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NON-FRAGILE ESTIMATION FOR DISCRETE-TIME T–S
FUZZY SYSTEMS WITH EVENT-TRIGGERED PROTOCOL

Fei Han, Wei Gao, Hongyu Gao and Qianqian He

This paper investigates the non-fragile state estimation problem for a class of discrete-
time T–S fuzzy systems with time-delays and multiple missing measurements under event-
triggered mechanism. First of all, the plant is subject to the time-varying delays and the
stochastic disturbances. Next, a random white sequence, the element of which obeys a general
probabilistic distribution defined on [0, 1], is utilized to formulate the occurrence of the missing
measurements. Also, an event generator function is employed to regulate the transmission
of data to save the precious energy. Then, a non-fragile state estimator is constructed to
reflect the randomly occurring gain variations in the implementing process. By means of the
Lyapunov–Krasovskii functional, the desired sufficient conditions are obtained such that the
Takagi–Sugeno (T–S) fuzzy estimation error system is exponentially ultimately bounded in the
mean square. And then the upper bound is minimized via the robust optimization technique
and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to
demonstrate the effectiveness of the state estimation scheme proposed in this paper.

Keywords: Takagi–Sugeno fuzzy system, exponentially ultimately boundness, non-fragile
estimation, robust optimization

Classification: 93B35, 93C42, 93E10, 93E11

1. INTRODUCTION

Over the past half century, the nonlinear systems have received great concern due to the
fact that nonlinearity is ubiquitous in practical world. One interesting idea is to linearize
the nonlinear system globally through linearization feedback, but the method is not so
adaptable that it can only be performed in a finite class of nonlinear systems; another is
to linearize the nonlinear system in a small range around a certain working point, and
the resulting linear system is to be analyzed. Unfortunately, when the system is far from
the operating point, it is difficult to ensure the desired performance. To address these
challenges, the fuzzy logic models [35] have been proposed to be an effective approach to
dealing with the complex nonlinear systems, which could approximate smooth nonlinear
systems to specified accuracy with compact set. Based on the local linearity, many
complex nonlinear systems can be represented by T–S fuzzy models. As a result, there
witnessed a rapidly growing interest in T–S fuzzy systems and many important results
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have been available, such as the stability and stabilization problems [18, 24], the control
problem [12, 33, 45, 48] and the filtering problem [27, 25, 40, 41, 42, 43].

It is usually assumed that the estimator/filter to be designed can be accurately im-
plemented to achieve the desirable performance index. Unfortunately, in complex indus-
trial production processes, there are many unavoidable interference factors, such as the
analog-to-digital conversion calculations, the finite word-length, and component aging or
damaging, etc. These factors would cause unavoidable impact on the filter parameters
during implementation [17, 39]. Sometimes even small changes of the filter parameters
can result in the degradation of the estimation performance or even the collapse of the
estimator. Therefore, many scholars have begun to study how to design the estimator
to maintain the stability of the corresponding closed-loop system when the parameters
change within a certain range, but still meeting the corresponding performance require-
ments. This is the non-fragile estimator, which has been studied in [16, 17, 30, 36, 39, 43].
Among them, a design method of non-fragile filter has been investigated in [16] for uncer-
tain systems with stochastic uncertainties and incomplete measurements. A non-fragile
filter has been designed in [36] for discrete time-delayed neural networks with parameter
uncertainties. A non-fragile H∞ filter with randomly occurring gain variations has been
studied in [17] for a class of time-delay fuzzy systems. Different from [17, 36], the upper
bound of performance index involve the parameter uncertainties due to the introduction
of the non-fragile filter. As such, the robust optimization technique needs to be utilized
to optimize the uncertain upper bound.

As is well known, various networked-induced phenomena could degrade the perfor-
mance of the system or deteriorate the execution accuracy of designed estimator without
enough careful consideration [47]. In the past years, a number of investigation results
have been published, such as the communication delays [15, 28, 29, 44], missing mea-
surements [22, 23, 26, 37] and data packet dropouts [42]. For example, H∞ filtering
problem has been investigated in [37] for a class of discrete-time networked systems
with randomly occurring distributed state delays. The distributed H∞ filtering problem
has been studied on T–S fuzzy system in [42], where the uncertain packet dropout rate
is considered. It is worth mentioning that there exists only a small number of reported
results associated with the T–S fuzzy system with networked-induced phenomena, com-
pared with the rich literature on results for networked control systems. According to our
investigations, it is due primarily to the complexity and difficulty from the T–S fuzzy
system itself.

Nowadays, the utilization of the event-triggered protocol has become more and more
popular in the networked control areas [2, 5, 6, 8, 7, 13, 20, 21, 38, 27, 34, 31]. Only when
a certain condition of the event generator function is satisfied, data transmission can
be allowed to the filters/estimators. Compared with the traditional data transmission,
the event-triggered communication protocol may reduce the network resource occupancy
due to discarding a part of measurements in the transmission and sacrificing a certain of
performance. The distributed H∞ state estimation problem has been studied for a class
of state-saturated systems with randomly occurring mixed delays in [20]. As special
event-triggered protocols, the Round-Robin protocol has been introduced to study the
output-feedback control problem in [5] and distributed filtering problem in [1]. Moreover,
the weighted Try-Once-Discard protocol has been employed to investigate the fusion
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estimation problem in [32]. Clearly, the introduction of event-triggering protocol would
deteriorate the system performance. Unfortunately, it is not directly reflected in the
mentioned references. Moreover, the non-fragile state estimation problem of T–S fuzzy
systems under the event-triggered mechanism has not been well investigated. These
problems inspired us to explore the answers in this paper.

