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Brief Survey on Attack Detection Method
for Cyber-Physical Systems

Sen Tan, Student Member, IEEE, Josep M. Guerrero, Fellow, IEEE, Peilin Xie, Student Member, IEEE, Renke
Han Member, IEEE and Juan C. Vasquez, Senior Member, IEEE

Abstract—In recent years, Cyber-Physical Systems (CPSs) have
attracted intense attention due to their potential applications
in many areas. However, the strong reliance on communication
networks makes CPSs vulnerable to intentional cyber-attacks.
Therefore, a great number of attack detection methods have
been proposed to enforce security of CPSs. In this paper, various
false data injection attack detection methods presented for CPSs
are investigated and reviewed. According to the knowledge of
control information, the controllers of CPSs are categorized
as centralized and distributed controllers. Existing centralized
attack detection approaches are discussed in terms of (i) linear
time-invariant systems, (ii) actuator and sensor attacks, (iii)
nonlinear systems and (iv) systems with noise. Furthermore, the
development of distributed attack detection is reviewed according
to different decoupling methods. Some challenges and future
research directions in the context of attack detection approaches
are provided.

Index Terms—Centralized detection, cyber-attacks, cyber-
physical systems, distributed detection, false data injection attack.

I. INTRODUCTION

THANKS to the rapid development of technology in
communication networks, computer science and control

theory, Cyber-Physical Systems (CPSs) have been extensively
studied from both academia and industry. CPSs are systems
that are controlled or monitored by computer-based algo-
rithms, tightly integrated with networks and users [1], [2].
Examples of CPSs include smart grids, intelligent transporta-
tion networks, 5G cellular networks, sustainable developments,
medical systems, process control systems, robotics systems
and automatic pilot avionics [3]–[8].

A CPS typically consists of a network of interacting units
with physical devices and computational elements [9]. The
strong dependence on communication networks makes sys-
tem vulnerable to cyber-attacks [10]–[12], such as Denial of
Service (DoS) attacks and deception attacks [10], [13], [14].
Those attacks can be injected into systems both in cyber layer
and physical layer [15]. Moreover, some malicious attackers
would focus on attacks between cyber and physical layer,
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which can potentially induce significant damage on physical
devices.

It should be noted that an attacker can either arbitrarily
disturb the system dynamics or induce any perturbations to
CPSs without enough security protections of hardware or
software strategies, and thus leads to significant societal losses
or the loss of human lives [16]–[22]. Examples include Iranian
nuclear facility struck by the Stuxnet malware [18], blackout
accident in nuclear plant [19], power blackouts in Brazil [20],
etc.

These examples indicate an urgent need for reliable attack
detection schemes to deal with malicious attacks and also
maintain the performance of CPSs. If cyber-attacks could be
detected and located in a short time period, the damage to
overall systems would be controlled within a tolerable limit.

Most of the available literature on attack detections are
based on centralized architectures [23]–[26]. As highlighted
in [27], attack detection schemes can be often divided
into knowledge-based and data-driven approaches. In most
knowledge-based methods, one representative detection strat-
egy is residual generation method [28]–[30]. Normally, a resid-
ual is designed by comparing the measurements of the sensors
with an analytical model of the system. This residual is then
compared with a fixed or time various threshold in order to
determine if there is an attack. It should be mentioned that the
residual generation approaches are always combined with the
observer-based methods or statistics analysis methods. As for
data-driven methods, deep learning and heuristic algorithms
[31]–[33] are often used to build a model or map a relation of
CPS. If system measurement data does not conform to some
of the relationships, then an attack is assumed.

Aside from the centralized systems, more and more dis-
tributed systems appears in modern life. A typical example is
microgrid [34]–[37]. A microgrid system consists of multiple
energy sources, such as photovoltaic, wind turbines and bat-
teries, which are interconnected via transmissions lines among
each unit. Although these units are connected with each other,
normally they are often operated independently. As a result,
the distributed controllers may have limited information of the
overall system dynamics. It is hard for a detector to monitor a
CPS without enough information. This is the main challenge
in the design of a distributed attack detection method.

In this paper, an overview of false data injection attack
detection approaches for different CPS structures, method-
ologies and future trends is provided. A novel classification
method based on the knowledge of various types of systems is
provided. In this perspective, controllers for CPSs can be cat-
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egorized as centralized controllers and distributed controllers.
Then, different attack detection methods related to these two
kinds of controllers are reviewed respectively. The rest of
paper is organized as follows. In section II, the structure of
cyber-physical control systems are surveyed and categorized.
In section III, centralized attack detection methodologies in
the existing literature are classified and reviewed. In section
IV, distributed attack detection approaches are presented. In
section V, potential research trends and conclusions are pro-
vided.

