366 research outputs found

    Information Theory and Its Application in Machine Condition Monitoring

    Get PDF
    Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries

    Analysis of weak faults of planetary gears based on frequency domain information exchange method

    Get PDF
    This paper focuses on solving a series of problems, in particular, the extraction of planetary gear fault characteristics for cracked and broken teeth, using the frequency domain information exchange method. First, we discuss deficiencies in classical stochastic resonance fault feature extraction method. A number of issues are associated with adaptive stochastic resonance based on the re-scaling frequency method used during the small parameter issues, such as sampling frequency ratio constraints and easily induced aliasing of the target frequency band. Second, to overcome the above-mentioned problems, this paper proposes a frequency domain information exchange optimization method. Simulations were carried out used the proposed method and results were compared to those obtained using previously presented adaptive stochastic resonance based on the re-scaling frequency method. Finally, tests were performed on an experimental planetary gearbox failure platform to further verify the frequency domain information exchange method for effectively extracting planetary gear crack and missing tooth fault features

    Gearbox Fault Diagnosis Method Based on Improved MobileNetV3 and Transfer Learning

    Get PDF
    Under different working conditions of gearbox, the feature extraction of fault signals is difficult, and large difference in data distribution affects the fault diagnosis results. Based on the problems, the research proposes a method based on improved MobileNetV3 network and transfer learning (TL-Pro-MobilenetV3 network). Three time-frequency analysis methods are used to obtain time-frequency distribution. Among them, short time Fourier transform (STFT) combined with Pro-MobilenetV3 network takes the shortest time and has the highest accuracy. Furthermore, transfer learning is introduced into the model, and the optimal training parameters are selected training the network. Using the dataset from Southeast University, the TL-Pro-MobilenetV3 model is compared with four classical fault diagnosis models. The experimental results show the accuracy of the method proposed can reach 100% and the training time is the shortest in two working conditions, proving the proposed model has a good performance in generalization ability, recognition accuracy and training time

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    Fault Diagnosis Approach of Main Drive Chain in Wind Turbine Based on Data Fusion

    Get PDF
    This article belongs to the Special Issue Electrification of Smart Cities.Copyright: © 2021 by the authors. The construction and operation of wind turbines have become an important part of the development of smart cities. However, the fault of the main drive chain often causes the outage of wind turbines, which has a serious impact on the normal operation of wind turbines in smart cities. In order to overcome the shortcomings of the commonly used main drive chain fault diagnosis method that only uses a single data source, a fault feature extraction and fault diagnosis approach based on data source fusion is proposed. By fusing two data sources, the supervisory control and data acquisition (SCADA) real-time monitoring system data and the main drive chain vibration monitoring data, the fault features of the main drive chain are jointly extracted, and an intelligent fault diagnosis model for the main drive chain in wind turbine based on data fusion is established. The diagnosis results of actual cases certify that the fault diagnosis model based on the fusion of two data sources is able to locate faults of the main drive chain in the wind turbine accurately and provide solid technical support for the high-efficient operation and maintenance of wind turbines.China Southern Power Grid (Research Program of Digital Grid Research Institute, Grant YTYZW20010)

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms

    Exploiting Robust Multivariate Statistics and Data Driven Techniques for Prognosis and Health Management

    Get PDF
    This thesis explores state of the art robust multivariate statistical methods and data driven techniques to holistically perform prognostics and health management (PHM). This provides a means to enable the early detection, diagnosis and prognosis of future asset failures. In this thesis, the developed PHM methodology is applied to wind turbine drive train components, specifically focussed on planetary gearbox bearings and gears. A novel methodology for the identification of relevant time-domain statistical features based upon robust statistical process control charts is presented for high frequency bearing accelerometer data. In total, 28 time-domain statistical features were evaluated for their capabilities as leading indicators of degradation. The results of this analysis describe the extensible multivariate “Moments’ model” for the encapsulation of bearing operational behaviour. This is presented, enabling the early degradation of detection, predictive diagnostics and estimation of remaining useful life (RUL). Following this, an extended physics of failure model based upon low frequency SCADA data for the quantification of wind turbine gearbox condition is described. This extends the state of the art, whilst defining robust performance charts for quantifying component condition. Normalisation against loading of the turbine and transient states based upon empirical data is performed in the bivariate domain, with extensibility into the multivariate domain if necessary. Prognosis of asset condition is found to be possible with the assistance of artificial neural networks in order to provide business intelligence to the planning and scheduling of effective maintenance actions. These multivariate condition models are explored with multivariate distance and similarity metrics for to exploit traditional data mining techniques for tacit knowledge extraction, ensemble diagnosis and prognosis. Estimation of bearing remaining useful life is found to be possible, with the derived technique correlating strongly to bearing life (r = .96
    • …
    corecore