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Observer-Based PID Security Control for Discrete
Time-Delay Systems under Cyber-Attacks
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Abstract—This ~ paper deals with the observer-based [2] and neural network PID control approach [8]. Up to now,
proportional-integral-derivative (PID) security control problem  the research on the PID control problem has attracted a great

for a kind of linear discrete time-delay systems subject to cyber- g4 of gttention from the communities of systems science and
attacks. The cyber-attacks, which include both Denial-of-Service . .
control engineering.

and deception attacks, are allowed to be randomly occurring : .
as regulated by two sequences of Bernoulli distributed random ~ Most literature concerning PID control has been based on

variables with certain probabilities. A novel observer-based PID the state feedback. In practice, however, the system states
controller is proposed such that the closed-loop system achievesmight be immeasurable because of economic constraints or
the desired security level and the quadratic cost criterion (QCC) - technological limitations, and therefore the observer-based
has an upper bound. Sufficient conditions are derived under .
which the exponentially mean-square input-to-state stability con'Frol schemeg have become more and more appgallng to
is guaranteed and the desired security level is then achieved. €ngineers. For instance, the observer-based control issue has
Subsequently, an upper bound of the QCC is obtained and been discussed in [36] for nonlinear stochastic systems in
the explicit expression of the desired PID controller is also order to achieve the exponential mean-square stability and
g;ﬁomaeéﬁrge\?e'rif'i:éga\lllé atﬂeiIIL\J/Satl:’g![ti{eOefxgr]ﬁplgeveloped design the variance constraints are also satisfied. The observer-type
' event-triggered control approach has been presented in [38]
Index Terms—Observer-based PID control, security control, to solve the finite-horizor, consensus problem for multi-
Denlal-qf-Serwce attacks,@eceptlon attacks, exponentially mean- agent systems. In [6], the asynchronous observer-b&ked
square input-to-state stability. controller has been constructed for switched stochastic systems
subject to mixed delays, signal quantization as well as packet
. INTRODUCTION dropouts. Nevertheless, despite its clear engineering insight,

OR several decades, the proportional-integral-derivatife€ observer-based PID control problem has not been ade-
F (PID) control scheme has been playing an importafiately addressed yet due probably to the observer-induced
role in industry due to its simplicity in controller structureCOMPIexity in parameter tuning, and this situation gives rise
robustness to external disturbances, and convenience for [§al€ Primary motivation of the present research.
rameter tuning. The synthesis problem of the PID controller The concept of asymptotic stability has been dominantly
has received particular research interest and a large numisgd in traditional control theory. In the presence of persistent
of design methods have been developed, see e.g. [1] ternal inputs including noises/perturbations, asymptotic sta-
[15], [46] and the references therein. With the ever-increasify might be inapplicable [10], [16]-[18], and the so-called
complexity of the controlled plants in the modern industry/PUt-to-state stability (ISS) is well suited to characterize
conventional PID parameter tuning approaches might not e response of systems to bounded exogenous disturbances.
able to cope with demanding engineering requirements, afgthis regard, many excellent results have been available
much effort has then been devoted to the enhancement of thdhe literature. For instance, the input-to-state stabilization
PID control performance by combining with other advancegfoPlem has been discussed in [20] for a kind of delay
control schemes, see e.g. adaptive PID control algorithm [g]fferentlal systems under exogenous disturbances. A matrix

intelligent PID control strategy [19], fuzzy PID control method€du@lity approach has been proposed in [14] to analyze the
ISS of time-delay systems. In [44], the exponentially mean-
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owing to the inherent opening-up characteristic of networtkis paper is organized as follows. Section Il formulates the
links, the information transmission in NCSs is vulnerablebserver-based PID control problem for the linear discrete-
to cyber threats which are likely to result in performancéme systems subject to time-varying delays, where the ran-
degradation or even instability [25], [29], [30]. In this casedomly occurring DoS/deception attacks are introduced in a
the security protection becomes a vitally important issue andvel yet unified measurement model. In Section lll, the
the so-called security control problem has received sommeean-square ISS is first analyzed and sufficient conditions
initial research attention, see [3], [11], [31] and the referencase then derived to ensure both the desired security level
therein. Generally speaking, the main idea of the securiynd the bounded QCC. A simulation example is shown in
control is to design a control law such that a desired securBgction IV to demonstrate the usefulness and applicability of
level is achieved for the closed-loop system under cybehe controller design algorithm. Finally, we conclude the paper
attacks that include, but are not limited to, Denial-of-Servide Section V.
(DoS) attacks [4], replay attacks [45] and deception attacksNotation. The notation utilized here is quite normative
[13]. except where otherwise declargfk|| denotes the Euclidean

In the context of cyber defence, the attacks initiated hyorm of a random variable. The symbol® represents the
opponents might be unsuccessful in NCSs due to the installé&bnecker product and the symbelstands for the ellipsis
devices or software for security protection. As such, from tHfer symmetric terms. Moreover, we denote the maximum and
defenders’ perspective, the cyber-attacks are likely to tak@nimum eigenvalue of matrixd by Apax(G) and Apin(G),
place in a random manner and the occurrence mechanissspectively.
of the attacks can be mathematically modeled by Bernoul-
li/Markov processes with certain statistical property, see [13],
[24] and the references therein. For cyber-physical systems, in ) o ) ] o
addition to the basic security, one would expect that certainConsider the following linear discrete-time system with time
system performance can be maintained for necessary sysgﬁjﬁys