II. SYSTEM ARCHITECTURE

Several aspects need to be considered before solving an
attack detection problem for a certain system. The architecture
of a system and a communication link on which a potential
attack is located are two main aspects to be considered first.

As seen from Fig. 1, ways implementing the control for
most system can be centralized, decentralized, distributed, or
in a hierarchical fashion [38], [39]. Based on the knowledge
of system, the controllers can be divided into two categories:
centralized controllers and distributed controllers. Table I
shows the summary of two types of controllers.

A. Centralized controller

A centralized controller sets global information knowledge
from its control unit measurements. Such controllers can
be seen in centralized systems, decentralized systems and
secondary layer of hierarchical control systems, which are
shown in Fig. 1(a), (b) and (d), respectively.

As shown in Fig. 1(a), controller in a centralized control sys-
tem requires data collection from all the essential components.
Based on the gathered information, decisions are made in the
controller to achieve proper and efficient operations. The case
is definitely the same in the decentralized structure, which is
shown in Fig. 1(b). Although it does not require information
from other parts of the system, the information gathered is
enough for the controller in the decision-making process. In
order to implement advanced control or management, the
secondary controller of hierarchical system shown in Fig. 1(d)
is conventionally realized in a centralized manner as they
require global information from all the essential units.

Therefore, controllers under these three systems can be
categorized as a centralized controller, which have global mea-
surements of control systems. In such systems, the potential
attack occurs only on the two-way communication between
the controllers and the physical components. Thus, attack
detection algorithms need only be concerned with local states.

B. Distributed controller

Distributed controllers have only knowledge from local
measurements and neighbor controllers. Such controllers can
be found in a distributed control system (Fig. 1(c)) and the
primary layer of a hierarchical system (Fig. 1(d)).

In a distributed control system, controllers only share infor-
mation with neighbors who have a physical connection with
them. As shown in Fig. 1(c), for instance, controller 1 only

Fig. 1. Typical control structures. (a) Centralized. (b) Decentralized. (c)
Distributed. (d) Hierarchical.

TABLE I
STRUCTURES OF CONTROLLERS

Classification Structure of System Attack Location

Centralized
Controller

1. Centralized
2. Decentralized
3. Hierarchical (Secondary layer)

Signals from
1. Local system

Distributed
Controller

1. Distributed
2. Hierarchical (Primary layer)

Signals from
1. Local system
2. Neighbor system

knows the running states of Unit 2 due to the communication
between controller 1 and controller 2. Similarly, it can be seen
from Fig. 1(d) that primary controllers of a hierarchical system
can also be placed into this category. Although there are some
communications between primary controllers and secondary
controller, only system demands or references are transmitted
into the primary controllers. Thus, the primary controllers still
have limited information of the entire system.

Therefore, the controllers in these systems can be seen as
distributed controllers. In this structure, the attack can occur
not only on the communication between controllers and its
units, but also on the communication between controllers and
neighbor units.

III. CENTRALIZED CONTROLLERS

A. System Statement

The basic model of centralized systems can be written as
Linear Time-Invariant (LTI) description:{

ẋ(t) = Ax(t) +Bu(t) + Ed(t) +Rf(t)
y(t) = Cx(t)

(1)

where x(t) are system states; u(t) are control actions applied
to the process; y(t) are measurements from the sensors;
d(t) are external disturbances and f(t) are unknown signals
representing the effects of anomalies or attacks along with
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communication lines; A, B, C, E, and R are system matrices
with proper dimensions.

In this paper, the false data injection attack is mainly
considered, where an attacker might modify the control actions
and/or sensor measurements from their calculated or real
values to the corrupted signals, respectively. The signals are
flowing from one node (controller, sensor or actuator) to
another node through communication lines, which satisfies the
following equation:

ŝ(t) = s(t) + a(t) (2)

where s(t) are the output signals from the node; ŝ(t) are
related signals received by another node; a(t) are attacks on
communication lines.

B. Attack Detection Design

The centralized attack detection methods can be divided into
knowledge-based and data-driven based approaches. The main
differences between these two methods are the ways to build
system model. Knowledge-based methods build the the system
model analytically, while data-driven methods infer a model
directly from data.