As stated above, a larger number of results has been reviewed on the state estimation
problems for the T–S fuzzy systems. It is worth noting that, little attention has been
posed on the estimation problem with both event-triggered protocols and missing mea-
surements. For this purpose, in this paper, we focus on the non-fragile state estimation
problem for a class of T–S time-delay fuzzy systems with event-triggered protocols and
successive missing measurements. The main contributions of this paper are summarized
as follows:

1) the non-fragile state estimation problem is investigated for a class of time-delayed
fuzzy systems with Gaussian white noises and event-triggered protocols;

2) sufficient conditions are constructed by means of the intensive stochastic analysis
techniques to guarantee the desired exponentially ultimately bounded in mean
square;

3) the desirable upper bound in the performance index is minimized by utilizing the
robust optimization method.

Notation: The notation used here is fairly standard except where otherwise stated. Rn
denotes the n dimensional Euclidean space, Rm∗n denotes the set of all real matrices
with dimension m ∗ n. The superscript “T” stands for matrix transposition. I and
0 represent the Identity matrix and zero matrix, if no confusion is caused. P > 0
means that matrix P is real symmetric and positive definite; ‖A‖ refers to the norm of
a matrix A defined by ‖A‖2 = trace(ATA). In symmetric block matrices or complex
matrix expressions, an aster risk (∗) is employed to represent a term that is induced by
symmetry, and diag{. . .} stands for a block-diagonal matrix. In addition, E{x} denote
expectation of the stochastic variable x. Prob{·} means the occurrence of the event “ ·”.
If matrices A and B have the same dimensions, A ◦ B denotes the Hadamard product,
where [A ◦ B]ij = [Aij · Bij ]. Vectm[xt] refers to such a column vector [x1 . . . xm]T .

diagm{P} , diag{P, . . . , P︸ ︷︷ ︸
m

}. Matrices, if their dimensions are not explicitly stated, are

assumed to be compatible for algebraic operations.

2. PROBLEM FORMULATION AND PRELIMINARIES

Consider a class of discrete-time T–S fuzzy time varying time-delay system with stochas-
tic noises:

Plant Rule i. If θ1(k) is Mi1 and θ2(k) is Mi2 and . . . and θr(k) is Mir, then
x(k + 1) = Aix(k) +Bix(k − τ(k)) +D1iω(k),

z(k) = Lix(k),

x(k) = φ(k),∀k ∈ Z−, i = 1, . . . , r,

(1)
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where Mij is the fuzzy model, r is the number of If-then rules, θ(k) = [θ1(k), θ2(k), . . .
. . . , θr(k)] is the premise variable vector, x(k) ∈ Rn represents the state vector, ω(k) ∈
Rp is a zero-mean Gaussian white noise sequence on a probability space (Ω,F ,P),
E{ω(k)ωT (k)} = Q = diag{q21 , . . . , q2p} (ql > 0, l = 1, . . . , p), z(k) ∈ Rl is the inter-
ested output vector, and τ(k) denotes the time-varying time-delay. Ai, Bi, D1i and Li
are known constant matrices with compatible dimensions. φ(k)(k ∈ Z−) is the random
initial state satisfying supk∈Z− E{‖φ(k)‖2} <∞.

The time-varying delay τ(k) satisfies

τmin 6 τ(k) 6 τmax (2)

where τmin and τmax are constant positive integers representing the lower and upper
bounds on the time-delay, respectively.

In this paper, the measurement output with multiple missing measurements is de-
scribed as

y(k) =ΞCix(k) +D2iω(k)

=

m∑
l=1

βlCilx(k) +D2iω(k)
(3)

where y(k) ∈ Rm is the actual measurement signal of (1), Ξ := diag{β1, . . . , βm} with
βl(l = 1, 2, . . . ,m) being m uncorrelated random variables, Ci, D2i and Cil are known
matrices with compatible dimensions, and Cil := diag{0, . . . , 0︸ ︷︷ ︸

l−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−l

}Ci. It is as-

sumed that βl has the probabilistic density function pl(s)(l = 1, 2, . . . ,m) on the interval
[0, 1] with mathematical expectation µl and variance δ2l (δl > 0,∀l). Note that βl could
satisfy any discrete probabilistic distribution on the interval [0, 1], which can cover the
widely used Bernoulli distribution. In the sequel, denote Ξ̄ = E{Ξ} and Ξ̃ = Ξ− Ξ̄, one

then has E{Ξ̃} = 0 and Var{Ξ̃} = Ξ̂, and

Ξ̄ = diag{µ1, . . . , µm}, Ξ̂ = diag{δ21 , . . . , δ2m}.

According to the above formulation, the T–S fuzzy system to be considered is sum-
marized as follows:

x(k + 1) =

r∑
i=1

hi(θ(k))[Aix(k) +Bix(k − τ(k)) +D1iω(k)],

y(k) =

r∑
i=1

hi(θ(k))[ΞCix(k) +D2iω(k)],

z(k) =

r∑
i=1

hi(θ(k))Lix(k)

(4)

where the fuzzy basis function are given by

hi(θ(k)) =
υi(θ(k))
r∑
i=1

υi(θ(k))
, υi(θ(k)) =

r∏
j=1

Mij(θj(k))
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with Mij(θj(k)) representing the grade of membership of θj(k) in Mij . Here, υi(θ(k))
has the following basic properties:

υi(θ(k)) > 0, i = 1, 2, . . . , r,

r∑
i=1

hi(θ(k)) > 0,

and therefore

hi(θ(k)) > 0, i = 1, 2, . . . , r,

r∑
i=1

hi(θ(k)) = 1.

In what follows, define hi := hi(θ(k)) for brevity.
In order to decrease the energy consumption, the well-known event-triggered protocol

is introduced in this paper. Next, define an event generator function with the following
type:

ψ(y(k), y(kt), λ) = (y(k)− y(kt))
TΩ(y(k)− y(kt))− λ (5)

where kt is the latest triggered time up to the current sampling instant k, Ω is a given
symmetric positive definite weighting matrix, and λ is a positive adjustable threshold
which determines the triggered frequency. Based on (5), the measurement output will
be transmitted to the corresponding estimator if and only if ψ(y(k), y(kt), λ) > 0.

