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Abstract
There are few studies on the fault diagnosis of deep learning in
real large-scale bearings, such as wind turbine pitch bearings. We
present a novel fault diagnosis method, Bayesian augmented temporal
convolutional neural networks (BATCN), to filter the raw signal in wind
turbine pitch bearing defect detection. This method, which employs
temporal convolutional neural networks, is designed to capture the
temporal dependencies of the signal, with such a focus on non-
stationary relationships in the collected signals. By referring to the
thoughts of Bayesian optimization, our approach can spontaneously
find the best patch length that influences fault signal extraction during
the filtering process, avoiding manual tuning of this hyper-parameter.
This BATCN method is first performed on simulation signals and
an open-source dataset of general bearings, and then validated on
industrial wind turbine pitch bearings both in the lab and in the real
wind farm, where the bearings have been operated for over 15 years.
The results show that our method can work well for large-scale slow-
speed wind turbine pitch bearings.

Keywords
Fault diagnosis, wind turbine pitch bearing, slow speed, non-stationary,
convolutional neural networks
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Introduction

Wind power, as a sustainable and reliable energy source1,2, its installation
capacity has expanded at a predominant pace in recent years throughout
the world, and this trend is expected to continue constantly in order to
achieve carbon emission target in 2050 and provide sustainable electric
energy3. Pitch bearings, also referred to as blade bearings, one of the
most significant components of wind turbines, can improve the generating
efficiency and ensure the safe operation of wind turbine systems4,5.
However, the extreme operating conditions in industrial occasions may
result in serious faults, along with catastrophic accidents and significant
financial losses6,7. Therefore, Condition Monitoring and Fault Diagnosis
(CMFD)8 of wind turbine pitch bearings driven by measured data is
one of the feasible solutions for guaranteeing reliability and controlling
maintenance costs9. In the CMFD, the vibration or acoustic signal can
be used as the fundamental unit to diagnose the faults existing in
bearings10,11.

When faults occur in bearings, they often generate periodic or quasi-
periodic fault signals12. However, fault signals are weak under slow speed
conditions because low rotation results in little kinetic energy, owing
to Newton’s Law. In addition, weak fault signals are often masked by
background noise (from natural distractions) and harmonic interference
(from bearing rotation, gearbox, and motor driving)13. For the reasons
mentioned above, fault signals in wind turbine pitch bearings are usually
challenging to be extracted from collected raw signals.

Over the last few decades, some classical denoising methods have been
proposed for filtering signals to extract fault signals. The discrete/random
separation (DRS) method15,16 filters raw signals by eliminating the
periodic property in the time domain. The spectral kurtosis (SK) method17

directly extracts fault signals in a narrow frequency band by finding the
best central frequency and band width with the aim of determining the
best inverse filter18. Some researchers recently have also focused on other
potential approaches in bearing defect diagnosis, like dictionary methods
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and statistical methods. Regarding dictionary methods, Bayesian and
Lagrangian based method was proposed to construct a noise dictionary
for collected raw signals19. The correlation filtering approach was used
to create an adaptive over-complete dictionary using the unit impulse
response function20. As for statistical methods, Guo et al.21 used the
matrix decomposition method k-means singular value decomposition (K-
SVD) for defect detection of wind turbine bearings. Aye et al.22 used the
Principal Component Analysis (PCA) approach to gently identify bearing
degradation under varied slow-speed situations.

In recent years, the deep learning techniques, especially convolutional
neural networks (CNNs)23,24, have attracted significant research attention
on rolling bearing fault detection. Zhang et al.25 integrated the function
of the principal component analysis (PCA) into CNN to process the fault
signals from multi-dimensional bearing vibration signals. Chen et al.26

researched a transfer learning to augment CNN so that the experience
in bearing and gear faults can be reused. Li et al.27 investigated a novel
wavelet driven deep neural network of using the wavelet kernels in the
first network layer so that it can offer the CNN the ability to discover weak
fault signals of gearbox. Kumar et al.28 apply a sparsity CNN to diagnose
bearing faults under the condition of limited training samples.

Currently, most of the deep learning methods are designed for direct
fault classification and judgement. Only few work is related to direct
signal denoising of vibration signals from bearings. Wang et al.29

proposed a novel joint learning CNN for bearing condition monitoring.
This method is divided into fault diagnosis and signal denoising module
which can obtain good noise robustness through the decoupling functional
modules. In the signal denoising module, the encoder-decoder network
structure is utilized, attention-based encoder for useful fault signals and
decoder for recovering signal details. This method is validated with
excellent signal denoising performance. Although this work studied the
signal denoising for mechanical bearings with deep learning techniques,
large-scale mechanical rotating bearings (such as wind turbine bearings)
with special noise levels due to friction and collision between different
components has not been studied. This part of the research gap needs to
be filled.

Additionally, a seemingly insurmountable technical problem of
determining the patch length may exist in the signal processing during
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the fault diagnosis process. The patch length during the processing of
vibration signals is a key factor influencing the processing performance.
The deep learning method considering the input patch length was used for
intelligent fault diagnosis of rolling bearings in30, but suitable patch length
was only given by some trials. The one-dimensional signals is split with
fixed patch length and the determination of patch length can be ignored
by the subsequent processing of transformer encoder in31. However, this
is just another way indirectly thinking about patch length. The fault pluse
extraction can be realized by dictionary learning method in32, but the patch
length in this work was only given by empirical setting.