II. PROBLEM FORMULATION AND PRELIMINARIES

operation. In this case, the quadratic cost behaves as an a(k+1) :Aa:(k)+Ag:z:(k—o(k))

adequate performance index and a realistic criterion would

be to ensure an upper bound on the quadratic cost function + Bu(k) + Dw(k) )
for the closed-loop system in spite of the randomly occurring y(k) =Cx(k)

cyber-attacks, which leads to the so-called cost-guaranteed z(l) =pl), l=—-opm, -, —1,0

security control [13], [31]. It should be pointed out that, N . 5 .
the observer-based PID security control problem for ncderex(k) € R, u(k) € R" andy(k) € R" represent
has not been investigated yet, not to mention the case tHi¥ System state, the control input and the sensor measure-

the quadratic performance index is also a major concern fSEN respectivelyw(k) € R™ is the bounded disturbance

system designers. Therefore, the main purpose of this paﬁ@PSfy'ng

is to narrow _such agap. _ wl (kyw(k) < @ @)
Summarizing the above discussion, we come to the conclu-

sions that: 1) the observer-based PID control problem is wherew > 0 is a given scalar4, A,, B, C and D are known

both theoretical significance and practical importance; 2) theal constant matrices with appropriate dimensiorig,) is a

notion of ISS is quite suitable in examining the effect from thpositive integer that denotes the time-varying delay satisfying

cyber-attacks on the system performance; and 3) it is strongly n

desired to have the cost-guaranteed performance apart from the om < o(k) <om, keN 3)

ysua_l security protection. In .view of the above ob_servatiorwhere om and oy are known positive integerso(l) (I =

in this paper, we make _the first attempt to (_jeal wnh the.PIQUM’ ..., —1, 0) are the initial conditions.

observer-based control issue for a kind of discrete-time linear, this paper, the data transmission over the measurement

systems with time-varying delays under the randomly ocCWkanne| (sensor-to-observer) is subject to randomly occurring

ring DoS/deception attacks so as to ensure both the seCURlys/deception attacks characterized in the following model:
performance in mean-square sense and the bounded quadratic

cost index. It is worth noting that the addressed security control y(k) =y(k) + a(k)B(k)u(k) 4
problem is rather challenging due primarily to the analytical +a(k)(1 — B(k))v(k) @
complexity resulting from the random occurrence of cyber- ] ] ] )
attacks and the subsequent PID parameter tuning. wherey(k) is the received signal by the observer subject to

The main contributions of this paper are summarized 4&acks,u(k) € R"» andwv(k) € R™ stand for, respectively,
follows: 1) an observer-based PID controller is, for the fir{fl€ deception attack and the DoS attack launched by the
time, constructed for the linear discrete-time system wififtackers described by
time—varying_delays_; 2) thg concept of exponentially mean- (k) = —i(k) + (k) (5)
square ISS is considered in response to randomly occurring
DoS/deception attacks; and 3) an upper bound is obtainedamu
the quadratic cost criterion (QCC) of the controlled system in
addition to the basic security requirement. The remaining of v(k) = —y(k) (6)
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wherec¢ (k) # 0 denotes an arbitrary bounded signal satisfyingroven to be the arguably most widely used one due mainly
T to the simple structure of the PID controllers. In this paper,
¢ (k)s(k) <¢ @) :
= we further consider the observer-based PID controller whose

and ¢ is a given positive scalar. The mutually uncorrelategructure consists of three loops: the proportional loop (pro-
stochastic variablea(k) and 3(k), which take values o9 Portional to the state estimation), the integral loop (integral
or 1, are two Bernoulli distributed white sequences with thg® the state estimation), and the derivative loop (derivative to

following probabilities: state estimation). The gain matrices of the above three loops
are to be designed so as to meet the specified performance
Probla(k) =1} =a, Probla(k) =0} =1-a requirements of the closed-loop system. Note that, in the
Prob{8(k) =1} =3, Prob{(k) =0} =1-4 traditional PID controller, the integral loop makes use of

herea 43 K all historical information, which incurs huge computational
wherea € [0,1) and§ € [0, 1) are two known constants. burden. In this paper, the integral operation is set to be

Remark 1:According to their implementation mannersperformed over a limited but adjustable time length.

cyber-attacks can be categorized into three types, i.e., Do tinod (k) 2 2(k)—2(k). th timati d .
attacks [4], replay attacks [45] and deception attacks [13]. To ggcgr;ll%xéy)' z(k)=#(k), the estimation error dynamics

be specific, DoS attacks occupy a communication channel to

prevent the transmission of measurement or control signals. In  ( #(k + 1) =(A — LC)&(k) + Asi(k — o(k))

replay attacks, the effective data transmission is fraudulently or + Dw(k) — L(a(k)B(k)s(k)

maliciously delayed or repeated. In case of deception attacks,
; S — a(k)Cx(k))

some false information is sent to sensors/controllers so as R

to degrade or even devastate the performance of the overall () =), l=-on,--,-10

systems. wherez(l) denotes the initial error.

Remark 2:1t is WO!’th hoticing that the cyber-attacks ~pq 4o purpose of simplicity, we introduce the following
launched by adversaries might not be always successful ations:

to the defense from the protection institution as well as

complicated network environment and, from the defender's 5 (k) = [IT(k) jT(k)}T, I(k) = [wT(k) gT(k)]
perspective, the attacks might occur in a random manner with

certain ‘success’ rate. In this paper, we adopt two sequence§mnplementing the PID control law (9) to system (1), we
of Bernoulli sequences to characterize the random occurre@gain the closed-loop system as follows:

of the cyber-attacks. In this setup, it is apparent from (4)

that the observer receives the normal signals from the sensor n(k +1) =( A1 + a(k)As) (k)

when a(k) = 0. Whena(k) = 1 and g(k) = 0, the data + Aon(k — o(k)) + Bx(k)

(10)

T

transmission suffers from the DoS attacks and, whigr) = 1 (11)
and 5(k) = 1, the data transmission faces the deception + (L1 + 7(k)L2)0(K)
attacks. nl) =), l=—d,---,—1,0

To estimate the states of system (1), an observer is corF
structed in the following form: where

ik +1) =Ai(k) + L(y(k) — C2(k)) k) = [n" e =1) n(k=2) o Tk d)}T
A +Ag.f(/€ — O'(k)) + u(k) (8) w(k) _ [@T(k> lenz]T7 d(k) — a(k) —a
#H) =0, I==om, -, 1,0 A= A+ BKp+BKp,  B(k) = B(k) - B
where i(k) € R" is the state estimate antl is the gain A2 = _B(Kp + Kp), AP =aLc

matrix of the observer that is to be determined.