Denote the triggering instant series as S0 < S1 < S2 < . . . < Sm < Sm+1 < . . ., and
kt = Sm when k ∈ [Sm, Sm+1). As such, the triggered time instant can be determined
iteratively as

Sm+1 = min {k|k > Sm, ψ(y(k), y(kt), λ) > 0} . (6)

In this paper, the following fuzzy non-fragile estimator is constructed for the fuzzy
system (4):

Estimator Rule i: If θ1(k) is Mi1 and θ2(k) is Mi2 and . . . and θr(k) is Mir, then{
x̂(k + 1) = (Afi + ∆Ai(k))x̂(k) + (Ki + ∆Ki(k))(y(kt)− Ξ̄Cix̂(k)),

ẑ(k) = Lix̂(k)
(7)

where x̂(k) ∈ Rn is the estimation, Afi and Ki are the estimator gain matrices to be
determined, and the time-varying matrices ∆Ai(k) and ∆Ki(k) represent norm-bounded
parameter uncertainties that satisfy constraints:

∆Ai(k) = HiFi(k)Na, ∆Ki(k) = HiFi(k)Nk (8)

where Hi, Na and Nk are known constant matrices with appropriate dimensions, and
Fi(k) are unknown matrices satisfying

FTi (k)Fi(k) 6 I. (9)
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Remark 2.1. Sometimes, the estimator to be designed can not achieve the desirable
design objective due to many unavoidable interference factors in complex industrial
production processes, which would cause unavoidable adverse impact on the estimator
parameters during implementation. To resist these adverse impacts, it is very necessary
to allow a certain of variation range of the estimator gains. For this purpose, the well-
known norm-bounded parameter uncertainties are employed to formulate the allowable
range. This type of estimators is called as the non-fragile estimator [16, 17, 36, 43]. In
addition, random variables with known expectations and variances can also be utilized
to characterize the allowable range. This type of estimators is called as the resilient
estimator [14, 30, 39].

Define ρ(k) = y(kt)− y(k), which is the difference of the measurements between the
latest triggered instant and the current sampling instant. Then, the event triggered
function (5) can be rewritten as

ψ(ρ(k), y(k), λ) :=ρT (k)Ωρ(k)− λ. (10)

Moreover, the estimator (7) can be reformulated as
x̂(k + 1) =

r∑
i=1

hi[(Afi + ∆Ai(k))x̂(k) + (Ki + ∆Ki(k))(y(k) + ρ(k)− Ξ̄Cix̂(k))],

ẑ(k) =

r∑
i=1

hiLix̂(k).

(11)
Letting e(k) = x(k)−x̂(k) and ze(k) = z(k)−ẑ(k), from (6), (7) and (8), the following

estimation error dynamics can be obtained:

e(k + 1) =

r∑
i,j=1

hihj [(Afj −KjΞ̄Cj)e(k) + (∆Aj(k)−∆Kj(k)Ξ̄Cj)e(k)

+ (Ai −Afj −KjΞ̄(Ci − Cj))x(k)

− (∆Aj(k) + ∆Kj(k)Ξ̄(Ci − Cj))x(k)

− (Kj + ∆Kj(k))ρ(k)− (Kj + ∆Kj(k))Ξ̃Cix(k)

+ (D1i − (Kj + ∆Kj(k))D2i)ω(k) +Bix(k − τ(k))],

ze(k) =

r∑
i,j=1

hihj [Lje(k) + (Li − Lj)x(k)].

(12)

Then, let η(k) = [xT (k) eT (k)]T . From (1) and (12), one can get an augmented system:

η(k + 1) =

r∑
i,j=1

hihj [(Aij + ∆Aij(k))η(k) + B̄iη(k − τ(k)) + (K̄j + ∆K̄j(k))Ξ̃C̄iη(k)

+ (Dij + ∆K̄ij(k))ω(k) + (K̄j + ∆K̄j(k))ρ(k)],

ze(k) =

r∑
i,j=1

hihjL̄ijη(k)

(13)
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where

Aij =

[
Ai 0

Ai −Afj −KjΞ̄(Ci − Cj) Afj −KjΞ̄Cj

]
, B̄i =

[
Bi 0
Bi 0

]
,

∆Aij(k) =

[
0 0

−∆Aj(k)−∆Kj(k)Ξ̄(Ci − Cj) ∆Aj(k)−∆Kj(k)Ξ̄Cj

]
,

Dij =

[
D1i

D1i −KjD2i

]
, K̄j =

[
0
−Kj

]
, ∆K̄j(k) =

[
0

−∆Kj(k)

]
,

L̄ij =

[
Li 0

Li − Lj Lj

]
, ∆K̄ij(k) =

[
0

−∆Kj(k)D2i

]
, C̄i =

[
CTi
0

]T
.

In the following, the definition of exponentially ultimately bounded is presented.

Definition 2.2. The estimation error dynamics (13) are said to be exponentially ulti-
mately bounded in mean square if there exist scalars δ > 0, σ > 0 and α ∈ (0, 1) such
that

E{‖ze(k)‖2R} ≤ δαk + σ (14)

where α is called the decay rate and σ is the asymptotic upper bound of E{‖ze(k)‖2R}.

To this end, our aim in this paper is to deal with the non-fragile estimation problem
of the fuzzy system (4) with admissible time-delays and missing measurements under the
event-triggered schedule. In the other words, the target is to design the estimator of the
form (7) such that the augmented estimating error dynamics is exponentially ultimately
bounded in mean square.

3. MAIN RESULTS

Before giving our main results, some useful lemmas are firstly presented.

Lemma 3.1. (Guan and Chen [12]) For any real matrices Xij for i, j, s, t = 1, 2, . . . , r
and Λ > 0 with appropriate dimensions, we have

r∑
i,j,s,t=1

hihjhshtX
T
ijΛXst ≤

r∑
i,j=1

hihjX
T
ijΛXij . (15)

Next, a set of sufficient conditions is provided in the following theorem, which ensures
the existence of an exponentially ultimately bounded state estimator in mean square for
the T–S fuzzy system (4).