On top of the aforementioned challenges, there are some open
challenges in the field of wind turbine pitch bearing fault diagnosis.
More specifically, wind turbine pitch bearing is operated under oscillating
operating speed, leading to non-stationary fault signals. Although the
existing filtering methods for constant rotating speed can still be applied,
the performance may be limited when the fault signal is weak or harmonic
interference (e.g. introduced by driving rotor and gear) strongly couples
with fault frequency band. Furthermore, vibration based fault detection
often requires high sampling frequency, producing large amount of data
and redundant information. This introduces high computational loading
when using complex filtering methods, such as deep neural networks.

This paper proposed a robust denoising method that can be applied for
collected signals to realize fault diagnosis of wind turbine pitch bearing.
It is the first time to use CNN for wind turbine pitch bearing fault
extraction. This method utilizes the strong feature extraction capability of
convolutional networks to process collected discrete signals consisting of
much redundant information. We proposed a new fault diagnosis method,
called Bayesian augmented temporal convolutional networks (BATCN), to
detect defects in wind turbine pitch bearings. The BATCN method, using
deep learning techniques, can learn the intrinsic features of fault signals
to guarantee the extraction of non-stationary fault signals. The proposed
BATCN method learned not only the fault signal and period information
but also the dependency relationship among different time intervals, so
that it can deal with the non-stationary signals well. By employing global
characteristics of convolutional networks, the BATCN also has the ability
of harmonic interference suppression. In addition, the dilated convolution
in BATCN can realize the sparsity so that the computation complexity
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can be reduced, to a large extent. Referring to Bayesian optimization,
our approach can spontaneously find the best patch length in the BATCN
method so that the proposed method can perform well without complex
adjusting parameters.

Regarding the research design, it can explain the work of this paper
from another perspective. Specifically, the classic SK method has been
repeatedly demonstrated to be very effective in general bearing signal
denoising, so it will be used as the primary comparing method in this
paper. Unlike the processing complexity for image and video streaming,
the one-dimensional signals are relatively straightforward, so the CNN
may be sufficiently effective and hence are the focus of this paper.

Combined with the foregoing design analysis, the primary contributions
of this paper can therefore be summarized as follows:

• This paper proposes a novel method called BATCN of using the
CNN technique to denoise the signals of wind turbine pitch bearings,
which can achieve excellent filtering performance without adjusting
patch length.

• This is presumably the first study to verify that deep learning can
improve the denoising performance of wind turbine pitch bearings.
Compared with the classical SK method, the deep learning method is
proved more effectively in some conditions of the wind turbine pitch
bearings.

The rest of this work is laid out as follows: Section II is dedicated to the
complete fault diagnosis procedure for wind turbine pitch bearings and
some prior knowledge on fault diagnosis. In Section III, the theoretical
process of proposed bayesian augmented temporal convolutional networks
(BATCN) is explained in detail. Section IV uses two simulations to
validate the noise suppression and harmonic interference suppression,
respectively. Section V subsequently presents experimental comparisons
between the proposed BATCN approach and the classical SK approach.
Section VI shows the meta-analysis of the proposed method, and Section
VII concludes the work in this paper.

Fault Diagnosis

This section would present the complete fault diagnosis procedure for
wind turbine pitch bearings, which could be divided into two procedures:

Prepared using sagej.cls



6 Journal Title XX(X)

signal filter and fault inference. Firstly, the signal filter procedure would
utilize BATCN to filter raw acoustic emission (AE) signals and then get
denoised signals. Subsequently, fault inference would calculate the fault
frequency to identify corresponding fault type by envelope signals. Fig. 1
shows the concrete procedures.

Signal Filter

Bearing
Parameters

Fault Inference
Envelope

Signal

Raw AE 
Signal

Denoised
Signal

Fault
Frequency 

Frequency
Analysis

BATCN

Figure 1. Procedures of fault diagnosis

The following section would briefly explain the fault frequency and
envelope techniques used in this paper. The fault frequency (FF) is a key
parameter used to identify the type of fault during the frequency analysis
process. Through frequency analysis, characteristic information such as
the FF can be obtained, allowing defects to be accurately identified based
on the calculated FF39. The FF could be obtained by (1).

finner =
Nb

2
· (1 + db

dp
cosα) · fr

fouter =
Nb

2
· (1− db

dp
cosα) · fr

fball =
dp
2db

· (1− (
db
dp

cosα)2) · fr

(1)

where finner, fouter, and fball respectively signify the fault frequency (FF)
of the inner race, outer race, and balls. The ball number is Nb, the ball and
pitch diameters are db and dp, respectively. The bearing contact angle is α,
and the rotating frequency of wind turbine pitch bearings is fr.

With regards to the envelope processing, this paper focuses exclusively
on the use of the Hilbert transform. By utilizing the complex signal, the
envelope and phase can be calculated conveniently. However, it should
be noted that all signals collected from natural sources are real signals,
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and the complex signals could not be obtained directly. Therefore, the
Hilbert transform is used to construct complex signals for the purposes of
envelope processing. This could also be called Hilbert envelope.

