system.

Remark 6:Up to now, the observer-based PID control
problem has been tackled for a kind of linear discrete-time
systems under random occurrence of cyber-attacks. By resort-
ing to the designed controller, the security requirement has
been ensured with a guaranteed upper bound on the QCC.
Existence conditions for the desired controller have been pro-
posed by means of the LMI-based orthogonal decomposition
approach. The developed methodology has the potential to
design more advanced control schemes, e.g. adaptive PID
control algorithm, intelligent PID control strategy, fuzzy PID
control method and neural network PID control approach.
The main results established in Theorems 1-3 distinguish
themselves from existing literature in the following three
aspects: 1) the problem addressed is new in the sense that
the observer-based PID control problem is, for the first time,

designed for discrete-time system with time-varying delays
under cyber-attacks; 2) the concept of̺-security in mean-
square is new, which is well placed to describe the security
level (size of the boundedness) of the system states in response
to randomly occurring DoS/deception attacks; and 3) the
performance evaluation is new, which provides an upper bound
on the quadratic cost criterion, thereby further improving the
closed-loop performance apart from the fundamental security
requirement.

IV. I LLUSTRATIVE EXAMPLE

Consider the observer-based PID security control problem
for a geared DC motor, which is a component of the MS150
Modular Servo System [40]. With a sampling period of 0.01 s,
the discrete-time model is obtained with the following system
matrix and measurement matrix:

A =

[
1 0.0098
0 0.9653

]

, C =

[
1
0

]T

.

In the MS150 Modular Servo System, the inputu(k)
is a voltage and the outpuťy(k) is a rotary angle of the
extended shaft, which is also called the position of the shaft.
Furthermore, other parameters are presented as follows:

Aσ =

[
0.03 0
0 0.02

]

, B =

[
0.729
0.21

]

, D =

[
0.65
0.71

]T

.

A. Effectiveness of the Developed Observer-Based PID Con-
trol Scheme

In this example, the success probabilities of the cyber-
attacks are assumed to bēα = 0.7 and β̄ = 0.5. Moreover,
the time span of the integral loop in PID controller (9) is
taken asd = 3, the lower and upper bounds on the time-
varying delay are taken asσm = 1 andσM = 3, respectively.
Furthermore, the exogenous disturbances are selected to be
ω(k) = 0.25 cos(k) and ς(k) = 0.25 sin(k). Set the security
parameter̺ = 0.29, the bound on disturbance inputδ = 0.5,
and the weighting matricesQ = 0.05I andR = 0.05I. Choose
the initial values of the state asx(−3) = x(−2) = x(−1) =

x(0) =
[
−0.8 0.8

]T
.

By means of the Matlab software (with the YALMIP 3.0),
the solution to matrix inequalities (48a)-(48d) in Theorem 3
is computed as follows:

P̂1 =

[
86.0357 −31.8339
−31.8339 56.6393

]

, Ľ =

[
31.2034
−0.2381

]

P 1
2 =







99.3003 −0.9063 −6.1332 0.3238
−0.9063 101.7703 0.1872 −0.0174
−6.1332 0.1872 100.1997 0.3192
0.3238 −0.0174 0.3192 102.0761







P 2
2 =







99.3003 −0.9063 −6.1332 0.3238
−0.9063 101.7703 0.1872 −0.0174
−6.1332 0.1872 100.1997 0.3192
0.3238 −0.0174 0.3192 102.0761







P 3
2 =







99.3003 −0.9063 −6.1332 0.3238
−0.9063 101.7703 0.1872 −0.0174
−6.1332 0.1872 100.1997 0.3192
0.3238 −0.0174 0.3192 102.0761
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Fig. 1: The evolution of the system statex(k)
without control
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Fig. 2: The evolution of the system statex(k)
with PID control
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Fig. 3: The evolution of the system statex(k)
with proportional control
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Fig. 4: The time instants of successful DoS/deception
attacks

P3 =







87.4905 −2.2146 −14.0004 0.6677
−2.2146 91.7392 0.6419 −0.0465
−14.0004 0.6419 89.5614 0.6453
0.6677 −0.0465 0.6453 92.4658







M̂ =

[
106.4406 −45.0722
−45.0722 56.6389

]

, κ̃ = 681.2461

ǨP =

[
−39.6555
−1.2977

]T

, ǨI =

[
−5.5061
−3.1368

]T

ǨD =

[
−1.6518
−9.4103

]T

, Λ =

[
8.7988 −74.7822

0 10.1075

]

.

