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Abstract

Multi-agent systems have attracted great interest due to their potential appli-

cations in a variety of areas. In this dissertation, a nonlinear consensus algorithm

is developed for networked Euler-Lagrange multi-agent systems. The proposed

consensus algorithm guarantees that all agents can reach a common state in the

workspace. Meanwhile, the external disturbances and structural uncertainties are

fundamentally considered in the controller design. The robustness of the proposed

consensus algorithm is then demonstrated in the stability analysis. Furthermore,

experiments are conducted to validate the effectiveness of the proposed consensus

algorithm.

Next, a distributed leader-follower formation tracking controller is developed

for networked nonlinear multi-agent systems. The dynamics of each agent are

modeled by Euler-Lagrange equations, and all agents are guaranteed to track a

desired time-varying trajectory in the presence of noise. The fault diagnosis strategy

of the nonlinear multi-agent system is also investigated with the help of differential
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geometry tools. The effectiveness of the proposed controller is verified through

simulations.

To further extend the application area of the multi-agent technique, a dis-

tributed robust controller is then developed for networked Lipschitz nonlinear multi-

agent systems. With the appearance of system uncertainties and external distur-

bances, a sampled-data feedback control protocol is carried out through the Lya-

punov functional approach. The effectiveness of the proposed controller is verified

by numerical simulations. Other than the robustness and sampled-data informa-

tion exchange, this dissertation is also concerned with the event-triggered consensus

problem for the Lipschitz nonlinear multi-agent systems. Furthermore, the suffi-

cient condition for the stochastic stabilization of the networked control system is

proposed based on the Lyapunov functional method. Finally, simulation is con-

ducted to demonstrate the effectiveness of the proposed control algorithm.

In this dissertation, the cooperative control of networked Euler-Lagrange sys-

tems and networked Lipschitz systems is investigated essentially with the assis-

tance of nonlinear control theory and diverse controller design techniques. The

main objective of this work is to propose realizable control algorithms for nonlinear

multi-agent systems.
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1 Introduction

Cooperative control of multi-agent or multi-vehicle systems has attracted a

broad interest in the last decade [2–8]. Having multiple autonomous agents working

cooperatively to achieve a common agreement is typically referred to as cooperative

control of multi-agent systems. In many applications, networking multiple agents

can offer various benefits, such as greater efficiency and lower cost. The networked

multi-agent systems can be potentially applied in diverse areas, i.e. monitoring for-

est fires, tracking wildlife, spacecraft formation flying, distributed computing and

intelligent transportation systems.

The investigation of cooperative control is essentially motivated by the follow-

ing factors: 1. the group behaviors of social animals. The grouping phenomenon

can be widely observed among social animals, i.e. ant swarming, fish schooling and

birds flocking [9]. Grouping behaviors can effectively reduce their chance of being

caught by the predators because of the enlarged detection area. The underlying

principle of the group behaviors of social animals is fundamentally studied in [10].
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Along with the “boid model” [10], the behaviors of these social animal groups can

be abstracted by three rules: collision avoidance, velocity matching and flock cen-

tering. Following these three rules, simulations of group behaviors like schooling

or flocking can be implemented in computer animation. In [11], the flocking for

multi-agent dynamical systems was further formalized. 2. More complicated prac-

(a) Fish schooling [12] (b) Birds flocking [13]

Fig. 1.1 Group behaviors of social animals

tical missions. For example, the formation flying technique of multiple spacecraft

will possibly enable more planned and proposed space missions [14], i.e. Orion [15],

EO-1 [16], Terrestrial Planet Finder (TPF) (cancelled by NASA) [17]. TPF would

facilitate a telescope [18] in space instead of on earth. This large, complicated tele-

scope will be imitated by multiple smaller ones. Since a large and variable baseline

would enormously increase the resolution of the telescope, formation-flying architec-
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Fig. 1.2 Terrestrial Planet Finder [1]

tural baseline will bring out a variety of benefits. These small telescopes are fixed

on multiple spacecraft which are implementing precisely formation flying during

the mission. As a result, a formation-flying TPF operating with a 1 km baseline

in astrophysics imaging mode can achieve resolutions of about 2 milli-arcsecond

(mas) [18]. Another example is the formation flying of multiple autonomous un-

manned helicopters. The total energy consumption can be effectively reduced if the

triangular formation is adopted by the group of multiple autonomous unmanned

helicopters.

Most of these practical missions can be typically formulated as multi-agent co-

operative control problems, in which achieving a common group objective is the

ultimate goal. For example, the group objective will be a common position in the

rendezvous mission of multiple mobile robots, and the common group objective for

3



the attitude synchronization of spacecraft will be the same final attitude angles.

Reaching this common group objective is usually referred to as the achievement of

consensus or synchronization. In multi-agent cooperative control problems, consen-

sus and synchronization are slightly different in terms of the focus of the specific

problem [19]. Consensus is usually adopted when the main focus of the problem is

the network connecting linear dynamical agents, while synchronization is typically

utilized when the nonlinear dynamical system is essentially involved. Although

these differences are pointed out in previous work [19], it is worth noting that the

concepts of consensus and synchronization are usually so similar that they can

be used interchangeably in many cases [20]. To further improve the readability

of this dissertation, “consensus” will be adopted wherever either “consensus” or

“synchronization” can be used.

Networking multiple dynamical systems poses significant challenges on both

local and global levels. As shown in Figure 1.3, to achieve the consensus, the

following challenges must be overcome:

(i) Mathematical model of the single agent

Linear dynamical agents have been assumed in most of the previous work,

however, almost all the practical agents are governed by nonlinear dynamics.

Coupling multiple nonlinear dynamical agents will result in a more compli-

cated nonlinear system, which poses further obstacles preventing the use of

4



Global

Local

Network

Agents

Communication structure

Sampled data

Nonlinear dynamics

Disturbance

Topology switching

Fig. 1.3 Networked multi-agent systems

classical control techniques. Therefore, extending the linear consensus algo-

rithm to networked nonlinear agents is urgently required to bridge the gap

between the theoretical analysis and the practical application.

(ii) Malfunction of multi-agent systems

Safety is always important in applications. Unlike in centralized control sys-

tems, there is no central controller in distributed control protocols of multi-

agent systems. This implies that no central processor can indicate the faulty

agent and the information transmitted by the malfunctioning agent will be

continuously accepted by other healthy agents. In this scenario, the group

mission could possibly be crashed by any one of the networked agents. There-

fore, the capability of detecting certain malfunctions becomes a huge challenge

due to the decentralized communication structure. Hence, a fault diagnosis
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and recovery strategy for multi-agent systems will be developed in this work.

(iii) Communication structure

To enhance the efficiency of the information exchange among the multiple

agents, the communication structure should be appropriately selected in prac-

tice. A centralized communication structure is usually adopted because of its

stable performance. However, with the growing number of the networked

agents, the communication efficiency will be largely reduced. Meanwhile, the

increased computational burden may even crash the central computer. Thus,

both centralized and decentralized communication structure will be reviewed

below and the decentralized communication structure will be adopted in this

work.

(iv) Network-induced problems

Networking multiple agents will result in many new problems. For example,

the structure of the networked systems might be intermittently changed be-

cause of the random interaction switching. Also, the stability of the networked

multi-agent systems might be destroyed by the underlying sampled-data in-

formation exchange. Meanwhile, the disturbance existing in any vertex of

the network can be broadcast to other agents and will have a negative influ-

ence on the entire group. These network-induced problems will be thoroughly

6



investigated in this dissertation.

There are still a lot of challenges existing in multi-agent systems. Among them,

the above mentioned problems are the most urgent challenges. For example, since

the controller design of the multi-agent systems is definitely based on the dynam-

ical model of individual agent, the development of the control algorithm will be

infeasible if the dynamical model of individual agent is not realistic. Also, it is im-

possible to skip any network-induced problem if the multiple agents are expected to

be coupled by the network, otherwise a tiny problem in multi-agent systems might

be propagated by the network-induced problem.

1.1 Mathematical model of the single agent

In control community, the behavior of each agent is usually described using its

mathematical model. As reviewed above, a linear model was mostly investigated

in previous work, where single agent dynamics can be expressed as

ẋi(t) = ui(t) (1.1)

where the state vector of agent i is xi(t) ∈ Rn and the control input is ui(t) ∈ Rn.

A continuous-time consensus algorithm for networked linear agents in Eq. (1.1) can

be expressed as [21]

ui(t) = −
∑

j∈Ni(t)

aij(t) (xi(t)− xj(t)) (1.2)
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where Ni(t) is a set containing the agents whose information is available to agent i,

and aij(t) represents the weighting factor. The networked linear agents in Eq. (1.1)

is said to achieve the consensus if ‖xi(t)− xj(t)‖ → 0 as t→∞, ∀i 6= j [3].

In addition to the first-order integrator model, the second-order integrator model

is also broadly investigated [22,23]. The second-order integrator model is [24]{
ẋi(t) = vi(t)
v̇i(t) = ui(t)

(1.3)

where xi(t),vi(t) ∈ Rn are the state vectors and ui(t) ∈ Rn is the control input.

Then consensus algorithm for networked linear agents in Eq. (1.3) is [21]

ui(t) = −
∑

j∈Ni(t)

aij(t) [(xi(t)− xj(t)) + α(t) (vi(t)− vj(t))] (1.4)

Although the cooperative control problems have been fairly well solved for net-

worked linear agents, the nonlinear extension is still urgently requested because

almost all the mechanical/electrical systems are nonlinear. Therefore, the coop-

erative control for networked nonlinear systems has attracted more attention re-

cently [25, 26]. For example, the leader-follower consensus problem for second-

order nonlinear multi-agent systems was investigated in [27] with a specific type

of nonlinearity. In their work, the stability analysis was conducted on the basis

of LaSalle’s invariance principle. Furthermore, by taking advantage of M-matrix

method and the property of nonnegative matrices, the second-order nonlinear multi-

agent systems were also investigated in [28], and it was conclusively proven that the

8



leader-follower consensus can be reached more easily with higher pinning feedback

gains. Among these networked nonlinear multi-agent systems, the networked Euler-

Lagrange systems are especially important due to their broad applications [29,30].

Euler-Lagrange system usually refers to a large class of mechanical systems

whose dynamics can be described using Lagrange’s equations. Lagrange’s equations

are shown as follows [31]

d

dt

∂L

∂q̇i
− ∂L

∂qi
= pi i = 1, ... ,m

where the Lagrangian L is defined as the difference between the kinetic and potential

energy of the system, qi is the ith element of the generalized coordinates vector

q ∈ Rm and pi is the external force exerting on the ith generalized coordinate.

Typically, the Lagrange’s equations can be derived based on the energy properties

of the specific mechanical system, and its vector form is more commonly utilized.

The vector form of Lagrange’s equations is

d

dt

∂L

∂q̇
− ∂L

∂q
= p

where p =
[
p1, ... , pm

]T
. Once the kinetic energy and the potential energy of

a mechanical system are specified, the dynamics of the mechanical system can be

generally formulated as

Mẍ + Cẋ + g = u

where matrices M, C and vector g can be explicitly derived using the Lagrange’s

9



equations. Vectors x and u are the generalized coordinates and generalized input,

respectively.

Consensus algorithms for Euler-Lagrange agents are especially attractive be-

cause they have been widely used to model a number of mechanical systems such

as autonomous vehicles, rigid manipulators and flexible payloads. Therefore, an

algorithm that can solve the consensus problem for Euler-Lagrange systems will be

useful for a large number of practical consensus seeking problems. In [29], a model-

independent consensus algorithm for networked Euler-Lagrange agents, which can

realize distributed leaderless consensus, is presented with convergence analysis con-

ducted using Matrosov’s theorem. Consensus will be achieved as long as the undi-

rected communication topology is connected. Distributed containment control is

studied in [32] for Euler-Lagrange systems and the parametric uncertainties are

also considered. Furthermore, the leaderless consensus algorithm is studied using

a directed graph. In [32], a distributed consensus problem is studied with the com-

bination of classical adaptive consensus. Time-delays and the switching topology

are both considered in the controller design. The authors constructed an elaborate

Lyapunov function which proved the stability of their controller. Parametric un-

certainties are considered in [33], where the distributed containment control and

leaderless synchronization are achieved in the presence of constant parameter uncer-

tainties. Similarly, Ref. [34] solves the consensus control problem for Euler-Lagrange

10



systems in the appearance of unknown parameters and time-varying delay.

Except for the Euler-Lagrange systems, the networked Lipschitz nonlinear sys-

tems [35–38] have also been investigated due to the generality of the Lipschitz sys-

tem. The Lipschitz system can represent not only mechanical systems but also elec-

trical systems, while the Euler-Lagrange system is mostly adopted to describe the

dynamics of a mechanical system. The Lipschitz nonlinear system is usually referred

to as a dynamical system in which the nonlinear term in the dynamics equation

satisfies the Lipschitz condition, namely, the nonlinear mapping f : Rn × R → Rn

satisfies

‖f(x, t)− f(y, t)‖ ≤ L ‖x− y‖

Many nonlinearities satisfy the Lipschitz condition in practice. For example, the

sinusoidal terms in robotic dynamics are all globally Lipschitz [39, 40]. Moreover,

even terms like x2 can also be regarded as Lipschitz if the operating range of x is

bounded [41].

1.2 Malfunction of multi-agent systems

One of the most representative applications of consensus algorithm is the re-

alization of large-scale wireless sensor networks. A wireless sensor network, with

multiple small and cheap sensors, can cover a vastly larger area than a single, expen-

sive and complicated sensing device. The actualization of large-scale wireless sensor

11



networks will hugely benefit weather measurement and forecasting, pollution or for-

est fire monitoring, measurements of electromagnetic pollution and so on. With the

growth of the network scale, the sensing area is rapidly enlarged. Simultaneously,

the number of sensing devices are increased, which not only complicates the hard-

ware system, but also makes the computational complexity greater. Accordingly,

the increasing scale of wireless sensor network may add the risk of hardware and

software bugs, which may prevent the networked sensors converging to the de-

sired estimation value. Consequently, the problem of fault-tolerant algorithm in

multi-agent systems emerges. Since all the agents are coupled via network and no

centralized controller can monitor the entire system, it is highly possible that the

team objective will be crashed if one agent stops functioning normally. Unlike the

centralized faulty system, the nonfunctional agent in a distributed system is proba-

bly unobservable by the agents out of its neighborhood. Hence, the fault detection

and isolation (FDI) problem is more challenging in multi-agent systems. To deal

with the faulty agents in distributed multi-agent systems, Ref. [42] developed a

distributed function calculation method with a broadcast model. Each agent up-

dates its state periodically as a weighted linear combination of its own state and

the neighbors’. Since the weights of a consensus algorithm are determined by the

network structure, its fault-tolerant capability to a specific malicious behavior is

decided by the communication topology. Consequently, Ref. [42] concluded that all
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of the nodes can converge to the same value asymptotically if the network topology

satisfies certain conditions. A useful tool for FDI is the so-called “motion probes.”

With the help of motion probes, Ref. [43] discussed a way of detecting a faulty agent

with single integrator dynamics. The basic idea in that paper is to take advantage

of the natural properties of group motions, such as the preservation of centroid of

the network or weighted average of the initial states, to achieve the fault detection.

In addition to their work, Ref. [44] further investigated active fault diagnosis and

identification. The work in [44] was also an application of the motion probe method

developed in [43]. Along with the function recovery method for linear consensus

network, Ref. [44] proposed a formal classification for agent faults. If the agent does

not update its state information according to the predetermined iteration strategy,

this kind of fault is called “stuck.” An agent with stuck will drift away from the

expected destination, but it is still visible to its neighbors with respect to the com-

munication topology. Ref. [44] proposed an effective identification method dealing

with stuck, in which the state of a faulty agent will be compared with its neighbors’

states. If all the states are equal, then it is fault-free. Otherwise, a faulty agent is

detected. A further complicated situation, multiple stuck faults, is also discussed

by the authors. The group will converge to a convex hull generated by the stuck

agents [45]. Similarly, the presence of this kind of fault can be detected by examin-

ing its state and its neighbors’ states as well. In sum, any disagreement enduring a
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sufficiently long time between static agents will expose the stuck agents. Another

kind of fault, called divergence fault, happens when a sensor recurringly sends out

incorrect signals. These signals could be increasing or decreasing constantly in their

values. By inspecting the sustained increments or decrements, this kind of fault

can be detected based on model identification. Unlike the classification in [44], two

kinds of misbehaving agents are categorized mathematically in [46]: non-colluding

(or faulty) and Byzantine (malicious) agent. As for the non-colluding agents, their

malfunctions are purely caused by random faults. If the intriguing messages are

disseminated by an agent with the purpose of destroying the group mission, this

agent is denoted as the Byzantine agent. Other than the fault detection strategies

based on an ideal model, the influence caused by unknown input is investigated

by [47]. A bank of unknown input observers are recruited for FDI in a network

with linear time invariant (LTI) systems. The existence of this kind of unknown

input observers are proven for the networks of interconnected second-order LTI

systems. Ref. [47] takes the investigation further on the distributed feasibility of

unknown input observer according to the system structure. Meanwhile, with the

removal method of faulty agents carried out, applications to power networks and

robotic formations are presented as illustrative examples. To mitigate the compu-

tational work load for each agent, Ref. [48] conducts a real-time distributed fault

detection strategy. The information redundancy of each agent is realized by in-
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specting its neighbors, i.e. only local information is needed. The robustness is also

considered in the proposed fault isolation procedure. It is revealed that the group

performance is guaranteed in the presence of model uncertainties and disturbances.

1.3 Communication structure

Central
Controller

1 2

3 4

5 6

Fig. 1.4 Centralized structure: a central controller exists in the networked system

In control community, one of two approaches is usually implemented to solve

the synchronization problem. The first is centralized control, which extends clas-

sical control theory based on the assumption that a central controller exists. The

multi-agent system is treated as a multiple-input multiple-output (MIMO) system

and the central controller can maneuver all the agents in the system [49]. The

other approach is that of distributed control in which each agent can only detect

its neighbors’ information according to the communication topology. In the dis-
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Fig. 1.5 Decentralized structure: there is no central controller and agents share

the information locally

tributed control approach, the networked agents share information locally accord-

ing to the communication topology, and the desired trajectory vector of each agent

will be derived individually based on the local information. Obviously, the rich

availability of mathematical tools in classical control theory extensively enables the

development of the cooperative controller in centralized direction. However, a fully

connected network is presumed in the centralized control of multi-agent systems

along with a central processor, which will fundamentally disable the feasibility of

the centralized control scheme when a large number of agents are involved in the

group. This is because, with the growing number of agents, the computational and

communication workload in the centralized strategy will be increased consistently,

and will eventually exceed the the capability of the central processor. Compared

to the centralized control strategy, the decentralized approach can be character-
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ized by its effectiveness involving a large number of agents because no centralized

controller is expected in the decentralized approach. Thus, strong computational

capability is not demanded in the distributed consensus seeking algorithm. Dur-

ing the design of consensus law, the specific characteristics of a single agent are

usually disregarded and only dynamics are extracted mathematically. Then, the

group behaviors will be described by the coupled agent dynamics. Owing to the

coupling relationship, the structure of the communication network plays a crucial

role naturally and can be represented by graph Laplacian. Due to the mathemati-

cal essentiality of the graph Laplacian, it rapidly became an important tool for the

description of communication topology [50]. With the assistance of graph theory,

distributed consensus schemes have been systematically developed for agents with

linear dynamics [6]. The distributed consensus problem was first studied in [51]

from the perspective of control. After this, several important papers were pub-

lished successively in the control community. In [52], the authors studied a n-agent

model coupled via time-dependent communication links. This model can be ap-

plied in various research topics, such as synchronization, swarming and distributed

decision making, among others. Ref. [53] provides a theoretical explanation for the

model proposed in [54], while Ref. [4] provides a theoretical framework for the ro-

bust analysis of multi-agent systems. The method of analysis is developed based on

algebraic graph theory and Nyquist criterion. The formation stability of the agents
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can be decided by the eigenvalues of the graph Laplacian matrix via the analysis

method. The consensus seeking method with the consideration of time-delays and

switching topologies was studied in [5].

1.4 Network-induced challenges

1.4.1 Sampled-data communication

In multi-agent systems, the agents are coupled by the wireless network; they are

not physically connected to each other and the information is transmitted through

a digital network intermittently. Therefore, the sampled-data information becomes

a challenging problem for local controllers equipped on each agent due to the dis-

continuous information transmission. With the appearance of sampled-data infor-

mation exchange, the leader-follower consensus problem was investigated in [55].

In their work, the M-matrix theory is applied to derive the sufficient conditions for

system stability, while the velocity and acceleration of the leader are unavailable

for the controller. Furthermore, the stable sampling period can be indicated based

on their results. The sampled-data information was considered in [56] for double-

integrator multi-agent systems. Both undirected and directed interactions were

studied in their work. The zero final velocity and constant final velocity consensus

were achieved based on the discrete-time dynamics model. In [57], the consensus
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seeking problem was also considered for second-order multi-agent systems. Unlike

in [56], both synchronous and asynchronous sampling measurements were inves-

tigated with the consideration of sampled-data information exchange. With the

appearance of nonlinear dynamics, the sampled-data problem was studied in [58]

along a discrete-time approach and the Euler approximate method was adopted to

derive the discrete-time models. Then, a discrete-time output feedback controller

was proposed in their work based on the Euler approximate models. Other than

discretization of the continuous-time dynamical model, a reversed approach is also

proven to be effective for the sampled-data control problem. In the reversed ap-

proach, the sampled-data problem is not investigated based on the discrete-time dy-

namical model. Instead, the discrete-time problem (sampled-data controller design)

is transformed into a continuous-time problem assuming that the discrete-time con-

trol signal is caused by time-varying delays [59] in a continuous-time system. This

reversed approach was adopted in [60] to derive a robust sampled-data controller,

and a sufficient linear matrix inequalities (LMIs) condition was proposed on the ba-

sis of descriptor approach to time-delay systems. In their work, the piecewise-linear

delay function played a key role for the connection between the sampling system

and the continuous-time system. To further bridge the gap between the piecewise

continuous state space and the smooth vector field, Ref. [61] conducted an improve-

ment on the discontinuous Lyapunov functional method, based on which a sufficient
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condition with less conservativeness is presented for sampled-data systems. More-

over, Ref. [62] refined the previous work and developed a unified method for a

sampled-data control problem via the time-delay approach. Furthermore, the ex-

ponential convergence is guaranteed and the convergent rate is directly represented

by a parameter in the discontinuous Lyapunov functional. On the basis of the well-

developed sampled-data control theory in linear system, researchers have begun

paying attention to the consensus seeking problem for nonlinear systems sharing

the sampled-data information. With the presence of the Lipschitz nonlinearity,

Ref. [63] proposed a consensus seeking protocol for networked nonlinear systems

and the time-delay technique is applied to deal with the sampled-data information.

Coupled by a strongly connected network in [63], the consensus can be achieved

by a set of nonlinear agents. Furthermore, their results were extended to the com-

munication structure with a directed spanning tree. Other than the sampled-data

information and nonlinear dynamics, system perturbation (uncertainty or noise)

is another significant challenge for the consensus achievement. The mismatched

parametric uncertainties were considered in [64], and an adaptive consensus track-

ing algorithm was investigated for a group of nonlinear agents. The measurement

noises were considered in [65], and a sampled-data consensus tracking algorithm

was developed based on the delay decomposition technique. In their work, the nec-

essary and sufficient conditions for mean square bounded consensus tracking was
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proposed with the assistance of the augmented matrix method and probability limit

theory.

1.4.2 Topology switching

The time-varying topology in consensus problem was widely investigated [5,66]

because it is comparatively more generic. In the appearance of the switching

communication interaction, the leader-follower consensus with uncertain Euler-

Lagrange systems was studied in [67], and the convergence of the error systems was

guaranteed by their distributed adaptive controller. Moreover, the communication

topology in their work is not necessarily connected all the time. Ref. [68] conducted

the research on Markovian switching topology for second-order multi-agent systems,

and a necessary and sufficient condition for consensus achievement was presented

in their work. Markovian switching topology was also considered in [69], where the

leader-follower consensus problem was investigated with the consideration of non-

linear dynamics and communication delay. Furthermore, Ref. [70] discussed the

leader-follower consensus with switching topology for a general linear agent, and

the convergence of the closed-loop control system was proven along the Riccati-

inequality-based approach. With the consideration of the switching topology, the

leader-follower consensus control was investigated on the basis of the discrete-time

multi-agent systems in [71]. Both fixed and switching topologies were considered
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in [22] with a globally reachable leader. In their work, the finite-time convergent

leader-follower consensus problem was studied and the second-order consensus was

successfully reached. To further extend the leader-follower consensus algorithm to

second-order nonlinear multi-agent systems with both fixed and time-varying com-

munication topologies, Ref. [72] presented the sufficient conditions for consensus

achievement along the Lyapunov approach. A class of nonlinear dynamics was

dealt with in their work, and the leader-follower consensus was achieved with local

intermittent information.