Denoising BATCN method

The architecture of proposed BATCN is illustrated in Fig. 2. It is worth
noting that the feature extraction module in BATCN refers to a type
of parallel method called temporal convolutional neural networks. In
addition, this proposed BATCN method utilizes Bayesian optimization
to find the optimal patch length to filter signals better. Meanwhile, the
forward and backward sequences are processed by Encoder 1 and Encoder
2, respectively, both of which are made up of fully connected layers.
The Decoder calculates the goal using the training loss output from the
Encoders and the kurtosis information of signals so that the exploration
function may determine the next exploring location. The Gaussian Process
can be used as a surrogate model in this case.

Feature Extraction Module

This feature extraction module in BATCN method includes three
segments: causal convolutions, dilated convolutions, and residual
connections. Fig. 3 demonstrates the architecture of feature extraction,
which processes the discrete sequences of input.

Causal Convolutions To obtain characteristic information from uniden-
tified sequence data, causal convolution is applied, inspired by the fully-
convolutional networks (FCN)33. Utilizing causal convolutions, the realis-
tic data derived from low-layer convolution operations can be transmitted
to the high-layer with abstract form. The information in the higher layers
becomes increasingly intensive until the projected value is output in the
top layer, as illustrated in Fig. 3.

The causal convolutions describe the relationship between two adjacent
layers. Assume input vector of the previous layer x = [x0, ..., xn−1] and
input vector of the following layer y = [y0, ..., yn−1], and xi is input
sequence data at location i in a previous layer, and yi is input data at
location i for the following layer. The nominal relationship of causal
convolutions could be represented as follows:

yi = Fc

(
{xsi+δi}0≤δi≤k

)
(2)
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where k is the kernel size, s is the stride, and Fc means the multiplication
for convolution. Note that δi here is continuous positive integer.

Dilated Convolutions Although causal convolutions can extract feature
information well, this may still generate deep networks with many layers.
According to study34, dilated convolution may be used to minimise the
depth of neural networks by extending the receptive field. When the
input size is known, dilated convolution refers to a longer history than
ordinary causal convolution, resulting in fewer convolution operations
and, a reduction in the number of layers necessary for a neural network.

For the sequence data input vector x = [x0, ..., xn−1], the dilated
convolution operation Fd is the special realization of Fc, defined as:

Fd(s) = (x ∗ fd) (s) =
k−1∑
i=0

f(i) · xs−d·i (3)

where fd is symbolism of dilated filter with a filter f : {0, . . . , k − 1} →
R. k is the filter size and d is the dilation factor. s− d · i is responsible for
the direction of past data. It is worth mentioning that a dilated convolution
becomes a normal convolution when interval d = 1.

Residual Connection The neural networks are still deep, despite the use
of dilated convolutions, resulting in awful training loss curve. To minimise
performance degradation from deep networks, a residual connection35

developed for image processing may also be used for sequence data
processing. When compared to the standard output y = Fc(x), the new
output employing a residual connection can be defined as follows:

y = x+ Fc(x) (4)

Here the input and output of the current layer are x and y, respectively.
Observing (4), the residual connection is a sort of connection block that
is both flexible and pluggable. When a deep layer becomes redundant, the
(4) in this layer becomes y = x, indicating identity mapping. This method
has consistently been shown to benefit extremely deep networks, because
it may be easier to achieve this form of identity mapping when certain
layers are redundant. This sort of residual connection is depicted in Fig.
3, where the intermediate layer is bypassed when the networks think that
the identity mapping may result in superior performance throughout the
training phase.
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Figure 2. BATCN structure

…

Residual Connection

…

…

Figure 3. Feature extraction module

Determination of Patch Length with Bayesian Optimization

Before training the neural networks, the patch length, also referred
to as the input size for the training dataset, is crucial for denoising
performance. For signal sequence data x = (x0, y0), ...(xn−1, yn−1), if
the input size (patch length) is l and the sequence length is just an
integer multiple of l, train dataset consists of multiple patches: x =
{{(x0, y0), ...(xl−1, yl−1)}, {(xl, yl), ...(x2l−1, y2l−1)}
, ..., {(xn−l−2, yn−l−2), ...(xn−1, yn−1)}}. If not an integer multiple, the last
patch can not be filled with the number of input sizes, and the truncation
or padding techniques can be used. This paper will apply truncation to
this special edge case. In other words, each patch in training dataset is
independent that means the whole training process can be parallel to speed
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up the training. This is one of the reasons why we refer to this TCN
network structure.

To some extent, the patch length during model construction is a factor
that will influence the performance of denoising models. However, trial-
and-error methods, such as enumeration method, are unrealistic because
every single training session is very time-consuming. The aimless search
may not be suitable for this occasion, so a Bayesian optimization based
search strategy is used for finding the best patch length automatically.