Theorem 3.2. Consider the T–S fuzzy system (4) with given estimator parameters.
Let a constant γ ∈ (0, 1), the estimator gains K̄j , positive definite matrix R > L̄TijL̄ij
be given. The estimation error dynamics (13) is exponentially ultimately bounded in
mean square if there exist positive definite matrices P > R and Q > 0 , and two positive
scalars νij and λij such that the following inequalities hold for any i and j:

Πij =

 Π11
ij Π12

ij Π13
ij

∗ Π22
ij Π23

ij

∗ ∗ Π33
ij

 < 0 (16)
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where

Π11
ij =(Aij + ∆Aij(k))TP (Aij + ∆Aij(k))− (1− γ)P + (τmax − τmin + 1)Q

+ C̄Ti 1Tm×m[(K̄j + ∆K̄j(k))TP (K̄j + ∆K̄j(k)) ◦ Ξ̂]1m×mC̄i,

Π12
ij =(Aij + ∆Aij(k))TPB̄i, Π13

ij = (Aij + ∆Aij(k))TP (K̄j + ∆K̄j(k)),

Π22
ij =B̄Ti PB̄i − (1− γ)τmaxQ, Π23

ij = B̄Ti P (K̄j + ∆K̄j(k)),

Π33
ij =(K̄j + ∆K̄j(k))TP (K̄j + ∆K̄j(k))− νijΩ,

δ =E{ηT (0)Pη(0) +

−1∑
l=−τ(0)

(1− γ)−l−1ηT (l)Qη(l)

+

−τmin∑
m=−τmax+1

−1∑
l=m

(1− γ)−l−1ηT (l)Qη(l)},

σij =
1

γ
(1Tp×1[Φij ◦Q]1p×1 + νijλ),

Φij =DT
ij(P

−1 − λ−1ij NiN
T
i )−1Dij + λijHTj Hj ,

Ni =

[
0

NkD2i

]
.

P r o o f . Construct the following Lyapunov–Krasovskii functional:

V (k) = V1(k) + V2(k) + V3(k) (17)

where

V1(k) = ηT (k)Pη(k),

V2(k) =

k−1∑
l=k−τ(k)

(1− γ)k−l−1ηT (l)Qη(l),

V3(k) =

k−τmin∑
m=k−τmax+1

k−1∑
l=m

(1− γ)k−l−1ηT (l)Qη(l).

Computing the expectation of the difference of Vi(k) (1 ≤ i ≤ 3) along the trajectory of
(13), one obtains via Lemma 3.1

E{V1(k + 1)− V1(k)}

=E
{ r∑
i,j,s,t=1

hihjhsht

[
(Aij + ∆Aij(k))η(k) + B̄iη(k − τ(k)) + (K̄j + ∆K̄j(k))ρ(k)

+ (K̄j + ∆K̄j(k))Ξ̃C̄iη(k) + (Dij + ∆K̄ij(k))ω(k)

]T
P

[
(Ast + ∆Ast(k))η(k)

+ B̄sη(k − τ(k)) + (K̄t + ∆K̃t(k))ρ(k) + (K̄t + ∆K̄t(k))Ξ̃C̄sη(k)
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+ (Dst + ∆K̄st(k))ω(k)

]
− ηT (k)Pη(k)

≤
r∑

i,j=1

hihj

[
(Aij + ∆Aij(k))η(k) + B̄iη(k − τ(k)) + (K̄j + ∆K̄j(k))ρ(k)

]T
P

×
[
(Aij + ∆Aij(k))η(k) + B̄iη(k − τ(k)) + (K̄j + ∆K̄j(k))ρ(k)

]
− ηT (k)Pη(k)

+
r∑

i,j=1

hihjE{ηT (k)C̄Ti Ξ̃T (K̄j + ∆K̄j(k))TP (K̄j + ∆K̄j(k))Ξ̃C̄iη(k)}

+

r∑
i,j=1

hihjE{ωT (k)(Dij + ∆K̄ij(k))TP (Dij + ∆K̄ij(k))ω(k)}. (18)

According to the proposition 1 in [13], one has

E{ηT (k)C̄Ti Ξ̃T (K̄j + ∆K̄j(k))TP (K̄j + ∆K̄j(k))Ξ̃C̄iη(k)}

=ηT (k)C̄Ti 1Tm×m[((K̄j + ∆K̄j(k))TP (K̄j + ∆K̄j(k))) ◦ E{Ξ̃Ξ̃T }]1m×mC̄iη(k)

=ηT (k)C̄Ti 1Tm×m[((K̄j + ∆K̄j(k))TP (K̄j + ∆K̄j(k))) ◦ Ξ̂]1m×mC̄iη(k), (19)

and

E{ωT (k)(Dij + ∆K̄j(k))TP (Dij + ∆K̄j(k))ω(k)}
=1Tp×1[(Dij + ∆K̄ij(k))TP (Dij + ∆K̄ij(k)) ◦Q]1p×1

= : 1Tp×1[Φ̄ij ◦Q]1p×1 (20)

where Φ̄ij = (Dij + ∆K̄ij(k))TP (Dij + ∆K̄ij(k)).
Subsisting (19) and (20) into (18), one has

E{V1(k + 1)− V1(k)}

≤
r∑

i,j=1

hihj

[
(Aij + ∆Aij(k))η(k) + B̄iη(k − τ(k)) + (K̄j + ∆K̄j(k))ρ(k)

]T
× P

[
(Aij + ∆Aij(k))η(k) + B̄iη(k − τ(k)) + (K̄j + ∆K̄j(k))ρ(k)

]
+

r∑
i,j=1

hihjη
T (k)C̄Ti 1Tm×m[((K̄j + ∆K̄j(k))TP (K̄j + ∆K̄j(k))) ◦ Ξ̂]1m×mC̄iη(k)

− ηT (k)Pη(k) +

r∑
i,j=1

hihj1
T
p×1[Φ̄ij ◦Q]1p×1.