1) State estimation: The state estimation method is used
in the system to estimate system states through the analysis
of measurements and system models [29], [30], [40]–[46].
Weighted Least Square (WLS) is most adopted method among
state estimation methods, which can be presented as [40]–[46]:

z = h(x) + ε (3)

where z are vectors of measurements; x are system states; h is
a function establishing dependencies between measured values
and state variables; ε are measurement errors. The residuals are
usually defined as:

r = z− h(x) (4)

Then, the WLS problem can be presented as:

minF (x) = (z− h(x))T ·W · (z− h(x)) (5)

where W is the weighing matrix whose elements correspond
to the inverse of the accuracy of the individual measurements.
The attack can be detected by comparing residuals (4) with a
given threshold.

Although such methods can detect basic attacks, they may
fail in the presence of more intelligent attackers that wish
to stay undetected, where the false data could be introduced
in a coordinated manner so that it looks consistent with the
detection mechanism, thus bypassing it.

To cope with this problem, observer-based estimation meth-
ods are widely adopted in the literature [29], [30], [47],
[48]. A Luenberger observer was adopted in [29] and [30]
to monitor the power system and microgrid, respectively. In
[47], an event-triggered state scheme was developed based
on Luenberger like observer. In [48], an adaptive Slide Mode
Observer (SMO) was designed in the detection of cyber-attack
on power systems.

In addition, Kalman Filter (KF) is shown to be effective in
detecting various attacks, including short-term and long-term
random attacks along with powerful deception attacks [49].

2) χ2 detector: χ2 detector [50]–[56] is also widely used
to detect anomalies in control systems. It has the capability
to detect against bad data (erroneous measurements based on
sensor/meter failures or malicious attacks [57]), by capturing
the statistical behaviors of states.

Given system (1), a χ2 detector computes the following
quantity:

gk = rTkQ
−1rk (6)

where rk are the residuals given by rk = yk − C(Ax̂k−1 +
Buk); uk and yk are the vectors of system input and output
at time k; x̂k are the estimated states at time k; Q is the
covariance matrix of rk. Since rk is Gaussian distributed, gk
is χ2 distributed. The χ2 detector will compare gk with a
certain threshold. If gk is greater than the threshold, an alarm
will be triggered.

The χ2 detector can detect system attacks, such as DoS
attacks, short-term and long-term random attacks. However,
some studies show that the χ2 detector is unable to detect
the attacks, when the injected measurement data fit the distri-
bution of historical data [55]. To overcome this limitation, a
Euclidean-based detector was proposed by Kebina in [55] to
detect attacks in the smart grid, where the distance between
measured and estimated variables is defined as:

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn − qn)2 (7)

where p = {pi|i ∈ 1, 2, · · · , n} and q = {qi|i ∈ 1, 2, · · · , n}
are the measurements and estimations of system states re-
spectively. If the difference between the two is greater than
the threshold, as in the case of the χ2 detector, an alarm is
triggered.

Similarly, in [25], Rawat and Bajracharya proposed cosine
similarity matching-based approach to detect the deviation
between measured data and estimated data, which is given
as:

sim(x̂,x) =
x̂ · x
‖x̂‖‖x‖

(8)

where x̂ are vectors of estimated states. If both data vectors
are similar, the value of cosine similarity will equal to one,
which represents no attack in the system. If the value is less
than a given threshold, then an alarm will be triggered.

3) Fault detection and identification method: Thanks to
the full development of Fault Detection and Identification
(FDI) algorithms, the model-based fault diagnosis technique is
nowadays accepted as a powerful tool to solve attack detection
problems [30], [58]–[65].

Residual generation is the subject in the application of FDI,
which can be divided into two frameworks: observer-based
method [30], [58]–[62] and parity space-based method [63]–
[65].

The schematic of the observer-based attack detection is to
design a residual which is influenced by attacks and system
disturbances. The frequency-domain residual signals can be
described by:

r(s) = Gff(s) +Gdd(s) (9)
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where Gf and Gd are transfer functions from attacks and
disturbances to residuals.

A residual generation is called Perfect Unknown Input De-
coupled (PUID) from the disturbances if Gd = 0, which means
the residual will only be influenced by attacks. Unknown Input
Observers (UIOs) [54], [58]–[61], [66] are most adopted in
literature in this case.