Search process for patch length It is assumed that l is a random variable,
representing the patch length to be determined. f(l) represents the real
objection function about l, which is related to loss function of neural
networks and has high computational complexity. The patch length vector
is l = [l0, l1, ..., lt, ..., lT ] and T is the maximum iteration. Regarding the
surrogate model in Bayesian optimization, a gaussian process (GP) is
chosen as follows:

f(l) ∼ GP (m(lt), k (lt, lt′)) (5)

where the t, t′ ∈ (0, T ), and then we can see that the mean function m and
the covariance function k totally determine the GP. If we can approximate
the real GP in (5), the f(l) can also be obtained (one optional way is to
regard the mean value as the f(l)). To be simplified, it can be assumed here
that the prior mean m(lt) = 0.36,37 can also be used to refer to a different
mean value. The covariance here k(·) can be represented with exponential
function and L2-norm, as follows:

k (lt, lt′) = exp(−1

2
∥lt − lt′∥2) (6)

Subsequently, the Sherman-Morrison-Woodbury formula38 can be used
to generate a predictive distribution P , namely, normal distribution N with
mean µ(l) and variance σ(l), at tth iteration:

P (ft | D0:t−1, lt) = N
(
µt (lt) , σ

2
t (lt)

)
(7)

where ft = f(lt) and D0:t−1 is the historical observation from iteration 0
to t− 1. The µt(·) and σt(·) are represented as follows:

µt (lt) = kTK−1f0:t

σ2
t (lt) = k (lt, lt)− kTK−1k

(8)
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where f0:t is a column vector, f0:t = f(l0:t). k and K are coefficient
matrixes obtained according to formula (6) and are described as follows:

k =
[
k (lt, l0) k (lt, l1) · · · k (lt, lt)

]T
K =

 k (l0, l0) . . . k (l0, lt)
... . . . ...

k (lt, l0) . . . k (lt, lt)

 (9)

According to (7), the GP can be updated:

f(l) ∼ GP(µt, σ
2
t ) (10)

From (5) to (10), we can know the procedures of updating the GP.
Furthermore, the acquisition function for choosing the next point needs
to be concretely explained.

Some acquisition functions related to the exploration approach have
been empirically identified as effective on most occasions. The three
primary acquisition functions are explained as follows:

• Upper confidence bound (UCB):

UCB(l) = µ(l) + ρσ(l) (11)

where ρ is a weight parameter, larger than 0, adjustable parameter.

• Probability of improvement (PI):

PI(l) = Φ

(
µ(l)− f (l+)− λ

σ(l)

)
(12)

where l+ = argmaxli∈l0:t f (li), the λ is larger than 0, left to the user. Φ is
cumulative distribution function (CDF) of standard normal distribution

• Expected improvement (EI):

EI(l) =
(
µ(l)− f

(
l+
)
− ξ

)
Φ(Z) + σ(l)ϕ(Z) (13)

where Z = (µ(l)− f(l+))/σ(l); ϕ and Φ are probability density
function (PDF) and cumulative distribution function (CDF) of standard
normal distribution, respectively. The ξ is larger than 0, left to the user.
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Regarding selection of acquisition function, global search for UCB is
simple, but convergence speed is slow. PI can quickly converge, but it is
possible to become stuck in a locally optimum solution. EI is able to find
a balance between global and local optimization.

Finally, we select EI acquisition function as the exploration strategy,
because it will make trade-off between global optimization and local
search.

Simulation Validation

Noise and harmonic interference are significant factors that may
influence the fault diagnosis of wind turbine pitch bearings. This
section firstly introduce simulation signals, including: fault signals,
harmonic signals, and noise signals. Subsequently, noise and harmonic
interference suppression of the proposed BATCN method will be
examined, respectively. In addition, spectral kurtosis (SK)17, a denoising
approach that has been proven to be effective in a variety of general
bearing applications, was used for comparison.

Simulated Signals

The simulation signal is comprised of three parts: fault signals x =
[x(1), ..., x(t)], harmonic signals h = [h(1), ..., h(t)] and noise signals
n = [n(1), ..., n(t)]. The details for each part are given as follows.

Fault Signals: At time t, the fault signal x(t), consisting of sinusoidal
impulse signal I(t), are shown as follows:

x(t) =
∑
k

akI((t− kM − τk)) (14)

The standard form of I(t) is shown as follows:

I(t) = e−2ξπfnt sin
(
2πfn

√
1− ξ2t

)
(15)

where different ak on simulation model setting indicates various amplitude
of impulse components in fault signals. M is the period it takes for an
impulse to arise. τk denotes the fine random interval bias among impulses.
fn is resonance frequency. ξ is the damping ratio that influences the shape
of impulse components.
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Harmonic Signals: To effectively test the ability of harmonic interference
suppression, the harmonic signals h here are combination of two harmonic
interference and specified as follows:


h(t) = h1(t) + h2(t)

h1 = ha(1 + 0.5 cos(2π ∗ 180t)) ∗ cos(2π ∗ 1000t+ 0.5 cos(2π ∗ 35t))
h2 = hb(1 + 0.5 cos(2π ∗ 360t)) ∗ cos(2π ∗ 2000t+ 0.5 cos(2π ∗ 70t))

(16)
where h1 and h2 are two types of harmonic interference. ha and hb

represent the amplitude of h1 and h2, respectively.

Noise Signals: The noise signals are also significant to guarantee the
integrity of simulated signals, shown as follows:

n(t) ∼ N
(
0, σ2

)
(17)

where the nature of n(t) is Gaussian white noise, with mean value 0 and
standard deviation value σ.