14 4 o~ 3 ~ 2. =A
In this paper, for the linear discrete-time system (1), we A" =A—LC, (k) =a(k)B(k) + a(k)s + ab(k)

adopt the following observer-based PID control law: A = At AP Ay = Onoxne  Ongxn,
- AP AR LC Onyxn,
u(k) =K pi(k) + K; 2(i) _ | Ae Onxn, g_| BK
i:;—d (9) Ag OnI XMy AU ’ Onz X2dn.,
+ KD (j(k) — i’(k — 1)) £1 _ D Onxx_ny £2 _ Onxxnw Onwxny
. . D —-apL |’ On,xn —L
whereKp, K and Kp are three PID controller gain matrices S
to be designed and is a given scalar representing the time K = {ICI -Kp K Kp - ICI}
length. For simplicity and without loss of generality, we A1
assume thaﬂ}aM. K= [ K; —-K; }7 Kp = [ Kp —-Kp ]

Remark 3:In the development and application of automatic
control, various control algorithms have been proposed to meett follows from (2) and (7) that
the different requirements in practical systems, among which T’
the proportional-integral-derivative (PID) control scheme has P (R)O(k) <6, b=+ (12)
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Furthermore, the quadratic cost criterion (QCC) associatédd Security Analysis

with (11) is defined as follows: In this subsection, we shall give a sufficient condition to

1 X examine the security performance of the closed-loop system
J(k) =limsup — ZE{nT(k)Qn(k) (11). The exponentially mean-square ISS is first analyzed and
N—oo 2N k=0 (13) then a sufficient condition is proposed to ensuredisecurity
+u”' (k) Ru(k)} of the closed-loop system (11) in mean-square sense.
Theorem 1:Let the positive scalap and the matricedp,
K, Kp, L be given. The closed-loop system (11ypisecure
1j_n mean-square sense if there exist positive definite matrices
Py, Pj(s=1,2,---,d), Ps, positive scalars, =, 7 satisfying

where @@ and R are two given positive-definite weighting
matrices.

Before proceeding further, we introduce the following de
initions and lemma.

Definition 1: System (11) is said to be exponentially input- T, = [ T

1 *
to-state stable in mean square if there exist constants), T Y2 ] <0 (162)

0 <60 < 1, andh > 0 such that the system dynamigk) 11
satisfies Ty = [ ¥%1 T*zz ] <0 (16b)
2 1
E{[ln(k)[2} < e0* sup E{[(0)]|} and
le[—d,0] 14
+h|9(k)|%, k=0 RT—pi(r—1)+p sup E{ [0 ()|}

where [ (J) oo = sup, {[9(K) [} E_o e

Definition 2: Let the desired security level be specified as 4+ i 5<p (17)
0 > 0. The closed-loop system (11) is said to fsecure in p(r—=1)
mean-square sense if the inequalitf]|n(k)||*} < o holds for \yhere
all k > —d+ 1.

Remark 4:1t should be pointed out that the concept of Yi' = diag{P + &I, —P3,—Ps}
input-to-state stability (ISS) presented in Definition 1 is VA, 0 0
suitable in reflecting the impact from external interferences _ | VEA 0 0
(e.g. cyber-attacks) on the dynamical performance of the “1 — Ay A, B
closed-loop system. By resorting to the ISS property, the VEAL EA, B

state trajectory of the closed-loop system could converge to .22
the equilibrium point in the disturbance-free case and could ! -
enter a bounded domain under bounded disturbances. CIearIy,Tg1 — { cr %g{ VLY %EQT }
if (11) is p-secure in mean-square sense, then it must be
exponentially input-to-state stable in mean square. Here, the
parameterp > 0 indicates the level of the security expressed
by the boundedness of the system states.

Lemma 1:(Matrix Inverse Lemma). Let matriceg, G , 3
H andW be given with appropriate dimensions.Af, G and p
G~!' + WF~'H are invertible, then the following condition
holds

=-LioFh), Ti=-A1

d
P=-Pi+Y P+ (om—om+1)Ps
s=1

P, =diag{P;, P2, ---, P&}, a=a(l —a)
B(1—pB), 7=aB+ap?+pa?
= min{ Amin (P1); Amin(P2), Amin(P3)}
P1 = Amax(P1), p2 = dAmax(P2)
(F+HGW)™! p3s = (on — Om 4+ D) Amax(P3), p = max{p1, p2, p3}
="' F'HG '+ WF'H)'WF

RS

(15)  and the constant > 11in (17) satisfies

The objective of this paper is to design an observer-based
PID controller of the form (9) for system (1) such that the
following requirements are met simultaneously:

— BT+ p1(F — 1) + pod®7(F — 1)
+ﬁ30’1\4(0M—0'm+1)770M(77—1):0. (18)

o Q1) the closed-loop system (11) issecure in mean- Proof: In order to analyze the stability of the closed-loop
square sense; - system (11), we select the following Lyapunov-Krasovskii
e Q2) the QCC (13) has an upper boundid functional:
4
1. M AIN RESULTS Vik) = Z Vik) (19)

In this section, we begin with analyzing the security pen‘owhere
mance of the closed-loop system (11) suffering from cyber-

attacks. Then, a sufficient condition is established to derive an Vi(k) =n" (k) Pin(k)

upper bound for the QCC (13). Finally, the desired observer- d k=1

based PID controller gain matrices are obtained with the aid Va (k) :Z Z 0" (q)Psn(q)
of the matrix orthogonal decomposition. s—1 g=k—s
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k—1