It should be recognized that the design of PUID residues
requires the assumption of an existing condition and can be
only achieved when enough number of sensors are available,
which may be too strong for a realistic dissemination of
this technique in practice. A reasonable extension of the
PUID residual design is to make a compromise between the
robustness against the unknown input and the sensitivity to the
attacks, which means on the one hand, maximum the effect of
attacks on residuals ‖Gf‖, on the other hand, minimum ‖Gd‖,
where ‖·‖ denoted matrix norm.

In order to utilize parity space-based residual generation
method, the system (1) need to be written into following
discrete form:

ys(k) = Hosx(k − s) +Husus(k) (10)

where ys(k) =
[
y(k − s), y(k − s + 1), · · · , y(k)]T and

us(k) =
[
u(k−s), u(k−s+1), · · · , u(k)]T are past output and

input; Hos and Hus are known functions of system matrices
determined by matrices A, B and C. The residuals are then
defined as:

rs(k) = vs(ys(k)−Husus(k)) (11)

where vs 6= 0 is a vector which satisfies:

vsHos = 0 (12)

Hence, a parity relation-based residual generator is constructed
by:

rs(k) = vs(Hfsfs(k) +Hdsds(k)) (13)

where Hfs and Hds are impact coefficients from attacks and
disturbances to residuals.

Noticed that the design parameter of parity space-based
residual generator is the vector vs whose selection decisively
affects the performance of the residuals. In addition, it can
be seen from (13) that there is also a tradeoff between
the robustness against the disturbances and sensitivity to the
attacks. A natural way to improve the robustness of residual
against disturbances is to select vs wisely which aims to
on one hand maximizing ‖vsHfs‖, while on the other hand
minimizing ‖vsHds‖.

The main advantage of parity space-based residual gener-
ations over the observer-based approaches is that the design
can be carried out in a straightforward manner. However, it is
mainly applied to discrete time systems, due to the need of
past measurements and input data.

4) Binary hypothesis-based method: Binary hypothesis-
based method [67]–[69] is mostly used to detect malicious
attacks in multi-sensor networks, where the decision is made
by two steps.

First, the output of system is collected by N sensors. Based
on the observations, each sensor i makes a one-bit local

decision regarding the absence or presence of attack using
likelihood ratio test or energy detection scheme. After that,
the local decisions are sent to a central decision-making center
called Fusion Center (FC) [68].

Second, FC makes the final decisions about the states based
on all the information received from the participating sensors.
In this binary decision case, such a decision is often made by
a posteriori probability comparison which is given by:

r = P (H1|u)− P (H0|u) (14)

where H1 and H0 are two hypotheses which represent signal
is present and absent, respectively; u are local decisions; P
is probability function. No absent signal decision is made if
r > 0, otherwise, the signal is absent.

In addition, a simple scheme was proposed by Ankit in [69]
to identify the attacks, where a reputation metric of the i-th
sensor is defined as:

ni =

T∑
t=1

I(ui(t) 6=uo(t)) (15)

where I(·) is the indicator function of inconsistency; T
is sensing period; ui = [ui(1), ui(2), · · · , ui(T )] rep-
resent the local decisions forwarded by sensors; uo =
[uo(1), uo(2), · · · , uo(T )] represent the final decisions of the
FC. Then, sensors will be isolated or cut off from information
fusion process whose reputation metrics are greater than a
fixed threshold.

An interesting topic on this method is the optimal strategy
design for attackers and fusion centers using minimax game
theory approach. Here the objective of the fusion center is
to design the strategy to help obtain accurate detection and,
on the contrary, the attacker aims to deteriorate the detection
performance.

5) Model free detection scheme: Model free-based detec-
tion approached have also been introduced for monitoring at-
tacks in CPSs [31]–[33], [70]–[76]. These solutions generally
rely on machine learning or statistical mechanisms to infer a
model for the system under inspection directly from data. The
motivation behind considering such an approach comes from
the fact that some analytical models might not be accurate
enough [72].

In [73], a graph-based Auto-Regressive model was built
by time series measurement data under normal operating
conditions. With this graph, if the system measurement data
does not fit some (or all) of the relationships at some point,
then an attack is detected.