Indicators To measure various interferences, three indicators, signal-
to-noise ratio (SNR), signal-to-harmonic ratio (SHR), and signal-to-
interference ratio (SIR), were introduced, respectively:

SNR = 10 log10

(
∥x∥22
∥n∥22

)
(18)

SHR = 10 log10

(
∥x∥22
∥h∥22

)
(19)

SIR = 10 log10

(
∥x∥22

∥y − x∥22

)
(20)

where x, h, n and y represent fault siganls, noise signals, harmonic
signals, and composited signals, respectively. The relationship among
them is y = x+ h+ n.

Additionally, to evaluate the denoising performance, kurtosis value
is introduced by following40. Kurtosis measures the flatness of data
distribution, and it is the statistics of the degree of steepness of data
distribution morphology. The large kurtosis values often denote good
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denoising results.

kur =
1
n

∑n
i=1 (x(i)− x̄)4(

1
n

∑n
i=1 (x(i)− x̄)2

)2 (21)

where kur is kurtosis value. x̄ is mean value and n is the number of
sampling points.

Noise Suppression Performance

The collected raw signals from real world are often mingled with random
noise signals, indicating that noise suppression is necessary for a fault
diagnosis method.
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Figure 4. Constructing simulation signals for noise suppression test(a) simulated fault
signals with kurtosis of 101.78, (b) simulated noise signals with kurtosis of 2.98, (c)
composited signals with SNR -10.01 dB, kurtosis of 3.77.

To evaluate noise suppression, a comparison is made between the
classical SK method and the proposed BATCN method. The simulated
signal to be tested comprises both noise and fault signals, with the
following parameter settings. M , as the impulse interval, is set at 2. τk, the
fine random interval bias among impulses, is fixed at 0. fn is resonance
frequency, set as 1800. The damping ratio ξ is set at 0.003. Fig. 4 (a)
depicts the simulated signal, where ak = 2, and the values of ha and hb

are fixed at 0. Fig. 4 (b) shows the simulated noise signals with Gaussian
white noises. Fig. 4 (c) presents the synthetic relationship of the newly
generated simulation signal that needs to be denoised.

Prepared using sagej.cls



Smith and Wittkopf 15

A
m

pl
itu

de
A

m
pl

itu
de

Time (s)

Time (s)

(a)

(b)

0 1 2 3 4 5 6 7 8 9
-2

-1

0

1

2

0 1 2 3 4 5 6 7 8 9

-1

-0.5

0

0.5

1
1.5

Figure 5. Noise suppression evaluation (a) SK filtered signals with kurtosis of 10.25, (b)
BATCN filtered signals with kurtosis of 1363.46.

Fig. 5 shows the comparison results of noise suppression. The SK
denoised results in Fig. 5 (a) show that the profile of the fault signals
can be seen in the time domain. When compared to composite signals,
the kurtosis increased from 3.77 to 10.25, indicating that the classical SK
method is effective in eliminating general noise but low amplitude noise
redundancy persists. The BATCN denoised results in Fig. 5 (b) show that
the noise can be almost fully reduced and the filtered signals have a large
kurtosis of 1363.46. The results from this simulated example shows that
the BATCN method has better noise suppression ability than SK method.

Harmonic Interference Suppression Performance

Harmonic interference from rotor rotating and gear meshing may make
difficult to recognize fault characteristic frequency. To examine harmonic
interference suppression, SK method is also used to compare the proposed
BATCN method.

The simulation parameters are set as follows: M = 2, τk = 0, fn =
1800, ξ = 0.003, ak = 2, ha = hb = 1. Fig. 6 illustrates that the raw
simulated signal, without any processing methods, is significantly
affected by harmonic interference frequencies (HF) and their modulated
frequencies (MF). Based on Equation (16), it can be inferred that h1

generates harmonic interference frequencies (HF1) at 1000 Hz and their
modulated frequencies (MF1) at 180 Hz, while h2 generates HF2 at 2000
Hz and MF2 at 360 Hz. Fig. 6 (b) clearly shows that the two harmonic
interference frequencies, HF1 and HF2, are prominently dominant in the
frequency spectrum. By using the Hilbert envelope technique, it can be
observed from Fig. 6 (c) that the HF2 frequency is attenuated, while the
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Figure 6. Harmonic interference suppression evaluation without any denoising method (a)
time domain, (b) frequency domain, (c) Hilbert envelope spectrum.

primary frequencies become MF1, MF2, and HF1. These phenomena can
significantly contaminate the frequency spectrum, making it extremely
challenging to extract the real fault frequency.
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Figure 7. Harmonic interference suppression evaluation with SK method (a) time domain, (b)
frequency domain, (c) Hilbert envelope spectrum.

Fig. 7 actually shows three sub-figures, labeled as (a), (b), and (c),
respectively. Fig. 7 (a) shows the time-domain signal after the processing
of the SK method, where the profile of fault signals can be observed.
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Fig. 7 (b) shows the frequency spectrum after the SK method, where
the dominant frequency component is still the harmonic interference
frequency HF2. Fig. 7 (c) shows the frequency spectrum after the Hilbert
envelope, where the modulation frequencies MF1 and MF2 are still
obvious.