Also, one can calculate

E{V2(k + 1)− V2(k)}
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= E
{ k∑
l=k+1−τ(k+1)

(1− γ)k−lηT (l)Qη(l)−
k−1∑

l=k−τ(k)

(1− γ)k−l−1ηT (l)Qη(l)

}

= ηT (k)Qη(k) +

k−τ(k)∑
l=k+1−τ(k+1)

(1− γ)k−lηT (l)Qη(l) +

k−1∑
l=k+1−τ(k)

(1− γ)k−lηT (l)Qη(l)

−
k−1∑

l=k−τ(k)

(1− γ)k−l−1ηT (l)Qη(l)− (1− γ)τ(k)ηT (k − τ(k))Qη(k − τ(k))

≤ −γV2(k) + ηT (k)Qη(k)− (1− γ)τmaxηT (k − τ(k))Qη(k − τ(k))

+

k−τmin∑
l=k−τmax+1

(1− γ)k−lηT (l)Qη(l). (21)

E{V3(k + 1)− V3(k)}

= E
{ k+1−τmin∑
m=k+2−τmax

k∑
l=m

(1− γ)k−lηT (l)Qη(l)−
k−τmin∑

m=k+1−τmax

k−1∑
l=m

(1− γ)k−l−1ηT (l)Qη(l)

}

=

k−τmin∑
m=k+1−τmax

k−1∑
l=m

(1− γ)k−lηT (l)Qη(l) + (τmax − τmin)ηT(k)Qη(k)

−
k−τmin∑

m=k+1−τmax

k−1∑
l=m

(1− γ)k−l−1ηT (l)Qη(l)−
k−τmin∑

l=k+1−τmax

(1− γ)k−lηT (l)Qη(l)

= −γV3(k)−
k−τmin∑

l=k+1−τmax

(1− γ)k−lηT (l)Qη(l) + (τmax − τmin)ηT (k)Qη(k). (22)

According to the event generator function (10), the positive scalar νij can be introduced
such that the following inequality holds:

− νijρT (k)Ωρ(k) + νijλ ≥ 0. (23)

Thus, noticing (18) – (23), one further obtains that

E{∆V (k)}
=E{V (k + 1)− V (k)}

≤
r∑

i,j=1

hihj

{[
(Aij + ∆Aij(k))η(k) + B̄iη(k − τ(k)) + (K̄j + ∆K̄j(k))ρ(k)

]T
× P

[
(Aij + ∆Aij(k))η(k) + B̄iη(k − τ(k)) + (K̄j + ∆K̄j(k))ρ(k)

]
− (1− γ)ηT (k)Pη(k)− (1− γ)τmaxηT (k − τ(k))Qη(k − τ(k))

+ ηT (k)C̄Ti 1Tm×m[((K̄j + ∆K̄j(k))TP (K̄j + ∆K̄j(k))) ◦ Ξ̂]1m×mC̄iη(k)
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+ (τmax − τmin + 1)ηT (k)Qη(k)− γV (k) + 1Tp×1[Φ̄ij ◦Q]1p×1

− νijρT (k)Ωρ(k) + νijλ

}
≤

r∑
i,j=1

hihj

{
− γV (k) + η̄T (k)Πij η̄(k) + νijλ+ 1Tp×1[Φ̄ij ◦Q]1p×1

}
. (24)

where η̄(k) = [ηT (k) ηT (k − τ(k)) ρT (k)]T .
Then, it follows from (16) that (24) can further become

E{V (k + 1)} ≤ (1− γ)E{V (k)}+

r∑
i,j=1

hihj

[
νijλ+ 1Tp×1[Φ̄ij ◦Q]1p×1

]
. (25)

Next, one can obtain the following decomposition of ∆K̄ij(k):

∆K̄ij(k) =

[
0

−HjFj(k)NkD2i

]
= H̄jFj(k)Ni. (26)

By means of the lemma 1 in [46], one has

Φ̄ij

=(Dij + ∆K̄ij(k))TP (Dij + ∆K̄ij(k))

=(Dij +HjFj(k)Ni)TP (Dij +HjFj(k)Ni)
≤DT

ij(P
−1 − λ−1ij NiN

T
i )−1Dij + λijH̄

T
j H̄j

=Φij .

(27)

According to (25) and (27), one can derive the following formula:

E{V (k)}

≤(1− γ)kE{V (0)}+
1

γ

r∑
i,j=1

hihj(1
T
p×1[Φij ◦Q]1p×1 + νijλ)(1− (1− γ)k)

≤(1− γ)kE{V (0)}+
1

γ

r∑
i,j=1

hihj(1
T
p×1[Φij ◦Q]1p×1 + νijλ).

(28)

Meanwhile, it follows from L̄TijL̄ij ≤ R and P ≥ R that

E{zTe (k)ze(k)} = E{ηT (k)L̄TijL̄ijη(k)} ≤ E{ηT (k)Rη(k)}, (29)

and

E{V (k)} ≥ E{ηT (k)Pη(k)} ≥ E{ηT (k)Rη(k)}. (30)

From (28), (29) and (30), one then can derive

E{‖ze(k)‖2R}
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≤(1− γ)kE{V (0)}+
1

γ

r∑
i,j=1

hihj(1
T
p×1[Φij ◦Q]1p×1 + νijλ)

=δ(1− γ)k +

r∑
i,j=1

hihjσij . (31)

Then, letting σ = maxi,j σij , one has

E{‖ze(k)‖2R} ≤ δ(1− γ)k + σ.

Consequently, the estimator (7) is an exponentially ultimately bounded state estimator
in mean square for the T–S fuzzy system (4). Therefore, the proof is now complete. �

Actually, the desirable parameters in Definition 2.2 are calculated in Theorem 3.2.
In the following, one needs to optimize the upper bound of the performance index and
then calculates the desirable gain parameters.