Two data mining methodologies: Artificial Neural Networks
[31], [70] and Support Vector Machine [71] were used to
detect potential system intrusions. In [70], 5-day data that
contains hundreds of megabytes with attacks were used to
training the ANN and SVM. Then attack can be detected
by the well trained network. In [74], He et al. exploited
deep learning techniques to recognize the behavior features of
attacks with the historical measurement data and employ the
captured features to detect the attacks in real-time. Moreover,
some attack detection approaches based on heuristic search
have been proposed on several research works. Related reports
can be found in [31]–[33].
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Although the machine learning method is a useful tool to
build a system model, it might introduce a heavy computa-
tional burden. Training a fully connected network in many
cases is very difficult [75]. In order to reduce the difficulties
of training neural networks, the reservoir computing method
is widely adopted in the literature. For example, in [75]
and [76], a reservoir computing-based method was proposed
by Hamedani to detect single attacks and stealth attacks,
respectively.

C. Attack Detection Against Actuator and Sensor Attack

Apart from attacks on the communication link, an adver-
sarial attacker may also hijack and compromise an actuator
and/or sensor network [77]. Therefore, reliable monitoring of
CPSs by implementing proper measures against actuator and
sensor attacks is of significant importance.

In order to provide security monitoring, secure state es-
timation, which aims to estimate the states from corrupted
measurements, has attracted considerable attention [78]. The
strategies of secure state estimation can be categorized into (i)
attack space search method [79]–[83]; (ii) convex relaxation
method and (iii) attack estimation method.

1) Attack space search method: This approach is a kind
of method which searches over all attack space combina-
tions [29]. Therefore, it is time consuming and may not be
practically feasible in real control systems. To reduce the
computation complexity, some search space reduction methods
were proposed based on set theory [80]–[82], satisfiability
modulo theory [83] and l0 optimization approach [84].

2) Convex relaxation method: Convex relaxation method
is another approach to estimate states by analyzing the sensor
measurements collected within a time window of finite length
[28]. This method can be categorized into l1/lr optimization
formulation [12], [85], [86] and projected gradient descent
algorithm [47]. A major drawback of this method is the
correctness may only be guaranteed under restrictive assump-
tions on the system structure. There is a tradeoff between
correctness estimation and computational complexity.

3) Attack estimation method: In addition, attack estimation
is an approach that aims at identifying the attacks and pro-
viding resilient state reconstructions [78], [87], [88]. In [78],
a secure Luenberger-like observer was proposed to estimate
the states and attacks from the corrupted measurements. Fur-
thermore, simultaneous unknown input and state estimation
method was proposed by Yong at al. in [87], [88] to realize a
resilient state estimation and attack mitigation.

It is worthy to known that the output signals are only
guaranteed to be reconstructible if a certain upper bound on
the number of attacked sensors is met [12], [29], [56], [89],
[90] . Therefore, a protection-based approach was proposed in
[91], [92] to prevent attacks by protecting measurements from
certain sensors. However, the state estimation could still be in
danger when the protection is penetrated by an attacker [93].

4) Watermarking method: Outside of the three categories
above, watermarking is another effective approach to detect
actuator attacks [94] and sensor attacks [56]. With this method,
judiciously designed excitation signals are superimposed on

the control commands to increase the detectability of the
actuator attack, which can be presented as:

uk = u∗k + ∆uk (16)

where u∗k is the optimal control signal; ∆uk is an authentica-
tion signal from Gaussian distribution with zero mean, which
is also called watermark signal; uk is new control signal. The
whole control system becomes more dynamic and converges
slowly after the introduction of ∆uk, thus giving more chances
for the detector to monitor the system.

Since the excitation signals act as additional disturbances
to the system, it should be designed as on one hand having
minimum effects on system performance and on the other
hand, increasing the effectiveness in detecting attacks. In
[95], a Hidden Markov Model (HMM) to select the statistical
properties associated with the watermark was provided based
on the tradeoff between desired detection performance and
allowable control performance loss.

D. Attack Detection for Nonlinear Systems

In the real world, many industrial processes involve nonlin-
ear properties due to their characteristics and external environ-
ment, which make the detection more challenging compared
with linear systems. Recently, a variety of attack detection
approaches have been developed for nonlinear systems.

1) Iterative state estimation: Iterative algorithms can be
used in the state estimation for nonlinear systems [96], [97],
where the system is linearized in each step. Similarly to (5),
the state estimation can be obtained by solving the following
optimization problem:

minF (x) = (z−H(x))T ·W · (z−H(x)) (17)

where H is the Jacobian matrix of h(x). Details of solution
algorithm can be found in [97], [98].

2) Kalman Filter-based method: A couple of modified
Kalman Filter techniques have been constructed regarding at-
tack detection in nonlinear systems, such as Extended Kalman
Filter (EKF) [57], [99] and Unscented Kalman Filter (UKF)
[100], [101]. EKF is an extension of KF where the system
is linearized at each time step around the current operating
mean and covariance. While UKF utilizes a series of sample
data to approximate the probability density function to achieve
a state estimation [102]. It was pointed out in [103] that UKF
can achieve a high accuracy than EKF, as without the need to
linearize the nonlinear equation.