1.4.3 Event-triggered signal update

Coupling multiple agents can also increase the workload of each agent because

both local and global information must be dealt with on time. To reduce the

computational burden for each single agent, event-triggered control strategy was

investigated [73–78]. In event-triggered control protocol, the control output is not

implemented consistently or periodically. Instead, it is carried out once the event-

triggered conditions are violated. Namely, the control output is updated intermit-

tently according to the event-triggered conditions. Therefore, the workload of each

agent can be immensely reduced through the event-triggered strategy. The event-

triggered consensus problem for first-order multi-agent systems was investigated

in [79] and the event-triggered conditions were proposed for both centralized and
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distributed situations. Moreover, the self-triggered multi-agent control protocol was

proposed to relax the trigger condition. The event-triggered control algorithm was

extended to the second-order multi-agent systems in [23]. Particularly, the Lips-

chitz nonlinearity was considered in their work because the nonlinear dynamics is

almost unavoidable in practice. The leader-follower consensus problem for Lips-

chitz nonlinear multi-agent systems was also considered in [80], where the jointly

connected topology was assumed for the coupling relationship.

1.5 Research Objectives and Organization

The main research objective of this dissertation is to develop the consensus

algorithms for networked nonlinear systems with the occurrence of disturbances,

uncertainties and possible system malfunctions. In addition to the nonlinear exten-

sion of the agent dynamics, the network-induced problems, including sampled-data

communication and topology switching, will be investigated systematically.

Chapter 2 briefly explains the algebraic graph theory, perturbation theory and

nonlinear realization theory that will be utilized in the following chapters. In order

to mathematically describe the communication structure, the terminologies and

basic principles in algebraic graph theory are used in the controller design. For

example, the coupling relationship of the agent position vector is described using

Laplacian matrix, and this coupled vector is usually considered as an important
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indicator for the consensus achievement. In the practical applications, disturbances

and uncertainties are mostly unavoidable, which in turn implies that the dynamical

equation of the control system will be perturbed by some time-varying parameters.

Hence, the stability of the perturbed multi-agent systems is investigated with the

assistance of perturbation theory in this work. In any applications of multi-agent

systems, safety is always a compelling requirement. Therefore, the fault diagnosis

technique is discussed in this dissertation. To enable the detection of the possible

fault, observability of the possible fault is the precondition. Thus, the observability

of the possible fault will be investigated using the nonlinear realization theory.

Then, a consensus algorithm for networked Euler-Lagrange systems is investi-

gated in Chapter 3 with experimental verification. The mathematical description

of the networked Euler-Lagrange systems and the main work in Chapter 3 are

presented in Section 3.1. In Section 3.2, the nonlinear consensus algorithm is inves-

tigated with the consideration of disturbance and uncertainty. With the appearance

of bounded disturbances and time-varying uncertainties, the consensus seeking al-

gorithm is designed in Section 3.2 and the stability of the networked system is

analyzed based on the perturbation theory. The robustness against structural un-

certainty is analyzed through a passivity approach in Section 3.2.2. Section 3.3

presents the experimental tests using four Quanser’s 3-DOF helicopters.

Next, Chapter 4 is concerned with a distributed leader-follower formation track-
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ing problem with the appearance of an additive noise. In Section 4.1, the dis-

tributed leader-follower formation tracking problem is formulated for networked

Euler-Lagrange systems. Section 4.2 presents the basic assumptions and stabil-

ity analysis. Particularly, the mathematical expression of the bounded noise is

presented. Bounded noise is very common in controller design because of its gen-

erality. However, most of them assumed that the noise was bounded by a known

constant. Unlike the previous work, the bounded noise in this work is bounded

by an unknown time-varying boundary instead of a constant. A passivity-based

control technique is adopted in Section 4.2.1. Moreover, the distributed leader-

follower controller is proposed and the system stability is analyzed using the tools

in non-smooth analysis. On top of the distributed leader-follower controller, an

observer-based fault diagnosis strategy is presented in Section 4.2.2. In Section 4.3,

simulations are conducted using six networked 3-DOF helicopters.

Different from the Euler-Lagrange system, the Lipschitz system can be used to

represent not only mechanical system but also electrical system. Namely, the Lips-

chitz system is more generic compared to the Euler-Lagrange system. Therefore, a

distributed H∞ consensus seeking problem is studied for networked Lipschitz non-

linear systems in Chapter 5. Other than the nonlinear dynamics, sampled-data

information exchange is also considered in Chapter 5. In Section 5.1, the consen-

sus seeking problem of networked Lipschitz systems is formulated based on the
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sampled-data communication. The sampled-data controller design is presented in

Section 5.2. Unlike the previous work, the output-feedback controller is investi-

gated in this work. Meantime, a state observer is proposed to estimate the state

information. In the controller development, sampled-data communication poses a

huge challenge for the stability analysis because both discrete-time and continuous-

time states are existing in the sampled-data multi-agent systems. To overcome this

challenge, the convergence of the observer and controller is proven via a Lyapunov

functional approach, in which the sampled-data dynamics are equivalently described

by a time-delay differential equation. Furthermore, an optimization algorithm is

developed to derive the controller and observer gains iteratively. Moreover, the

external disturbance is also considered in the controller design, and the influence

of the disturbance is minimized based on the H∞ robust control theory. In Section

5.3, a distributed synchronization of four identical Chua’s circuits is conducted with

the consideration of sampled-data communication and L2-bounded disturbance.

Then, Chapter 6 presents an event-triggered consensus controller for networked

Lipschitz systems. In Section 6.1, the event-triggered consensus problem is formu-

lated with the consideration of stochastic switching communication topology. In

the event-triggered consensus problem, the control signal is implemented neither

continuously nor periodically. Basically, the control signal is carried out only if an

event-triggered condition is violated. Namely, the computational resource is avail-
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able for any other work when the event-triggered condition is satisfied. Therefore,

the event-triggered consensus controller will effectively reduce the computational

burden for each agent. With the help of the Lyapunov functional method, an

event-triggered consensus controller and its event-triggered condition are proposed

in Section 6.1. Section 6.2 presents the stability analysis of the networked Lip-

schitz systems coupled by the proposed event-triggered consensus controller. In

this work, the event-triggered condition is verified periodically according to the

communication period. Therefore, both the sampled-data communication and the

event-triggered condition are taken into account in the stability analysis. Further-

more, a random parameter is contained in the Lyapunov functional because of the

inclusion of the stochastic switching communication topology. The switching of the

random parameter and the communication topology is mathematically described by

a finite Markov jump process. Except for the stability analysis, an LMI-based opti-

mization algorithm is also proposed to enable the iterative derivation of controller

gains. In Section 6.3, four identical Chua’s circuits are coupled by a stochastic

structure-switching network in the simulation. The event-triggered consensus is

achieved successfully, which further demonstrates the effectiveness of the proposed

event-triggered consensus controller.

Finally, Chapter 7 concludes this dissertation with some future research direc-

tions.
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1.6 Major Contributions

The major contributions of this dissertation are:

(i) Design of a realizable nonlinear consensus algorithm for networked Euler-

Lagrange systems with the consideration of bounded disturbance and struc-

tural uncertainty.

(ii) Robustness analysis for networked Euler-Lagrange systems, in which the influ-

ence of the bounded disturbance and the structural uncertainty is investigated

from the point of view of a passive system.

(iii) Incorporating a passivity-based term in the distributed leader-follower for-

mation tracking controller, which enables the robustness against a boundary-

unknown noise.

(iv) Design of an observer-based fault diagnosis strategy for networked Euler-

Lagrange systems, and discussion of the observability of possible faults for

networked Euler-Lagrange systems using differential geometry tools.

(v) Development of an H∞ robust synchronization controller for networked Lip-

schitz nonlinear systems with sampled-data communication.

(vi) Design of an event-triggered consensus controller for networked Lipschitz non-

linear systems with sampled-data communication and switching topologies.
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2 Preliminaries

This chapter introduces the algebraic graph theory, perturbation theory and

nonlinear realization theory. The main objective of this chapter is to pave the way

for the theoretical analysis in the following chapters. Therefore, the explanation in

this chapter is not a self-contained treatment of these theoretical tools. Instead,

only the topics closely related to our controller design are presented.

2.1 Notations

The notation utilized in this work is fairly standard. The n-dimensional Eu-

clidean space is denoted by Rn. The dual space of Rn is defined by (Rn)∗ and the

element in (Rn)∗ is denoted as a∗ ∈ (Rn)∗. The superscript “T” represents matrix

transpose, and a symmetric matrix M is denoted as a positive definite matrix by

M > 0. In symmetric matrix, “?” is used to indicate the entry implied by the sym-

metry. Unless explicitly explained, I and 0 are referred to as identity matrix and

zero matrix with appropriate dimensions. The inner product of vectors a,b ∈ Rn
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is denoted as 〈a,b〉. The Kronecker product of matrices A ∈ Rn×m and B ∈ Rj×k

is defined as follows

A⊗B =


a11B a12B ... a1mB
a21B a22B ... a2mB

...
...

. . .
...

an1B an2B ... anmB


Definition 2.1. The networked multiple agents achieve the consensus if

lim
t→∞
‖xi(t)− xj(t)‖ = 0, ∀pi, pj ∈ V(k)

where xi ∈ Rn is the state of agent pi.

Definition 2.2. [81] A continuous function α : [0, a) → [0,∞) is said to belong

to class K if it is strictly increasing and α(0) = 0. It is said to belong to class K∞

if a =∞ and α(r)→∞ as r →∞.

Definition 2.3. [81] A continuous function β : [0, a)× [0,∞)→ [0,∞) is said to

belong to class KL if, for each fixed s, the mapping β : (r, s) belongs to class K with

respect to r and, for each fixed r, the mapping β : (r, s) is decreasing with respect

to s and β : (r, s)→ 0 as s→∞.

2.2 Algebraic graph theory

A weighted directed graph (digraph) G is used to describe the communication

relationship between the n agents [5]. The vertex set of graph G is defined as
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V(k) ⊂ Rn. Each vertex point is labeled by pi ∈ V(k) for i = 1, 2, ... , k. The

edge set is denoted as EG(V(k)) ⊂ V(k)×V(k). The adjacency element eij belongs

to the edge set EG(V(k)) as long as the information of pj can be detected by pi,

eij = 1 ∀i 6= j, eii is assumed to be zero for all pi ∈ V(k). The information

received by vertex pi from the vertex pj is referred to as in-direction information

flow, with the requirement that the vertex pi can detect the vertex pj. If there

always exists a path from vertex pi to vertex pj ∈ V(k)\{pi}, the vertex pi is defined

as a center of the graph G [82]. The weighted adjacency matrix is constructed as

AAA = [eij], NG(pi) = {pj ∈ V(k) : (pi, pj) ∈ EG (V(k))} is the neighbor map of

agent pi. The in-degree and out-degree are defined as degin(pi) =
∑

pj∈NG(pi)
eji

and degout(pi) =
∑

pj∈NG(pi)
eij. The degree matrix of G is a diagonal matrix ΓΓΓ with

element ΓΓΓij, where ΓΓΓij = 0 ∀i 6= j and ΓΓΓii = degout(pi). The graph Laplacian of G

is denoted as

LLL (G) = ΓΓΓ−AAA

For example, in Figure 2.1, the arrow from agent 1 to agent 5 indicates that

agent 1 has access to the information of agent 5, namely, the state information of

agent 5 is available to agent 1 and e15 ∈ EG(V(6)). The weighted adjacency matrix
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1 2

3 4

5 6

Fig. 2.1 Communication topology

is

AAA =


0 0 1 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0
0 0 1 1 0 1
0 0 0 1 0 0


and the degree matrix is

ΓΓΓ =


2 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 1


Consequently, the Laplacian of the graph in Figure 2.1 is

LLL (G) =


2 0 −1 0 −1 0
−1 1 0 0 0 0
0 0 1 −1 0 0
0 −1 0 2 −1 0
0 0 −1 −1 3 −1
0 0 0 −1 0 1


For a Laplacian matrix, 1n is always a right eigenvector associated with the zero
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eigenvalue, i.e. L (G) 1n = 0, where 1n is a n-dimensional vector with 1 as each

element.

2.3 Perturbed systems

The dynamics of a system can be theoretically described using a nonlinear dy-

namical equation as follows

ẋ = f(t,x) (2.1)

where f : [0,∞) ×D → Rn is piecewise continuous in t and locally Lipschitz in x

on [0,∞) × D, and x ∈ D ⊂ Rn, where D contains the origin x = 0. However,

perturbation is mostly unavoidable in practice due to modeling errors and other

unmodeled effects. Hence, Eq. (2.1) is usually revised with the appearance of a

perturbation term g(t,x) as

ẋ = f(t,x) + g(t,x) (2.2)

where g : [0,∞)×D→ Rn. In practice, the explicit formulation of the perturbation

is usually unknown, while only the upper boundary of the perturbation can be

measured, namely, the maximum value of ‖g(t,x)‖ is known. In order to analyze

the convergence of the perturbed system (2.2), Lemma 2.1 is presented in [81]

Lemma 2.1. Let x = 0 be an exponentially stable equilibrium point of the nomi-

nal system (2.1). Let V (t,x) be a Lyapunov function of the nominal system that
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satisfies the inequalities

c1‖x‖2 ≤ V (t,x) ≤ c2‖x‖2 (2.3)

∂V

∂t
+
∂V

∂t
f(t,x) ≤ −c3‖x‖2 (2.4)∥∥∥∥∂V∂t
∥∥∥∥ ≤ c4‖x‖ (2.5)

in [0,∞)×D, where D = {x ∈ Rn|‖x‖ < r}. Suppose the perturbation term g(t,x)

satisfies

‖g(t,x)‖ ≤ δ <
c3

c4

√
c1

c2

θr (2.6)

for all t ≥ 0, all x ∈ D, and some positive constant θ < 1. Then, for all ‖x(t0)‖ <√
c1
c2

, the solution x(t) of the perturbed system (2.2) satisfies

‖x(t)‖ ≤ k exp [−γ(t− t0)] ‖x(t0)‖ ,∀t0 ≤ t < t0 + T

and

‖x(t)‖ ≤ b, ∀t ≥ t0 + T

for some finite T , where

k =

√
c2

c1

, γ =
(1− θ)c3

2c2

, b =
c4

c3

√
c2

c1

δ

θ

To further deal with the nonvanishing perturbation, the input-to-state stable is

defined as follows
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Definition 2.4. Consider the following system which is obtained by incorporating

a piecewise continuous function u(t) to Eq. (2.1) [81],

ẋ = f(t,x) + u(t) (2.7)

where u(t) is a bounded function of t for all t ≥ 0. The system (2.7) is said to

be input-to-state stable if Eq. (2.1) has a globally uniformly asymptotically stable

equilibrium point at the origin x = 0, and there exist a class KL function β and a

class K function γ such that for any initial state x(t0) and any bounded input u(t),

the solution x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β (‖x(t0)‖ , t− t0) + γ (supt0≤τ≤t ‖u(τ)‖)

Then, the input-to-state stability can be analyzed using the following lemma

Lemma 2.2. [81] Suppose the right-hand side of Eq. (2.7) is continuously differ-

entiable and globally Lipschitz in (x,u), uniformly in t. If the unperturbed system

(2.1) has a globally exponentially stable equilibrium point at the origin x = 0, then

the system (2.7) is input-to-state stable.

2.4 Nonlinear realization theory

Nonlinear realization theory will be adopted to investigate the coupling rela-

tionship between the specific agent fault and the feasibility of the fault diagnosis
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method. It is not expected to systematically explain the nonlinear realization the-

ory in this section. Instead, only the content closely related to our work will be

described, and all the theorems in this section will be concisely presented without

proof. The detailed nonlinear realization theory can be found in [83].

Suppose n smooth vector fields f1, f2, ... , fn are defined on open set U , and the

vectors span a vector space at any fixed point x ∈ U . Then, a distribution is

identified by the vector fields {f1, f2, ... , fn} as

∆ = span {f1, f2, ... , fn} (2.8)

Particularly, ∆(x) is denoted as the value of ∆ at a point x. The annihilator of

∆(x) can be defined

∆⊥(x) = {a∗ ∈ (Rn)∗ : 〈a∗,b〉 = 0,∀b ∈ ∆(x)}

The smallest distribution that contains ∆ and is invariant under the vector fields

{g1,g2, ... ,gn} is denoted by 〈g1,g2, ... ,gn|∆〉.

The Lie product of two vector fields f1 ∈ U and f2 ∈ U at each x ∈ U can be

defined as follows

[f1, f2](x) =
∂f2

∂x
f1(x)− ∂f1

∂x
f2(x)

In order to calculate 〈g1,g2, ... ,gn|∆〉, the following lemma is used (Lemma

1.8.2 in [83])
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Lemma 2.3. Suppose ∆ is a distribution and ζζζ1, ζζζ2, ... , ζζζq are a set of vector fields,

the nondecreasing sequence of distributions ∆k can be calculated by the iteration in

Eq. (2.9), and ∆k ⊂ 〈ζζζ1, ζζζ2, ... , ζζζq|∆〉 ,∀k.

∆0 = ∆

∆k = ∆k−1 +

q∑
i=1

[ζζζ i,∆k−1]

(2.9)

If there exists an integer k̄ such that ∆k̄ = ∆k̄+1, then

∆k̄ = 〈ζζζ1, ζζζ2, ... , ζζζq|∆〉

On the basis of the above presented notations, the input-output relationship

for an affine nonlinear system can be presented in the following theorem (Theorem

3.3.2 in [83])

Theorem 2.1. Consider a nonlinear control system of the following form

ẋ = f(x) +
m∑
i=1

gi(x)ui

yj = hj(x) 1 ≤ j ≤ p (2.10)

The output yj is unaffected by the input ui if and only if the following condition is

satisfied

〈f ,g1, ... ,gm|span {gi}〉 ⊂ (span {dhj})⊥ (2.11)
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3 Distributed Consensus for Networked

Nonlinear Systems

There have been many consensus algorithms developed for linear agents [6,84],

while nonlinear agents are more generic in applications. Among them, consensus

algorithms for networked Euler-Lagrange agents are particularly attractive because

of their broad applications. Furthermore, as an applicable nonlinear consensus al-

gorithm, the controller should not only guarantee the achievement of consensus,

but also be robust to the bounded external disturbance. Therefore, in this chapter,

the robustness against the external disturbance will be investigated in the sense

of input-to-state stability. Specifically, the nominal system and structural uncer-

tainty will be considered together as a feedback control system. Meantime, the

external disturbance will be treated as a system input. In this configuration, if

the feedback control system is input-to-state stable, then the system stability will

not be destroyed by the external disturbance. Otherwise, the negative influence

generated by the external disturbance will be amplified by the feedback control
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system, which will eventually lead to the system instability. Hence, to effectively

solve the consensus seeking and input-to-state robustness problems, a nonlinear

robust control strategy is proposed in this chapter for networked Euler-Lagrange

systems based on perturbation and passivity theory. The consensus of the nonlin-

ear multi-agent systems is guaranteed in the presence of structural uncertainty and

external disturbance.

The remainder of this chapter is organized as follows. Section 3.1 presents the

research background on Euler-Lagrange systems and the challenges due to nonlin-

ear dynamics. Section 3.2 develops a nonlinear consensus algorithm for networked

Euler-Lagrange systems. The structural uncertainties and external disturbances

are considered in the controller design. The closed-loop control system is simplified

into cascade systems by the proposed consensus seeking algorithm. Due to the

external disturbances, the previous stability criteria for cascade systems cannot be

applied directly. Hence, the stability of the perturbed cascade systems is analyzed

first and the system is proven to be able to converge to a bounded region under

perturbations. Then, the concept of input-to-state consensus is proposed with a

strict mathematical definition. Based on the proposed theorems, the consensus

seeking algorithm is proven to be robust to bounded perturbations for multiple

Euler-Lagrange systems. The state information is coupled via the communication

topology, which is depicted using a digraph. Moreover, the influence of the struc-
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tural uncertainty is discussed in the presence of external disturbances. The L2

stability of the structurally uncertain system is proven based on the passivity theo-

rem. In Section 3.3, experimental results with four 3 degrees of freedom helicopters

are presented, and the hardware tests demonstrate the effectiveness of the proposed

controller.

3.1 Problem statement

Nonlinear consensus algorithm will be designed for multiple networked Euler-

Lagrange systems, also referred to as agents. The n-dimensional Euler-Lagrange

dynamical system can be described by

Mi[xi(t)]ẍi(t) + Ci[xi(t), ẋi(t)]ẋi(t) + gi[xi(t)] = vi(t), i ∈ {1, 2, · · · , k} (3.1)

where vi(t) ∈ Rn is the control input, xi(t) ∈ Rn is the vector of generalized

coordinates, Mi[xi(t)] ∈ Rn×n is the symmetric positive definite inertia matrix,

Ci[xi(t), ẋi(t)]ẋi(t) ∈ Rn is the vector of Coriolis and centrifugal forces, gi[xi(t)] ∈

Rn is the vector of gravitational force.

In this chapter, we will develop a distributed consensus seeking algorithm, by

which a group of nonlinear dynamical systems can reach consensus asymptotically

in the absence of modeling errors and disturbances. Furthermore, the closed-loop

control system is expected to be bounded under the influence of bounded external
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disturbances and system uncertainties. Unlike the previous work, the dynamics of

each agent in this work will be depicted by a nonlinear ordinary differential equa-

tion, i.e. the Euler-Lagrange equation. A group of Euler-Lagrange agents governed

by the proposed controller are expected to converge to a common final state. It is

assumed that the agents can continuously exchange state information via a wireless

network. Therefore their states are coupled by the network, in which the relation-

ships between the nodes are depicted using communication topology, represented

by a weighted directed graph. It is assumed that only relative coordinates of the

neighbors are available for every agent, hence, global coordinates of the neighbors

are not necessary for the purpose of consensus and each agent can only detect

the relative state information of its neighbors with respect to the communication

topology. The nonlinear dynamics of this system bring a lot of challenges to the

consensus seeking algorithm design because it requires a combination of nonlinear

control and a consensus seeking strategy.

3.2 Distributed consensus algorithm development

The nonlinear control and consensus seeking are brought together in a nonlinear

consensus algorithm. The first problem to be solved in this section is the nonlinear

consensus seeking algorithm design.
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A relative error vector is defined as

ei(t) =

∫ t

t0

∑
pj∈NG(pi)

(
xj(τ)− xi(τ)

)
dτ − xi(t) (3.2)

Here, xj(τ)− xi(τ) is referred to as the relative error term between agent i and

j. Since the vector xj(t) does not appear solely other than that in the relative error

term, the global coordinate of agent j, xj(t), with respect to the inertial frame is

not necessarily required if the relative error term can be derived directly by the

position measuring device.

The nonlinear consensus controller is then designed as follows

vi = M̂i(xi)τττ i + Ĉi(xi, ẋi)ẋi + ĝi(xi) (3.3)

where M̂i(xi), Ĉi(xi, ẋi) and ĝi(xi) are the nominal terms of Mi(xi), Ci(xi, ẋi)

and gi(xi). Namely, M̂i(xi), Ĉi(xi, ẋi) and ĝi(xi) represent the ideal values of

Mi(xi), Ci(xi, ẋi) and gi(xi), respectively. τττ i =
∑

pj∈NG(pi)
(ẋj − ẋi) + Kdėi +

Kpei + Ki

∫ t
t0

ei(τ)dτ , the control gain matrices Kp = diag{kp, kp, ... , kp}, Ki =

diag{ki, ki, ... , ki}, Kd = diag{kd, kd, ... , kd}, the control gains kp, ki and kd are

positive constants.

Remark 3.1. Ideally, the nominal terms should be the same as the actual terms if

the mathematical model is precisely developed, i.e. M̂i(xi) = Mi(xi), Ĉi(xi, ẋi) =

Ci(xi, ẋi) and ĝi(xi) = gi(xi). However, modeling errors are usually unavoid-

able due to the measurement errors, limitations of the models and the influence
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of unmodeled effects, etc. If the nominal and actual terms are not identical, their

difference will yield the mismatched uncertainty.

Remark 3.2. Other than the mismatched uncertainties and external disturbances,

the structural uncertainty in the closed-loop system is also considered in this work.

The mismatched uncertainty is produced by the open-loop model mismatch, while the

structural uncertainty is generated by the network-induced perturbations. Namely,

the mismatched uncertainty is a function of system states, while the structural un-

certainty is a function related to the variables in the closed-loop control system.

The structural uncertainty that exists in the closed-loop system is defined as

follows.

Definition 3.1. A bounded function ∆∆∆i : R3n → R3n is defined as a structural

uncertainty of a feedback control system, if ∆∆∆i is generated in the closed-loop system

and referred to as a function of the closed-loop error vector.

To distinguish from the structural uncertainty, the perturbation term produced

by the external disturbance and the mismatched uncertainty are defined as follows.

Definition 3.2. A time-varying function ωωωi : [0,∞) → Rn is defined as a pertur-

bation term of the system in Eq. (3.1), if it is a bounded input signal resulting from

the external disturbance and the mismatched uncertainty.
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According to these definitions, the structural uncertainty and the perturbation

term will have dissimilar influences on the control system. Since the structural

uncertainty is generated by the closed-loop control system, all states are probably

influenced. In contrast, the perturbation term only affects part of the system states

directly. Although the influence of the perturbation term may also be propagated

by the states’ coupling, its influence is distinctly different from that of the structural

uncertainty.