Va(k)= > n"(q)Psnl(q)
q=k—o(k)
k—om

Vak) = ) Zn q)Psn(g

p=k—onm+1q=p

Along the trajectory of the closed-loop system (11), W%E{nT(k)Psn(k) —n"(k

k—1

Ly

qg=k—om+1
k—1
-

q=k—o(k)+1

k—om

>

g=k—o(k+1)+1

0" (q) Pyn(a) }

n" (q)Psn(q) + n" (q)Psn(q)

—a(k))Psn(k — o(k))

calculate the difference oF (k) and take the mathematical

expectation to obtain

E{AV(k)} = i E{AVi(k)} (20)
where
E{AVA ()}
=E{Vi(k+1) - Vi(k)}
=E{y" (k + )Pk + 1) =" (k) Pu(k )}
=E{ (A1 + (k) A2) (k) + Ao (k — o(k))
+ Bx(k) + (L1 + 7(k) )TP1
% (A + ak)Az)n (k) + Agn(k = o (k)
+Bx(l~c) (L1 +7(K)L2)9(R) ) — 0" (k) Pun(k) }
(A1 PLA; + aA2TP1A2 — Py )n(k) + 0" (k
o (k) Ag LA (k — o(k)) + x" (k)B" P1Bx (k)

+ 07 () (L1 Py + 75 PLLy ) 0(k) + 20 (k) AT
x PLAsn(k —a(k)) + 20" (k) AT PLBx (k) + 21" (k)

x (AlTPlﬁl + dBAQTP1£2)19(k) + 207 (k — o(k))

x ALP1Bx(k) + 20" (k — o(k)) AL PLL19(k)

+ 2T (k)BT P L0 (k) (21)
E{AV>(k)}

:IE{Vz(k—i—l) —Vz(k)}
{3 3 20

s=1 qg=k
R)P5n(k) =" (k = 5)Pin(k —s) }

:i{
E(A

k—

:Zk:n

S

,_.

P277
q

Va(k)}

_ { (k+1) k)}
k k—1
- { Z ’qT(q)Pg’I](q) — nT(q)Psn(Q)}
o(k+ g=k—o(k)
_ { ]3377 — 0T (k — (k) Psn(k — o(k))
k—1 k—1
+ > qT@Pml@ - ) nT(Q)Psn(q)}
q=k—o(k+1)+1 q=k—o(k)+1
—E{n" (k) Pan(k) — " (k = o(k)) Pen(k — o (k)

—Om

D>

i=k—opn+1

E{AV4(k)}

—E{Vi(k + 1) = Va(k) }
k—om+1 k

{3 Yo
p=k— 0M+2q =p

k—om

DS o

p=k—onm+1q=p

k—om
(n" (k) Psn(k) — nT(p)Pgn(p))}

n" (q)Psn(q)}

q)Psn(q

q)P3n(q }

—E{ (701 = o () Pn(h)
k—om

- X
q=k—on+1
Substituting (21)-(22) into (20) leads to
E{AV(k)}
T (k)(Dy + P2)R(k) + an” (k)A3 PrAzn(k)
+ 07 (k) (ﬁlTPlﬁl + %551)152)19(/;)

n" (q)Psn(q) } (22)

+ 207 (k) (AT PLLy + GBAT PAL, )

x (k) + 207 (k — o (k)) ALY P L9 (k)

+2x" (k)BT PLL1 (k)
SRT (k) (T + T2)R(k) + an” (k).AJ PLAgn (k)

+ 28T (k)30 (k) + 97 (k)49 (k) (23)
where

T
R(k) =[n" (k) 0" (k= o(k)) X" (k)]

P * *
Fl = 0 —P3 *
0 0 —Ps

i A{Pl.Al * * ]

I'y = A?;PlAl A?;PLAU *

| B'PA, B'PiA, BTPB
I's :.AT'PLC, I'y = £T7)1£, Pi=L®P

[ %5 [ A]

Ay 0 0

Applying the elementary inequalityy” Pb + v"Pa <
ea’ Pa + 16T Pb (wherea and b are vectors of compatible
dimensions) to the ter@X” (k)I'39(k), one obtains

2T (k)39 (k)
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=27 (k) AT P, LI(k)
2277T(k) (A{Plﬁl + ﬁAgPlﬁg)ﬁ(k)
+ 20" (k — o(k)) AL P L1 I(K)
+ 2T (k)BT P L19(k)
<eNT(K)ToR(k) + en” (k).A5 PrAan (k)
+ éﬁT(k:)Fm(k).
Subsequently, it implies from (23) and (24) that
E{AV(k)}
SNT(K)(Ty + To)R(k) + an’ (k).A3 PrAm(k)
+ 0T ()T 49(k) + eRT (k)DoX(k) 4 en” (k) ALY
x Py Agn(k) + %ﬁT(k)Fm(k)
N (k) (T + (1 + )72 )R(k) + (= + @) (k) A

x PLAzn(k) + (14 )7 (T4 (k)

=T (k)R (k) + 97 (k)20 (k) (25)
where
Q =(1 4Ty + Qs Q= (14 é)m

(@+e)ATP A, +P 0 0
Qs = 0 -P; 0
0 0 —P

By applying the Schur complement, one has from (16a) and

(16b) that
E{AV(k)}
<RT (k) R(k) + 97 (k)Q00(k)

< = &lln(R)I1* + A9 (k)% (26)

We are now in a position to proceed with the exponentially
ISS analysis of the closed-loop system (11). Based on the

definition of V'(k), we know that

k—1

V(k) <pE{|In(0)[*} + 52 > E{lln(a)lI*}

q=k—d

Z E{lln(p)*}.