In Fig. 8 (b), the RF can be observed in frequency domain after
using the proposed BATCN method. Additionally, all the HF, MF and
RF are submerged in Hilbert envelop spectrum, as shown in Fig. 8 (c).
Meanwhile, the fault frequency (FF) can be observed clearly through
enlargement. Through comparisons between SK and BATCN results,
it can be concluded that BATCN can effectively extract fault signals
and detect fault frequency due to the significant advantage of harmonic
interference suppression.
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Figure 8. Harmonic interference suppression evaluation with BATCN method (a) time
domain, (b) frequency domain, (c) Hilbert envelope spectrum.

Physical Experiments

This section uses three physical cases to test the proposed BATCN
method. Data in case 1 is from a public dataset MFPT*. Data in case 2 is
collected in a lab environment from wind turbine pitch bearings that have
been serviced for 15 years in real wind farms. Data in case 3 is obtained

∗[Online]. Available: https://github.com/mathworks/RollingElementBearingFaultDiagnosis-Data
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from a field wind turbine in a real-world wind farm but is known to work
abnormally.

Case 1

This case here is related to an open-source dataset, MFPT, that is collected
in general bearing with sampling frequency 48828 Hz. MFPT dataset
contains two fault types, inner fault (case 1.1) and outer fault (case
1.2). The corresponding fault frequencies (FF) of the inner fault and
outer fault are named BPFI and BPFO, respectively. We first test the
proposed BATCN method in MFPT general bearing (case 1), and then
method validation for real wind turbine pitch bearing will be subsequently
executed in case 2 and case 3. Fig. 9 is the analysis results for normal
bearing. From Fig. 9 (d) or (e), it can observe that we can not identify
any fault frequency (FF). Fig. 10 and Fig. 11 represents the damaged
conditions, with inner fault and outer fault, respectively.
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Figure 9. MFPT normal bearing (a) raw signals, (b) SK denoised signals, (c) BATCN
denoised signals, (d) Hilbert envelope spectrum based on SK denoised signals, (e) Hilbert
envelope spectrum based on BATCN denoised signals.
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Figure 10. MFPT inner fault bearing, case 1.1 (a) raw signals, (b) SK denoised signals, (c)
BATCN denoised signals, (d) Hilbert envelope spectrum based on SK denoised signals, (e)
Hilbert envelope spectrum based on BATCN denoised signals.

As can be seen in Fig. 10, when using SK method to filter the raw
signal with inner fault, the Hilbert envelope spectrum Fig. 10 (d) may still
exist some interference frequency. However, the BATCN filtered signal
can clearly identify FF in its Hilbert envelope spectrum Fig. 10 (e). In
addition, using the BATCN method, higher fault harmonic components in
the envelope spectrum seem to decay quickly.

By observing Fig. 11, we can draw similar conclusions to those of
Fig. 10. One notable point in these conclusions is that the higher fault
harmonic components present in the envelope spectrum also exhibit a
rapid reduction. This phenomenon is more significant for slow-speed
bearings, such as wind turbine pitch bearings, because the higher fault
harmonics in the slow-speed condition may overlap with other types of
FF and make it challenging to identify the correct FF.

To quantitatively compare the performance between SK and BATCN,
we can define amplitude of corresponding frequency in Hilbert envelope
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Figure 11. MFPT outer fault bearing, case 1.2 (a) raw signals, (b) SK denoised signals, (c)
BATCN denoised signals, (d) Hilbert envelope spectrum based on SK denoised signals, (e)
Hilbert envelope spectrum based on BATCN denoised signals.

Table 1. Case 1: quantitative results of signals processed by SK and BATCN.

FF*1 FF*2 FF*2 / FF*1 FF*5 / FF*1
AMP AMP AMP AMP

Case 1.1 (SK) 0.0704 0.0475 0.6747 0.3049
Case 1.1 (BATCN) 0.1957 0.0769 0.3933 0.0603
Case 1.2 (SK) 0.3186 0.2221 0.6971 0.2646
Case 1.2 (BATCN) 0.4140 0.1342 0.3242 0.1123

spectrum as AMP. FF*1 is fault frequency, FF*2 and FF*5 represent fault
frequency times 2 and 5, respectively. As shown in Tab. 1, BATCN has the
larger amplitude at FF*1 frequency than SK. Regarding the large FF*2 /
FF*1 and FF*5 / FF*1 for BATCN, indicating that the fault harmonics
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decay more rapidly in the Hilbert envelope spectrum of the BATCN
method, which is advantageous for fault diagnosis.

Case 2

The data, in this case, is collected from the industrial scale wind turbine
bearing lab at the University of Manchester. The bearings have been
operated in a real-world wind farm for over 15 years and have naturally
incurred defects. The bearings have a diameter of 1m and and a mass of
261 kg. The sampling frequency is initially chosen as 100 kHz. This high
sampling frequency produces significant computational demands on the
proposed method. Therefore, the collected data is downsampled to 1 kHz.
In this case, this proposed method only needs low computations while
maintaining good filtering and fault diagnosis abilities. The case 2.1 is
executed without loadings. The case 2.2 is operated with loadings, which
may result in a little bit rotating speed fluctuation. The left and front view
of the test rig are shown in Fig. 12 (a) and Fig. 12 (b), respectively. Tab.
2 describes the three types of fault frequencies (FF) of the wind turbine
pitch bearing, and the FF in this case is the inner fault frequency, namely
BPFI.