Remark 3.3. In the previous work [32–34, 85, 86], the uncertain constant param-

eters of the system are usually referred to as system uncertainty. However, the

time-varying disturbances and structural uncertainty are much more common. We

thus investigate these kinds of time-varying uncertainties, which is one of the most

important differences of this work.

In the following, the stability analysis is carried out with the consideration of

the perturbation term and structural uncertainty, respectively.

3.2.1 Stability analysis with perturbation term

In this section, only the perturbation term defined in Definition 3.2 is considered.

The twofold analysis of stability and robustness are necessary before applying the

proposed controller. First, the following theorem is presented.
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Theorem 3.1. Suppose that the perturbation term ωωωi is bounded by a positive

constant ωm and the nonlinear agents represented by Eq. (3.1) are dominated by

controller in Eq. (3.3). If the communication graph contains a center, then it can be

guaranteed that the networked nonlinear systems converge to a bounded consensus

neighborhood.

Proof. Substitute the controller in Eq. (3.3) into the Euler-Lagrange dynamical

system in Eq. (3.1), the closed-loop control system of agent i is derived in state

space as follows

ζ̇ζζ i = Aζζζ i + Dωi (3.4)

where ζζζ i =
[
%1T
i %2T

i %3T
i

]T
, A = Ap ⊗ In, Ap =

 0 1 0
0 0 1
−ki −kp −kd

, D =

[
0 0 In

]T
, %1

i =
∫ t
t0

eidt, %
2
i = ei and %3

i = ėi. Taking the time derivative of

Eq. (3.2), it is obtained that

ėi(t) = −
∑

pj∈NG(pi)

(xi(t)− xj(t))− ẋi(t)

=⇒ ẋi(t) = −
∑

pj∈NG(pi)

(xi(t)− xj(t))− ėi(t)

Therefore, Eq. (3.2) can be reorganized as

ξ̇ = − (Lk ⊗ In) ξ + E (3.5)

where the lumped generalized coordinates ξ = [ xT1 xT2 · · · xTk ]T , the lumped

derivative of error vectors E = −[ ėT1 ėT2 · · · ėTk ]T .
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Defining the Lyapunov function V1 = ζζζTi Pζζζ i with a real symmetric positive

definite matrix P, with ωi ≡ 0 it can be derived that

λmin(P)‖ζζζ i‖2 ≤ V1 ≤ λmax(P)‖ζζζ i‖2 (3.6)

∂V1

∂t
+
∂V1

∂ζζζ i
Aζζζ i ≤ λmax (−Q) ‖ζζζ i‖2 (3.7)∥∥∥∥∂V1

∂ζζζ i

∥∥∥∥ ≤ 2λmax(P)‖ζζζ i‖ (3.8)

where λmax(·) and λmin(·) are the maximum and minimum eigenvalues of matrix. Q

is a symmetric positive definite matrix defined by ATP+PA = −Q. Comparing the

inequalities (3.6-3.8) with the inequalities (2.3-2.5) in Lemma 2.1, it is obtained that

c1 = λmin(P), c2 = λmax(P), c3 = −λmax(−Q) and c4 = 2λmax(P). Furthermore

V̇1 ≤ λmax(−Q)‖ζζζ i‖2 + 2ωmλmax(P)‖ζζζ i‖

≤ (1− θ)λmax(−Q)‖ζζζ i‖2 + θλmax(−Q)‖ζζζ i‖2

+2ωmλmax(P)‖ζζζ i‖

≤ (1− θ)λmax(−Q)‖ζζζ i‖2, ∀‖ζζζ i‖ ≥ −
2ωmλmax(P)

θλmax(−Q)

where 0 < θ < 1 and ωm = {x ∈ R+ ∪ {0} : x = sup ‖ωi‖}.

Accordingly,

‖ζζζ i‖ ≤ ρ(ωi), ∀t ≥ t0 + tT

where ρ(ωi) = − 2ωmλ2max(P)
θλmin(P)λmax(−Q)

and tT is a finite time.
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Since ‖ėi‖ ≤ ‖ζζζ i‖, the boundary of E can be conducted as follows

‖E‖ ≤
k∑
i=1

‖ėi‖ ≤
k∑
i=1

‖ζζζ i‖ ≤
k∑
i=1

ρ(ωi) (3.9)

Choose V2l = δ2
l (t) as the Lyapunov function for Eq. (3.5), where δl(t) =

max {x1l, x2l, ... , xkl} −min {x1l, x2l, ... , xkl} and xil is the lth element of xi. With-

out loss of generality, suppose that the agents pb and ps have the maximum and

minimum values in the lth channel, i.e. xbl = max {x1l, x2l, ... , xkl} and xsl =

min {x1l, x2l, ... , xkl} for the agents pb and ps, then it is obtained when ‖E‖ = 0

that

V̇2l = 2δl(t)δ̇l(t)

= 2δl(t) [ẋbl(t)− ẋsl(t)]

= 2δl(t)

 ∑
pj∈NG(pb)

(xjl − xbl)−
∑

pj∈NG(ps)

(xjl − xsl)


(3.10)

Due to the definition of xbl and xsl, both
∑

pj∈NG(pb) (xjl − xbl) and −∑pj∈NG(ps)

(xjl − xsl) are negative, which implies that V̇2l < 0 ∀ xbl 6= xsl. With ‖E‖ 6= 0, the

convergence analysis for Eq. (3.5) can be considered as a special case of the results

in [87], based on which the metric term δl(t), l = 1, 2, ..., naturally converges to a

bounded consensus area if the communication graph has a center.

Remark 3.4. According to Theorem 3.1, the performance of the consensus algo-

rithm can be improved by minimizing the influence of perturbation ωi (an extreme
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case is that the system will achieve consensus when ωi = 0). The robust H∞ con-

troller is utilized for the purpose of optimization in this work. It has been proven

in classical robust control theory that an H∞ controller can minimize the gain of

the system transfer function [88], by which the influence of ωi is minimized. Con-

sequently, the following theorem is presented.

Theorem 3.2. Consider the networked nonlinear systems in Eq. (3.1) with bounded

perturbation ωωωi, and suppose it is governed by the controller in Eq. (3.11), then the

networked nonlinear systems in Eq. (3.1) can reach the minimum consensus area.

vi = M̂i(xi)(τ i − ui) + Ĉi(xi, ẋi)ẋi + ĝi(xi) (3.11)

where ui is the robust H∞ output feedback controller, and the value of ui can be

obtained from

˙̂qi = AKq̂i + BKyi

ui = CKq̂i

(3.12)

The parameters AK, BK and CK can be derived using LMI techniques (see Theorem

A.2 in the Appendix) [89, 90].

Proof. The system can be reorganized by using the following procedure, the same

as that used in the proof of Theorem 3.1. The state-space expression is then derived

as  %̇1
i

%̇2
i

%̇3
i

 =

 0 1 0
0 0 1
−ki −kp −kd

⊗ In

 %1
i

%2
i

%3
i

+

 0
0
In

ωi +

 0
0
In

ui
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Based on the classical robust control theory [88], the system gain from ωi to the

measured output is minimized if a robust H∞ controller exists. In this case, the

sub-controller in Eq. (3.12) minimizes the gain of transfer function from ωi to its

measured output. That is why E in Eq. (3.9) is minimized. Namely, the networked

nonlinear systems can reach the minimum consensus area.

The stability of the proposed consensus seeking algorithm has been strictly an-

alyzed in Theorem 3.2. As for robustness, it was first studied in [91] in the sense of

input-to-state stability for a linear consensus seeking algorithm. A Kalman consen-

sus scheme was developed and the robustness of their linear consensus algorithm

with respect to the noise on the communication channel was analyzed. Ref. [87]

investigated the input-to-state stability and integral input-to-state stability for the

networked systems with single-integrator agents. With the assistance of L∞ and

L1 norms, the robustness of a linear consensus algorithm was analyzed and the

sufficient/necessary connectivity conditions were obtained. In Ref. [81], the input-

to-state stability of the nonlinear systems was investigated. Motivated by their

work, the input-to-state properties of the proposed controller were further investi-

gated for nonlinear cascade systems with strict mathematical proofs in this work.

The robustness of the networked nonlinear systems was analyzed based on the

concept of input-to-state consensus.

Lemma 3.1. Consider ωi as an input and ζζζ i as the state vector, Eq. (3.4) is
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input-to-state stable if kp > 0, kd > 0 and 0 < ki < kpkd.

Proof. According to Lemma 2.2, the system in Eq. (3.4) is input-to-state stable if

ζ̇ζζ i = Aζζζ i has an exponentially stable equilibrium point at x = 0. Based on linear

control theory, x = 0 is an exponentially stable equilibrium point of ζ̇ζζ i = Aζζζ i if A

is a Hurwitz matrix. Let λi (i = 1, 2, 3) be the eigenvalues of the matrix Ap, then

the eigenvalues of the matrix A are λi ∀i = 1, 2, 3. According to Theorem A.3,

the algebraic multiplicity for each λi equals to the dimension of In. Therefore, it

is straightforward that the matrix A is Hurwitz if kp > 0, kd > 0 and 0 < ki <

kpkd.

The input-to-state stability is different between the classical nonlinear systems

and the networked systems. In the classical nonlinear system, the state vectors of

a nonlinear system will eventually converge to zero. However, the state vectors of

a networked system will converge to a non-predetermined common value, which is

not necessarily zero. This difference makes the following definition crucial.

Definition 3.3. The system in Eq. (3.5) is said to be input-to-state consensusable

if E(t) is bounded and there exists a class KL function p1, a class K function p2

and a disagreement vector δ(t) satisfying

‖δ(t)‖ ≤ p1 (‖δ(t0)‖ , t− t0) + p2

(
sup
t0≤s≤t

‖E(s)‖
)
, ∀t ≥ t0 (3.13)

50



where δl(t) = max {x1l, x2l, ... , xkl}−min {x1l, x2l, ... , xkl} is the lth element of δδδ(t).

δδδ(t0) is the initial value of the disagreement vector.

According to Definition 3.3, all the agents would always remain in a neighbor-

hood of each other, and no agent will diverge as long as E(t) is a bounded signal.

Namely, the networked nonlinear systems will be robust to E(t) if Eq. (3.13) holds.

Lemma 3.2. Consider E(t) as an input, the system in Eq. (3.5) is input-to-state

consensusable if and only if it can reach consensus when E(t) = 0.

Proof. (Sufficiency.) If the system in Eq. (3.5) is input-to-state consensusable, then

Eq. (3.13) holds. Since supt0≤s≤t ‖E(s)‖ ≡ 0 with the assumption ‖E(t)‖ = 0, it

can be derived directly from its definition that

‖δ(t)‖ ≤ p1(‖δ(t0)‖, t− t0)

Since p1(·) is a classKL function, ‖δ(t)‖ = 0 is a uniformly asymptotically stable

equilibrium point. Accordingly, xi(t) converges to a common value asymptotically.

Namely, the system in Eq. (3.5) reaches consensus when E(t) = 0.

(Necessity.) If the system in Eq. (3.5) can reach consensus when E(t) = 0, the

communication graph must contain a center [6]. According to the analysis in [87,91],

the following inequality is true for any bounded E(t) if the communication graph

has a center

‖δ(t)‖ ≤ p̄1 (‖δ(t0)‖, t− t0) + p̄2

(
sup
t0≤s≤t

‖E(s)‖
)
, ∀t ≥ t0 (3.14)
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where p̄1(·) is a class KL function and p̄2(·) is a class K function [87]. Compare

Eq. (3.14) with Eq. (3.13), it is straightforward that the system in Eq. (3.5) is

input-to-state consensusable.

Based on the concept of input-to-state stability and Lemma 3.2, it can be proven

that the systems in Eqs. (3.4, 3.5) are each robust. However, they are coupled into

a cascade system together in this work. The robustness of the cascade system has

not yet been discussed. To address this, the following theorem is presented.

Theorem 3.3. Suppose a group of Euler-Lagrange dynamical agents of the form

of Eq. (3.1) are coupled via a weighted directed graph G(x) and they are governed

by the controller in Eq. (3.3), the closed-loop systems are robust to any bounded

perturbation ωi if Eq. (3.4) is input-to-state stable and the system in Eq. (3.5) can

reach consensus when E(t) = 0.

Proof. According to Lemma 3.2, the system in Eq. (3.5) is input-to-state consen-

susable. Therefore, there are two class KL functions q1(·), q3(·) and two class K

functions q2(·), q4(·) such that

‖ζζζ i(t)‖ ≤ q1(‖ζζζ i(t0)‖, t− t0) + q2(ωm)

‖δ(t)‖ ≤ q3(‖δ(t0)‖, t− t0) + q4(
k∑
i=1

ρ(ωi))

Assume Γ = [ ζζζT1 ζζζT2 · · · ζζζTk δT ]T , and since ‖Γ‖ ≤∑k
i=1 ‖ζζζ i‖+‖δ‖, ‖δ‖ ≤

‖Γ‖ and
∥∥[ ζζζT1 ζζζT2 · · · ζζζTk

]T∥∥∥ ≤ ‖Γ‖, there is a class KL function q(·) and a
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class K function q′(·) satisfying

‖Γ(t)‖ ≤ q(‖Γ(t0)‖, t− t0) + q′(ωm)

where q(a, b) = kq1(a, b) + q3(a, b), q′(a) = kq2(a) + q4

(
−2akλ2max(P)

θλmin(P)λmax(ATP+PA)

)
.

Consequently, the robustness of the cascade system is proven in the sense of input-

to-state stability.

3.2.2 Stability analysis with structural uncertainty

In this section, both structural uncertainties and external disturbances are taken

into account. It has been shown in the previous section that the proposed control

law is robust to a bounded perturbation term. However, this analysis is carried

out without structural uncertainty, which widely exists in practice. Moreover, the

influence caused by the bounded perturbation may be propagated by the structural

uncertainty; hence, a control law that is robust to the structural uncertainty is

desired. The main objective is to prove that the closed-loop dynamical system is

passive from the perturbation term to the output under some types of structural

uncertainties. Since it is impossible for a control law to be robust to all kinds of

structural uncertainties, the constraints on the structural uncertainty should also

be analyzed.
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To consider the structural uncertainty, Eq. (3.4) is revised to the following form

ζ̇ζζ i = Aζζζ i + ∆i(ζζζ i) + Dωi (3.15)

where ∆∆∆i(ζζζ i) is the lumped term of structural uncertainty and satisfies ‖∆i(ζζζ i)‖ ≤

‖Θi(ζζζ i)‖ with ‖Θi(ζζζ i)‖ being the boundary function of the structural uncertainty.

Lemma 3.3. Suppose that the structural uncertainty ‖∆i(ζζζ i)‖ ≤ ‖Θi(ζζζ i)‖ <

λmin (−A) ‖ζζζ i‖. If the system in Eq. (3.1) is controlled by Eq. (3.3) with the per-

turbation term ωωωi, the following dynamical system is robust strictly passive from ωωω

to y

ζ̇ζζ = Āζζζ + ∆(ζζζ) + D̄ωωω

y = D̄Tζζζ

(3.16)

where ζζζ =
[
ζζζT1 ζζζT2 · · · ζζζTk

]T ∈ R3nk, Ā = Ik ⊗A ∈ R3nk×3nk, D̄ = Ik ⊗D ∈

R3nk×3nk, ∆(t) =
[

∆T
1 ∆T

2 · · · ∆T
k

]T ∈ R3nk, and ωωω =
[
ωωωT1 ωωωT2 · · · ωωωTk

]T ∈
R3nk.

Proof. For the system in Eq. (3.15), a positive definite function V (ζζζ i) is chosen to

be V (ζζζ i) = 1
2
ζζζTi ζζζ i. So [92]

LfV (ζζζ i) = ζζζTi Aζζζ i

LgV (ζζζ i) = ζζζTi D = ėTi

LeV (ζζζ i) = ζζζTi
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According to Eq. (A.3), the following inequality implies the robust strict pas-

sivity of Eq. (3.15)

ζζζTi Aζζζ i < −‖ζζζ i‖ ‖Θi(ζζζ i)‖ (3.17)

Moreover, Eq. (3.17) is true if the following inequality holds

‖Θi(ζζζ i)‖ < λmin (−A) ‖ζζζ i‖ (3.18)

According to Theorem A.1, it can be derived that the system in Eq. (3.15) is

passive from ωωωi to ėi if the inequality (3.18) is satisfied. Combining ζ̇ζζ i = Aζζζ i +

∆i(ζζζ i)+Dωi (i = 1, 2, · · · , k), Eq. (3.16) is formed. Since all blocks are decoupled,

the proof of passivity of Eq. (3.16) from ωωω to y is trivial.

Theorem 3.4. If ‖Θi(ζζζ i)‖ < λmin (−A) ‖ζζζ i‖ (i = 1, 2, ... , k) is true and the system

with transfer matrix s (sInk + Lk ⊗ In)−1 is passive, then the feedback control system

shown in Figure 3.1 is L2 stable. In Figure 3.1, G(·) is an operator from ωωω + ξξξ to

ė and C(s) := s (sIkn + Lk ⊗ In)−1.

G(·)

C(s)

ωωω +

ė

−ξξξ

−

Fig. 3.1 Feedback system
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Remark 3.5. The feedback system shown in Figure 3.1 is re-shaped from the closed-

loop system consisting of Eq. (3.3) and Eq. (3.1). Therefore, it only reveals the

relationship between the perturbation term and the system output.

Proof. On the basis of Lemma 3.3, the operator G(·) is robust strictly passive [92] if

‖Θi(ζζζ i)‖ < λmin (−A) ‖ζζζ i‖ (i = 1, 2, ... , k). According to the passivity theorem [93],

the feedback system shown in Figure 3.1 is L2 stable if C(s) is passive and G(·) is

strictly passive.

Therefore, the proposed control algorithm is robust to the bounded perturbation

term with the consideration of structural uncertainty. Theorem 3.4 further provides

an approach for the determination of the boundary of the structural uncertainty.

Remark 3.6. In the previous works [32–34, 85, 86], the system uncertainties are

categorized by their sources. They are investigated contemporaneously in the ro-

bustness analysis. Most of the previous works only discuss the robustness with one

specific kind of uncertainty. However, system uncertainties are diverse in prac-

tice and the presence of only one kind of uncertainty seldom occurs. Therefore, by

correlating the bounded perturbation and structural uncertainty, the current results

provide a more detailed scope for the robustness analysis. Also, the relationship be-

tween the communication topology and L2 stability is derived. These achievements

are different from the previous work and meaningful in both theoretical and practical
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applications.

3.3 Experimental results

To verify the effectiveness of the proposed consensus algorithm, experiments are

conducted using four Quanser’s 3-DOF helicopters facilitated at the Flight Systems

& Control (FSC) Laboratory of University of Toronto Institute for Aerospace Stud-

ies (UTIAS). Figure 3.2 shows a photo of the 3-DOF helicopter platform [94] and

the definition of its parameters [95].

The motion along the elevation axis is described as [96]

Jeα̈ = Kf la cos(β)Vs −mgla sin(α + α0)

where α is the elevation angle with initial value α0, β ∈
{
x ∈ R : −π

2
≤ x ≤ π

2

}
is the pitch angle, Je is the moment of inertia of the system about the elevation

axis, Kf is the force constant of the motor/propeller combination, la is the distance

from the pivot point to the helicopter body, Vs is the sum of voltages applied to

the front and back motors, m is the effective mass about the elevation axis and g

is the gravitational constant.

The pitch axis is governed by the difference in the forces created by the front

and back propellers

Jpβ̈ = Kf lhVd
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(a)

(b)

Fig. 3.2 3-DOF helicopter system at UTIAS
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where Jp is the moment of inertia of the system about the pitch axis, lh is the

distance from the pitch axis to either motor and Vd is the difference between the

voltages applied to the front and back motors.

The dynamics of the single helicopter system can be described by the following

equation [96] [
Je

Kf la cos(β)
0

0 Jp
Kf lh

][
α̈

β̈

]
+

[
mg sin(α+α0)
Kf cos(β)

0

]
=

[
Vs
Vd

]
(3.19)

In Section 3.1, it is assumed that vi(t) ∈ Rn and xi(t) ∈ Rn. This means that

the proposed consensus algorithms are only effective for fully actuated dynamical

systems. However, the 3-DOF helicopter is an under-actuated mechanical system.

To resolve this problem, the motion along the travel direction is not controlled.

This is why the state along the traveling direction is not included in Eq. (3.19).

This simplification will not influence the experiment because the consensus seeking

is tested in the direction of elevation, which is not coupled with the travel axis

motion.

Two sets of tests are carried out, i.e. leaderless consensus and leader-follower

consensus. In the leaderless consensus, four helicopters will start at the same eleva-

tion angle (α = −27.5◦). In the first 10 sec, they will proceed to different elevation

angles and stay there for 10 sec. At 20 sec, the consensus controller is switched on.

With this controller, the four helicopters will converge to the same attitude angle

asymptotically, and consensus is realized. Since the presented consensus algorithm
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is input-to-state stable, the system is robust to the bounded external disturbances.

Hence, the external disturbances will be included in the second experiment by

touching the helicopters. As for the leader-follower consensus experiment, one of

the helicopters is chosen as the leader and the other three will be followers. During

the experiment, the leader tracks a pre-determined trajectory. All the helicopters

have the same consensus seeking strategy. They only take advantage of the local

information from their neighbors. That is why the global information is not nec-

essary. Each helicopter only needs its neighbors’ relative error information, which

means that the coordinates with respect to the inertial frame are not necessary.

Each helicopter has the same consensus seeking strategy but their duties are dif-

ferent because they are at different vertices of the communication topology. The

leader’s out-degree is zero, but the followers’ are not. Namely, the duty of a heli-

copter is decided by its position in the communication topology, not by its controller

structure or controller parameters.

Two communication topologies are implemented in the experiments, as shown

in Figure 3.3. Topology 1 is used in the leaderless consensus since no agent in this

topology has an out-degree of zero. In Topology 2, helicopter 1 serves as the leader.

It can be seen by comparing Topology 2 with Topology 1 that helicopter 1 cannot

detect helicopter 2 via the communication topology, i.e. there is no in-direction

information flow to agent 1. In this situation, the out-degree of helicopter 1 is zero.
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1 2

3 4

(a) Topology 1

1 2

3 4

(b) Topology 2

Fig. 3.3 Communication topology

The values of system parameters and control gains are shown in Table 3.1.

Table 3.1 Parameters of helicopter system

Parameter Value
Moment of inertia about elevation axis, Je 1.03 (kg · m2)

Moment of inertia about pitch axis, Jp 0.0455 (kg · m2)
Transfer coefficient, Kf 0.625 (N/V)

Distance from propeller center to elevation axis, la 0.648 (m)
Distance from propeller center to pitch axis, lh 0.178 (m)

Kp 10 (N/V)
Ki 11 (N/V)
Kd 11 (N/V)

For the experiments, the value of the feedback gain is derived based on Lemma

3.1. The parameter matrices of the output feedbackH∞ controller are derived using

the Linear Matrix Inequalities (LMI) Control Toolbox in MATLAB. The generated
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matrices are

AK =


−2.6859 0.0000 0.0000 1.9388 0.0000 −1.3119
0.0000 −2.6859 −1.9388 0.0000 −1.3119 0.0000
0.0000 3.9909 −21.7238 −0.0000 −33.6963 0.0000
−3.9909 0.0000 0.0000 −21.7238 0.0000 33.6963
0.0000 1.4109 −11.0742 0.0000 −32.1967 0.0000
1.4109 0.0000 0.0000 11.0742 0.0000 −32.1967



BK =


0.0000 −1.7642 0.0000 1.2795 0.0000 −0.0833
1.7642 0.0000 −1.2795 0.0000 0.0833 0.0000
−1.1431 0.0000 −0.5160 0.0000 2.4193 0.0000
0.0000 −1.1431 0.0000 −0.5160 0.0000 2.4193
5.2439 0.0000 5.3147 0.0000 1.2372 0.0000
0.0000 −5.2439 0.0000 −5.3147 0.0000 −1.2372


CK =

[
0.0000 6.5882 −2.3729 0.0000 −11.8531 0.0000
−6.5882 0.0000 0.0000 −2.3729 0.0000 11.8531

]
Figure 3.4 shows the experimental results of the leaderless consensus. At the

beginning, all four helicopters have the same elevation angle of −27.5◦. Then,

these helicopters are all driven to different elevation angles and maintained these

positions. At t = 20 sec, the control strategy is switched to consensus seeking.

It can be seen from Figure 3.4(a) that the four helicopters converge to a common

angle quickly.

In Figure 3.4(b), several peaks can be observed after t = 20 sec due to the

external disturbances generated by touching the helicopters. However, the proposed

consensus algorithm has the ability to reject the external disturbances and the

helicopters can still achieve consensus, even when disturbances occur. Particularly,

the disturbance transmission can also be exhibited in Figure 3.4(b). At t = 40 sec,
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Fig. 3.4 Experimental results of Leaderless consensus

the elevation angles of helicopter 3 and 4 are disturbed when only helicopter 2 is

touched. Namely, the disturbance exerted on helicopter 2 has been transmitted to

its neighbors due to the coupling relationship. Apparently, the consensus is also

guaranteed even when the disturbance has been transmitted to the neighboring

agents, which further demonstrates the robustness of the proposed controller.
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(b) Consensus with disturbance

Fig. 3.5 Experimental results of Leader-follower consensus

The experimental results of leader-follower consensus are shown in Figure 3.5.