4. THE OPTIMIZATION OF THE UPPER BOUND

Actually, the optimization of the upper bound is very critical for improving the perfor-
mance of the design scheme. As discussed before, the upper bound is given as:

δ(1− γ)k +

r∑
i,j=1

hihjσij =

r∑
i=1

r∑
j=1

hihj(δ(1− γ)k + σij). (32)

It is noted that δ(1−γ)k characterizes the convergent speed of the norm of the estimation
errors toward the upper bound σ. Moreover, δ and γ are all given constants. Naturally,
δ(1−γ)k would tend to zero with the increase of time instant k. As such, it is unnecessary
to optimize δ(1− γ)k. That is, only σij is needed to be optimized. Combining Theorem
3.2, an optimization problem can be established as follows:

min σij

s.t. (16).
(33)

Recalling the complicated expression of σij , which includes the parameter uncertain-
ties characterized by the norm bounded inequalities, it is impossible to directly con-
sider the optimization problem (33). To address this problem, the robust optimization
technique is adopted to change (33) into a new solvable optimization problem and the
corresponding procedure is arranged as follows. First of all, let

σij ≤ % (34)

where % > 0 is a real decision variable.
Then, the optimization problem (33) can be reformulated as

min %

s.t. (16) and (34)
(35)
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In the following, let % temporally be given and change (16) and (34) into feasible
linear matrix inequalities by means of the schur complement lemma and S-Procedure.
Moreover, the parameter gains of the non-fragile state estimator (7) are designed for the
T–S fuzzy system (4).

Theorem 4.1. Consider the T–S fuzzy system (4) and let 0 < γ < 1, R = diag{R1, R2},
R1 ≥ 0, R2 ≥ 0, R ≥ L̄TijL̄ij and % > 0 be given. A desired estimator of the form (7)
exists, if there exist positive definite matrices P1 > R1, P2 > R2 and Q > 0, and positive
constant scalars εij , ρij and λij satisfying:

Πij =



Π11
ij 0 0 Π14

ij Π15
ij 0 0 0

∗ Π22
ij 0 0 Π25

ij 0 0 0
∗ ∗ Π33

ij 0 Π35
ij 0 0 0

∗ ∗ ∗ Π44
ij 0 Π46

ij 0 0
∗ ∗ ∗ ∗ Π55

ij 0 Π57
ij Π58

ij

∗ ∗ ∗ ∗ ∗ Π66
ij 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π77
ij 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88
ij


< 0, (36)

Ψij =

 Ψ11
ij Ψ12

ij 0
∗ Ψ22

ij Ψ23
ij

∗ ∗ Ψ33
ij

 ≥ 0, (37)

where

Π11
ij =− (1− γ)P + (τmax − τmin + 1)Q+ ρijN

T
akijNakij + εijN T

kiNki,
Π14
ij =vects[δtK̄jFmt1m×mC̄i]

T , Π15
ij = ÃTij ,

Π22
ij =− (1− γ)τmaxQ, Π25

ij = B̃Ti ,

Π33
ij =− νijΩ + εijN

T
k Nk, Π44

ij = −diagm{P}, Π35
ij = K̃T

j ,

Π55
ij =− P, Π46

ij = H̃j , Π58
ij = H̃aj ,

Π57
ij =H̃j , Π66

ij = −εijI, Π77
ij = −εijI, Π88

ij = −ρijI,

Ψ11
ij =γ%− νijλ−

p∑
l=1

q2l 1
T
p×1F

T
plλijH̄jH̄

T
j Fpl1p×1,

Ψ12
ij =[q11

T
p×1F

T
p1D

T
ijP . . . qp1

T
p×1F

T
ppD

T
ijP ],

Ψ22
ij =diagp{P}, Ψ23

ij = diagp{Ni},
Ψ33
ij =diagp{λijI}, Hj = diagm{H̃j},
Nki =N̄kC̄i, C̄i = Vectm[δtFmt1m×mC̄i], N̄k = diagm{Nk},

Nakij =diag{Na +NkΞ̄(Ci − Cj), Na −NkΞ̄Cj},
Fmt =diag{0, . . . , 0︸ ︷︷ ︸

t−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−t

},
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Fpt =diag{0, . . . , 0︸ ︷︷ ︸
t−1

, 1, 0, . . . , 0︸ ︷︷ ︸
p−t

},

Ãij =

[
P1Ai 0

P2Ai − Āfj −K2jΞ̄(Ci − Cj) Āfj −K2jΞ̄Cj

]
,

B̃i =

[
P1Bi 0
P2Bi 0

]
, H̃j =

[
0

−P2Hj

]
, H̃aj =

[
0 0

−P2Hj P2Hj

]
,

D̃ij =

[
P1D1i

P2D1i −K2jD2i

]
, P = diag{P1, P2}, K̃j =

[
0
−K2j

]
.

Moreover, the estimator parameters are given as follows:

[
Afj Kj

]
= P−12 [Āfj K2j ]. (38)

P r o o f . By utilizing the denotation of Fmt, one can obtain that

C̄Ti 1Tm×m[(K̄j + ∆K̄j(k))TP (K̄j + ∆K̄j(k)) ◦ Ξ̂]1m×mC̄i

=

m∑
t=1

δ2t C̄
T
i 1Tm×mF

T
mt(K̄j + ∆K̄j(k))TP (K̄j + ∆K̄j(k))Fmt1m×mC̄i.

(39)

According to the Schur Complement Lemma, one has

Π̄ij =


Π̄11
ij 0 0 Π̄14

ij Π̄15
ij

∗ Π̄22
ij 0 0 Π̄25

ij

∗ ∗ Π̄33
ij 0 Π̄35

ij

∗ ∗ ∗ Π̄44
ij 0

∗ ∗ ∗ ∗ Π̄55
ij

 < 0 (40)

where

Π̄11
ij =− (1− γ)P + (τmax − τmin + 1)Q,

Π̄14
ij =Vectm[δt(K̄j + ∆K̄j(k))Fmt1m×mC̄i]

T ,

Π̄15
ij =(Aij + ∆Aij(k))T , Π̄22

ij = −(1− γ)τmaxQ,

Π̄25
ij =B̄Ti , Π̄35

ij = (K̄j + ∆K̄j(k))T ,

Π̄33
ij =− νijΩ, Π̄44

ij = −diagm{P−1}, Π̄55
ij = −P−1.