On top of the SK method, the temporal convolutional network (TCN)
method is also added to compare with our proposed BATCN method. Fig.
13 and 14 compare different methods in the time and frequency domains
for case 2.1, while Fig. 15 and 16 do the same for case 2.2. Observing
the magnified time-domain plot in Fig. 13 and 15, it can be observed
that, compared to other methods, BATCN demonstrates a better ability
to extract fault signals. Observing the frequency-domain results in Fig. 14
and Fig. 16, it can be found that compared to other methods, BATCN can
better extract the characteristic frequencies of the FF and double FF (FF
*2), and the FF is more obvious compared to other orders of FF.

(a) (b)

Figure 12. View of test-rig.
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Figure 13. Laboratorial wind turbine pitch bearing fault, case 2.1 (a) raw signals, (b) SK
denoised signals, (c) TCN denoised signals, (d) BATCN denoised signals.

To quantitatively compare the performance between SK and BATCN,
we can define amplitude of corresponding frequency in Hilbert envelope
spectrum as AMP. FF*1 is fault frequency, FF*2 and FF*5 are fault
frequency times 2 and 5, respectively. As shown in Tab. 3, the BATCN
can obtain larger AMP of FF*1 and FF*2 than SK method. In addition,
the AMP of FF*2/FF*1 and FF*5/FF*1 are both smaller than 1 in
BATCN. These findings denote that BATCN is more capable of obtaining
a spectrum that can capture the fault frequencies.

Table 2. Theoretical FF of the wind turbine pitch bearing.

Case Bearing Speed BPFI BPFO BSP
(r/min) (Hz) (Hz) (Hz)

Case 2.1 2.145 1.109 1.035 0.331
Case 2.2 1.658 0.857 0.800 0.256
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Figure 17. Visible intermediate processing results (a) fast kurtogram results, (b) spectral
kurtosis with best window size.
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Figure 18. Inner race defect through endoscope.

Table 3. Case 2: quantitative results of signals processed by SK and BATCN.

FF*1 FF*2 FF*2 / FF*1 FF*5 / FF*1
AMP AMP AMP AMP

Case 2.1 (SK) 0.0069 0.0091 1.3188 1.0724
Case 2.1 (BATCN) 0.0156 0.0135 0.8653 0.8205
Case 2.2 (SK) 0.0031 0.0053 1.7096 1.8064
Case 2.2 (BATCN) 0.0121 0.0068 0.5619 0.6611

In addition, Fig. 17 presents the visible intermediate processing results
of SK method, which could explain why SK method perform less
satisfactory in this case. As can be seen in Fig. 17 (a) and Fig. 17 (c)
the best window size 768 and 1024 are determined by fast kurtogram
algorithm, respectively. Subsequently, using this window size to calculate
corresponding spectral kurtosis Fig. 17 (b) and Fig. 17 (d). We can observe
that spectral kurtosis is uniformly distributed, and values around the
best center frequency are not all higher than the other frequencies. This
denotes that SK method may be difficult to distinguish the FF from other
frequencies.

To inspect the inner conditions of pitch bearings of the industrial-scale
wind turbine, an electronic endoscope is applied in this case. Fig.18 from
endoscope indicates that the defect truly exists at the bearing inner race,
measured length 9 mm and width 5 mm. Furthermore, no obvious damage
is found in the bearing balls or outer race. This inspection result denotes
that the aforementioned diagnostic results are convincing. As a result,
the proposed BATCN method in this study might be beneficial for fault
diagnosis of wind turbine pitch bearings, demonstrating that this method
has a wide range of applications in a natural industrial occasion.
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Case 3

The data in case 3 is also collected with a sampling frequency of 100k Hz
and then downsampled to 1k Hz from a real wind turbine pitch bearing,
which is working in a real world wind farm but working abnormally.
The speed of wind turbine pitch bearing is estimated to range from 1.009
r/min to 1.075 r/min (average speed: 1.042 r/min). Then, substituting into
inherent parameters and average speed, the theoretical fault frequencies
can be calculated: BPFI 0.535 Hz, BPFO 0.503 Hz and BSP 0.161 Hz.

Fig.19 shows the actual wind turbine pitch bearing in field test. The
characteristic of this case is that the data was collected during the
operation of the wind turbine, which means that the collected raw data
may have a certain degree of disorderliness, as depicted in Fig. 20 (a).
This disorderliness is usually caused by the reciprocating motion of
the bearing41. To eliminate the influence of reciprocating motion, the
collected data is spliced together to obtain an ordered signal, as depicted
in Fig. 20 (b).

Figure 19. The actual wind turbine pitch bearing in field test.

Table 4. Case 3: quantitative results of signals processed by SK and BATCN.