3) Observer-based method: Observer-based method also
plays a key role in attack detection of nonlinear systems in
which the nonlinear part is modeled as system disturbance
[104]–[107]. Therefore, the nonlinear function can be de-
coupled from the system. In [104], by means of proposed
extended state observer, the states and total disturbances which
involve both nonlinear dynamics and attacks were estimated.
In addition, a nonlinear UIO was adopted in [105] to deal with
the nonlinear term. In [106], a mode estimator was provided to
estimate the states and attack vectors for a switched nonlinear
system. In [107], a H∞ filter was constructed for a T-S fuzzy-
model-based nonlinear system.
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Noticed that a common step of above mentioned method
is to estimate or observe the states. Therefore, it is worthy to
point out that χ2 testing method can also be adopted if the
system states are well estimated [93].

E. Attack Detection in the Presence of Noise

When taking into account the practical implementation,
noise generated by sampling and actuation jitters and synchro-
nization errors between system components usually presents in
the systems [108]–[110]. The techniques considering systems
without noise might not guarantee the effectiveness in systems
with noise, which leads to the research on resilient state
estimation methods [111].

Modified Kalman Filter is a well known approach for attack
detection in systems with noise. In [101], an adaptive UKF
was used for systems with Gaussian white noise. In terms
of systems with stochastic noise, a multiple-model approach
was adopted in [112] to estimate the hidden nodes of systems.
Furthermore, a Mode Matched Filter was proposed in [109],
[113] for systems in the presence of stochastic noise signals.

In addition, for systems with bounded noise, a novel robust
filtering algorithm was proposed in [86] by Yong et al.
considering the resilient state estimation problem that is robust
to bounded multiplicative and additive modeling and noise
errors. In [114], a H∞ observer was provided for attack
detection in the systems with bounded noise. Furthermore, a
Luenberger-like observer was designed in [47] to make a state
reconstruction under systems with sensor noise. In addition,
system noise was filtered in [115] by means of a machine
learning algorithm after analyzing the residual vectors both in
time and frequency domains.

F. Discussion

State estimation is one approach to detect cyber-attacks.
However, it may fail when detecting some intelligent attacks,
where the false data might be consistent with the detection
mechanism. Therefore, residuals should be carefully designed
when considering the stealthy attacks. Similar to state estima-
tion method, FDI approaches can also be adopted to monitor
the systems with the help of proper designed observers and
residuals. χ2 detector is another approach to detect random
attacks. However, it needs extra improvement in the case where
the distribution of attack is unchanged. Binary hypothesis-
based detection method is a kind of voting schemes, which
leverages the potential presence of redundant sensors to detect
attacks. Thus, it can only be used in multi-sensor systems.
Model free method mainly detects system attacks based
on data-driven modeling methods. Therefore, methodologies
should be carefully adopted to build a reliable model. In
addition, [116] is pointing out that information provided by
current sensors may not be sufficient to estimate the states of
the system irrespective of what method is used when there
are inconsistencies between the process model and the states
of the controlled process. Secure state estimation, which aims
at estimating states from compromised sensors, is a useful
approach to monitor actuator and sensor attacks. Furthermore,

the attack can be identified and mitigated by the attack esti-
mation method. In terms of nonlinear systems, the states can
be monitored with modified state estimation approaches either
by linearizing or nonlinear decoupling methods. In addition,
various modified KF methods can be employed in systems
with noise as well as discrete systems.

IV. DISTRIBUTED CONTROLLERS

A. System Statement

System with distributed controllers can be described as:
ẋi(t) = Aixi(t) +Biui(t) + Eidi(t)

+Rifi(t) +
∑

j∈Ni

Aijxj(t)

yi(t) = Cixi(t)

(18)

where i = 1, 2, · · · , N ; xi(t), ui(t), yi(t), di(t), and fi(t)
are the state vectors, the input and output of system, external
disturbances and attacks respectively; Ai, Bi, Ci, Ei, and
Ri are system matrices with proper dimensions; Aij(t) is
the coupling component among different systems; Ni is the
neighbor of agent i. Comparing (1) with (18), the main
difference between centralized and distributed controllers is
the introduction of the coupling effect [117]–[122]. Therefore,
the attack detection strategies should be robust not only
against disturbances and measurement noises but also against
incomplete measurements. The lack of knowledge of the
distributed controller is the main challenge in the design of
attack detection algorithms.