Noticing that ∆Aj(k) = HjFj(k)Na and ∆Kj(k) = HjFj(k)Nk, we can get the following
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decompositions:

∆Aij(k) =

[
0 0

−∆Aj(k)−∆Kj(k)Ξ̄(Ci − Cj) ∆Aj(k)−∆Kj(k)Ξ̄Cj

]
=

[
0 0

−HjFj(k)Na −HjFj(k)NkΞ̄(Ci − Cj) HjFj(k)Na −HjFj(k)NkΞ̄Cj

]
=

[
0 0
−Hj Hj

] [
Fj(k) 0

0 Fj(k)

] [
Na +NkΞ̄(Ci − Cj) 0

0 Na −NkΞ̄Cj

]
=HajF1j(k)Nakij ,

∆K̄j(k) =

[
0

−HjFj(k)Nk

]
=

[
0
−Hj

]
Fj(k)Nk = H̄jFj(k)Nk,

Vectm[δt∆K̄j(k)Fmt1m×mC̄i] = diagm{H̄j}diagm{Fj(k)}Vectm[δtNkFst1m×mC̄i]

=H̄jF2j(k)Nki.

As such, one has

Π̄ij = Π̂ij +M1F1N1 +NT
1 F

T
1 M

T
1 +M2F2N2 +NT

2 F
T
2 M

T
2 (41)

where

Π̂ij =


Π̄11
ij 0 0 Π̂14

ij Π̂15
ij

∗ Π̄22
ij 0 0 Π̄25

ij

∗ ∗ Π̄33
ij 0 Π̂35

ij

∗ ∗ ∗ Π̄44
ij 0

∗ ∗ ∗ ∗ Π̄55
ij

 , M2 =


0 0
0 0
0 0
H̄j 0
0 H̄j

 , M1 =


0
0
0
0
Haj

 ,
Π̂14
ij =vectn[δtK̄jFmt1m×mC̄i], Π̂15

ij = ATij , Π̂35
ij = K̄T

j ,

N2 =

[
Nki 0 0 0 0
0 0 Nk 0 0

]
, F2 =

[
F2j(k) 0

0 Fj(k)

]
,

N1 =
[
Nakij 0 0 0 0

]
, F1 = F1j(k).

According to the well-known S-Procedure, one has

Π̄ij = Π̂ij +M1F1N1 +NT
1 F

T
1 M

T
1 +M2F2N2 +NT

2 F
T
2 M

T
2 < 0

if and only if there exist ρij > 0 and εij > 0 such that

Π̂ij + ρ−1ij M1M
T
1 + ρijN

T
1 N1 + ε−1ij M2M

T
2 + εijN

T
2 N2 < 0.

By utilizing the Schur complement lemma, one has

Π11
ij 0 0 Π̂14

ij Π̂15
ij 0 0 0

∗ Π22
ij 0 0 Π̄25

ij 0 0 0

∗ ∗ Π33
ij 0 Π̂35

ij 0 0 0
∗ ∗ ∗ Π̄44

ij 0 Π̄46
ij 0 0

∗ ∗ ∗ ∗ Π̄55
ij 0 Π̄57

ij Π̄58
ij

∗ ∗ ∗ ∗ ∗ Π66
ij 0 0

∗ ∗ ∗ ∗ ∗ ∗ Π77
ij 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88
ij


< 0 (42)
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where

Π33
ij =Π̄33

ij + εijN
T
k Nk, Π̄46

ij = H̄j , Π̄57
ij = H̄j , Π̄58

ij = Haj .

Then, perform the congruent transformation with diag{I, I, I, P, . . . , P︸ ︷︷ ︸
m

, P, I, I}, and

denote

K̃j =PK̄j , Āfj = P2Afj , Ãij = PAij , D̃ij = PDij ,

B̃i =PB̄i, H̃j = PH̄j , H̃aj = PHaj , K2j = P2Kj , H̃j = diagm{P}H̄j ,

one can obtain (36).
The following step is to deal with the inequality:

σij ≤ %, (43)

which implies that

1Tp×1[Φij ◦Q]1p×1 + νijλ ≤ γ%, (44)

or equivalently

p∑
l=1

q2l 1
T
p×1F

T
plD

T
ij(P

−1 − λ−1ij NiN
T
i )−1DijFpl1p×1

≤γ%− νijλ−
p∑
l=1

q2l 1
T
p×1F

T
plλijH̄

T
j H̄jFpl1p×1.

(45)

According to Schur complement Lemma, one has Ψ11
ij Ψ̄12

ij 0
∗ Ψ̄22

ij Ψ23
ij

∗ ∗ Ψ33
ij

 ≥ 0 (46)

where

Ψ̄12
ij =[q11

T
p×1F

T
p1D

T
ij . . . qp1

T
p×1F

T
ppD

T
ij ], Ψ̄22

ij = diagp{P−1}.

Performing the congruent transformation with diag{I, P, . . . , P︸ ︷︷ ︸
p

, I, . . . , I︸ ︷︷ ︸
p

}, one has (37)

through some algebraic computations. The proof can therefore be complete. �

By means of the Schur complement Lemma and S-Procedure, (16) and (34) has been
changed into (36) and (37) in Theorem 4.1. By utilizing these results, the optimization
problem (35) can be reformulated as follows:

min %

s.t. (36) and (37).
(47)

To summarize the procedure discussed so far, the following algorithm is summarized
to solve the addressed minimization problem.
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Algorithm 1: Fuzzy Non-Fragile Estimation
Step 1. Set parameters γ, R1 ≥ 0, R2 ≥ 0, υi(θ(k)), µ1, . . . , µm, δ

2
1 , . . . , δ

2
m, λ

and Ω.
Step 2. Compute the parameter matrices Ki and Afi at the sampling instant

k by solving the optimization problem (47) subject to (36) and (37).
Step 3. Compute the parameter matrices Ki and Afi and x̂(k) according to

(11) via hi(θ(k)).
Step 4. Stop.