The sinusoidal trajectory of the leader helicopter is pre-determined as shown in Fig-

ure 3.5(a). All the followers can track the same trajectory, with a small delay that

can be observed between the leader and the followers. This situation is expected

since all the followers would remain in their own states until the relative errors
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are detected. As before, disturbances are included in the leader-follower consensus

seeking process, as seen in Figure 3.5(b). It is clear that the four helicopters can

maintain consensus even with the external disturbances. Experimental videos can

be found at http://www.yorku.ca/jjshan/Experiments.html.

It is observed from the experiments that if one helicopter is disturbed, all its

neighbors can be negatively influenced due to the coupling relationship. Similarly, if

one helicopter has a malfunction, the malfunction will probably also be transmitted

to its neighbors. Therefore, the fault diagnosis strategy of the networked Euler-

Lagrange systems will be discussed in the next chapter.

Remark 3.7. In the theoretical analysis, the consensus can be achieved if the pa-

rameters of controller satisfy certain bounded conditions. However, the values of

these parameters should be repeatedly adjusted in the experiment. For example, the

input-to-state stability of the system in Eq. (3.4) can be guaranteed if the values of

kp, kd and ki belong to the set F = {kp, kd, ki : kp > 0, kd > 0 and 0 < ki < kpkd}.

In the numerical simulations, any value that satisfies this condition could guarantee

the input-to-state stability of the system in Eq. (3.4) because the unmodeled per-

turbations are not included in the simulations; however, inappropriate selection of

the parameters in F might result in the slow convergence or other unexpected re-

sults in the experiment. Therefore, to ensure the achievement of the consensus, the

adjustment of the parameters is usually necessary in the practical applications.
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4 Synchronization of Networked Nonlinear

Multi-agent Systems with Fault Diagnosis

As a specific type of coordination for multiple networked agents, the synchro-

nized formation tracking of multi-agent systems has been broadly investigated

through a centralized approach. Ref. [97] is a representative work of position syn-

chronization, in which a centralized protocol for position synchronization of multiple

axes was presented using the cross-coupling technique. The inclusion of an adaptive

control strategy further enhanced the robustness of their controller. The experi-

mental validation of their synchronization control scheme can be found in [98]. A

further investigation on synchronous tracking control appeared in [96], where multi-

ple 3-DOF helicopters were utilized in the experimental tests. To enable the motion

synchronization, a generalized synchronization error strategy was developed along

with the feedforward dynamic term and a PD feedback term. The asymptotical

convergence was globally performed by the networked helicopters. With the ad-

vancement of multi-agent techniques, more and more attention has been paid to
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the decentralized approach with networked nonlinear agents [99, 100]. With the

appearance of a Lipschitz-type nonlinear dynamics, the linear decentralized con-

trol algorithm can be extended to the networked Lipschitz nonlinear systems [101].

In [102], a leader-follower consensus protocol was studied for networked systems

in the presence of Lipschitz nonlinear dynamics, and the synchronization can be

achieved using their distributed consensus algorithm with jointly connected topol-

ogy. The decentralized control strategies were further investigated for networked

nonlinear systems with Lipschitz-type nonlinear dynamics and semi-Lipschitz non-

linear dynamics in [103] and [104] respectively. The exponential synchronization of

genetic oscillators was discussed in [105], and the nonlinear dynamics in their work

were assumed to be either monotonic increasing or monotonic decreasing functions.

The nonlinear dynamics investigated in [106] occurs randomly in the dynamical

systems, where the consensus criteria were derived on the basis of stochastic anal-

ysis. To further extend the decentralized control strategy to nonlinear systems, a

distributed leader-follower formation tracking scheme was developed for networked

Euler-Lagrange systems in this work. The Euler-Lagrange model is widely adopted

to describe a large class of mechanical systems. Consequently, the research on syn-

chronous formation tracking of multiple agents with Euler-Lagrange dynamics is

especially useful due to its potential applications. Some recent work on decentral-

ized control of Euler-Lagrange systems can be found in [107, 108] where the lead-
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erless consensus seeking strategies were developed. In this work, a leader-follower

synchronization problem is studied. It is assumed that some agents have access

to the desired trajectory, while the others can only share their information with

their neighbors. An agent is defined as a leader if it can obtain the desired trajec-

tory; otherwise it is a follower. The synchronization is guaranteed by all leaders,

while the followers keep the formation with respect to the communication topol-

ogy containing a spanning tree. Because of the distributed information sharing

among followers, the usefulness of the proposed controller is scarcely influenced

by the growth of the number of followers. Hence, a synchronization problem with

a large number of followers can be effectively solved by the proposed protocol.

Meanwhile, the synchronous tracking is extensively enhanced by the undirected

coupling structure of the leaders. Moreover, the proposed controller will be able to

benefit many networked Euler-Lagrange systems, such as unmanned aerial vehicles

(UAVs), robots and aircraft, etc., if uncertainties are taken into account appropri-

ately. Therefore, system uncertainties and external disturbances are considered in

terms of a bounded noise. Unlike the common solution on the bounded noise, the

boundary of the noise is unavailable to the proposed controller in this chapter. To

cope with the influence rendered by the noise, a discontinuous control scheme is

incorporated into the synchronization protocol. Accordingly, the networked Euler-

Lagrange systems are guaranteed to solve the formation tracking problem through
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a distributed approach if no fault happens to any agent in the system.

Since all agents are coupled via network and no central controller monitors the

entire system, it is highly possible that the team objective will be crashed when

an agent stops proper functioning. In this work, an active fault detection strategy

is discussed for networked nonlinear systems. The super-twisting sliding mode

observer is adopted to generate the residual signals which act as the indicators of

specific faults. With the assistance of tools in differential geometry, it is revealed

that either sensor fault or actuator fault has direct influence on the residual output.

Furthermore, the divergence of the residual signal on account of the actuator/sensor

fault is proven in terms of single channel. Consequently, the proposed residual can

be used as an effective alarm signal for the recovery algorithm, which is further

demonstrated in the simulations.

The remainder of this chapter is organized as follows. In Section 4.1, the main

problem to be solved in this chapter is formulated mathematically. Each agent is

modeled using the Euler-Lagrange equation due to its broad applications. Section

4.2 presents the controller design and fault diagnosis strategy. With assumptions on

system noise and communication topology, a nonlinear trajectory tracking scheme

is proposed through a distributed approach. The stability analysis is carried out

based on the theory of Filippov’s solution. It is further proven that all leaders in the

system can track the trajectory synchronously in the presence of noise. Without the
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global knowledge of the desired trajectory, the followers can still reach consensus

in a distributed manner if the communication topology contains a spanning tree.

Moreover, the nonlinear multi-agent systems are enhanced to be fault tolerant by

the proposed active fault diagnosis strategy. In Section 4.3, the 3-DOF helicopter

system is adopted as an agent model, and six helicopters will perform the distributed

trajectory tracking in the simulations. Meanwhile, the simulations are implemented

with actuator and sensor faults, respectively. Both leader and follower faults are

simulated to demonstrate the effectiveness of the active fault diagnosis strategy.

4.1 Problem formulation

As reviewed above, the synchronization of multiple Euler-Lagrange systems is

not a new topic. However, most of the previous works have been carried out in a

centralized approach. The synchronization in decentralized approach for multiple

Euler-Lagrange systems was proposed in [29], where a model-independent consen-

sus algorithm was proposed to realize the distributed leaderless consensus. The

author did the convergence analysis using Matrosov’s theorem, and the consensus

was reached with an undirected communication topology. In addition, the dis-

tributed containment control for Euler-Lagrange systems was investigated in [30].

The parametric uncertainties were also taken into account to enhance the robust-

ness of their controller. Furthermore, the leaderless consensus algorithm was stud-
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ied with a directed graph. In our work, the distributed synchronization of multiple

Euler-Lagrange systems is investigated without the global knowledge of the desired

trajectory.

A network of p Euler-Lagrange dynamical systems operates in the workspace

Rn. The system can be modeled by

Mi[xi(t)]ẍi(t) + Ci[xi(t), ẋi(t)]ẋi(t) + gi[xi(t)] = ui(t) + fi(t) (4.1)

where i ∈ {1, 2, · · · , p}, ui(t) ∈ Rn is the control input, xi(t) ∈ Rn is the vec-

tor of generalized coordinates, Mi[xi(t)] ∈ Rn×n is the moments of inertia ma-

trix, Ci[xi(t), ẋi(t)]ẋi(t) ∈ Rn is the vector of Coriolis and centrifugal forces,

gi[xi(t)] ∈ Rn is the vector of gravitational force. The Euler-Lagrange equation

has the following properties:

(a) Symmetric positive definite: the moment of inertia matrix Mi[xi(t)] is sym-

metric positive definite in the entire workspace.

(b) Skew symmetry: let Ṁi[xi(t)] and Ci[xi(t), ẋi(t)] be the matrices defined in

Eq. (4.1), then the matrix Ṁi[xi(t)]− 2Ci[xi(t), ẋi(t)] is skew symmetric.

The first objective in this chapter is to design a feedback controller, by which

all agents can track a predetermined trajectory asymptotically. Only some of the

agents (leaders) know the desired trajectory; others (followers) have no direct in-

formation about the desired trajectory. In addition to the asymptotical trajectory

tracking, the leaders are able to perform the trajectory tracking synchronously by
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sharing the neighbors’ information with other neighbors. The generalized coor-

dinates are broadcast to the followers locally with respect to the communication

topology. Meanwhile, uncertainties are considered including parameter uncertain-

ties, structure uncertainties, mismatched model and disturbances.

Since the formation tracking mission is carried out in the sense of distributed

approach, any fault that may be tolerated by a centralized control system could

cause catastrophic failures due to the propagation of a single fault through the

network. With the growth of the network complexity, this risk is progressively

generated. Therefore, the second objective of this work is to develop the fault

diagnosis and task recovery techniques for the networked nonlinear systems.

4.2 Controller design with fault diagnosis

Before presenting the controller design, a few assumptions are put forward.

Assumption 4.1. The disturbances of the dynamical system (4.1) are bounded by

the following inequality

‖fi(t)‖ ≤ µi1 + µi2 ‖xi(t)‖+ µi3 ‖ẋi(t)‖ a.e. (4.2)

where µi1, µi2 and µi3 are unknown constants and a.e. denotes almost everywhere.

Remark 4.1. The disturbances are characterized by the parameters µi1, µi2 and

µi3. However, they are unknown for the control system. Namely, µi1, µi2 and µi3
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are specified in the stability analysis but never available for the controller.

Assumption 4.2. The communication topology is described by a directed graph

(digraph) in the networked system and the digraph contains a spanning tree with a

leader as the root. Furthermore, all the leaders communicate with each other via

an undirected subgraph.

Assumption 4.3. Both the actuator fault and sensor fault are considered in this

chapter. However, it is assumed that only one type of fault occurs at any time.

Due to the occurrence of system uncertainties and external disturbances, the

switched control strategy is adopted and the discontinuous control signal will thus

be generated by the proposed controller. With the concept of Filippov’s solution

in nonsmooth analysis, the stability analysis is presented with the help of Filippov

set-valued map K[f ]. It is defined as: K[f ](x, t) =
⋂
δ>0

⋂
µ(N)=0 co {f(B(x, δ)\N,

t)} [109], where f : Rn × R → Rm, µ(·) represents the Lebesgue measure and n

does not necessarily equal to m.

4.2.1 Distributed formation control with system noise

Defining xd(t) ∈ Rn as the desired generalized coordinates which satisfies xd(t),

ẋd(t), ẍd(t) ∈ L∞. Without loss of generality, it is assumed that some of the agents

belong to L , {vi : i = 1, · · · , k and k ≤ p} and have knowledge of the desired
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trajectory, while others belong to X \ L and do not have knowledge of the desired

trajectory. Therefore, the tracking error of agent vi ∈ L is

ei(t) = xd(t)− xi(t) (4.3)

with the coupling tracking error

e?i (t) =ei(t)

+ bi

∫ t

0

∑
vj∈N(vi)

 ∑
vj∈N(vi)

[ei(τ)− ej(τ)]−
∑

vk∈N(vj)

[ej(τ)− ek(τ)]

 dτ

(4.4)

where bi > 0, N(vi) = NG(vi) ∩ L. Observed from Eq. (4.4), the coupling tracking

error consists of two parts, trajectory tracking error and synchronization error.

With the convergence of ei(t), the agents belonging to L can converge to the desired

trajectory. Meanwhile,
∫ t

0

∑
vj∈N(vi)

{∑
vj∈N(vi)

[ei(τ)− ej(τ)]−∑vk∈N(vj) [ej(τ)−

ek(τ)] } dτ represents the synchronization error relative to the group motion of the

agents belonging to L. Since an enhanced synchronization is conducted for the

agents belonging to L, the information of vj ∈ N(vi) and vk ∈ N(vj) is demanded

by vi. As for the agents belonging to X \ L, they have the following tracking error

ei(t) = x∅
di(t)− xi(t) (4.5)

where

ẋ∅
di(t) =

1

ρi

∑
vj∈NG(vi)

{ẋj(t)− εi[xi(t)− xj(t)]} (4.6)
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and ρi is the in-degree of vertex vi and εi is a positive constant.

With these definitions, the stack vector of the system tracking error can be

expressed as

e?(t) = e(t) + BLp ⊗ In

∫ t

0

Lp ⊗ Ine(τ)dτ (4.7)

where e(t) = x̄(t) − x(t), B , diag
{
b1 b2 · · · bpı 0 ... 0

}
⊗ In, Lp =[

Lpı 0
0 0

]
is a p dimensional matrix, Lpı is the Laplacian matrix corresponding

to the undirected subgraph of leaders with pı = |L| and

x̄(t) =

[
xTd (t) ... xTd (t)︸ ︷︷ ︸

pı

x∅T
d1 (t) ... x∅T

d(p−pı)(t)
]T

x(t) =
[

xT1 (t) xT2 (t) ... xTp (t)
]T

A coupling error is further defined as

c(t) = ė?(t) + Λe?(t) (4.8)

where Λ , diag
{
λ1 λ2 · · · λp

}
⊗ In with λi > 0.

A sliding mode controller is proposed to deal with the trajectory tracking con-

sidering the system uncertainties and disturbances in the Filippov sense [110]. The

entire state space Rpn is split into two parts by a hypersurface. Since the hypersur-

face Σ can be defined by a scalar indicator (or event) function [111] h : Rnp → R,

the hypersurface in this work can be expressed implicitly as

eT (t)e(t) = 0 (4.9)
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The basic idea in this work is that Eqs. (4.5, 4.6) form a linear consensus

seeking dynamics if ei = 0 [6]. Therefore, the nonlinear consensus seeking problem

is transformed into a linear problem if the nonlinear dynamics can be forced into

the hypersurface described in Eq. (4.9). As for the agents belonging to L, they can

merely work on the synchronization due to the knowledge of the desired trajectory.

The nonlinear control law is thus designed as

ui(t) = k1ci(t) + k2

∑
vj∈N(vi)

 ∑
vj∈N(vi)

[ei(t)− ej(t)]−
∑

vk∈N(vj)

[ej(t)− ek(t)]


+Mi[xi(t)]Φ̇ΦΦi(t) + Ci[xi(t), ẋi(t)]ΦΦΦi(t) + gi[xi(t)]

+

 1
‖xi(t)‖
‖ẋi(t)‖

T µ̂i(t)sgn(ci(t)) (4.10)

with the update law

˙̂µi(t) =

 1
‖xi(t)‖
‖ẋi(t)‖

 sgn(ci(t))
Tci(t) (4.11)

where k2 > 0 ∀vi ∈ L otherwise k2 = 0 and

ΦΦΦi(t) = ˙̄xi(t) + bi
∑

vj∈N(vi)

 ∑
vj∈N(vi)

[ei(t)− ej(t)] −
∑

vk∈N(vj)

[ej(t)− ek(t)]


+λie

?
i (t)

sgn (ci(t)) ,
[

sgn (ci1(t)) sgn (ci2(t)) · · · sgn (cin(t))
]T

In Eq. (4.10), the terms k1ci(t)+k2

∑
vj∈N(vi)

{∑
vj∈N(vi)

[ei(t)− ej(t)]−
∑

vk∈N(vj)

[ej(t)− ek(t)]} + Mi[xi(t)]Φ̇ΦΦi(t) + Ci[xi(t), ẋi(t)]ΦΦΦi(t) + gi[xi(t)] will ensure the
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convergence of the coupling error vector in Eq. (4.8), and the robustness against

disturbance will be guaranteed by the term

 1
‖xi(t)‖
‖ẋi(t)‖

T µ̂i(t)sgn(ci(t)).

Theorem 4.1. Suppose that the system uncertainties and external disturbances

satisfy Assumption 4.1, and the system communication topology fulfills Assumption

4.2, then the proposed nonlinear controller in Eq. (4.10) solves the synchronized

formation control problem in a distributed manner.

Remark 4.2. Substituting the control law in Eq. (4.10) into Eq. (4.1), the closed-

loop system is described by a set of differential equations with discontinuous right

hand side. That is why the classical qualitative criteria for stability analysis cannot

be adopted here. The stability is studied in the sense of Filippov solution [110]

due to the assumption of discontinuous vector field in the control law. With the

assistance of nonsmooth analysis, the convergence criteria in discontinuous system

is developed in [112]. Two theorems in [112] are utilized in the following proof.

Remark 4.3. On the basis of Assumption 4.2 and the coupling tracking error

defined in Eq. (4.7), the information sharing among the leaders is more complex

than that among the followers. A tradeoff with respect to the communication cost

and the synchronous quality occurs among the leaders when the control algorithm

is applied. Namely, the communication cost is usually expected to be decreased in

practice, but the low communication cost will result in a lower synchronous quality.
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Hence, the complexity of the network should be appropriately designed, according to

the limitations in specific practical applications, to achieve the balance between the

communication cost and the synchronous quality.

Proof. The Lyapunov function is defined as follows

V =
1

2
cTMc +

1

2
k2 [Lp ⊗ Ine]T Lp ⊗ Ine +

1

2
µ̃T µ̃

+
1

2

[
Lp ⊗ In

∫ t

0

Lp ⊗ Inedτ

]T
k2BΛ

[
Lp ⊗ In

∫ t

0

Lp ⊗ Inedτ

]
(4.12)

where M , diag
{

M1 M2 · · · Mp

}
, the vector of estimation parameters is

µ̂ =
[
µ̂T1 µ̂T2 ... µ̂Tp

]T
, the nominal vector of the estimation parameters is µ =[

µT1 µT2 ... µTp
]T

, µi =
[
µ1 µ2 µ3

]T
, their error vector is µ̃ = µ̂− µ, and

µi =
∑p

j=1 µji ∀i = 1, 2, 3. For simplicity, the domain of c, e and µ̃ is ignored in

the equations.

According to the Property 6 in [113], it is derived from Eq. (4.12) that

∂V = K[∇V ]




t
c
e∫ t

0
edτ
µ̃µµ




=



1
2
cTṀ
cTM

k2 [Lp ⊗ Ine]T Lp ⊗ In[
Lp ⊗ In

∫ t
0
Lp ⊗ Inedτ

]T
k2BΛLp ⊗ InLp ⊗ In

µ̃T



(4.13)

According to Eq. (4.8)

Mċ = M (ë + BLp ⊗ InLp ⊗ Inė + Λė?) = MΦ̇ΦΦ−Mẍ (4.14)
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Based on Theorem A.5 in Appendix and Eq. (4.14), it is obtained that

˙̃
V = cTM

(
¨̄x + BLp ⊗ InLp ⊗ Inė + Λė?

)
− cTMẍ

+
1

2
cTṀc + k2 (Lp ⊗ Ine)T Lp ⊗ Inė

+

(
Lp ⊗ In

∫ t

0

Lp ⊗ Inedτ

)T
k2BΛLp ⊗ InLp ⊗ Ine + µ̃TK

[
˙̃µ
]

= cTM
(
¨̄x + BLp ⊗ InLp ⊗ Inė + Λė?

)
− cT (K[u] + f −Cẋ− g)

+
1

2
cTṀc + k2 (Lp ⊗ Ine)T Lp ⊗ Inė

+

(
Lp ⊗ In

∫ t

0

Lp ⊗ Inedτ

)T
k2BΛLp ⊗ InLp ⊗ Ine + µ̃TK

[
˙̂µ
]

= −cT (k1c + k2Lp ⊗ InLp ⊗ Ine + Cc +K[uω] + f) +
1

2
cTṀc

+k2 (Lp ⊗ Ine)T Lp ⊗ Inė

+

(
Lp ⊗ In

∫ t

0

Lp ⊗ Inedτ

)T
k2BΛLp ⊗ InLp ⊗ Ine + µ̃TK

[
˙̂µ
]

= −cTk1c− cT (K[uω] + f) + cT
(

1

2
Ṁ−C

)
c

−k2c
TLp ⊗ InLp ⊗ Ine + k2 [Lp ⊗ Ine]T Lp ⊗ Inė

+

(
Lp ⊗ In

∫ t

0

Lp ⊗ Inedτ

)T
k2BΛLp ⊗ InLp ⊗ Ine + µ̃TK

[
˙̂µ
]
(4.15)

where

uω =


sgn(c1)

[
1 ‖x1‖ ‖ẋ1‖

]
µ̂1

sgn(c2)
[

1 ‖x2‖ ‖ẋ2‖
]
µ̂2

...
sgn(cp)

[
1 ‖xp‖ ‖ẋp‖

]
µ̂p


ci ∈ Rn, c =

[
cT1 cT2 ... cTp

]T
and C , diag

{
C1 C2 ... Cp

}
.
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Due to the skew symmetry property, it is obtained that

xT
{

Ṁi[xi(t)]− 2Ci[xi(t), ẋi(t)]
}

x = 0 ∀x ∈ Rn (4.16)

Further manipulation can yield the skew symmetry property for the stack ma-

trices M and C

cT
{

1

2
Ṁ−C

}
c = 0 ∀c ∈ Rnp (4.17)

Substituting Eq. (4.7) and Eq. (4.8) into k2c
TLp ⊗ InLp ⊗ Ine(t) renders

k2c
TLp ⊗ InLp ⊗ Ine(t)

= k2

(
ė + BLp ⊗ InLp ⊗ Ine + Λe + ΛBLp ⊗ In

∫ t

0

Lp ⊗ Inedτ

)T
×Lp ⊗ InLp ⊗ Ine(t)

= k2ė
TLp ⊗ InLp ⊗ Ine(t) + k2 (BLp ⊗ InLp ⊗ Ine)T Lp ⊗ InLp ⊗ Ine(t)

+k2ΛeTLp ⊗ InLp ⊗ Ine(t) + k2

(
ΛBLp ⊗ In

∫ t

0

Lp ⊗ Inedτ

)T
×Lp ⊗ InLp ⊗ Ine(t) (4.18)

Therefore

−k2c
TLp ⊗ InLp ⊗ Ine(t) + k2 (Lp ⊗ Ine)T Lp ⊗ Inė

+

(
Lp ⊗ In

∫ t

0

Lp ⊗ Inedτ

)T
k2BΛLp ⊗ InLp ⊗ Ine(t)

= −k2 (BLp ⊗ InLp ⊗ Ine)T Lp ⊗ InLp ⊗ Ine(t)

−k2ΛeTLp ⊗ InLp ⊗ Ine(t) ≤ 0 (4.19)
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With this result and Assumption 4.1,
˙̃
V is derived as follows

˙̃
V ≤ −cTk1c− cT (K[uω] + f) + µ̃TK

[
˙̂µ
]

(4.20)

To deal with the noise, a passivity-based control law [114] is adopted in this

work. The noise boundary in this work is different from that in [114]. As stated

in Assumption 4.1, the noise boundary is also influenced by the derivative of the

generalized coordinates of the dynamical system. This is especially the case if the

friction disturbance is considered.

Substituting the update law in Eq. (4.11) into Eq. (4.20) yields

˙̃
V ≤ −cTk1c− cT (K[uω] + f) + [µ̂− µµµ]T K

[
˙̂µ
]

≤ −cTk1c− cTK[uω]− cT f +

p∑
i=1

µ̂Ti

 1
‖xi‖
‖ẋi‖

 SGN(ci)
Tci

−
p∑
i=1

µµµTi

 1
‖xi‖
‖ẋi‖

 SGN(ci)
Tci

≤ −cTk1c− cT f −
p∑
i=1

µµµTi

 1
‖xi‖
‖ẋi‖

 SGN(ci)
Tci (4.21)

where SGN(c) =


{1} if x > 0

[−1, 1] if x = 0
{−1} if x < 0

is the set-valued sign function as defined

in [113]. Since µi =
∑p

j=1 µji ∀i = 1, 2, 3, the last two terms in Eq. (4.21) are

non-positive and it is thus obtained

˙̃
V ≤ −cTk1c (4.22)
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According to the set-valued LaSalle theorem [112], it can be concluded that

ei → 0 ∀vi ∈ X and ei → ej ∀vi, vj ∈ L as t→∞. Therefore, the consensus seeking

protocol depicted by Eq. (4.6) achieves consensus in a distributed manner as long as

the state vector is forced in the supersurface e(t)Te(t) = 0. Hence, the synchronized

formation tracking problem is solved by the proposed distributed nonlinear control

law in Eq. (4.10) if the communication topology contains a spanning tree with a

leader as the root.