B. Attack Detection Design

Traditional attack detection schemes may not be applied to
distributed systems, since not all measurements are available
in distributed controllers. Generally, how to deal with the
coupling component becomes the subject in the design of
attack detection process.

1) Centralized method: The idea behind centralized method
is to collect data from all nodes. Therefore, every distributed
controller may have global measurements.

For instance, a design scheme for distributed control sys-
tems using a bank of observers was developed in [122], where
each observer contains the model of the entire system. The
system can be represented as follows:

{
ẋ(t) = Ax(t) +Bu(t) + Ed(t) +Rf(t)
y(t) = Cx(t)

(19)

where x(t) = [x1(t), x2(t), · · · , xN (t)]T are system states;
u(t) = [u1(t), u2(t), · · · , uN (t)]T are system control in-
put; y(t) = [y1(t), y2(t), · · · , yN (t)]T are system output;
d(t) = [d1(t), d2(t), · · · , dN (t)]T are system disturbances
and f(t) = [f1(t), f2(t), · · · , fN (t)]T are system attacks. The
matrices can be written as:

A =

A11 · · · A1N

...
. . .

...
AN1 · · · ANN

 , C =

C1 · · · 0
...

. . .
...

0 · · · CN

 ,
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B =

B1

...
BN

 , E =

E1

...
EN

 , R =

R1

...
RN


By turning a distributed system into a centralized system,

many centralized attack detection techniques mentioned in
section III can be used here. However, this imposes a strict and
heavy computational burden on each of the network nodes,
especially when N is very large [118]. Thus, in order to
detect the attack accurately, more effort should be put on the
decoupling of states from its neighbors.

2) Singular value decomposition: Distributed attack detec-
tion can be achieved by Singular Value Decomposition (SVD)
approach [118]–[120]. Taking advantage of SVD approach,
(19) can be decoupled by following N isolated systems:

x̂cli = Âixcli + B̂iûi + Êid̂i + R̂if̂i (20)

where x̂cli, ûi, d̂i, f̂i, Âi, B̂i, Êi, and R̂i are linear transfor-
mations of x, ui, di, fi, Ai, Bi, Ei, and Ri respectively.

It is shown that by applying the decomposition approach the
attack detection problem of distributed systems can be solved
by analyzing the problem of a set of decoupled systems (20),
whose order and complexity are equal to that of a single agent.
Then different attack detection methods could be designed
based on the decoupled system.

3) Fault detection and identification method: Similarly, the
FDI method can also be adopted to eliminate the influence
of the coupling effect. The standard way is to consider the
coupling effect as an unknown input, where the system model
could be cast as:{

ẋi(t) = Aixi(t) +Biui(t) + Ēid̄i(t) +Rifi(t)
yi(t) = Cixi(t)

(21)

where Ēid̄i(t) = Eidi(t) +
∑

j∈Ni
Aijxj(t) is the combina-

tion of system disturbances and coupling effect of a distributed
system.

Unknown Input Observer-based attack detection is the most
adopted FDI approach in the literature, thanks to its explicit
structure and design method [30], [58]–[62]. The typical
structure of UIO is given by:{

żi(t) = Fizi(t) + TiBiui(t) +Kiyi(t)
x̂i(t) = zi(t) +Hiyi(t)

(22)

where Fi, Ti, Ki, and Hi are matrices to be designed.
The residuals can be presented as:

ri(t) = xi(t)− x̂i(t) (23)

Thus, the attack could be detected by comparing residuals
(23) with a certain threshold. In order to design a UIO which
converges to the actual value of the states, normally the system
dynamics need to satisfy the following sufficient conditions
[123]–[125]:

(i). Rank(CiEi) = Rank(Ei);
(ii). The pair (Ci, TiAi) is detectable.
With these two conditions, feasibility of UIO should be

considered in the designing processes.
In [61], Shames et al. gave a framework of distributed FDI

scheme considering a double integrator dynamic system that

fits some problems on power networks and distributed robotic
systems. UIO can be always feasible in the proposed structure
which is presented as follows:{

ξ̇i(t) = ζi(t)