Remark 4.2. This paper develops the non-fragile estimation scheme for a class of T–
S fuzzy systems with time-varying delays, multiple missing measurements and event-
triggering protocol. The aim of this paper is to guarantee the estimation error system
satisfy the desirable exponential ultimately boundedness. Meanwhile, the ultimate upper
bound of the performance index is optimized to obtain the better performance behavior.
Due to the impact of non-fragile estimator, the upper bound of the performance index
involving the parameter uncertainties is optimized via the robust optimization technique.
The obtained optimization problem subject to a set of linear matrix inequalities can be
easily solved by MATLAB toolbox. It is worth noting that the main result presented in
optimization problem (47) is quite comprehensive, which includes the upper bound to
be optimized, time-delays, event-triggering protocol and the initial values, which reflect
the impact of various factors.

5. AN ILLUSTRATIVE EXAMPLE

In this section, a numerical example is provided to verify the effectiveness of the state
estimation approach proposed in this paper. For a delayed T–S fuzzy model (4) with
time-varying delays and multiple missing measurements, the parameters are given as
follows:

A1 =

0.9987 0.9024 0
0 0.8100 0
0 0 −0.452

 , A2 =

0.9 0.8167 0
0 0.3501 0
0 0 −0.352

 ,
B1 =diag{−0.06, 0.06, 0.06}, B2 = diag{−0.1, 0.1,−0.1},
C1 =C2 = diag{0, 0.9, 0}, D11 = D12 = diag{0.1, 0.1, 0.1},

D21 =D22 =

0 0.1 0
0 0.1 0
0 0 0.1

 ,
H1 =diag{0.5, 0, 0}, H2 = diag{0.1, 0.1, 0.1},
Nk =Na = diag{0.1, 0.1, 0.1}, L1 = L2 =

[
0.5 0 0

]
,

τ(k) =2 +
(1 + (−1)k)

2
, τmin = 2, τmax = 3.
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Let the probabilistic density functions of β1, β2 and β3 in [0, 1] be described as:

p1(s1) =


0, s1 = 0

0.1, s1 = 0.5

0.9, s1 = 1

, p2(s2) =


0.1, s2 = 0

0.1, s2 = 0.5

0.8, s2 = 1

, p3(s3) =


0.2, s3 = 0

0, s3 = 0.5

0.8, s3 = 1

,

from which the expectations and variances can be easily calculated as µ1 = 0.95, µ2 =
0.85, µ3 = 0.8, σ2

1 = 0.0225, σ2
2 = 0.1025 and σ2

3 = 0.16. The membership functions are
assumed to be

h1(x1(k)) =


1, |x1(k)| < π/18

− |x1(k)|/6 + π/18, π/18 ≤ |x1(k)| < π/3

1− h2(x1(k)), otherwise

h2(x1(k)) =


0, |x1(k)| < π/18

1− h1(x1(k)), π/18 ≤ |x1(k)| < π/3

− 3|x1(k)|/2 + π/2, otherwise

where xi(k) is the ith element of x(k).
The event-triggered thresholds are set as λ = 0 and λ = 0.1 with the weighted

matrix Ω = diag{1, 1, 1}. By solving the optimization problem (47) subject to LMIs
(36) and (37), one can obtain the gain matrices of the state estimator (7). Take the
uncertain matrices in (7) as F1(k) = diag3{sin(k)} and F2(k) = diag3{sin(k)}. Choose
the initial conditions as x(0) = x̂(0) = [ −0.1 −0.2 −0.3 ]T , x(−1) = [0.5 0.5 0.5]T

and x(−2) = [0.5 0.5 0.5]T . Simulation results are shown in Figures 1 – 3 under the two
cases: λ = 0 and λ = 0.1, where Figures 1(a) – 1(b) illustrate z(k) and its estimation ẑ(k),
Figures 2(a) – 2(b) depict ‖ze(k)‖2, and Figures 3(a) – 3(b) indicate the event-triggered
instants, respectively. From these figures, it can be observed that the designed estimation
scheme proposed in this paper is indeed effective.
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(a) z(k) and ẑ(k) when λ = 0.
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(b) z(k) and ẑ(k) when λ = 0.1.

Fig. 1. The comparison between z(k) and ẑ(k).
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Fig. 2. The comparison of ‖ze(k)‖2.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (k)

E
v
e
n
t-
tr
ig
g
e
re
d
in
st
a
n
ts

 

 

(a) Event triggered instants when λ = 0.
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Fig. 3. The comparison of event-triggered instants.
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6. CONCLUSIONS

The non-fragile state estimation algorithm has been designed for a class of uncertain
discrete-time fuzzy systems with time-delays and multiple missing measurements under
the event-triggered protocol. Both the time-varying delays and the stochastic distur-
bances have entered into the Fuzzy plant model. An individual random variable sequence
satisfying a certain probabilistic distribution in the interval [0, 1] has been utilized to
formulate the randomly occurring missing measurements. An event generator function
has been introduced to determine whether the measurement can be transmitted to the
estimator or not. The non-fragile estimator has been constructed by employing the
well-known norm-bounded uncertainties to characterize the occurring gain variations of
estimator gains. With the help of Lyapunov–Krasovskii functional, a set of sufficient
conditions has been designed such that the T–S fuzzy estimation error system is expo-
nentially ultimately bounded in the mean square. Moreover, the corresponding upper
bound has been optimized and the estimator gain matrices have been computed. Finally,
a simulation example has been utilized to verify the effectiveness of the state estimation
technique proposed in this paper. In future, we would like to investigate the distributed
state estimation problem inspired by [1, 4, 10].
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