:DkUM

According to the above relation, for amy> 1, it follows from
(26) that

E{r*" 'V (k + 1)} — E{r*V (k)}
=" TIE{AV (k)} + rF T E{V (k) } — PP E{V (%)}
< (= RllnR) 1+ 319k %)

14— DE(V(K))

(27)

k—1
<m (r)rFE(ln(k)[1*Y +ma(r) Y rFE{IIn(a)lI}
q=k—d
k—1

+ms(r) >

p=k—om

PP E{In@)IIP} + 9k 5, (28)

(24)

where
m(r)=—kr+(r—1)p
7r2(r) Zd(T — 1)[32
7r3(r) Z(UM — Om + 1)7‘ — 1)[33

Next, for any integelS > d + 1, taking summation on both
sides of (28) fromD to S — 1 with respect tok results in

E{r SV( )} —E{V(0)}

k (1_TS)~ 2
<mi(r ZrE{IIn )12 }+7T7||19(k)|\oo
5—1 k-
+ ma(r Z TP E{[n(a)]1%}
=0 g=k—
-1 k-
+ma(r Z Z r"E{In(p) |1} (29)
k=0 p=k—onm
The last two items in (29) can be computed as
S—1 k—1
> > E{lna)l”*}
k=0 q=k—d
—1 qt+d S—d—1 q+d
<( Y+
q=—d k=0 q=0 k=qg+1
S—1  S-1
+ Y ) En)?
q=S—d k=q+1
-1
<d Y rHE{In(g)l*}
q=—d
S—d—1
+d Y rE{n(e))%}
q=0
5-1
+d > rTE{n(g)l*}
q=S—d
<drt sup E{|lv(0)[1*}
le[—d, 0]
5-1
+drt Y rE{|In(g)]1*} (30)
q=0
and
S—1 k—1
> E{ln(@)*}
k:Oq:kch]\/j
-1 qgtom S—onm—1 qgtonm
SPIDIEID DS
—oM q=0 k=q+1
S—1  S-1
DIRDY ) EIn(a) 12}
g=S—om k=q+1

con 3 rEVE(n@I)

q=—0M
S—onm—1

fou Y rTE{ln(g)2)
q=0
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S—1
fou S En(@)?)
q=S—onm
E{]l4@)]*}

<oyr™  sup

l€[—ow, 0]
S—1

+our? Y B |n(g)l|*}- (31)
q=0

Then, substituting (30)-(31) into (29) yields
E{rV(S)} - E{V(0)}
r(1 —r%)
e
+q(r) sup E{[ly(1)]*}
le[—d, 0]

S—1

FNOE)% + p(r) Y ELIn(k)%}
k=0

(32)

where
p(r) =m1(r) + drimy(r) + oprro™ ms(r)
q(r) =drimy(r) + opro™mws(r).

Sincep(1l) = —& < 0 andlim, o p(r) = 400, we know
that there exists a scalar> 1 such thatp,(7) = 0, which
implies that

E{r¥V(S)} — E{V(0)}

=(1 _ =S
i ] @9
+q(r) sup E{lp(0)]*}.
le[—d, 0]
Noting
E{V(5)} = pE{[In(S)|*} (34)
and B )
E{V(0)} < ple[sllgmlﬁ{llzﬂ(l)ll 2 (35)
we obtain
E{[In(5)I*}
q(7) +p A1 =)
s E{|ly()II*} + mllﬁ(k)l\io
q(r) +p gr
ST ey E{lv ()%} + S 1) [0(k)|I5
(36)

=65 sup E{|[¢(1)|1*} + All9(k)[I2,
le[—d, 0]

whereé = p~1(q(7) + p), 0 = 7' andh = Fi(p(r — 1))~ L.

This implies that the closed-loop system (11) is exponentially

input-to-state stable in the mean square.

Finally, taking (12) into account, it can be found from (17)

that

E{lln(k)]*}

<& sup E{|[¢()]*} + All9(k)||%
le[—d, 0]

<o (37)

which means the closed-loop system (11)gisecure. The

proof is complete. [ |

B. Guaranteed Cost Analysis

In this subsection, the analysis on the QCC (13) will be
conducted, and an upper bound of the addressed QCC will be
provided.

Theorem 2:Let the positive scalap, the positive definite
matrices@ and R, the matricesKp, K;, Kp and L be
specified. The closed-loop system (11)dsecure in mean-
square sense and the QCC (13) has an upper bound

J= l(/\max(]\4) + 5/)5

2
if there exist positive definite matrice$, Py (s =
1,2,---,d), P3, M, and positive scalars, & satisfying
- [ it o«
- [ =k
Er=| 51 =22 | <O (38b)
—2 —1
_ Ell %
E3=| =31 =22 | <O (38c)
—3 —3
=22
By = :%1 -1 | <0 (38d)
and
KT —pi(r —1)
sup E{[ly(D)[*}
P l€[—d, 0]
el
+——=0<0 (39)
p(r—1)
where
—21 _ | £A2 0 0
1 A, eA, €B
P =-LoP'), 5 =-M é=VI+e
B =L, E = LT A= (1 e D Amax(M)
Zt =diag{P + Q — kI, —P3, — P}
I Kp+Kp 0 K
—21 _ Ay A, B
- As 0 0
i 0 0 0
[ —R! * * *
=22 _ 0 _P]il * *
=3 0 S
) cr VEeh M
and the constant > 1 in (39) satisfies
— R+ p1(F — 1) + pod®74(F — 1)
+ ﬁgO’]\,{(O’M — Om + 1)7:UM (7: — 1) =0. (40)
Proof: The inequality (16a) in Theorem 1 is obtained
readily from (38a). In (16b), by selecting = (1 +

%)/\max(M), one knows that (16b) holds if (38b) is true.
Therefore, the desired security level of the closed-loop system
(11) is achieved by (38a)-(38b) and (39).