FF*1 FF*2 FF*2 / FF*1 FF*5 / FF*1
AMP AMP AMP AMP

Case 3 (SK) 0.0010 0.0010 1 1.6
Case 3 (BATCN) 0.072 0.0041 0.5694 0.5555

As shown in Fig. 21, the proposed BATCN method can identify fault
frequency (FF) more clearly than the SK method. It is noted that the FF
marked in Fig. 21 (c) is 0.530 Hz. By comparing the theoretical fault
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Figure 20. Field wind turbine pitch bearing, case 3 (a) raw signals under the reciprocating
operation condition, (b) recombined signals with the four parts in (a), (c) SK denoised signals,
(d) TCN denoised signals, (e) BATCN denoised signals.

frequencies, we can find that the fault frequency match BPFI, so we can
infer that this bearing may exist the inner fault. Similar to the Tab. 1 and
Tab. 3, the Tab. 4 also demonstrates that the BATCN method is more
effective in capturing the fault frequencies in the spectrum.

Meta-analysis

This section would show a comprehensive analysis on our proposed
method. To automatically reflect the damage information from spectra,
an indicator I 41 is defined as follows:

I = (|Fd − Ff |/Ff )× 100% (22)
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Figure 21. Field wind turbine pitch bearing, case 3 (a) Hilbert envelope spectrum based on
SK denoised signals, (b) Hilbert envelope spectrum based on TCN denoised signals, (c)
Hilbert envelope spectrum based on BATCN denoised signals.

where Fd denotes the dominant frequencies for each test and Ff can
be selected as BPFI, BPFO and BSP. I represents the error between
the identified dominant frequency and the theoretical defect frequency.
As shown in Tab. 5 , the indicator evaluation for cases 1,2 and 3 are
executed. It is found that the indicator I in all cases could detect the
corresponding fault. For example, the bearing most likely has an inner
race fault in case 1.1, because it has the smallest I . Additionally, in the
case of real fault types, BATCN consistently yielded lower values for the
indicator I compared to SK, indicating improved accuracy in identifying
the dominant frequency associated with the theoretical defect frequency.

Table 5. Indicator evaluation for cases 1, 2, and 3.

Case Inner race fault Outer race fault Ball fault
Case 1.1 (BATCN/SK) 0.06%/0.73% 46.44%/45.45% -
Case 1.2 (BATCN/SK) 32.42%/31.77% 0.97%/0.03% -
Case 2.1 (BATCN/SK) 0.36%/0.81% 6.76%/6.28% 233.8%/232.3%
Case 2.2 (BATCN/SK) 0.23%/12.25% 6.875%/9.37% 233.9%/183.2%
Case 3 (BATCN/SK) 0.18%/0.37% 6.875%/6.16% 231.6%/231.0%
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To further evaluate our proposed method, we conducted extensive
experiments under laboratory conditions to simulate different operating
speeds. As shown in Tab. 6, the bearing defect frequencies were
successfully identified using the proposed method and all of them matched
the theoretical inner race defect frequencies. In addition, the BATCN
method is more capable of detecting the correct fault frequency than the
SK method, as evidenced by the indicator I . However, it is noteworthy
that in cases where the bearing inner race is severely damaged, the
condition of the balls and outer race may also be affected. In the present
study, a comprehensive inspection of the bearing was conducted using an
endoscope, which revealed no significant damage to the balls and outer
race except for a few minor dents. Compared to the visible damage on the
inner race, the damage on the balls and outer race is insignificant.

In our experiments, the SK method could also detect the fault frequency
in some cases, such as results in Fig. 14. Unsatisfactory results may be
caused by insufficient data length. One characteristic of the SK method is
that, as a frequency method, the detection performance improves as the
number of repetitions of the fault signal increases. It means that the data
length may need to be ensured to obtain multiple repetition of fault signals.
This paper could demonstrate that the BATCN is capable of working
effectively with limited data length, while the classical SK method is not.

Table 6. Extensive experiments.

Rotated speed 1.05 1.35 2.05 2.25 3.05 3.15
(rpm)
Identified dominant 0.545/0.582 0.698/0.719 1.064/1.099 1.1635/1.1845 1.5816/1.59 1.629/1.677
frequency (Hz) BATCN/SK
Inner race I BATCN/SK 0.45%/7.37% 0.10%/3.02% 0.43%/3.74% 0.02%/1.82% 0.3%/1.08% 0.08%/3.02%
Outer race I BATCN/SK 7.63%/15.05% 7.26%/10.39% 7.61%/11.15% 7.17%9.11% 7.47%/8.30% 7.24%/10.37%
Ball I BATCN/SK 236.5%/259.7% 235.3%/245.1% 236.4%/247.5% 235.1%/241.6% 236.0%/238.6% 235.3%/245.1%

Conclusion

A signal denoising method, Bayesian augmented temporal convolutional
networks (BATCN), is proposed for wind turbine pitch bearing defect
detection with slow speed. The BATCN method can learn the intrinsic
features of fault signals to guarantee the extraction of non-stationary
fault signals and realize noise suppression and harmonic interference
suppression during the process of signal denoising, with deep learning
techniques. In addition, this new method is able to spontaneously find the
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best patch length that is a significant performance influence factor under
the Bayesian framework. The effectiveness of the new method has been
extensively validated on simulation examples and three real cases (open-
source data, lab data, and field data). The comprehensive results show the
BATCN method is effective in detecting faults for slow speed wind turbine
pitch bearings due to its superior filtering capacity and it also outperforms
the popular SK method.
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