ζ̇i(t) = ui(t) +mi(t)
(24)

where mi(t) are scalar known disturbances; ξi(t) and ζi(t)
are the scalar states; ui(t) are control input given by:

kiui(t) = −li(t)ζi(t) +
∑
j∈Ni

ωij(ξi(t)− ζi(t)) (25)

where ki, li, ωij > 0 for i, j = 1, · · · , N .
4) Iteration method: Furthermore, Dörfler and Pasqualetti

proposed a new decoupling method for the distributed sys-
tems in [29], [121] using waveform relaxation methods. The
proposed iteration form of observer can be presented as:


Mi

˙̂x
(k)
i (t) = (Ai +GiCi)x̂

(k)
i (t)−Giyi(t)

+
∑

j∈Ni

Aij x̂
(k−1)
j (t)

ri(t) = yi(t)− Cix̂
(k)
i (t)

(26)

where k ∈ N denotes the iteration index; t ∈ [0, T ] is the
integration interval for some uniform time horizon T > 0;
x̂i(t) are the i-th estimates of xi(t) and output injection Gi is
such that the pair (Mi, Ai +GiCi) is regular and Hurwitz.

The system can be monitored by performing the following
operations:

(i). Assuming k = 0 at start;
(ii). Set k = k+1, and compute signal x̂(k)i (t) by integrating

the local filter (26);
(iii). Transmit x̂(k)i (t) to the j-th neighboring control center;
(iv). Update the input x̂(k)j (t) with the signal received from

the j-th control center and go to (ii).
For k sufficiently large, the local residuals can be used for

attack detection purposes.

C. Discussion

The main challenge in distributed attack detection comes to
the fact that not all measurements are available for distributed
controllers. More attention should by paid on the decouple of
distributed systems. The centralized detection method has the
feature of easy implementation. However, it is computational
and may not be used in large-scale systems. Distributed
detection can be realized by means of a singular value decom-
position approach. Nevertheless, the computational complexity
of SVD method also increases along the rising of distributed
units, due to the needs to decompose the entire system. FDI
based detection methods also play a role in distributed attack
detection approaches, where neighboring states can be seen as
an external disturbance. However, the feasibility of observers
needs to be concerned in the designing process. The iteration
method is an approach with less computational complexity.
The limitation of this approach is the need for synchronous
discrete time communication between neighboring controllers.
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V. POTENTIAL RESEARCH DIRECTIONS AND
CONCLUSIONS

A. Potential Research Directions

Attack detections on CPSs are an ongoing research topic,
many new methodologies and results are required to meet
various requirements in applications. Some potential research
directions are suggested and listed as follows:

1) Distributed attack detection: Most of the existing results
on attack detection methods in the literature are based on a
centralized structure. However, the distributed control system
becomes popular in recent years due to their lower computa-
tional complexity and the use of fewer network resources [61],
[118]–[120], [122]. Due to the fact that a centralized detection
method might not be used in a distributed system. Attack de-
tection approaches for the distributed systems deserve further
investigated.

2) Multi-attack detection: In real scenarios, multiple sen-
sors or communication links might be attacked at the same
time [12], [85], especially in the case where a large number
of sensors are considered. However, most attack detection
methods assume the single attack hypothesis in the system.
Although methodologies based on multi-attack detection are
of significant engineering importance, this research field still
remains a number of challenges.

3) Scalable attack detection: Currently, attack detection
methods have been studied in-depth for a single common
system. However, those methods are undesirable for large scale
cyber-physical systems due to high computational resources
and communication bandwidth limitations [80]–[82], [118].
Therefore, scalability should be also considered in the design
of attack detection algorithms. Order reducing approach may
be a guide for such a system.

4) Detection of other attacks: Most existing literature only
provide methods which are able to detect one specific kind
of attack. However, they might not work against other types
of attacks. For example, a well designed detection method
for DoS attack may be ineffective for replay attack [55].
Therefore, the design of algorithms that can deal with various
kinds of attack is of extremely importance.

B. Conclusions

A brief overview of recent developments on attack de-
tection for cyber-physical systems has been presented. The
controllers of different CPSs are divided into centralized
and distributed controllers based on the knowledge of en-
tire system. Specifically, existing centralized attack detection
methodologies for LTI systems, sensor and actuator attack
detection techniques, nonlinear systems and systems with
noise are reviewed, respectively. Furthermore, attack detection
approaches for distributed controllers have been surveyed
following centralized method, singular value decomposition
method, fault detection and identification method and iteration
approach. Several potential research directions are discussed in
terms of distributed attack detections, multi-attack detections,
scalable attack detections and detections of other attacks.
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