In what follows, let us investigate the cost functional (13).
The combination of the controller (9) and the closed-loop
system (11) yields

u(k) = (Kp + Kp)n(k) + Kx (k) (41)
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where =ATP LM —Ty) tLTP A
Kp=[ Kp —Kp]. =ATPL(M — LTPL) LT A

AT Pyt — LML)t A - ATPLA (44
Then, it follows from (23), (26) and (41) that (P ) ! (44)

E{2V (k + 1) — 2V (k) + 07 (k)Qn(k) and, furthermore, it follows from (43) and (44) that
u' (k) Ru(k)}

<E{AV (k) — &n(k)|1* + 710 (k)1 E{2V(k +1) = 2V (k) + 0" (F)Qn(k)

7 ()Qn(k) + " () Ru(k)) u’ () Ru(k))
X7 (k)(Ty + T2)R(k) + an” (k) AT PrAan(k) SERIRE + QM) +7)0 )
— Rlln(k)||* + 28" (k)Ts9(k) + 97 (k)T 40(k) where
+ AR 15 + 0" (k)Qn(k) + 0" (F)(Kp + Kp)T
x R(Kp + Kp)n(k) + 207 (k )(icp + Kp)TRKx (k) I3 =T + o+ AT (P — LM LT) 1A
X" (k)K" RKx (k) N
RT (k) (D1 + ATPLAR(K) — &l|n(k)||2 + 28T (k)T5 Next, by exploiting the Schur Complement Lemma, we

- ~ ) . conclude from (38c) thall; < 0, which results in
x (k) + 97 (F)La0(k) + [0 (F) |5 + " (k)Qn(k)

+n" (k)(Kp + Kp)" R(Kp + Kp)n(k) + 20" (k)

x (Kp + Kp)T R (k) + xT (k)T RICx () SUPZE{WT(k)QW(k) +ul (k) Ru(k)}
=RT(k)(T1 + ATPLAR(K) — &|n(k)||* + 28T (k)T N
% 0(k) + 07 (K) (s — M)(k) + 0" (k) (K Ssup ;E{NT(’“)H?’N(’“) + (max(M) +7)0
+Kp) R(Kp + Kp) +Q)n(k) + 207 (k) (Cp —2E{V(k+1) - V(k)}}
+ o)  RIC (k) + T (B)KT RICx (k) + 97 (k)M S2V(0) + (N + 1) Amax (M) +7)d
x 9(k) + 59 (k) | (42) —2EVIV 1))
. : . : <2V(0) + (N + 1) (Amax (M) + 7)6. (46)
Taking (12) and (38b) into consideration, one has
E{Qv(k +1) =2V (k) + 07 (k)Qn(k) Finally, it implies from (13) and (46) that
u” (k) Ru(k)}
<NT( )(T1 + ATPLAR(K) = &[n(k)||* + 7" (k) J(k) —hmsup — ZE{n u” (k)Ru(k)}

N—o00

% ((Kp + K)"R(Cp + Kp) +Q)n(h)

+ 20" (k)(Kp + Kp)" RKx(k) + X" (k)K" RK < limsup % (2V(0) + (N + 1) (Amax(M) +7)9)

N—o00

x x (k) 4+ 28T (k)D39(k) + 97 (k) (T4 — M)9(k) _ Qmax (M) +7)6 (a7

+ (Amax(M) +7)8 2
=RT(F)TLR (k) + 28T (kK)T30 (k) — 97 (k)(M —Ty) which completes the proof. n

X V(k) + (Amax (M) +7)6
SRT (k) (I + )R (k) + (Amax (M) +7)8 (43)

C. Observer-Based PID Controller Design
where
—iI+ (Kp +Kp)TR(Kp +Kp) +Q In this subsection, an observer-based PID control law will be
I, = 0 designed for system (1) such that the closed-loop system (11)
[ KT'R(Kp + Kp) is p-secure in mean-square sense and the addressed QCC (13)

has an upper bound. It will be shown that the gain matrices
of the desired controller can be acquired via solving a set of
linear matrix inequalities (LMIs).

Theorem 3:Let the positive definite matriceg, R and the
positive scalap be specified. The closed-loop system (11) is

0 (Kp+Kp)TRK
0 0
0 KT RK

11, =I'y + AT’PlA + 11y

I, =Ig(M —Ty)~'T5. o-securein mean square sense and the QCC (13) has the upper
In light of (38d) and Lemma 1, we obtain that bound J = (At (M) +7)6 if there exist positive definite
matricesPy, P§ (s = 1,2,---,d), Ps, M, positive scalars

11, :F3(M — F4)_1F§ Kk, € > 1, and matricesAll, A1a, Aog, Kp, K], KD andL
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saisfying
~ r ’rll *
Ei=| zn =z | <0 (482)
L =17 =1
L TER o« T
Hy = &51 z9o | <0 (48b)
L =27 =3
B r Ell *
23 = | Z31 =9 | <0 (48c)
L =3 =3
- [ S22
Ei=| 25 —u | <0 (48d)
L =1 =2
and
Rr—pi(r=1)+p
sup  E{[v ()]}
P le[—d, 0]
™
+——=6<0 (49)
p(r—1)
where
0 0 0
=21 €Xo1 0 0
D7 | e85 eX3p £Xg3
5241 5242 0
:?2 = dlag{ Pl, pl, Pl, _Pl}
=11y ~21 _
2 =M, {\/_52}
3 =-P, Ef'=[LT VL]
[Kp+Kp 0 K
231 Y32 Y33
221 _ X4 Y42 0
=3 0 0 0
Yo 0 0
i 0 0 0
(R * * * * .
0 Pl * * * *
=922 0 0 —Pl * * *
5710 o0 0 —-P * *
0 0 0 0 P *
L 0 262 263 0 \/0*265 —M i
-2
5 .
v = - , 2ol = [ LC 0 ]
win (M) (22 — 1) L
Y31 = [A®A+KP+KD —KP—KD}
Ypo=[AOA, 0], Sp=[PA4, 0]
Y41 = [ @EC PlA — LC } Y33 = K
P, D PD
Ye2 = | Y3 = ~.
e[ B2]. nen[ 2]
S = | ° M = M — 2P,
=1 _j | = 1
Ke=[ kp —Kp). Ki=[ K -K |
- . . - . T
kp=[Kp ~Kp], Kp=[ K% 0]
K=Kl o], EKp=[K% o]"
K=[K" 0" K=[Ki—KpKiKi - Ki]
—_——