Remark 4.4. As mentioned in Remark 4.3, the synchronization studied in this

work is different from that in previous papers. This difference is explicitly explained

in the above paragraph. The proposed control algorithm can guarantee not only

the consensus of positions, but also the consensus of the error vectors ei ∀vi ∈ L

as the time evolves. Namely, with the achievement of the synchronization of the

relative errors, the formation of the leaders is further guaranteed while the trajectory

tracking is being conducted.

Remark 4.5. The asymptotical convergence is validated by the stability analysis.

However, two kinds of convergence, tracking convergence and synchronous conver-

gence, are included in the proposed control algorithm. It can be observed from the

stability proof that the convergence rate of synchronization is directly determined by

the network strength which is represented by the parameter bi. The relationship ex-

hibited in Eq. (4.4) implies that the performance of the synchronization is explicitly
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determined by the network strength. If bi is set to zero, then the network coupling

disappeared. In this extreme situation, there is no synchronization conducted be-

cause the only error dynamics in Eq. (4.4) will be the tracking error with respect to

the desired trajectory. In contrast, the trajectory tracking will be slowed down with

an extremely strong network connection. Therefore, the value of bi should be se-

lected appropriately in the applications regarding the balance between the trajectory

tracking and the synchronization.

4.2.2 Fault diagnosis

The active fault diagnosis problem in multi-agent systems is investigated in this

part. In the previous work on multi-agent fault diagnosis, the agent model is usually

assumed to be single/double integrator. However, most mechanical systems cannot

be represented by a single/double integrator model. The generalization of the fault

diagnosis strategy to a nonlinear system is compelled by many practically emerging

applications in multi-agent networks.

The possible faults are modeled as shown in Eqs. (4.23, 4.24)

Mi[xi(t)]ẍi(t) + Ci[xi(t), ẋi(t)]ẋi(t) + gi[xi(t)] = ui(t) + ξξξi(t) (4.23)

yi(t) = xi(t) + ζζζ i(t) (4.24)

where ξξξi(t) denotes the actuator fault, yi(t) is the detected state information with
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ζζζ i(t) defined as the sensor fault. The observer-based fault detection method is

utilized to generate the residual signal for the purpose of fault diagnosis.

The observer-based fault detection method is widely investigated due to its

effectiveness and flexibility. The basic idea of this method is to generate a set of

signals by comparing the measured with the estimated outputs. The faults in the

systems are indicated by these signals, referred to as the residuals. The observer-

based fault detection and isolation method is well developed in linear system [115,

116]. However, it is restricted by the diversity of nonlinear systems. In this work, an

observer-based fault detection method for networked nonlinear systems is discussed.

The super-twisting based sliding mode observer is utilized due to its effectiveness

for a large class of nonlinear systems. Equipped with the sliding mode observer

design techniques [117–119], the nonlinear observer of Eq. (4.1) for channel j has

the following form [120]

˙̂yji1(t) = ŷji2(t)− k3

√
|ŷji1(t)− yji (t)|sgn(ŷi1(t)− yji (t))

˙̂yji2(t) = −k4sgn(ŷji1(t)− yji (t)) + m̃j
i [yi(t)]u

j
i (t)− c̃ji [yi(t), ẏi(t)]ẏi(t)

− m̃j
i [yi(t)]gi[yi(t)]

rji = qji1(t)qji1(t)

(4.25)

where qji1(t) = ŷji1(t)− yji (t), rji is the residual signal, ŷji1 is the estimation of agent

position, ŷji2 is the estimation of agent velocity, k3 and k4 are positive constants.

m̃j
i [yi(t)] and c̃ji [yi(t), ẏi(t)] are the row vectors corresponding to channel j, and
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they are derived following the approach in [120].

In terms of the nonlinear observer in Eq. (4.25), the following error dynamics

are yielded by substituting Eq. (4.24) into Eq. (4.25) and subtracting Eq. (4.23)

from Eq. (4.25)

q̇ji1(t) = qji2(t)− k3

√
|qji1(t)|sgn(qji1(t))

q̇ji2(t) = −k4sgn(qji1(t)) + ρji (t) + ~ji (ζζζ i, ξξξi)
(4.26)

where qji2(t) = ŷji2(t) − ẏji (t) and ρji (t) is the mismatched dynamics out of the

corresponding channel. It is assumed that ρji (t) is bounded by an experimentally

obtained constant ρ. ~ji (ζζζ i, ξξξi) is the extra term caused by fault vectors and it cannot

be explicitly formulated due to the flexibility of the dynamic model. However, a

straightforward property of ~ji (ζζζ i, ξξξi) is that it will cease to be zero with either

non-zero ζζζ i or ξξξi. With possible faults, the error dynamics are organized in vector

form as follows

q̇i1(t) = qi2(t)− k3


√
|q1
i1(t)| 0 0 0

0
√
|q2
i1(t)| 0 0

0 0
. . . 0

0 0 0
√
|qni1(t)|

 sgn(qi1(t))

q̇i2(t) = −k4sgn(qi1(t)) + ρρρi(t) + ~~~i(ζζζ i, ξξξi)

ri =


q1
i1(t) 0 0 0
0 q2

i1(t) 0 0

0 0
. . . 0

0 0 0 qni1(t)

qi1(t)

(4.27)

where qi1, qi2, ρρρi(t) and ~~~i(ζζζ i, ξξξi) are n-dimensional stack vectors of qji1, qji2, ρji (t)
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and ~ji (ζζζ i, ξξξi), respectively. The expected fault detection algorithm should work

in this way: ri is a zero vector in the fault-free condition, i.e. ξξξi = ζζζ i = 0.

When any fault occurs, i.e. either ξξξi or ζζζ i ceases to be zero, the residual signal

ri grows accordingly. Since the fault-free dynamics of Eq. (4.27) is equivalent to

that of the fundamental form of the super-twisting algorithm, the robustly global

finite-time stability can be guaranteed by Theorem 2 in [119]. Namely, ri = 0,

∀ξξξi = ζζζ i = 0. Meantime, the presence of either actuator fault or sensor fault will

lead to a non-zero value for the term ~~~i(ζζζ i, ξξξi). By intuition, this would influence the

stability of Eq. (4.27). However, the super-twisting structure brought a challenge

for the strictly mathematical analysis. Therefore, two parts of work should be

carried out in this section. First, a convincible analysis should be proposed to

indicate that the residual signal ri will be affected by any change in ~~~i(ζζζ i, ξξξi).

Namely, the term ~~~i(ζζζ i, ξξξi) is not decoupled from the output ri. Otherwise, any fault

signal will not be indicated by the residual signal ri if the super-twisting structure

decouples ~~~i(ζζζ i, ξξξi) from ri. After the coupling relationship is demonstrated, the

divergent condition should be derived regarding a non-zero ~~~i(ζζζ i, ξξξi). Motivated by

previous work [121–123], the influence of the term ~~~i(ζζζ i, ξξξi) will be studied using

the differential geometry tools developed in the nonlinear realization theory [83].

Theorem 4.2. Suppose that the actuator fault or sensor fault occurs as stated in

Assumption 4.3, then the residual signal ri is affected by the term ~~~i(ζζζ i, ξξξi) appeared
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in Eq. (4.27), i.e. the super-twisting structure will never decouple the ~~~i(ζζζ i, ξξξi) from

ri.

Proof. With the presence of either actuator fault or sensor fault, the error dynamics

in Eq. (4.27) can be reorganized into the affine nonlinear dynamics form

q̇i(t) = fAi
(qi(t)) + FBi

χχχi (4.28)

ri = fCi
(qi(t)) =


(q1
i1(t))2

(q2
i1(t))2

...
(qni1(t))2

 (4.29)

where FBi
=

[
0
1

]
⊗ In, qi(t) =

[
qi1(t) qi2(t)

]T
, χχχi = ρρρi(t) + ~~~i(ζζζ i, ξξξi) and

fAi
(qi(t)) =



q1
i2(t)− k3

√
|q1
i1(t)|sgn(q1

i1(t))

q2
i2(t)− k3

√
|q2
i1(t)|sgn(q2

i1(t))
...

qni2(t)− k3

√
|qni1(t)|sgn(qni1(t))

−k4sgn(q1
i1(t))

−k4sgn(q2
i1(t))

...
−k4sgn(qni1(t))


.

Based on the affine nonlinear dynamics in Eqs. (4.28, 4.29), it is derived that

span {dfCi
qi(t)} = span


[

2q1
i1(t)

02n−1

]
,

 0
2q2
i1(t)

02n−2

 , ... ,

 0n−1

2qni1(t)
0n

  (4.30)

where 0n denotes an n-dimensional zero vector.

Define Π0 = span{bi}, where bi (i = 1, 2, ... , n) is the column vector of the

vector field FBi
. Then, Πj := Πj−1 + [fAi

,Πj−1] +
∑n

i=1 [bi,Πj−1] and the sym-

bol [bi,Πj−1] represents the Lie bracket of two vector fields. Due to the fact that
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the condition Πj ⊂ 〈fAi
,b1, ... ,bn|span{bi}〉 is always true, the smallest invari-

ant distribution 〈fAi
,b1, ... ,bn|span{bi}〉 does not belong to the annihilator of

span{dfCi
qi(t)} if Πj * span{dfCi

qi(t)}⊥, ∃Πj ⊂ 〈fAi
,b1, ... ,bn|span{bi}〉. To

this end, the following distribution is derived

Π1 = Π0 + [fAi
,Π0] +

n∑
i=1

[bi,Π0] (4.31)

Due to the bilinear property of the Lie bracket of vector fields, it can be further

yielded that

Π1 = span {bi}+
n∑
j=1

[fAi
,bj] +

n∑
i=1

n∑
j=1

[bi,bj]

= span {bi}+ span
{
v1

2n,v
2
2n, ... ,v

n
2n

}
= span

{
vi2n
}

∀i = 1, 2, ... , 2n (4.32)

where vi2n denotes a 2n-dimensional vector whose i-th element is 1, and all the

other elements are 0. Apparently, Π1 * span{dfCi
qi(t)}⊥, which demonstrates that

ri must be affected by χχχi according to Theorem 2.1. Namely, the super-twisting

structure will never decouple ~~~i(ζζζ i, ξξξi) from ri.

In addition, the signal ri should also be divergent (or at least change distinctly in

the amplitude) once a fault occurs. However, only coupling condition is proposed

in the above work. Hence, the following theorem is presented to illustrate the

divergent condition in the presence of actuator/sensor fault.
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Theorem 4.3. Suppose that the actuator fault and sensor fault are modeled in

Eq. (4.23) and satisfy Assumption 4.3. The signal ri in the observer-based fault

detection algorithm (4.27) is divergent if ~ji (ζζζ i, ξξξi) > ρ + k4 + ε or ~ji (ζζζ i, ξξξi) <

−k4 − ρ− ε, where ε is a positive constant.

Proof. If ~ji (ζζζ i, ξξξi) > k4 + ρ + ε, regarded as channel j, represents the jth element

of vector ~~~i(ζζζ i, ξξξi), the error term qji2(t) can be derived as follows

qji2(t) = qji2(t0) +

∫ t

t0

−k4sgn
(
qji1(τ)

)
+ ρji (τ) + ~ji (ζζζ i, ξξξi)dt

>

∫ t

t0

−k4sgn
(
qji1(τ)

)
+ k4 + εdt

= k4

∫ t

t0

[
1− sgn

(
qji1(τ)

)]
dt+

∫ t

t0

εdt (4.33)

The inequality (4.33) implies that qji2(t) is monotonically increasing since 1 −

sgn
(
qji1(t)

)
≥ 0 and ε > 0. According to Eq. (4.26), it is obtained that

q̇ji1(t) > k4

∫ t

t0

[
1− sgn

(
qji1(τ)

)]
dt+

∫ t

t0

εdt− k3

√
|qji1(t)|sgn

(
qji1(t)

)
It is straightforward that q̇ji1(t) > 0 ∀qji1(t) ≤ 0, namely, qji1(t) is monotonically

increasing if qji1(t) ≤ 0. Assuming that qji1(t) is convergent for any t ∈ R+, then

there must be a positive constant q̄ so that qji1(t) < q̄ < ∞ ∀t ∈ R+ when qji1(t) is

positive. This assumption in turn implies that

q̇ji1(t) > k4

∫ t

t0

[
1− sgn

(
qji1(τ)

)]
dt+

∫ t

t0

εdt− k3

√
q̄

89



Thus, there must exist a positive constant t̄ satisfying t̄ = t0 +k3

√
q̄/ε, and it is

always true that q̇ji1(t) > 0 ∀t > t̄. As a result, qji1(t) is unbounded since qji1(t) > 0

and q̇ji1(t) > 0 are both true. That is why the convergence assumption is incorrect,

namely, qji1(t) is divergent if ~ji (ζζζ i, ξξξi) > ρ + k4 + ε, which further implies that the

signal ri is divergent if ~ji (ζζζ i, ξξξi) > ρ+k4 +ε. In the case of ~ji (ζζζ i, ξξξi) < −k4−ρ−ε,

the proof is similar and thus ignored here.

The vector ri can be selected as the residual signal regarding the conclusion

in Theorem 4.3. Based on the residual generation algorithm constructed above, a

technical scope of fault detection and function recovery strategy is explained in Fig-

ure 4.1. The residual signal rji generated by Eq. (4.25) is considered as an alarm. A

fault can be identified if the amplitude of rji is greater than a predetermined thresh-

old. Detailed fault detection process is explained in Figure. 4.2. Furthermore, the

faulty agent will be discarded by the recovery algorithm as explained in Figure. 4.3.

Since the network contains a spanning tree, all the neighbors of the faulty agent

can be acknowledged. Therefore, the group mission will not be demolished by the

faulty agent.
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Control system
Input Output

Observer-based fault detection algorithm

Recovery algorithm

Alarm

Fig. 4.1 Fault diagnosis configuration

4.3 Simulations

The proposed distributed formation control law is applied to six 3-DOF heli-

copters. Three of them have access to the desired trajectory while the others can

only receive their neighbors’ information. The dynamical model of 3-DOF heli-

copter in [96] is adopted as[
Je

Kf la cos(β)
0

0 Jp
Kf lh

][
α̈

β̈

]
+

[
mg sin(α+α0)
Kf cos(β)

0

]
=

[
Vs
Vd

]
(4.34)

where Je and Jp are the moments of inertia about the elevation and pitch axis,

correspondingly, α and β are elevation and pitch angle, respectively, Vs is the sum

of voltages applied to the front and back motors, and Vd is the difference between the

voltages. The system parameters are shown in Table 4.1, and the communication

topology is shown in Figure 4.4.
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Control input, output

Generate the estimated
output using observer

Derive the residual signal by
subtracting the actual out-

put from the estimated output

Absolute value of resid-
ual signal > threshold

Faulty agent detected No faulty agent

yes

no

Fig. 4.2 Fault diagnosis strategy

Table 4.1 Parameters of helicopter system

Parameter Value
Moment of inertia about elevation axis, Je 1.044 (kg · m2)

Moment of inertia about pitch axis, Jp 0.0455 (kg · m2)
Transfer coefficient, Kf 0.625 (N/V)

Distance from propeller center to elevation axis, la 0.648 (m)
Distance from propeller center to pitch axis, lh 0.178 (m)
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Residual signal

Residual signal > threshold

Determine which agent is malfunctioning

Discard the information from faulty agents

Apply control algorithm
to the healthy agents

yes

no

Fig. 4.3 Fault recovery strategy

The desired trajectory about elevation is shown in Figure 4.9, and the noise is

generated using the formula in Eq. (4.35)

fi = 0.1 + 0.2|αi|+ 0.3|α̇i|+W (t) (4.35)

where W (t) is the white noise whose variance is 0.1. Figure 4.10 shows the noise
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Fig. 4.4 Communication topology

in the simulations, and the tracking errors of the six helicopters are displayed in

Figure 4.11.

Since all helicopters are functioning properly, none of the residual signals is

divergent as shown in Figure 4.12 and none of the health indicators reports alarm.

Here, the health indicator can only be one or zero. It is equal to one in normal

condition, but becomes to be zero if malfunctioning is detected. It is observed in

Figure 4.13 that the value of all the health indicators is one, which implies that no

94



Fault recovery

1

2 3

4 5

6

Desired trajectory

1

2 3

4 5

6

Desired trajectory

Fig. 4.5 Topology switching with faulty helicopter 1

malfunction is detected.

Since the fault diagnosis strategy is discussed in this work, the system is also

simulated in the presence of faulty agents. There are many kinds of faults in practice

[124–126]. Without loss of generality, the ineffectiveness of actuator and sensor is

considered in this work. Figure 4.14 shows the tracking errors of six helicopters

if both motors of helicopter 1 stop working. It is revealed in the simulation that

all the helicopters fail to track the desired trajectory. This is because helicopter 2
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Fig. 4.6 Topology switching with faulty helicopter 2

and 3 need to keep synchronization with helicopter 1. Helicopters 4, 5 and 6 do

not have the knowledge of the desired trajectory, and they can only keep consensus

with the leaders. Similarly, the failure of tracking of six helicopters is exhibited in

Figure 4.15. Since an incorrect feedback signal was provided by the faulty sensor,

helicopter 1 is out of control. Accordingly, other helicopters are negatively affected

by the faulty signal of helicopter 1 and the formation tracking mission completely

failed because of one malfunctioning helicopter.
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Fig. 4.7 Topology switching with faulty helicopter 1 and 3

To enable the capability of the active fault tolerant in the networked systems,

the fault diagnosis strategy discussed in Section 4.2.2 is incorporated. In the pres-

ence of a residual generator, the fault of helicopter 1 is detected by a properly

selected threshold value. In the simulation, the threshold value is chosen to be

0.02. It means that the fault alarm will be broadcast if the absolute value of the

residual signal is greater than 0.02. The tracking errors of agent 1 and others are

shown in Figure 4.16. Obviously, the malfunctioning of the faulty helicopter is
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Fig. 4.8 Topology switching with faulty helicopter 4
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Fig. 4.11 Tracking errors of six helicopters

observed in Figure 4.16(a). The remaining helicopters actively ignore the faulty

signal from the faulty helicopter and achieve synchronization. Figure 4.5 shows

the topology switching based on the proposed fault diagnosis strategy. Meanwhile,

the effectiveness of the fault recovery strategy is shown in Figure 4.17, where the

health indicator precisely reports the occurrence of the fault of helicopter 1. The
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Fig. 4.12 Residuals of six helicopters

corresponding residual signal is shown in Figure 4.18.

Similarly, if an actuator fault occurs at agent 2, the tracking errors, health

indicators and residuals are shown in Figure 4.19, Figure 4.20 and Figure 4.21,

respectively. Also, similar fault recovery strategy is exhibited in Figure 4.6.

Only one faulty agent is considered in the above simulations, but multiple faulty

agents are also possible in practice. Therefore, two faulty agents are considered in

the following demonstration. Agent 1 and 3 are both suffering from actuator fault,

and the fault recovery strategy is shown in Figure 4.7

Correspondingly, the tracking errors, health indicators and residuals are shown

in Figure 4.22, Figure 4.23 and Figure 4.24. It is observed that the tracking er-

rors of the healthy helicopters converge to zero successfully, namely, healthy agents

are not influenced by the faulty agent. Meanwhile, the agent fault has been indi-
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(a) Health indicators of helicopter 1, 2 and 3
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(b) Health indicators of helicopter 4, 5 and 6

Fig. 4.13 Health indicators of six helicopters

cated precisely in Figure 4.23, which further demonstrates the effectiveness of the

observer-based fault diagnosis strategy.

To further verify the effectiveness of the proposed fault diagnosis strategy when

follower malfunctioning happens, the follower fault condition is also simulated with

faulty agent 4. The tracking errors, health indicators and residuals are shown in
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Fig. 4.14 Tracking errors with faulty helicopter 1 (actuator fault)
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Fig. 4.15 Tracking errors with faulty helicopter 1 (sensor fault)

Figure 4.25, Figure 4.26 and Figure 4.27. Accordingly, the fault recovery strategy

is presented in Figure 4.8.

In the above simulations, actuator fault has been considered with both faulty

leaders and follower conditions. Other than actuator fault, sensor fault is another

type of common fault. In order to further demonstrate the capability of the pro-
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(a) Tracking error of helicopter 1

0 5 10 15 20 25 30
−15

−10

−5

0

5

10

15

20

Time(s)

T
ra

ck
in

g 
er

ro
rs

(d
eg

)

 

 

Agent 2
Agent 3
Agent 4
Agent 5
Agent 6

(b) Tracking errors of healthy helicopters

Fig. 4.16 Tracking errors of six helicopters

posed fault diagnosis strategy, the sensor fault will be considered in the following

simulations. It is assumed that sensor fault occurs at agent 1, then the tracking

errors, health indicators and residuals are shown in Figure 4.28, Figure 4.29 and

Figure 4.30.

If agent 2 has the sensor fault, the tracking errors, health indicators and residuals
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(a) Health indicators of helicopter 1, 2 and 3
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(b) Health indicators of helicopter 4, 5 and 6

Fig. 4.17 Health indicators of six helicopters

are shown in Figure 4.31, Figure 4.32 and Figure 4.33.

Similarly, if both agent 1 and 3 encounter sensor fault, the tracking errors, health

indicators and residuals are shown in Figure 4.34, Figure 4.35 and Figure 4.36.

Also, the faulty follower condition is considered with faulty agent 4, and the

tracking errors, health indicators and residuals are shown in Figure 4.37, Figure 4.38
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(a) Residual signal of helicopter 1

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time(s)

R
es

id
ua

l s
ig

na
l a

bo
ut

 e
le

va
tio

n

 

 

Agent 2
Agent 3
Agent 4
Agent 5
Agent 6

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

(b) Residual signals of helicopter 2, 3, 4, 5 and 6

Fig. 4.18 Residual signals with faulty helicopter 1 (actuator fault)

and Figure 4.39.