It can be checked that the condition (49) is satisfied.
Furthermore, the gain matrices of the observer (8) and the
PID controller (9) are outlined as follows:

L =

[
0.4559
0.2521

]

, KP =

[
−4.5069
−0.1475

]T

KI =

[
−0.6257
−0.3565

]T

, KD =

[
−0.1877
−1.0694

]T

and the permitted upper bound̄J is 0.0563.
The simulation results are presented in Figs. 1-3. Fig. 1

depicts the state trajectory of the system (1) without control
which is obviously unstable. In addition, Fig. 2 and Fig. 3
plot the dynamics of the closed-loop system (11), respectively,
with the proposed PID-type control and only P-type control.
Evidently, the closed-loop system with only the proportional
control loop cannot achieve the desired control performance
whereas the PID-type one can. The simulation results have
confirmed that the observer-based PID control mechanism
proposed in this paper is indeed effective.

B. Comparison of Results Between Different Attack Probabil-
ities

In this subsection, some comparison simulations have been
conducted to examine the effect from the cyber-attacks on the
system performance. The time instants of the successful DoS

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change 
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TABLE I: THE MINIMUM SECURITY LEVEL
WITH DIFFERENT ᾱ FOR β̄ = 0.001

ᾱ Security level ̺

ᾱ = 0.09 0.0569
ᾱ = 0.19 0.0866
ᾱ = 0.29 0.1026
ᾱ = 0.39 0.1121
ᾱ = 0.49 0.1341
ᾱ = 0.59 0.1734
ᾱ = 0.69 0.2072
ᾱ = 0.79 0.2382
ᾱ = 0.89 0.2308
ᾱ = 0.99 0.2627

TABLE II: THE MINIMUM SECURITY LEVEL
WITH DIFFERENT ᾱ FOR β̄ = 0.999

ᾱ Security level ̺

ᾱ = 0.09 0.0632
ᾱ = 0.19 0.0974
ᾱ = 0.29 0.1043
ᾱ = 0.39 0.1255
ᾱ = 0.49 0.1451
ᾱ = 0.59 0.1862
ᾱ = 0.69 0.1979
ᾱ = 0.79 0.2135
ᾱ = 0.89 0.2573
ᾱ = 0.99 0.2778

attacks and deception attacks are shown in Fig. 4. In Tables I-
II , we also present the minimal security levels (expressed by
the bounds of the system states) with the increased attack
probability of DoS attacks or deception attacks. It is tempting
to conclude from Tables I-II that the security performance
deteriorates (the minimal security level increases) as the attack
probability increases, which again confirms our results.

V. CONCLUSION

In this paper, an observer-based PID control scheme has
been developed for a kind of linear discrete-time systems
in presence of time-varying delays as well as randomly oc-
curring cyber-attacks. The random nature of the addressed
DoS/deception attacks are regulated by two random variables
conforming to Bernoulli distribution. A theoretical framework
has first been established for the addressed systems to an-
alyze the exponentially mean-square input-to-state stability.
Then, within such a framework, sufficient conditions have
been put forward to guarantee the prescribed security level
and acquire an upper bound on the QCC. Subsequently, the
gain parameters of the desired controller have been designed
in virtue of the LMI technique combined with orthogonal
decomposition. Finally, an illustrative simulation example has
been exploited to verify the usefulness of the presented control
scheme. Future research themes include the utilization of
our methods to more complicated networked control systems
subject to more sophisticated network-induced phenomena or
cyber-attacks with time-varying probability distributions [23],
[35], [48]–[50].
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