- [ AD 0 s [0 0

ﬁl_{fDlD —aBL]’ ‘62_{0 —L]
Ay A -

A:[ 51 A;z] R=R— Ay, — AL

P=P—-A0-0"AT, P =LoP

©=[BB"B)"" (BT

and the constant > 1 in (49) is the solution to the following
equation
— R+ p1(r — 1) + pod?r?(r — 1)
+ p30']u(UM — Om + 1) oM (7‘ — 1) 0. (50)

In addition, the gain matrices of the observer (8) and the PID
controller (9) are given by

Kp=A'Kp,
Kp = A Kp,

K= ALKy
L=P 'L

Proof: Letting M = M~*, we perform the congruence
transformation to the inequality (38b) by digy/, P1, P1}
and to the inequality (38d) by di&@, P, M}, respec-
tively. Then, we arrive at (48b) and (48d). Further-

more, by pre- and post-multiplying the inequality (38a) by
diag{I, 1,1 Pl,Pl,A(a Pl} and its transposition, we have

11
g = [ 2211 =22 } <0 (51)
=1 =]
where
0o 0 0
=21 €21 0 0
LT | é8s éXsp X
£X41 EX40 0
222 — diag{—P,, —P1, —AOP'O@TAT, —P}
$o1=[ ALC 0], ¥33=A0BK

o _ [ (4041 A0B(E,+ Kp)T |
31 = —(AOB(Kp + Kp))T
241:[0_LP1LC plA—plLC]-

Similarly, pre- and post-multiplying the inequality (38c)
by diag{I, I, 1,A11,AO, Pl,Pl,Pl,Pl} and its transposition,
one has

B =11 *
B3 = [ =51 =22 } <0 (52)
=3 =3
where
[ AuKp+AKp 0 ApK ]
a1 Y32 Y33
=21 _ X4 Ya2 0
= 0 0 0
Yo 0 0
I 0 0 0 |
[ —AllR_lA?l *
0 —AOPTOTAT
=22 _ 0 0
s 0 0
0 0
L 0 Y62
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* * * designed for discrete-time system with time-varying delays
* * * * under cyber-attacks; 2) the concept @&ecurity in mean-
—P * * * square is new, which is well placed to describe the security
0 —-P * * level (size of the boundedness) of the system states in response
0 0 -P * to randomly occurring DoS/deception attacks; and 3) the
Ses 0 VorSes —PIMP performance evaluation is new, which provides an upper bound
S = [ PD —aBbL } S = [ 0 —AL ] ' on the quadratic cost criterion, thereby further improving th_e
closed-loop performance apart from the fundamental security
It is clear that requirement.

TAT D—1T AT
A©+O"A" —AOP O AT IV. |LLUSTRATIVE EXAMPLE

- (A6 - Pl) QOCE Pl) <0 Consider the observer-based PID security control problem
A+ AT — A RTIAT, - for a geared DC motor, which is a component of the MS150
— (A — R)R YAy, — R)T <0 Modular Servo System [40]. With a sampling period of 0.01 s,
the discrete-time model is obtained with the following system

> PT _ 1 AT -1
P+ P —PIMPS — M matrix and measurement matrix:

— (P =M YM(P, - M HT <o, (53) p 1 0.0098 . 117
which implies that [ 0 0.9653 ] ’ B { 0 } '
~AOPTTOTAT < P — AO — OTAT In the MS150 Modular Servo System, the inputk)
T is a voltage and the outpuj(k) is a rotary angle of the
_A”]? AAll < Bi_ Al} —An extended shaft, which is also called the position of the shaft.
~PLMPF < M 2P, (54) Furthermore, other parameters are presented as follows:

Taking (54) into consideration and utilizing the variabIeA 1003 0 B_ 0.729 D 0.65 1"
substitution a 0 0.02 ] 021 |77 ] 071
IV(P =Aukp, IV(I :AA”KI A. Effectiveness of the Developed Observer-Based PID Con-
Kp =AnKp, L=PL (55) trol Scheme

we conclude that (51) is ensured by (48a), and (52) is ensuredn this example, the success probabilities of the cyber-
by (48c). Therefore, the rest of the proof follows immediatelgttacks are assumed to be= 0.7 and 3 = 0.5. Moreover,
from Theorem 2. m the time span of the integral loop in PID controller (9) is
Remark 5:1n this paper, by employing the orthogonal detaken asd = 3, the lower and upper bounds on the time-
composition, we introduce a free matrix with an unique varying delay are taken as,, = 1 andoy, = 3, respectively.
structure and construct a mati& = [B(BTB)~! (BT)L]T Furthermore, the exogenous disturbances are selected to be
in order to cope with the coupling ternRBK p, PBK; and (k) = 0.25cos(k) and<(k) = 0.25sin(k). Set the security
PBKp in Theorem 2. It is clear that, when the parameter Parameterp = 0.29, the bound on disturbance inpéit= 0.5,
is fixed, inequalities (48a)-(48d) will be simplified to linea@nd the weighting matriceg = 0.05/ and? = 0.05/. Choose
matrix inequalities (LMIs) that are easy to solve by usin§ie initial values of the state ag—3) = z(-2) = z(-1) =
standard computational packages. Moreover, the introductio) = [ —-0.8 0.8 }
of parametek provides additional flexibility for designing the By means of the Matlab software (with the YALMIP 3.0),
controller, which is also beneficial for improving the securityhe solution to matrix inequalities (48a)-(48d) in Theorem 3

level of the system. is computed as follows:
Remark 6:Up to now, the observer-based PID control [ 86.0357 —31.8339 5 31.9034
¢ ° _ e P = ) ) Q- )
problem has been tackled for a kind of linear discrete-time _31.8339  56.6393 _0.2381

systems under random occurrence of cyber-attacks. By resort- -

ing to the designed controller, the security requirement has
H 1

begn ensured yv_nh a guarantegd upper bound on the QCCPF, _6.1332 01872  100.1997  0.3192