Apparently, in all the simulations with sensor fault, the fault detection strategy

successfully indicated all the faulty agents. Meanwhile, all the formation tracking

missions are achieved based on the proposed fault recovery strategy, which further

demonstrates the effectiveness of the proposed fault diagnosis strategy.
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(a) Tracking error of helicopter 2

0 5 10 15 20 25 30
−15

−10

−5

0

5

10

15

Time(s)

T
ra

ck
in

g 
er

ro
rs

(d
eg

)

 

 

Agent 1
Agent 3
Agent 4
Agent 5
Agent 6

(b) Tracking errors of healthy helicopters

Fig. 4.19 Tracking errors of six helicopters

In this chapter, both the robust synchronization and fault diagnosis problems are

solved for networked Euler-Lagrange systems. To further generalize the cooperative

control algorithm for networked nonlinear systems, the consensus seeking algorithm

for networked Lipschitz systems will be investigated in the next chapter.
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(a) Health indicators of helicopter 1, 2 and 3
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(b) Health indicator of helicopter 4, 5 and 6

Fig. 4.20 Health indicators of six helicopters
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(a) Residual signal of helicopter 2
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(b) Residual signals of helicopter 1, 3, 4, 5 and 6

Fig. 4.21 Residual signals with faulty helicopter 2 (actuator fault)
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(a) Tracking errors of helicopter 1 and 3
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(b) Tracking errors of healthy helicopters

Fig. 4.22 Tracking errors of six helicopters
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(a) Health indicators of helicopter 1, 2 and 3
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(b) Health indicators of helicopter 4, 5 and 6

Fig. 4.23 Health indicators of six helicopters
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(a) Residual signals of helicopter 1 and 3
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(b) Residual signals of helicopter 2, 4, 5 and 6

Fig. 4.24 Residual signals with faulty helicopter 1 and 3 (actuator fault)

111



0 5 10 15 20 25 30
−20

0

20

40

60

80

100

120

140

160

Time(s)

T
ra

ck
in

g 
er

ro
rs

(d
eg

)

 

 

(a) Tracking error of helicopter 4
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(b) Tracking errors of healthy helicopters

Fig. 4.25 Tracking errors of six helicopters
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(a) Health indicators of helicopter 1, 2 and 3

0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 4

0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 5

0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 6

(b) Health indicators of helicopter 4, 5 and 6

Fig. 4.26 Health indicators of six helicopters
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(a) Residual signal of helicopter 4
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(b) Residual signals of helicopter 1, 2, 3, 5 and 6

Fig. 4.27 Residual signals with faulty helicopter 4 (actuator fault)
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(a) Tracking error of helicopter 1
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(b) Tracking errors of healthy helicopters

Fig. 4.28 Tracking errors of six helicopters

115



0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 1

0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 2

0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 3

(a) Health indicators of helicopter 1, 2 and 3
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(b) Health indicators of helicopter 4, 5 and 6

Fig. 4.29 Health indicators of six helicopters
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(a) Residual signal of helicopter 1
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(b) Residual signals of helicopter 2, 3, 4, 5 and 6

Fig. 4.30 Residual signals with faulty helicopter 1 (sensor fault)
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(a) Tracking error of helicopter 2
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(b) Tracking errors of healthy helicopters

Fig. 4.31 Tracking errors of six helicopters
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(a) Health indicators of helicopter 1, 2 and 3
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(b) Health indicators of helicopter 4, 5 and 6

Fig. 4.32 Health indicators of six helicopters
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(a) Residual signal of helicopter 2
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(b) Residual signals of helicopter 1, 3, 4, 5 and 6

Fig. 4.33 Residual signals with faulty helicopter 2 (sensor fault)
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(a) Tracking errors of helicopter 1 and 3
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Fig. 4.34 Tracking errors of six helicopters

121



0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 1

0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 2

0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 3

(a) Health indicators of helicopter 1, 2 and 3

0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 4

0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 5

0 5 10 15 20 25 30
0

0.5

1

Time(s)

F
au

lt 
al

ar
m

of
 a

ge
nt

 6

(b) Health indicators of helicopter 4, 5 and 6

Fig. 4.35 Health indicators of six helicopters
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Fig. 4.36 Residual signals with faulty helicopter 1 and 3 (sensor fault)
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Fig. 4.37 Tracking errors of six helicopters
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Fig. 4.38 Health indicators of six helicopters
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(a) Residual signal of helicopter 4

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time(s)

R
es

id
ua

l s
ig

na
l a

bo
ut

 e
le

va
tio

n

 

 

Agent 1
Agent 2
Agent 3
Agent 5
Agent 6

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

(b) Residual signals of helicopter 1, 2, 3, 5 and 6

Fig. 4.39 Residual signals with faulty helicopter 4 (sensor fault)
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5 Sampled-data Synchronization Control of

Networked Nonlinear Systems

In order to bridge the gap between the theoretical sampled-data controller

and its application, it is quite necessary to extend the sampled-data control al-

gorithm from linear systems to their nonlinear counterparts. Almost all the me-

chanical/electrical systems are fundamentally nonlinear and the linear dynamics is

a rudimentary simplification. Thus, the nonlinear extension of the linear sampled-

data controller naturally plays an important part in practical applications, and the

Lipschitz nonlinear dynamical system will be investigated in this work. Moreover,

compared to the state feedback controller in previous work, output feedback con-

troller is more widely applicable because the system states are not directly measur-

able for most dynamical systems [127]. Hence, the availability of state information

should not be presumed for a relatively general nonlinear system. Therefore, an

observer-based output feedback controller will be presented in this chapter. Fur-

thermore, system uncertainty is usually unavoidable in the dynamical model of
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mechanical/electrical system due to various unmodeled effects. It is thus crucial to

enhance the robustness of the proposed control algorithm. Consequently, an H∞

robust controller is investigated in this work to strengthen the robustness of the en-

tire control system. Basically, compared to the previous work, this chapter presents

a more generic control strategy for multi-agent systems in terms of dynamics model

and controller structure. Unlike in [56,57], the dynamics model in this work is de-

scribed using Lipschitz nonlinearity and the state information is not available for

the controller. As for the structure of the controller, it is more flexible to adopt

the output feedback structure rather than state feedback [26,29,56,96,97,128] and

state feedback structure can be considered as a special case in output feedback

structure. Meanwhile, the state observer offers a larger area of application of the

proposed controller because, in certain circumstances, more state information can

be estimated by the observer for further utilization.

In this chapter, the synchronization problem for a set of networked nonlinear

agents is resolved with the consideration of modeling errors, system uncertainties

and external disturbances. The nonlinearity of the agent dynamics is characterized

by a Lipschitz nonlinear term. Since the modeling error is fairly unavoidable in

practice, the multiplicative uncertainty and additive disturbance caused by poten-

tial modeling errors are essentially considered in the error dynamics and stability

analysis. Motivated by the previous work [59–61,129,130], the stability analysis is
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conducted using the time-delay technique in the appearance of discontinuous states

(sampled-data measurements), and the sufficient conditions for system stability are

systematically developed along the Lyapunov functional approach. Moreover, a

controller and observer gain deriving method is presented on the basis of sufficient

conditions. Furthermore, an iterative optimization algorithm is developed based on

the proposed controller and observer gain deriving method.

The remainder of this chapter is organized as follows. In Section 5.1, the es-

sential problem to be resolved is systematically formulated. Section 5.2 presents

the controller design and stability analysis. Based on the assumptions, a feedback

controller is developed with the consideration of system uncertainty and exter-

nal disturbance. The Lyapunov functional approach is applied to deal with the

sampled-data measurement. Meanwhile, the sufficient conditions for the stability

of the networked systems are derived extensively. Moreover, a controller design

method is proposed on the basis of the sufficient conditions. An iterative convex

optimization algorithm is further developed to derive the feasible solutions for the

controller and observer gains. In Section 5.3, four identical Chua’s circuits are

adopted in the simulations. With the appearance of an L2 bounded disturbance,

the state synchronization is achieved when the followers are governed by the pro-

posed controller in a distributed manner. The convergences of synchronization error

and estimation error further demonstrate the effectiveness of the proposed control
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algorithm.

5.1 Problem formulation

As explained above, many nonlinearities, i.e. sinusoidal or bounded x2 terms,

can be represented by the Lipschitz nonlinearity. Therefore, the Lipschitz nonlin-

earity is more generic compared to the Euler-Lagrange nonlinearity. Hence, the

consensus seeking problem for networked Lipschitz nonlinear agents is considered

in this chapter. There are k nonlinear agents operated in n-dimensional state space,

and each agent is modeled by

ẋi(t) = Axi(t) + Bf(xi, t) + ui(ts) (5.1)

yi(t) = Cxi(t) (5.2)

where xi(t) ∈ Rn is the state vector of the ith agent, yi(t) ∈ Rw is the output and

ui(ts) ∈ Rv is the input, 1 ≤ i ≤ k. Since only sampled-data output feedback is

available for the controller, the control input ui(ts) can be updated only at discrete

time instants ts satisfying

0 ≤ t0 < t1 < · · · < ts < · · ·

and ts+1− ts ≤ h. Agent structures are characterized by the parameters A ∈ Rn×n,

B ∈ Rn×n and C ∈ Rw×n. The nonlinear function f : Rn × [0,+∞)→ Rn satisfies
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the Lipschitz condition, i.e.

‖f(a, t)− f(b, t)‖ ≤ γ ‖a− b‖ ∀a,b ∈ Rn (5.3)

and γ > 0 is the Lipschitz constant.

The main objective of this chapter is to design a feedback controller for the net-

worked systems, in which the dynamics of each agent are identical and expressed

in Eqs. (5.1, 5.2). One of the agents is considered as a leader, while others are

followers. It is assumed that each agent transmits information discretely through

the underlying digital network. Other than the discontinuous information transmis-

sion, the agents can only share information locally, which implies that the leading

agent’s information is not available for all agents. Moreover, only output informa-

tion can be shared through the network, and the inherent state information of the

networked systems is not available for any agent. Since the modeling error, system

uncertainty and external disturbance are considered, the proposed controller must

be robust to both multiplicative and additive uncertainty and the influence caused

by the additive uncertainty is expected to be minimized.

5.2 Distributed sampled-data controller design

Assumption 5.1. The states of each agent are observable from the output.

Assumption 5.2. The communication topology is depicted by a digraph that con-
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tains a spanning tree. Furthermore, the leader is topologically located at the root of

the spanning tree.

Since not all the states are available for the controller ui(ts), an observer-based

feedback control algorithm is developed on the basis of Assumption 5.1 as follows

ui(ts) = Ki

 ∑
vj∈NG(vi)

[x̂i(ts)− x̂j(ts)] + pi [x̂i(ts)− x0(ts)]

 (5.4)

and the observer is designed as

˙̂xi(t) = Ax̂i(t) + Bf(x̂i, t) + ui(ts) + Hi [yi(ts)− ŷi(ts)] (5.5)

ŷi(t) = Cx̂i(t) (5.6)

where pi equals to one if the leader’s information is available to agent i, otherwise

pi = 0, Ki ∈ Rn×n is the control gain, Hi ∈ Rn×w is the observer gain and x̂i(t) is

the estimated state vector.

Defining the observer error vector x̃i(t) and position error vector x̄i(t) as follows

x̃i(t) = xi(t)− x̂i(t)

x̄i(t) = xi(t)− x0(t)

then, substituting Eq. (5.4) into Eq. (5.1), it is obtained that

ẋi(t) = Axi(t) + Bf(xi, t)

+Ki

 ∑
vj∈NG(vi)

[x̂i(ts)− x̂j(ts)] + pi [x̂i(ts)− x0(ts)]

 (5.7)
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Subtracting Eq. (5.5) from Eq. (5.7), it is derived that

˙̃xi(t) = Ax̃i(t) + B [f(xi, t)− f(x̂i, t)]−HiCix̃i(ts) (5.8)

the following error dynamics can be derived by subtracting the leader dynamics

from Eq. (5.1)

˙̄xi(t) = Ax̄i(t) + B [f(xi(t), t)− f(x0(t), t)]

+Ki

 ∑
vj∈NG(vi)

[x̂i(ts)− x̂j(ts)] + pi [x̂i(ts)− x0(ts)]

 (5.9)

Remark 5.1. Ideally, the stability analysis should be conducted essentially based

on Eqs. (5.9, 5.8). However, system uncertainty is mostly unavoidable in practice.

Therefore, the expression of Eqs. (5.9, 5.8) should be revised with the consideration

of mismatched modeling uncertainty. Due to the diversity of unmodeled effects, the

mismatched uncertainty can be roughly modeled through various approaches [81,88].

In this work, they are equivalently modeled as a common effect of both additive and

multiplicative uncertainties. Moreover, external disturbance also exists in practical

applications. Therefore, the external disturbances are also considered as a portion of

the additive uncertainty that is bounded by the L2 norm. Namely, both L2-bounded

additive and 2-norm bounded multiplicative uncertainties are taken into account in

this work.

Combining the dynamics of k agents, a compact form of the error dynamics
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with both additive and multiplicative uncertainties can be organized as

˙̃x(t) = (I + ∆∆∆1) (Ik ⊗A) x̃(t) + (Ik ⊗B) (I + ∆∆∆2) [f(x(t), t)− f(x̂(t), t)]

−H [Ik ⊗C] x̃(ts) + E1ωωω1 (5.10)

˙̄x(t) = (I + ∆∆∆3) (Ik ⊗A) x̄(t) + (Ik ⊗B) (I + ∆∆∆4) [f(x(t), t)− f(x0(t), t)]

+K [(LLL +DDD)⊗ In] [x̄(ts)− x̃(ts)] + E2ωωω2 (5.11)

where ∆∆∆i, ∀i = 1, · · · , 4 are the norm-bounded uncertainties, i.e. ‖∆∆∆i‖ ≤ εi,

and εi ∈ R+. H = diag {H1,H2, · · · ,Hk}, K = diag {K1,K2, · · · ,Kk}, DDD =

diag {p1, p2, · · · , pk}, ωωω1, ωωω2 are L2 bounded disturbances, and the distribution of

the additive uncertainty is specified by E1 and E2.

Due to the inequality (5.3), there is

[f(xi, t)− f(x0, t)]
T [f(xi, t)− f(x0, t)]− γ2 [xi(t)− x0(t)]T [xi(t)− x0(t)] ≤ 0

(5.12)

where γ > 0 is the Lipschitz constant.

The following lemma will be used in the stability proof.

Lemma 5.1. [131] Let YYY be a symmetric matrix and AAA, BBB be matrices with

compatible dimensions and FFF satisfying FFFTFFF ≤ I. Then, YYY+AFBAFBAFB+BBBTFFFTAAAT < 0

holds if and only if there exists a scalar ε > 0 such that YYY + εAAAAAAT + ε−1BBBTBBB < 0.

Theorem 5.1. Suppose that the communication relationship of the networked non-

linear agents in Eqs. (5.1, 5.2) satisfies Assumption 5.2, then the proposed sampled-
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data feedback controller in Eq. (5.4) can guarantee that the vectors of the error

dynamics in Eqs. (5.10, 5.11) will converge to zero asymptotically if there exist

symmetric matrices Qi > 0, positive constants α, εi, i = 1, 2, · · · , 6, and matrices

N1,N2 ∈ R4kn×kn such that
ϕϕϕ1 hψψψT1 hψψψT2 M1

? −hQ−1
2 0 M2

? ? −hQ−1
5 M3

? ? ? M4

 < 0 (5.13)

and 
ϕϕϕ1 hΠΠΠT

1 N1 hΠΠΠT
2 N2 M5

? −hQ2 0 0
? ? −hQ5 0
? ? ? M6

 < 0 (5.14)

where

ϕϕϕ1 = 2ΠΠΠT
1 N1III1 − 2ΠΠΠT

1 N1III2 + 2ΠΠΠT
2 N2III5 − 2ΠΠΠT

2 N2III6 + βγ2IIIT1III1 − βIIIT3III3

+ βγ2IIIT5III5 − βIIIT7III7 + IIIT5 (Ik ⊗C)T (Ik ⊗C)III5 − αIIIT4III4 − αIIIT8III8

+ 2IIIT1 Q1ψψψ1 − IIIT2 Q3III2 + 2IIIT5 Q4ψψψ2 − IIIT6 Q6III6

III1 = diag {Ikn,0kn,0kn,0kn,0kn,0kn,0kn,0kn}

III2 = diag {0kn, Ikn,0kn,0kn,0kn,0kn,0kn,0kn}

...

IIIj = diag

0kn, · · · ,0kn︸ ︷︷ ︸
j−1

, Ikn,0kn, · · · ,0kn︸ ︷︷ ︸
8−j


...

III8 = diag {0kn,0kn,0kn,0kn,0kn,0kn,0kn, Ikn}
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ΠΠΠ1 =
[

I4kn 04kn

]
ΠΠΠ2 =

[
04kn I4kn

]
M1 =[

0
√
δ1ψψψ

T
32 0

√
δ2ψψψ

T
42

√
δ1III

T
1 Q1ψψψ31

√
δ1ψψψ

T
32

√
δ2III

T
5 Q4ψψψ41

√
δ2ψψψ

T
42

]
M2 =

[ √
δ1hψψψ31 0 0 0 0 0 0 0

]
M3 =

[
0 0

√
δ2hψψψ41 0 0 0 0 0

]
M4 = diag

{
−ε1I, −ε−1

1 I, −ε2I, −ε−1
2 I, −ε3I, −ε−1

3 I, −ε4I, −ε−1
4 I
}

M5 =
[ √

δ1III
T
1 Q1ψψψ31

√
δ1ψψψ

T
32

√
δ2III

T
5 Q4ψψψ41

√
δ2ψψψ

T
42

]
M6 = diag

{
−ε5I, −ε−1

5 I, −ε6I, −ε−1
6 I
}

ψψψ1 =
[

Ik ⊗A −H (Ik ⊗C) Ik ⊗B E1 0 0 0 0
]

ψψψ2 =
[

0 −K [(LLL +DDD)⊗ In] 0 0 Ik ⊗A K [(LLL +DDD)⊗ In] Ik ⊗B E2

]
ψψψ31 =

[
Ikn Ik ⊗B

]
ψψψ41 =

[
Ikn Ik ⊗B

]
ψψψ32 =

[
(Ik ⊗A)III1

III3

]
ψψψ42 =

[
(Ik ⊗A)III5

III7

]
[

∆∆∆1 0
0 ∆∆∆2

]T [
∆∆∆1 0
0 ∆∆∆2

]
≤ δ2

1

[
∆∆∆3 0
0 ∆∆∆4

]T [
∆∆∆3 0
0 ∆∆∆4

]
≤ δ2

2

Proof. Defining the following Lyapunov functional:

V =x̃T (t)Q1x̃(t) + [h− d(t)]

∫ t

t−d(t)

˙̃xT (τ)Q2
˙̃x(τ)dτ

+ [h− d(t)] x̃T (ts)Q3x̃(ts) + x̄T (t)Q4x̄(t)

+ [h− d(t)]

∫ t

t−d(t)

˙̄xT (τ)Q5 ˙̄x(τ)dτ + [h− d(t)] x̄T (ts)Q6x̄(ts)

(5.15)
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and

V̇ =2x̃T (t)Q1
˙̃x(t) + [h− d(t)] ˙̃xT (t)Q2

˙̃x(t)−
∫ t

t−d(t)

˙̃xT (τ)Q2
˙̃x(τ)dτ

− x̃T (ts)Q3x̃(ts) + 2x̄T (t)Q4 ˙̄x(t) + [h− d(t)] ˙̄xT (t)Q5 ˙̄x(t)

−
∫ t

t−d(t)

˙̄xT (τ)Q5 ˙̄x(τ)dτ − x̄T (ts)Q6x̄(ts)

(5.16)

Incorporating the free weight matrices N1,N2, the following equations can be

derived using the Newton-Leibniz formula

2ξξξT1 N1x̃(t)− 2ξξξT1 N1x̃(ts)−
∫ t

ts

2ξξξT1 N1
˙̃x(τ)dτ = 0 (5.17)

2ξξξT2 N2x̄(t)− 2ξξξT2 N2x̄(ts)−
∫ t

ts

2ξξξT2 N2 ˙̄x(τ)dτ = 0 (5.18)

where ξξξ1 =
[

x̃T (t) x̃T (ts) [f (x, t)− f (x̂, t)]T ωωωT1
]T

and

ξξξ2 =
[

x̄T (t) x̄T (ts) [f (x, t)− f (x0, t)]
T ωωωT2

]T
. Specifically, the values of weight

matrices N1,N2 are not explicitly constrained by the system dynamics or commu-

nication structure, and the inclusion of them will render more flexibility for the

entire control system.

Substituting Eq. (5.17) and Eq. (5.18) into Eq. (5.16), the following formula can

be derived

V̇ + ȳT ȳ − αωωωTωωω

≤ 2x̃T (t)Q1
˙̃x(t) + [h− d(t)] ˙̃xT (t)Q2

˙̃x(t) + 2ξξξT1 N1x̃(t)− 2ξξξT1 N1x̃(ts)

−x̃T (ts)Q3x̃(ts) + 2x̄T (t)Q4 ˙̄x(t) + [h− d(t)] ˙̄xT (t)Q5 ˙̄x(t)− x̄T (ts)Q6x̄(ts)
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+2ξξξT2 N2x̄(t)− 2ξξξT2 N2x̄(ts) + IT5 (Ik ⊗C)T (Ik ⊗C) I5 − αωωωTωωω

+d(t)ξξξT1 N1Q
−1
2 NT

1 ξξξ1 + d(t)ξξξT2 N2Q
−1
5 NT

2 ξξξ2

+βγ2x̃T x̃− β [f(x(t), t)− f(x̂(t), t)]T [f(x(t), t)− f(x̂(t), t)]

+βγ2x̄T x̄− β [f(x(t), t)− f(x0(t), t)]T [f(x(t), t)− f(x̄0(t), t)]

−
∫ t

t−d(t)

[
NT

1 ξξξ1 + Q2
˙̃x(τ)

]T
Q−1

2

[
NT

1 ξξξ1 + Q2
˙̃x(τ)

]
dτ

−
∫ t

t−d(t)

[
NT

2 ξξξ2 + Q5
˙̃x(τ)

]T
Q−1

5

[
NT

2 ξξξ2 + Q5
˙̃x(τ)

]
dτ

= 2x̃T (t)Q1 (ψψψ1 +ψψψ31∆∆∆aψψψ32)ξξξ + 2x̄T (t)Q4 (ψψψ2 +ψψψ41∆∆∆aψψψ42)ξξξ

+ [h− d(t)] (ψψψ1ξξξ +ψψψ31∆∆∆aψψψ32ξξξ)
T Q2 (ψψψ1 +ψψψ31∆∆∆aψψψ32)ξξξ

+2ξξξT1 N1x̃(t)− 2ξξξT1 N1x̃(ts)− x̃T (ts)Q3x̃(ts)

+ [h− d(t)] (ψψψ2ξξξ +ψψψ41∆∆∆aψψψ42ξξξ)
T Q5 (ψψψ2 +ψψψ41∆∆∆aψψψ42)ξξξ − x̄T (ts)Q6x̄(ts)

+2ξξξT2 N2x̄(t)− 2ξξξT2 N2x̄(ts) + IIIT5 (Ik ⊗C)T (Ik ⊗C)III5 − αωωωTωωω

+d(t)ξξξT1 N1Q
−1
2 NT

1 ξξξ1 + d(t)ξξξT2 N2Q
−1
5 NT

2 ξξξ2

+βγ2x̃T x̃− β [f(x(t), t)− f(x̂(t), t)]T [f(x(t), t)− f(x̂(t), t)]

+βγ2x̄T x̄− β [f(x(t), t)− f(x0(t), t)]T [f(x(t), t)− f(x̄0(t), t)]

−
∫ t

t−d(t)

[
NT

1 ξξξ1 + Q2
˙̃x(τ)

]T
Q−1

2

[
NT

1 ξξξ1 + Q2
˙̃x(τ)

]
dτ

−
∫ t

t−d(t)

[
NT

2 ξξξ2 + Q5
˙̃x(τ)

]T
Q−1

5

[
NT

2 ξξξ2 + Q5
˙̃x(τ)

]
dτ (5.19)
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where β is an arbitrary positive constant, and

ȳ = (Ik ⊗C) x̄

ϕϕϕ∆ =2IIIT1 Q1ψψψ31∆∆∆aψψψ32 + 2IIIT5 Q4ψψψ41∆∆∆bψψψ42

∆∆∆a =

[
∆∆∆1 0
0 ∆∆∆2

]
,∆∆∆b =

[
∆∆∆3 0
0 ∆∆∆4

]
ξξξ =

[
ξξξ1

ξξξ2

]
,ωωω =

[
ωωω1

ωωω2

]
It is noticed that Eq. (5.19) is a linear function of d(t), thus inequality (5.20) is

equivalent to inequalities (5.21) and (5.22)

V̇ + ȳT ȳ − αωωωTωωω < 0 (5.20)

 ϕϕϕ1 hψψψT1 hψψψT2
? −hQ−1

2 0
? ? −hQ−1

5

+

 ϕϕϕ∆ hψψψT32∆∆∆
T
aψψψ

T
31 hψψψT42∆∆∆

T
b ψψψ

T
41

? 0 0
? ? 0

 < 0 (5.21)

 ϕϕϕ1 hΠΠΠT
1 N1 hΠΠΠT

2 N2

? −hQ2 0
? ? −hQ5

+

 ϕϕϕ∆ 0 0
? 0 0
? ? 0

 < 0 (5.22)

Utilizing the Schur complement [88, 132] and Lemma 5.1, inequality (5.13) can

be derived from inequality (5.21) when d(t) = 0. Similarly, if d(t) = h, inequality

(5.14) can be derived on the basis of inequality (5.22). Therefore, inequality (5.20)

is true if inequalities (5.13) and (5.14) are satisfied. Furthermore, inequality (5.20)

implies that √∫ ∞
t0

ȳT (τ)ȳ(τ)dτ <
√
α

√∫ ∞
t0

ωωωT (τ)ωωω(τ)dτ (5.23)

which is derived by integrating both sides of inequality (5.20) and then performing

139



the following manipulations with zero initial condition

V (∞)− V (t0) +

∫ ∞
t0

ȳT ȳ − α
∫ ∞
t0

ωωωTωωω < 0∫ ∞
t0

ȳT ȳ < α

∫ ∞
t0

ωωωTωωω√∫ ∞
t0

ȳT (τ)ȳ(τ)dτ <
√
α

√∫ ∞
t0

ωωωT (τ)ωωω(τ)dτ

According to H∞ robust control theory, inequality (5.23) implies that the con-

troller in Eq. (5.4) is robust to L2 bounded disturbance ωωω and the worst case effect

of ωωω is minimized when α achieves the minimum feasible value.

Inequalities (5.13, 5.14) are the sufficient conditions for the synchronization

of systems in Eqs. (5.1, 5.2) under the controller in Eq. (5.4). Namely, if the

candidates Ki and Hi are available, the inequalities in Theorem 5.1 can be utilized

as the criteria for the stability of the closed-loop networked system. However, it

is most likely in practice that the parameters of a controller are unavailable, and

they are expected to be derived in the first place. Besides, the main purpose of this

work is to present a systematic methodology for the derivation of the parameters

in controller (5.4). Consequently, the following theorem is further developed.