Existence conditions for the desired controller have been pro- 0.3238 00174 03192 1020761

posed by means of the LMI-based orthogonal decomposition L e ' i -

99.3003 —0.9063 —6.1332  0.3238
—0.9063 101.7703 0.1872  —0.0174

approach. The developed methodology has the potential to 99.3003  —0.9063 —6.1332  0.3238
design more advanced control schemes, e.g. adaptive PIDp2 _ —0.9063 101.7703  0.1872  —0.0174
control algorithm, intelligent PID control strategy, fuzzy PID —6.1332  0.1872  100.1997 ~ 0.3192
control method and neural network PID control approach. | 03238 —0.0174  0.3192  102.0761 |
The main results established in Theorems 1-3 distinguish [ 99.3003 —0.9063 —6.1332  0.3238
themselves from existing literature in the following three _; | —0.9063 101.7703 0.1872 —0.0174
aspects: 1) the problem addressed is new in the sense that? ~— | —6.1332 0.1872  100.1997  0.3192

the observer-based PID control problem is, for the first time, 0.3238 —0.0174 0.3192 102.0761
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= =1 (k) without control
—— (k) without control

15+ A

10+

. . . . .
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Time(k)

Fig. 1: The evolution of the system staték)
without control

T T
= =z(k) under PID-type control
—s— x5(k) under PID-type control | |

. . . . .
0 50 100 150 200 250 300
Time(k)

Fig. 2: The evolution of the system staték)
with PID control

x10°

T T
= =z(k) under P-type control
—s—2,(k) under P-type control

——

S0k

-12

. . . . .
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Time(k)

Fig. 3: The evolution of the system staték)
with proportional control

11

T
+ The time instants of successful DoS attacks
% The time instants of successful deception att;
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. . . . .
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Time(k)

Fig. 4: The time instants of successful DoS/deception
attacks

87.4905 —2.2146 —14.0004 0.6677
po_ | —22146 917302 0.6419  —0.0465
371 —14.0004 0.6419  89.5614  0.6453
| 0.6677  —0.0465  0.6453  92.4658
~ [ 106.4406 —45.0722 -
M= _450m22 566380 } ) R =0681.2461
r T T
§ —39.6555 y —5.5061
Kp= | —1.2977 ] , Kr= { —3.1368 }
o[ 16518 r A [ 87988 —74.7822
Pl —94103 | "7 | 0 10.1075

It can be checked that the condition (49) is satisfied.
Furthermore, the gain matrices of the observer (8) and the
PID controller (9) are outlined as follows:

T
0.4559 —4.5069
L= { 0.2521 ]  Bp= { —0.1475 }
T T
—0.6257 ~0.1877
Kr _[ —0.3565 } » Kp= { —1.0694 }

and the permitted upper bounidis 0.0563.

The simulation results are presented in Figs. 1-3. Fig. 1
depicts the state trajectory of the system (1) without control
which is obviously unstable. In addition, Fig. 2 and Fig. 3
plot the dynamics of the closed-loop system (11), respectively,
with the proposed PID-type control and only P-type control.
Evidently, the closed-loop system with only the proportional
control loop cannot achieve the desired control performance
whereas the PID-type one can. The simulation results have
confirmed that the observer-based PID control mechanism
proposed in this paper is indeed effective.

B. Comparison of Results Between Different Attack Probabil-
ities

In this subsection, some comparison simulations have been
conducted to examine the effect from the cyber-attacks on the
system performance. The time instants of the successful DoS
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TABLE I: THE MINIMUM SECURITY LEVEL REFERENCES
WITH DIFFERENT @ FOR § = 0.001

[1] K.H.Ang, G. Chong and Y. Li, PID control system analysis, design, and

@ Security level p technology,|EEE Transactions on Control Systems Technalogy. 3,
_ No. 4, pp. 559-576, 2005.
g;(o](l)g 88222 [2] J. Carvajal, G. Chen and H. Ogmen, Fuzzy PID controller: design
&= 0'29 0'1026 performance evaluation and stability analysisformation Sciences
&= 0'39 0'1121 Vol. 123, No. 3-4, pp. 249-270, 2000.
a = 0.49 0:1341 [3] J. Cecil, S. Albuham_ood, A. CeciI-Xavie_r and P Ramanathan, An
& —=0.59 01734 advance(_:i cyber physical framework for micro d_evu:es assentblE
a = 0.69 0.2072 Transactions on Systems, Man, and Cybernetics - Systeéohs 49,
a=0.79 0.2382 Pp. 92-106, 2017.
a = 0.89 0.2308 [4] A. Cetinkaya, H. Ishii and T. Hayakawa, Networked control under
&= 0.99 0.2627 random and malicious packet losséSEE Transactions on Automatic
Control, Vol. 62, No. 5, pp. 2434-2449, 2017.
[5] W. D. Chang and J. J. Yan, Adaptive robust PID controller design based
on a sliding mode for uncertain chaotic syster@haos, Solitons &
TABLE II: THE MINIMUM SECURITY LEVEL Fractals Vol. 26, No. 1, pp. 167-175, 2005.
WITH DIFEERENT & EOR B = 0.999 [6] Y. Chen, Z. Wang, W. Qian and F. E. Alsaadi, Asynchronous observer-
’ basedH., control for switched stochastic systems with mixed delays
under quantization and packet dropouldpnlinear Analysis: Hybrid
a Security level o Systems\ol. 27, pp. 225-238, 2018.
a =009 0.0632 [71 Y. _Chen, Z. Wang_, Y. Yuan and P. Date, Distributéf, filtering _for _
&= 0.19 0'0974 switched stochastic delayed systems over sensor networks with fading
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