Theorem 5.2. Suppose that the communication topology of the networked systems

satisfies Assumption 5.2, then the feedback gain Ki of the controller in Eq. (5.4)

and gain Hi of the observer in Eqs. (5.5, 5.6) have feasible solutions if there exist

symmetric matrices Rm > 0, Qr > 0, positive constants α, εr, r = 1, 2, · · · , 6, and
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matrices Nm ∈ R4kn×kn such that
ϕϕϕ1 hψ̄ψψ

T

1 hψ̄ψψ
T

2 M1

? −hR1 0 M2

? ? −hR2 M3

? ? ? M4

 < 0 (5.24)


ϕϕϕ1 hΠΠΠT

1 N1 hΠΠΠT
2 N2 M5

? −hQ2 0 0
? ? −hQ5 0
? ? ? M6

 < 0 (5.25)

[
−Q̃2 Q̃1

? −R̃1

]
< 0 (5.26)[

−Q̃5 Q̃4

? −R̃2

]
< 0 (5.27)

where

M1 = [
0
√
δ1ψψψ

T
32 0

√
δ2ψψψ

T
42

√
δ1III

T
1 ψ̄ψψ31

√
δ1ψψψ

T
32

√
δ2III

T
5 ψ̄ψψ41

√
δ2ψψψ

T
42

]
M2 =

[ √
δ1hψ̄ψψ31 0 0 0 0 0 0 0

]
M3 =

[
0 0

√
δ2hψ̄ψψ41 0 0 0 0 0

]
M4 = diag {−ε1I, −ε̃1I, −ε2I, −ε̃2I, −ε3I, −ε̃3I, −ε4I, −ε̃4I}

M5 =
[ √

δ1III
T
1 ψ̄ψψ31

√
δ1ψψψ

T
32

√
δ2III

T
5 ψ̄ψψ41

√
δ2ψψψ

T
42

]
M6 = diag {−ε5I, −ε̃5I, −ε6I, −ε̃6I}

ψ̄ψψ1 =
[

Q1 (Ik ⊗A) −H̄ (Ik ⊗C) Q1 (Ik ⊗B) Q1E1 0 0 0 0
]

ψ̄ψψ2 =
[

0 −K̄ [(LLL +DDD)⊗ In] 0 0 Q4 (Ik ⊗A) K̄ [(LLL +DDD)⊗ In]

Q4 (Ik ⊗B) Q4E2

]
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K̄ = Q4K, ψ̄ψψ31 = Q1ψψψ31,K = diag {K1, K2, · · · ,Kk}

H̄ = Q1H, ψ̄ψψ41 = Q4ψψψ41,H = diag {H1, H2, · · · ,Hk}

Q̃l = Q−1
l , R̃m = R−1

m , ε̃r = ε−1
r

l = 1, 2, 4, 5, and m = 1, 2.

Proof. Let

R1 ≤ Q1Q
−1
2 Q1 (5.28)

R2 ≤ Q4Q
−1
5 Q4 (5.29)

Along with inequalities (5.28, 5.29), inequality (5.24) can be derived by pre- and

post-multiplying both sides of inequality (5.13) by diag {Ikn,Q1,Q4, I8kn}. Further-

more, inequalities (5.26, 5.27) can be obtained by applying Schur complement to

inequalities (5.28, 5.29).

It is noticed that a set of symmetric matrices Q̃l is included to linearize the

inequality (5.13); however, to search for the feasible solutions of inequalities (5.24 -

5.27), the equations Q̃l = Q−1
l cannot be resolved linearly. Thus, the following the-

orem and algorithm are proposed based on the cone complementarity linearization

method [133].

Lemma 5.2. If the system in Eqs. (5.1, 5.2) is controlled by the feedback controller

(5.4), then the error vectors in Eqs. (5.10, 5.11) can be guaranteed to converge to
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zero and the worst case effect of ωωω1, ωωω2 is minimized. The feedback gain Ki of the

controller in Eq. (5.4) and gain Hi of the observer in Eqs. (5.5, 5.6) can be derived

as

K = Q̃4K̄ (5.30)

H = Q̃1H̄ (5.31)

and the parameters Q̃4, K̄, Q̃1, H̄, α can be obtained by solving the following

optimization problem:

min trace

(∑
l

Q̃lQl +
∑
m

R̃mRm +
∑
r

ε̃rεr

)
+ α

s.t. Inequalities (5.24− 5.27) and

[
Q̃l I
? Ql

]
≥ 0,

[
R̃m I
? Rm

]
≥ 0,

[
ε̃r 1
? εr

]
≥ 0 (5.32)

Since the optimization problem proposed in Lemma 5.2 is nonlinear, a linearized

version is presented in the following algorithm to explore the feasible solutions.

Algorithm 1:

Step 1 Initialize the feasible set
{

Q̃0
l ,Q

0
r, R̃

0
m,R

0
m, ε

0
r, ε̃

0
r

}
satisfying the constraints

in Lemma 5.2.

Step 2 Solve the following convex optimization problem:

min trace
[∑

l

(
Q̃j
lQl + Q̃lQ

j
l

)
+
∑

m

(
R̃j
mRm + R̃mRj

m

)
+
∑

r (ε̃jrεr + ε̃rε
j
r)
]

+α
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s.t. Inequalities (5.24-5.27, 5.32)

Step 3 Substitute the feasible set obtained from Step 2 into the inequality (5.13);

if it is satisfied, then output the feasible solution and EXIT.

Step 4 If j > jmax, where jmax is the maximum number of iterations, then EXIT.

Step 5 Set j = j + 1, and
{

Q̃j
l ,Q

j
r, R̃

j
m,R

j
m, ε

j
r, ε̃

j
r

}
=
{

Q̃f
l ,Q

f
r , R̃

f
m,R

f
m, ε

f
r , ε̃

f
r

}
,

where
{

Q̃f
l ,Q

f
r , R̃f

m,R
f
m, ε

f
r , ε̃

f
r

}
is the feasible set from Step 2, then go to Step 2.

Remark 5.2. It should be noticed that the inequalities stated in Theorem 5.1 are

sufficient conditions, which implies that these inequalities are fundamental con-

straints for the stability of the feedback control system. Further constraints might

be included if other performance indices are expected. For example, if one of the

control gains is expected to be greater than a specific value, this constraint can be

included in addition to the fundamental sufficient conditions.

Remark 5.3. Less conservative results are always expected in the LMI-based con-

troller design. For example, less conservative results are derived in Theorem 5.1 by

including weight matrices N1,N2 in Eqs. (5.17, 5.18). According to the Lyapunov

theory, the LMIs derived in this work are all the sufficient conditions for system sta-

bility. Namely, deriving less conservative results is still possible by including more

degree of freedom. For instance, if the inequality (5.3) can be replaced by another

inequality with more degree of freedom, then the results with less conservativeness

can hopefully be derived instead of inequalities (5.13) and (5.14).
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5.3 Simulations

As an example, the proposed distributed controller is applied to four identical

Chua’s circuits in the simulations. One of them is referred to as the leader (i =

0), while others are the followers (i = 1, 2, 3). The evolution of a Chua’s circuit

sensitively depends on the initial values of the state vector [134]. Thus, two identical

Chua’s circuits with slightly different initial values will evolve along immensely

different trajectories. Namely, four Chua’s circuits with different initial values will

naturally defy synchronization. In this part, the synchronization of four identical

Chua’s circuits will be accomplished using the proposed control algorithm. The

initial states of the four agents are chosen as

x0(t0) =

 0.1
0.5
0.9

 ,x1(t0) =

 −1
−5
2

 ,x2(t0) =

 −1.5
1.5
−5

 ,x3(t0) =

 −0.8
0.8
−2


and the initial states of all the observers are zero.

The perturbed dynamics of the Chua’s Circuit is shown as follows [129]

ẋi(t) = Axi(t) + Bf(xi(t)) + ui(t) +ωωωi

yi(t) = Cxi(t)

where

A =

 −am1 a 0
1 −1 1
0 −b 0

 B =

 −a(m0 −m1)
0
0


145



C =
[

1 0 0
]

xi(t) =

 x1
i (t)
x2
i (t)
x3
i (t)


f(x1

i (t)) =
1

2

(∣∣x1
i (t) + c

∣∣− ∣∣x1
i (t)− c

∣∣)
ωωωi = e−t/30W

and i = 0, 1, 2, 3, a = 9, b = 14.28, c = 1, m0 = 1
7
, m1 = 2

7
, W ∈ R3 is a

vector of white noise, x1
i (t) is the first element of xi(t), and the three elements

of xi(t) represent voltages across two capacitors and inductor current in chaotic

circuit [135].

The control gain Ki and observer gain Hi are chosen as follows

K1 =

 −2.9865 −2.4225 0.2864
−0.0741 −2.4096 −0.3118
0.5420 4.5975 −3.7323

 ,
K2 =

 −1.0145 −0.9102 0.1026
−0.0301 −0.7060 −0.1352
0.2315 1.7672 −1.2829


K3 =

 −2.0895 −3.8703 1.1515
−0.2362 −1.6489 −0.0126
1.1466 6.8213 −3.2795


H1 =

 6.1086
0.4379
−1.1978

 , H2 =

 5.9877
0.3859
−1.0063

 , H3 =

 5.9873
0.4161
−1.0328


The communication topology is shown in Figure 5.1, where Agent 1 has access to

the leader’s output, while other followers are coupled with Agent 1 in a distributed

manner. The double scroll attractor of the leader is generated autonomously by
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Fig. 5.1 Communication topology
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Fig. 5.2 Trajectory of the leader Chua’s circuits system

the self-driven dynamics satisfying

ẋ0(t) = Ax0(t) + Bf(x0, t) (5.33)

The trajectory of Agent 1 (follower) is exhibited in Figure 5.2 and 5.3, respectively.

Obvious oscillations can be observed in Figure 5.3, and this phenomenon is caused

by the L2 bounded disturbances shown in Figure 5.6. Figure 5.4 shows the syn-
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Fig. 5.3 Trajectory of the follower Chua’s circuits system

0 10 20 30 40 50 60
−10

0

10

time(s)

X
−

ax
is

 

 X0(1)−X1(1)

X0(1)−X2(1)

X0(1)−X3(1)

0 10 20 30 40 50 60
−10

0

10

time(s)

Y
−

ax
is

 

 X0(2)−X1(2)

X0(2)−X2(2)

X0(2)−X3(2)

0 10 20 30 40 50 60
−50

0

50

time(s)

Z
−

ax
is

 

 

X0(3)−X1(3)

X0(3)−X2(3)

X0(3)−X3(3)

Fig. 5.4 Synchronization errors

chronization errors when the sampling step size is 0.1 sec. The convergences of all

estimated errors of the observers are demonstrated in Figure 5.5.

In this chapter, the sampled-data control input is generated based on the period-

ically updated coupling information. In order to further reduce the computational

burden of the local controller, an event-based control algorithm will be presented
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Fig. 5.5 Estimation errors
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Fig. 5.6 L2 bounded disturbance

in the next chapter.

149



6 Event-triggered Sampled-data Leader-follower

Consensus of Networked Nonlinear Systems with

Stochastic Switching Topology

Among different types of consensus seeking algorithms, leader-follower consen-

sus is particularly interesting and has received broad attention. In previous research

on leader-follower consensus, it is usually assumed that the agents exchange infor-

mation continuously through the coupling network [3]. However, it is most likely

in practice that information sharing can only take place at discrete instants since

the bandwidth of the coupling network is limited.

In this chapter, the sampled-data communication is considered along the time-

delay equivalent approach. The entire multi-agent system is basically a discrete-

time dynamical system because of the sampled-data communication. To better

conduct the stability analysis, the time-delay equivalent method [59] is adopted to

convert the discrete-time control problem into a continuous-time issue. Obviously,
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the sampled-data communication can only reduce the network burden. To further

reduce the computational load of each agent, an event-triggered control strategy is

integrated and the event-triggered condition is proposed in matrix inequality form.

Each agent is only computing the output signal if the event-triggered condition is

violated. Namely, the agents’ actuators do not have to be updated periodically.

Furthermore, the stochastically switched communication topology is considered in

this chapter. Since the communication interaction is randomly switched, the finite

Markov jump process is recruited to describe the interaction switching of the multi-

agent systems.

The remainder of this chapter is organized as follows. In Section 6.1, the non-

linear dynamics of the multi-agent systems and the error dynamics are formulated.

Meantime, the mathematical description of the interaction relationship between

agents is essentially explained using graph theory and Markov jump process. More-

over, an event-triggered condition is proposed to reduce the computational burden

of the multi-agent systems. To further clarify the stability of the error dynamics,

the stochastic stability is formally defined as well. In Section 6.2, three assumptions

are proposed to clearly claim the communication structure. Based on the three as-

sumptions, the controller design and stability analysis are systematically presented

with the assistance of Lyapunov functional method. Subsequently, the sufficient

condition for the convergence of the error dynamics is derived on the basis of the
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stability analysis. Moreover, an iterative convex optimization algorithm is devel-

oped to derive the controller gains. Section 6.3 presents the numerical simulation

for several Chua’s circuits. A distributed leader-follower mission is achieved in the

occurrence of stochastically switched interaction. It is shown in the simulation that

all tracking errors converge to zero eventually, which demonstrates the effectiveness

of the proposed controller.

6.1 Problem formulation

A distributed leader-follower consensus seeking problem is investigated in this

work, and k nonlinear agents are included in the multi-agent systems. The dynamics

of each nonlinear agent is described as follows

ẋi(t) = Axi(t) + Bf(xi(t)) + ui(tu) (6.1)

where xi(t) ∈ Rn is the state vector, ui(tu) ∈ Rn is the control input, A ∈ Rn×n,

B ∈ Rn×n are system matrices and nonlinear term f(xi(t)) ∈ Rn satisfies the

Lipschitz condition, namely, the following inequality is true for any vectors a ∈ Rn

and b ∈ Rn

[f(a)− f(b)]T [f(a)− f(b)] ≤ α2 (a− b)T (a− b) (6.2)

where α > 0 is the Lipschitz constant. The main difference between the model in

Eq. (5.1) and the model in Eq. (6.1) is the control input. In the previous chapter,
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the input signal is generated periodically and the step size is a predetermined

constant. In contrast, the input signal in Eq. (6.1) is generated according to the

event-triggered condition. Namely, the step size is time-varying and could be largely

different in each step. The desired trajectory is generated by a self-driven nonlinear

agent with the following dynamics

ẋ0(t) = Ax0(t) + Bf(x0(t)) (6.3)

where x0(t) ∈ Rn is the state vector of the desired trajectory.

The following event-triggered control algorithm is considered

ui(tu) = K
m(t)
i

∑
vj∈NG(vi)

[xi(tu)− xj(tu)] + K
m(t)
i pi [xi(tu)− x0(tu)] (6.4)

where K
m(t)
i ∈ Rn×n, tu represents the update instant, i.e. ui(tu) only updates its

value at discrete-time instants tu, and m(t) is a finite Markov jump process. The

value of m(t) is assigned from a finite set. The transition probability from m(t) = i

to m(t) = j is defined as

Pr {m(t+ ε) = j|m(t) = i} =

{
pijε+ o(ε) i 6= j

1 + piiε+ o(ε) i = j
(6.5)

where ε is a small positive parameter and o(ε)/ε → 0. The transition rate pii and

pij ≥ 0 satisfy
∑

j=1,j 6=i pij = −pii.

Subtracting the leader’s dynamics in Eq. (6.3) from the dynamics of agent i in

Eq. (6.1) with the consideration of controller in Eq. (6.4), error dynamics of the

153



closed-loop control system can be described by the following equation

ėi(t) = Aei(t) + Bf(xi(t),x0(t)) + ui(tu) (6.6)

where ei(t) = xi(t)− x0(t) and f

(
xi(t),x0(t)

)
= f

(
xi(t)

)
− f

(
x0(t)

)
.

Ideally, Eq. (6.6) is the error dynamics of agent i with respect to the desired

trajectory. However, imperfect communication network is always unavoidable due

to time-varying disturbance and other uncertainties. In order to investigate the ro-

bustness against imperfect communication network, the compact form of the error

dynamics is formulated in Eq. (6.7) along with the stochastic switching communi-

cation topology.

ė(t) = (Ik ⊗A) e(t) + (Ik ⊗B) f̄(x(t),x0(t))

+Km(t)
[
(LLL+PPP)⊗ In + Am(t)

]
e(tu) (6.7)

where f̄ : Rkn×Rn → Rkn, e(t) =
[

eT1 (t) eT2 (t) ... eTk (t)
]T

, PPP = diag {p1, p2, ... ,

pk}, Km(t) = diag
{

K
m(t)
1 , K

m(t)
2 , ... , K

m(t)
k

}
and Am(t) ∈ Rn×n is a function of

the finite Markov jump process m(t).

Remark 6.1. Since the matrix Am(t) is stochastically switched according to the

finite Markov jump process m(t), the communication structure matrix (LLL+PPP) ⊗

In+Am(t) is dynamically changing accordingly. Namely, the stochastically switched

communication relationship can be thoroughly indicated by Am(t). Obviously, the
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stochastically switched communication relationship can also be equivalently repre-

sented by two stochastically switched matrices LLLm(t) and PPPm(t). For the sake of

simplicity, the first approach is adopted to represent the stochastically switched com-

munication relationship.

It is commonly assumed in previous work [2, 3] that all the agents exchange

information continuously. However, it is most likely in practice that agents can

only receive data package discontinuously through limited bandwidth communica-

tion network. Therefore, the periodically sampling communication is taken into

account in this work. Meanwhile, to further reduce the computational load, an

event-triggered manner is investigated for the multi-agent systems as well. In

event-triggered control algorithm, the control signal is generated only if the specific

event-triggered condition is violated. Obviously, the computational burden is dra-

matically reduced by the event-triggered controller because the control signal does

not have to be generated in each sampling period. Since the communication is still

conducted periodically, the event-triggered condition will be verified periodically

but the control signal will be calculated only if it is necessary. Motivated by [136],

the event-triggered condition is designed as follows

σ1e
T
i (ts)P

m(t)
i ei(ts) > rTi (ts)P

m(t)
i ri(ts) (6.8)

where ts is the periodically sampled time instant, ri(ts) = ei(ts)− ei(tu), σ1 < 1 is
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a positive constant and P
m(t)
i is the weight matrix.

The desired trajectory is generated by a central workstation. The workstation

transits the trajectory signal intermittently according to the event-triggered condi-

tion in Eq. (6.8), and the desired trajectory is sent to the agents in L0 while Eq. (6.8)

is violated. Namely, the workstation conducts the signal sampling periodically on

xi(t) and calculates ri(tu) using xi(ts) to execute the triggering determination on

the basis of the event-triggered condition in Eq. (6.8). As for any agent vi ∈ X\L0,

it has no direct connection with the workstation and they can only exchange infor-

mation with vj ∈ NG (vi).

Unlike the continuous-time dynamical system, the control system in this chap-

ter is a stochastically switched system. Hence, the definition of the stability for

Markovian jump system in Eq. (6.7) is presented as follows

Definition 6.1. [137] Markovian jump system in Eq. (6.7) is stochastically stable

if the following condition is satisfied

lim
t→∞

E

{∫ t

0

eT (t)e(t)dt

}
<∞ (6.9)

Based on the definition of the stability of Markovian jump system in Eq. (6.7),

the consensus of the networked control system in Eq. (6.1) can be defined as

Definition 6.2. The consensus of the networked control system in Eq. (6.1) is

considered to be achieved by the control algorithm in Eq. (6.4) if Markovian jump
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system in Eq. (6.7) is ensured to be stochastically stable for any initial condition.

The main objective of this chapter is to develop a control algorithm for the

coupled systems in Eq. (6.1). Essentially, the control algorithm is expected to be

in the form of Eq. (6.4), and an iterative algorithm will be proposed to numerically

derive the feedback gain Km(t).

6.2 Stability analysis

Assumption 6.1. The communication interaction can be represented by a digraph

containing a spanning tree, and each leader is located at the root of the spanning

tree.

Assumption 6.2. The desired trajectory information is shared intermittently, and

the transmit instants are determined by the event-triggered condition in Eq. (6.8).

Assumption 6.3. The communication topology is stochastically switched among

finite number of structures, and the switching can be mathematically described by a

finite Markov jump process.

Theorem 6.1. Suppose that the communication topology of the nonlinear multi-

agent systems in Eq. (6.1) and the information sharing satisfy Assumptions 6.1

- 6.3, then the leader-follower consensus of the networked multi-agent systems in

Eq. (6.1) can be achieved by the control algorithm presented in Eq. (6.4) if there
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exist symmetric matrices Qr > 0, Ri > 0, P = diag
{

P
m(t)
1 , P

m(t)
2 , ... P

m(t)
k

}
and

matrix W such that [
Φ1 hNT

? −hR−1
1

]
< 0 (6.10)

and [
Φ2 hW
? −hR1

]
< 0 (6.11)

where

M1 =
[

I 0 0 0
]

M2 =
[

0 I 0 0
]

M3 =
[

0 0 I 0
]

M4 =
[

0 0 0 I
]

N =
[

Ik ⊗A Km(t)
[
(LLL+DDD)⊗ In + Am(t)

]
Ik ⊗B

−Km(t)
[
(LLL+DDD)⊗ In + Am(t)

] ]
Φ1 = MT

1

q∑
i=1

priQiM1 + 2σ3M
T
1 R2N−MT

1 R2M1 −MT
2 R2M2 + 2MT

1 R2M2

+2hMT
1 R2N− 2hMT

2 R2N + 2WM1 − 2WM2 + α2σ2M
T
1 M1

−σ2M
T
3 M3 + σ1M

T
2 PM2 −MT

4 PM4

Φ2 = MT
1

q∑
i=1

priQiM1 + 2σ3M
T
1 R2N−MT

1 R2M1 −MT
2 R2M2 + 2MT

1 R2M2

+2WM1 − 2WM2 + α2σ2M
T
1 M1 − σ2M

T
3 M3 + σ1M

T
2 PM2 −MT

4 PM4

Remark 6.2. The time-delay equivalent method is adopted in this work. This
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method was originally developed in [59]. Based on their work, a sufficient condi-

tion for sampled-data stabilization of linear systems was proposed in linear matrix

inequalities (LMIs) form in [60] along the descriptor approach. To further en-

hance the theoretical foundation, a discontinuous Lyapunov functional method was

presented in [61], based on which the exponential convergence of the sampled-data

control system was further investigated in [62] using the discontinuous Lyapunov

functional method. The essential part of this method is to recruit an artificial time-

delay d(t) so that the sampling time ts is equivalently converted to ts = t− d(t) in

each sampling period, which implies that the original discontinuous control problem

is transformed to a continuous control problem with a time-varying delay.

Proof. Defining the Lyapunov functional

V (m(t), r) =eT (t)Qre(t) +

∫ t

t−d(t)

[h− d(t)] ėT (τ)R1ė(τ)dτ

+ [h− d(t)] [e(t)− e(ts)]
T R2 [e(t)− e(ts)]

(6.12)

The weak infinitesimal operator F of the stochastic process {m(t)} is defined

as

FV (m(t)) = lim
ε→0+

E {V (m(t+ ε))} − V (m(t))

ε

Consequently,

FV (m(t), r)

= eT (t)

q∑
i=1

priQie(t) + 2eT (t)Qrė(t) + [h− d(t)] ėT (t)R1ė(t)
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−
∫ t

t−d(t)

ėT (τ)R1ė(τ)dτ − [e(t)− e(ts)]
T R2 [e(t)− e(ts)]

+2 [h− d(t)] [e(t)− e(ts)]
T R2ė(t)

= eT (t)

q∑
i=1

priQie(t) + 2eT (t)Qrė(t) + [h− d(t)] ėT (t)R1ė(t)

−
∫ t

t−d(t)

ėT (τ)R1ė(τ)dτ − eT (t)R2e(t)− eT (ts)R2e(ts)

+2eT (t)R2e(ts) + 2 [h− d(t)] eT (t)R2ė(t)

−2 [h− d(t)] eT (ts)R2ė(t) (6.13)

On the basis of the Newton-Leibniz formula, the following equation is obtained

with a free weight matrix W ∈ R4kn×kn

2ξξξTWe(t)− 2ξξξTWe(ts)− 2ξξξTW

∫ t

ts

ė(τ)dτ = 0 (6.14)

where ξξξ =
[

eT (t) eT (ts) f̄T (x(t),x0(t)) rT
]T

.

Eq. (6.13) can be further manipulated by considering Eq. (6.14) as follows

FV (m(t), r) = eT (t)

q∑
i=1

priQie(t) + 2eT (t)Qrė(t) + [h− d(t)] ėT (t)R1ė(t)

−
∫ t

t−d(t)

ėT (τ)R1ė(τ)dτ − eT (t)R2e(t)− eT (ts)R2e(ts)

+2eT (t)R2e(ts) + 2 [h− d(t)] eT (t)R2ė(t)

−2 [h− d(t)] eT (ts)R2ė(t)

+2ξξξTWe(t)− 2ξξξTWe(ts)− 2ξξξTW

∫ t

ts

ė(τ)dτ

= eT (t)

q∑
i=1

priQie(t) + 2eT (t)Qrė(t) + [h− d(t)] ėT (t)R1ė(t)
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−eT (t)R2e(t)− eT (ts)R2e(ts) + 2ξξξTWe(t)− 2ξξξTWe(ts)

+2eT (t)R2e(ts) + 2 [h− d(t)] eT (t)R2ė(t)

−2 [h− d(t)] eT (ts)R2ė(t) + d(t)ξξξTWR−1
1 WTξξξ

−
∫ t

ts

[
WTξξξ + R1ė(τ)

]T
R−1

1

[
WTξξξ + R1ė(τ)

]
dτ (6.15)

Subsequently, the following inequality is equivalent to FV (m(t), r) < 0

ξξξT (t)MT
1

q∑
i=1

priQiM1ξξξ(t) + 2ξξξT (t)MT
1 QrNξξξ(t) + [h− d(t)]ξξξT (t)NTR1Nξξξ(t)

−ξξξT (t)MT
1 R2M1ξξξ − ξξξT (t)MT

2 R2M2ξξξ + 2ξξξT (t)WM1ξξξ(t)− 2ξξξTWM2ξξξ(t)

+2ξξξT (t)MT
1 R2M2ξξξ(t) + 2 [h− d(t)]ξξξT (t)MT

1 R2Nξξξ(t)

−2 [h− d(t)]ξξξT (t)MT
2 R2Nξξξ(t) + d(t)ξξξTWR−1

1 WTξξξ < 0 (6.16)

Further taking advantage of Eqs. (6.2, 6.8), the following equivalent condition

can be obtained

ξξξT (t)MT
1

q∑
i=1

priQiM1ξξξ(t) + 2ξξξT (t)MT
1 QrNξξξ(t) + [h− d(t)]ξξξT (t)NTR1Nξξξ(t)

−ξξξT (t)MT
1 R2M1ξξξ − ξξξT (t)MT

2 R2M2ξξξ + 2ξξξT (t)WM1ξξξ(t)− 2ξξξTWM2ξξξ(t)

+2ξξξT (t)MT
1 R2M2ξξξ(t) + 2 [h− d(t)]ξξξT (t)MT

1 R2Nξξξ(t)

+d(t)ξξξTWR−1
1 WTξξξ + α2σ2ξξξ

TMT
1 M1ξξξ − σ2ξξξ

TMT
3 M3ξξξ + σ1ξξξ

TMT
2 PM2ξξξ

−ξξξTMT
4 PM4ξξξ − 2 [h− d(t)]ξξξT (t)MT

2 R2Nξξξ(t) < 0 (6.17)

where σ2 is an arbitrary positive constant.
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Since the left hand side of Eq. (6.17) is a linear polynomial of d(t), the following

inequalities can be derived by setting d(t) = 0 and d(t) = h, respectively.

MT
1

q∑
i=1

priQiM1 + 2σ3M
T
1 R2N + hNTR1N−MT

1 R2M1

−MT
2 R2M2 + 2MT

1 R2M2 + 2hMT
1 R2N− 2hMT

2 R2N

+2WM1 − 2WM2 + α2σ2M
T
1 M1 − σ2M

T
3 M3

+σ1M
T
2 PM2 −MT

4 PM4 < 0 (6.18)

and

MT
1

q∑
i=1

priQiM1 + 2σ3M
T
1 R2N−MT

1 R2M1

−MT
2 R2M2 + 2MT

1 R2M2 + hWR−1
1 WT

+2WM1 − 2WM2 + α2σ2M
T
1 M1 − σ2M

T
3 M3

+σ1M
T
2 PM2 −MT

4 PM4 < 0 (6.19)

where R2 =
Qr

σ3

and σ3 is an arbitrary nonzero constant.

Along with the Schur complement, Eqs. (6.10) and (6.11) can be derived from

Eqs. (6.18) and (6.19) respectively.

Define

M̃1 = MT
1

q∑
i=1

priQiM1 + 2σ3M
T
1 R2N + hNTR1N−MT

1 R2M1

−MT
2 R2M2 + 2MT

1 R2M2 + 2hMT
1 R2N

−2hMT
2 R2N + 2WM1 − 2WM2 + α2σ2M

T
1 M1 − σ2M

T
3 M3
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+σ1M
T
2 PM2 −MT

4 PM4

M̃2 = MT
1

q∑
i=1

priQiM1 + 2σ3M
T
1 R2N−MT

1 R2M1

−MT
2 R2M2 + 2MT

1 R2M2 + hWR−1
1 WT

+2WM1 − 2WM2 + α2σ2M
T
1 M1 − σ2M

T
3 M3

+σ1M
T
2 PM2 −MT

4 PM4

and λ1 = min
{
λmin

(
M̃1

)
, λmin

(
M̃2

)}
. According to Eq. (6.12), it is obtained

that

FV (m(t), r) ≤ −λ1e
T (t)e(t)

On the basis of Dynkin’s formula [138], it is also obtained that

E [V (m(t), r)]− V (m(t0), r) ≤ −λ1E

{∫ t

t0

eT (τ)e(τ)dτ

}
and it is further derived that

λ1E

{∫ t

0

eT (τ)e(τ)dτ

}
≤ V (m(t0), r)

Moreover, the following relationship is derived based on Eq. (6.12)

E {V (m(t), r)} ≥ λ2E
{
eT (t)e(t)

}
where λ2 = λmin {Qr}.

Consequently, following [137], the stochastically stable inequality can be derived

as shown below

lim
t→∞

E

{∫ t

0

eT (t)e(t)dt

}
≤ λ2

2

λ1

<∞
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According to Definition 6.1, it is proven that the Markovian jump system in

Eq. (6.7) is stochastically stable, which in turn implies that the leader-follower

consensus is achieved by the proposed leader-follower consensus algorithm.

Theorem 6.2. Suppose that the communication topology of the nonlinear multi-

agent systems in Eq. (6.1) and the information sharing satisfy Assumptions 6.1 -

6.3, then the leader-follower consensus problem of the networked multi-agent sys-

tems in Eq. (6.1) is solvable if the following LMIs are feasible[
Φ1 hÑT

? −hR3

]
< 0 (6.20)[

Φ2 hW
? −hR1

]
< 0 (6.21)[

−R̃1 R̃2

? −R̃3

]
< 0 (6.22) R̃1 0 0

? R̃2 0

? ? R̃3

 R1 0 0
? R2 0
? ? R3

 = I (6.23)

where Km(t) = R−1
2 K̃m(t), and

Ñ =
[

R2 (Ik ⊗A) K̃m(t)
[
(LLL+DDD)⊗ In + Am(t)

]
R2 (Ik ⊗B)

−K̃m(t)
[
(LLL+DDD)⊗ In + Am(t)

]]
Proof. By pre- and post-multiplying both sides of Eq. (6.10) by diag {Ikn, R2}, the

following inequalities can be obtained[
Ikn 0
0 R2

] [
Φ1 hNT

? −hR−1
1

] [
Ikn 0
0 R2

]
< 0[

Φ1 hÑT

? −hR2R
−1
1 R2

]
< 0 (6.24)
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If

R3 ≤ R2R
−1
1 R2 (6.25)

then the following inequalities are equivalent to Eq. (6.24) based on Schur comple-

ment [
Φ1 hÑT

? −hR3

]
< 0[

−R−1
1 R−1

2

? −R−1
3

]
< 0

Consequently, the LMIs in Eqs. (6.20 - 6.22) and Eq. (6.23) can be derived on

the basis of Theorem 6.1.

Apparently, the inequalities presented in Theorem 6.2 cannot be solved linearly.

Therefore, the cone complementarity linearization method [133] is employed to

derive the feedback gain of the proposed controller.

Corollary 6.1. Suppose that the communication topology of the nonlinear multi-

agent systems in Eq. (6.1) and the information sharing satisfy Assumptions 6.1

- 6.3, then the feedback gain K
m(t)
i in Eq. (6.4) and the matrix parameters in

Eqs. (6.20 - 6.22) can be derived by solving the following optimization problem

min trace

(
3∑

w=1

R̃wRw

)
s.t. LMIs in Eqs. (6.20− 6.22) and[

R̃w I
? Rw

]
≥ 0 w = 1, 2, 3 (6.26)
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Based on the optimization proposed in Corollary 6.1, an iterative algorithm is

developed to numerically obtain the feedback gain K
m(t)
i as follows

Algorithm 1:

Step 1 Initialize the maximum number of the iterations imax and the set
{

R̃0
w, R0

w,

W0, σ0
w, P0, Q0

i , Ñ0
}

that satisfies Eqs. ( 6.20 - 6.22 ) and ( 6.26 ).

Step 2 Solve the following optimization problem:

min trace
∑(

R̃0
wRw + R̃wR0

w

)
s.t. LMIs in Eqs. (6.20− 6.22) and (6.26)

Step 3 Substitute the feasible solution derived from Step 2 into Eq. (6.10), if it is

satisfied, then output the feasible value of the demanded matrices and EXIT.

Step 4 If i > imax, then EXIT. Otherwise, set i = i+ 1.

Step 5 Update
{

R̃j
w, Rj

w, Wj, σjw, Pj, Qj
i , Ñj

}
=
{

R̃f
w, Rf

w, Wf , σfw, Pf ,

Qf
i , Ñf

}
, where

{
R̃f
w, Rf

w, Wf , σfw, Pf , Qf
i , Ñf

}
is the feasible set derived

from Step 2.

Step 6 Go to Step 2.

6.3 Simulations

Four Chua’s circuits are utilized in the numerical simulation. In the simulated

leader-follower mission, a self-driven Chua’s circuit will generate a desired trajec-

tory. At the same time, the desired trajectory is broadcast to agent 1 and 2 ac-
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cording to the communication topologies in Figure 6.2. Since the desired trajectory

is not available to agent 3 and 4, they can only share the trajectory information

locally according to the communication topology; thus, they are the followers in

the leader-follower mission.

The dynamics of Chua’s circuit can be described as follows

ẋi(t) = Axi(t) + Bf(xi(t)) + ui(t)

where

A =

 −am1 a 0
1 −1 1
0 −b 0


B =

 −a(m0 −m1)
0
0


f(x1

i (t)) =
1

2

(∣∣x1
i (t) + c

∣∣− ∣∣x1
i (t)− c

∣∣)
and i = 1, 2, 3, 4, a = 9, b = 14.28, c = 1, m0 = 1

7
, m1 = 2

7
[129].

Since the communication relationship is dynamically changing, two communica-

tion topologies are considered in the simulation and they are stochastically switched

with the evolvement of the simulation. Figures 6.2(a) and 6.2(b) depict these two

communication topologies. Accordingly, the stochastic switching matrix Am(t) cor-

responding to the two topologies are

A1 = 0
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A2 =


0 −1 0 0
1 −1 0 0
0 0 0 0
0 0 0 0



and

PPP =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



LLL =


0 0 0 0
−1 1 0 0
−1 −1 2 0
0 −1 0 1



On the basis of the proposed Algorithm 1, the control gains are derived as

follows

K1
1 =

 −9.0429 −1.9674 2.5642
−1.0865 −0.6964 0.9170
1.8661 1.2421 −4.1712


K1

2 =

 −5.0214 −1.2051 1.9471
−0.6351 −0.3502 0.5033
1.4904 0.7295 −2.4962


K1

3 =

 −2.7293 −0.5041 0.8512
−0.3128 −0.2145 0.2743
0.6971 0.3580 −1.5550


K1

4 =

 −4.1891 −0.9237 0.9313
−0.5390 −0.3313 0.3395
0.8084 0.5096 −2.2151
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and

K2
1 =

 −0.6036 −0.0503 0.0143
−0.0433 −0.2284 0.0978
0.0146 0.1039 −0.3652


K2

2 =

 −1.2755 −0.1100 0.0306
−0.0934 −0.4728 0.2101
0.0316 0.2224 −0.7675


K2

3 =

 −0.4295 −0.0336 0.0101
−0.0299 −0.1644 0.0678
0.0101 0.0721 −0.2591


K2

4 =

 −0.6015 −0.0500 0.0143
−0.0431 −0.2277 0.0974
0.0145 0.1035 −0.3640



The weight matrices in event-triggered condition Eq. (6.8) are derived as follows

P1
1 =

 27.3842 3.5528 −5.0762
3.5528 18.5185 −3.5434
−5.0762 −3.5434 25.8452


P1

2 =

 22.0439 2.7598 −4.3137
2.7598 16.1644 −2.3149
−4.3137 −2.3149 20.7339


P1

3 =

 12.6218 0.0041 −0.6214
0.0041 14.6590 0.0203
−0.6214 0.0203 13.4949


P1

4 =

 16.3012 0.3660 −0.7135
0.3660 16.7023 −0.2091
−0.7135 −0.2091 16.1869



and

P2
1 =

 12.4384 −0.0059 0.0015
−0.0059 12.4944 0.0195
0.0015 0.0195 12.4740
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P2
2 =

 13.1198 0.0434 −0.0003
0.0434 13.0342 −0.0766
−0.0003 −0.0766 13.1364


P2

3 =

 10.7963 −0.0384 0.0053
−0.0384 11.0233 0.0947
0.0053 0.0947 10.9076


P2

4 =

 12.3957 −0.0103 0.0017
−0.0103 12.4643 0.0278
0.0017 0.0278 12.4327



The initial value of the desired trajectory and the initial positions of the four

agents are chosen as

x0
desired =

 0.1
0.5
0.9

 x0
1 =

 −1
−5
2

 x0
2 =

 1
−3
1

 x0
3 =

 −1.5
−2
2

 x0
4 =

 1.5
−3
−1


Other parameters used in simulations are shown in Table 6.1

Table 6.1 Parameters of the networked system

Parameter Value
Sampled period, h 0.01 sec

Lipschitz constant, α 1
σ1 0.1
σ2 3
σ3 5

The desired trajectory of the multi-agent systems is shown in Figure 6.1. It is

generated by an input-free Chua’s circuit. Applying the controller in Eq. (6.4) to

the four agents, the tracking errors, defined as xdesired(t) − xi(t), are exhibited in

Figures 6.3(a) and 6.3(b). It is clearly observed that all the tracking errors converge
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to zero, which firmly demonstrates the effectiveness of the proposed controller. Fig-

ure 6.4 shows the control input signals. The solid lines represent the periodically

sampled signal, while the event-triggered control input signals are accordingly dis-

played using those lines other than a solid line. It is clearly shown in the zoom-in

window that the update frequency of an event-triggered signal is much lower than

the periodically sampled signal. Namely, the event-triggered signal enormously re-

duces the computational burden of the agents. The switching signal is presented

in Figure 6.5, and the value “1” and “-1” indicates the Topology 1 and Topology

2, respectively. It is noticed that only the topology switching between 2.5 sec - 5

sec is shown in Figure 6.5 for better observation. Since the topology is switched

according to a Markov jump process, a randomly selected interval is able to display

the characteristics of the entire interval.
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Fig. 6.3 Tracking errors
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7 Conclusions and Future Work

7.1 Conclusions

In this dissertation, the consensus seeking algorithms are essentially developed

for networked Euler-Lagrange systems and Lipschitz nonlinear systems, respec-

tively. The nonlinear dynamics of individual agent and the network-induced prob-

lems, such as the networked-induced disturbance, sampled-data communication

and stochastic topology switching, are systematically discussed for the cooperative

control of multi-agent systems.

A consensus seeking algorithm is developed for multiple nonlinear Euler-Lagrange

systems. Multiple agents can be steered to a common state in the workspace by

the proposed consensus seeking strategy. The effect of structural uncertainties and

external disturbances is also taken into account in the control system design. The

closed-loop control system is simplified into cascade systems by the proposed con-

troller, and the stability is analyzed based on the perturbed system theory. The

concept of input-to-state consensus is defined and used to analyze the robustness of
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the developed control algorithm. It is found that the proposed controller is robust

to bounded perturbations in the sense of input-to-state stability. An H∞-based

optimization algorithm is used to determine the controller parameters in order to

improve the consensus achieving performance. The robustness of the proposed con-

troller is further demonstrated under the combination of both external disturbances

and structural uncertainty. The leaderless consensus and group trajectory tracking

tests are successfully conducted in the hardware experiments, which further demon-

strate the effectiveness of the proposed control algorithm in terms of robustness and

feasibility.

Next, a distributed formation tracking controller is proposed. The nonlinear dy-

namics of each agent are modeled as the Euler-Lagrange system. With the proposed

control law, all agents can realize formation tracking in the leader-follower man-

ner. Since global knowledge of the desired time-varying trajectory is not presumed,

all agents in the workspace reach the formation through a distributed approach.

In the presence of system uncertainties and external disturbances, the stability of

the proposed control scheme is proven with the assistance of nonsmooth analysis.

Remarkably, the boundaries of system uncertainties and external disturbances are

not required by the controller. Meanwhile, an active fault diagnosis strategy is

successfully developed for the networked nonlinear systems. In the observer-based

fault diagnosis scheme, a sliding mode observer is adopted on the basis of the super-
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twisting technique. With the assistance of the observer, a residual signal, usually

served as an indicator of the possible fault, is generated, and the actuator/sensor

faults can be detected if the corresponding residual signal exceeds a certain value.

The effectiveness of the proposed controller is verified through simulations. The

active fault tolerance is also validated with the presence of actuator/sentor faults.

To further generalize the nonlinear consensus algorithm, an H∞ sampled-data

consensus algorithm is developed for the networked Lipschitz multi-agent systems.

With the consideration of modeling error, system uncertainty and external distur-

bance, a sampled-data controller is developed and the sufficient conditions for the

stability of the controller are thus proposed with the assistance of Lyapunov func-

tional method. The proposed consensus controller can achieve the minimization of

the worst case influence of L2 bounded disturbance. Meanwhile, the discontinuous

issue caused by the sampled-data iteration is essentially resolved along a time-delay

compensation approach. Furthermore, an iterative algorithm is developed to auto-

matically derive the feedback and observer gains. The effectiveness of the proposed

controller is verified through simulations.

Finally, a leader-follower consensus problem for nonlinear multi-agent systems

is solved by an event-triggered consensus controller. In the multi-agent systems, the

Markov jump process is adopted to describe the stochastic switching communication

relationship. Since the information is locally shared through a digital network,
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a time-delay equivalent approach is essentially utilized to solve the discrete-time

control problem caused by the discontinuous state feedback. By taking advantage

of the Lyapunov functional method, the sufficient condition for system stability is

obtained systematically. Moreover, the feedback gain of the proposed controller can

be derived by the presented optimization algorithm. Furthermore, the effectiveness

of the proposed control algorithm is demonstrated by the numerical simulation.

7.2 Future Work

A lot of problems in cooperative control of multi-agent systems are still unsolved.

In this work, the removal of the faulty agent is the most rudimentary approach to

realize the function of fault recovery. Apparently, in certain circumstances, the

faulty agent is not treated fairly by this kind of fault recovery algorithm. For

example, if a healthy agent is indicated as a faulty agent incorrectly by the fault

diagnosis algorithm, then the “faulty agent” will be ignored immediately without

any attempt at saving the “faulty agent”. Even if an agent is really malfunctioning,

it is still possible to save the faulty agent by compensating for the faulty signal.

However, in the proposed fault recovery algorithm, the faulty agent is discarded

without the consideration of its potential. Therefore, in the future work, the fault

recovery algorithm can be improved by taking advantage of the information from

the faulty agent. Meanwhile, in the future fault recovery algorithm, the faulty
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agent is expected to be kept in the group. Other than the improvement of the

fault recovery algorithm, information delay is also an important issue that should

be investigated thoroughly in the future.

Delay phenomenon widely exists in multi-agent systems due to the unpredictable

uncertainties in the communication network. Since the unexpected delays might

result in the instability of the entire system, it has been preliminarily studied in

previous works. However, the delay in previous works is usually assumed to be

bounded or time-varying. This assumption should be further generalized because

delay effect is mostly caused by uncertain factors in the communication network

and it is most likely to happen randomly in the multi-agent systems. Consequently,

a new consensus seeking protocol for multi-agent systems with the consideration

of random communication time delays is expected in the future work. Other than

the delay effect, packet loss is another problem induced by the wireless network.

During the information transmission, it is very common that several data packets

failed to be delivered due to the real-time limitation. In that case, the packet loss

becomes an unavoidable problem that may potentially influence the stability of

the system. Hence, the failure of data packet delivery is considered in previous

works, where the packet delay and loss are both considered, but the packet loss is

not explicitly characterized according to the communication process. In application,

the packet loss can be caused by issues related to the individual agent, the network,
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or a combination of both. Accordingly, the packet loss process should be modeled

appropriately in the future work. Based on the packet loss model, the consensus

controller is expected to be designed on the basis of stochastic process theory.

Other than the robustness against diverse uncertainties, further improvement of

performance is also expected in terms of optimal convergence and intellectual deter-

mination. The convergent speed of the multi-agent systems would be enormously

influenced by the individual dynamics and network structure. Thus, with the assis-

tance of the advanced optimization techniques, the convergence of the multi-agent

systems with nonlinear dynamics should be further optimized when static com-

munication or dynamic communication occurs. Particularly, the network-induced

problems, i.e. sampled-data communication, package loss and stochastic communi-

cation delay can also be investigated along with the optimization. With the growth

of the complexity of the practical missions, intellectual determination is expected

in the multi-agent systems both locally and globally. In the local neighborhood,

optimal collision avoidance and path planning are always important tasks between

the neighbors. The agents are supposed to move to the expected position smoothly

with maximum speed and minimum energy consumption. Meanwhile, the group

movement also requires intellectual determination. For example, determining the

movement direction of the entire group based on video information, or determining

which agent should proceed first in a narrow environment.

180



The intellectual determination can also be combined with fault diagnosis. For

instance, how to identify and get rid of a malfunctioning agent with the assistance

of video or audio information. Namely, the residual generator could be a smart

computer that can identify the faulty agent by observing or listening. Currently,

the residual generation largely depends on the measurements of the conventional

sensors, based on which a complicated observer will be built in the residual genera-

tor. These limitations will instantly disable the detection of a large group of agent

faults. However, the incorporation of the intellectual determination might be able

to identify these agent faults efficiently. For example, if two agents can observe each

other using the video camera, then the faulty behavior of one agent might be “ob-

served” immediately by the other agent without any complicated observer-based

algorithm. Similarly, the audio information can also be adopted as an indicator of

agent fault if the neighbors are not visually accessible.
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A Relevant Theorems

Theorem A.1. (Robust KYP Lemma) [92] Consider the following system

ẋ = f(x) + ∆f(x) + G(x)u

y = h(x)

(A.1)

where ∆f(x) denotes the structural uncertainty, which is described by

∆f(x) = E(x)δδδ(x), ∆f(0) = 0 (A.2)

where E : Rn → Rn×m is a known matrix and δδδ : Rn → Rm is unknown. It is

assumed that δδδ(x) ∈ {z : ‖z‖ ≤ ‖n(x)‖}.

The system in Eq. (A.1) is robust strictly passive with a C1 positive definite

function V (x) if

V (0) = 0

LfV (x) +
∥∥∥(LeV (x))T

∥∥∥ ‖n(x)‖ < 0, ∀x 6= 0,

LgV (x) = hT (x)

(A.3)
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Theorem A.2. [139] Consider a proper continuous-time plant P(s) of order n

and its realization is described as

ẋ = Ax + B1ωωω + B2u

z = C1x + D11ωωω + D12u

y = C2x + D21ωωω + D22u

Let N12 and N21 denote orthonormal basis of the null spaces of
(
BT

2 ,D
T
12

)
and

(C2,D21) respectively. The suboptimal H∞ problem of performance γ is solvable if

and only if there exist two symmetric matrices R,S ∈ Rn×n satisfying the following

LMIs [
N12 0

0 I

]T  AR + RAT RCT
1 B1

C1R −γI D11

BT
1 DT

11 −γI

[ N12 0
0 I

]
< 0

[
N21 0

0 I

]T  ATS + SA SB1 CT
1

BT
1 S −γI DT

11

C1 D11 −γI

[ N21 0
0 I

]
< 0

[
R I
I S

]
> 0

(A.4)

With the solution of R and S in (A.4), the explicit controller formulas can be

computed based on the algorithm proposed in Ref. [139].

Theorem A.3. [140] Let A ∈ Rn×n have eigenvalues λi, i ∈ n, and let B ∈ Rm×m

have eigenvalues µj, j ∈ m. Then the mn eigenvalues of A⊗B are

λ1µ1, ... , λ1µm, λ2µ1, ... , λ2µm, ... , λnµm.
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Theorem A.4. [112] Let x(·) be a Filippov solution to ẋ = f(x, t) on an interval

containing t and V : Rn × R→ R be a Lipschitz and in addition, regular function.

Then V

(
x(t), t

)
is absolutely continuous, d

dt
V

(
x(t), t

)
exists almost everywhere

and

d

dt
V
(
x (t) , t

)
∈a.e. ˙̃

V (x, t) (A.5)

where
˙̃
V (x, t) :=

⋂
ξ∈∂V

(
x(t),t

) ξT ( K[f ]
(
x(t), t

)
1

)
Theorem A.5. [112] Let ẋ = f(x, t) be essentially locally bounded and 0 ∈

K[f ](0, t) in a region Q ⊃ {x ∈ Rn|‖x‖ < r} × {t|t0 ≤ t < ∞}. Also, let

V : Rn × R→ R be a regular function satisfying

V (0, t) = 0 (A.6)

and

0 < V1(‖x‖) ≤ V (x, t) ≤ V2(‖x‖) for x 6= 0 (A.7)

in Q for some V1, V2 ∈ class K [81]. Then,

(i)
˙̃
V (x, t) ≤ 0 in Q implies x(t) ≡ 0 is a uniformly stable solution.

(ii) If in addition, there exists a class K functions ω(·) in Q with the property

˙̃
V (x, t) ≤ −ω(t) < 0 (A.8)

then the solution x(t) ≡ 0 is uniformly asymptotically stable.
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