826 research outputs found

    Automatic Alignment of 3D Multi-Sensor Point Clouds

    Get PDF
    Automatic 3D point cloud alignment is a major research topic in photogrammetry, computer vision and computer graphics. In this research, two keypoint feature matching approaches have been developed and proposed for the automatic alignment of 3D point clouds, which have been acquired from different sensor platforms and are in different 3D conformal coordinate systems. The first proposed approach is based on 3D keypoint feature matching. First, surface curvature information is utilized for scale-invariant 3D keypoint extraction. Adaptive non-maxima suppression (ANMS) is then applied to retain the most distinct and well-distributed set of keypoints. Afterwards, every keypoint is characterized by a scale, rotation and translation invariant 3D surface descriptor, called the radial geodesic distance-slope histogram. Similar keypoints descriptors on the source and target datasets are then matched using bipartite graph matching, followed by a modified-RANSAC for outlier removal. The second proposed method is based on 2D keypoint matching performed on height map images of the 3D point clouds. Height map images are generated by projecting the 3D point clouds onto a planimetric plane. Afterwards, a multi-scale wavelet 2D keypoint detector with ANMS is proposed to extract keypoints on the height maps. Then, a scale, rotation and translation-invariant 2D descriptor referred to as the Gabor, Log-Polar-Rapid Transform descriptor is computed for all keypoints. Finally, source and target height map keypoint correspondences are determined using a bi-directional nearest neighbour matching, together with the modified-RANSAC for outlier removal. Each method is assessed on multi-sensor, urban and non-urban 3D point cloud datasets. Results show that unlike the 3D-based method, the height map-based approach is able to align source and target datasets with differences in point density, point distribution and missing point data. Findings also show that the 3D-based method obtained lower transformation errors and a greater number of correspondences when the source and target have similar point characteristics. The 3D-based approach attained absolute mean alignment differences in the range of 0.23m to 2.81m, whereas the height map approach had a range from 0.17m to 1.21m. These differences meet the proximity requirements of the data characteristics and the further application of fine co-registration approaches

    On Designing Tattoo Registration and Matching Approaches in the Visible and SWIR Bands

    Get PDF
    Face, iris and fingerprint based biometric systems are well explored areas of research. However, there are law enforcement and military applications where neither of the aforementioned modalities may be available to be exploited for human identification. In such applications, soft biometrics may be the only clue available that can be used for identification or verification purposes. Tattoo is an example of such a soft biometric trait. Unlike face-based biometric systems that used in both same-spectral and cross-spectral matching scenarios, tattoo-based human identification is still a not fully explored area of research. At this point in time there are no pre-processing, feature extraction and matching algorithms using tattoo images captured at multiple bands. This thesis is focused on exploring solutions on two main challenging problems. The first one is cross-spectral tattoo matching. The proposed algorithmic approach is using as an input raw Short-Wave Infrared (SWIR) band tattoo images and matches them successfully against their visible band counterparts. The SWIR tattoo images are captured at 1100 nm, 1200 nm, 1300 nm, 1400 nm and 1500 nm. After an empirical study where multiple photometric normalization techniques were used to pre-process the original multi-band tattoo images, only one was determined to significantly improve cross spectral tattoo matching performance. The second challenging problem was to develop a fully automatic visible-based tattoo image registration system based on SIFT descriptors and the RANSAC algorithm with a homography model. The proposed automated registration approach significantly improves the operational cost of a tattoo image identification system (using large scale tattoo image datasets), where the alignment of a pair of tattoo images by system operators needs to be performed manually. At the same time, tattoo matching accuracy is also improved (before vs. after automated alignment) by 45.87% for the NIST-Tatt-C database and 12.65% for the WVU-Tatt database

    Methods for multi-spectral image fusion: identifying stable and repeatable information across the visible and infrared spectra

    Get PDF
    Fusion of images captured from different viewpoints is a well-known challenge in computer vision with many established approaches and applications; however, if the observations are captured by sensors also separated by wavelength, this challenge is compounded significantly. This dissertation presents an investigation into the fusion of visible and thermal image information from two front-facing sensors mounted side-by-side. The primary focus of this work is the development of methods that enable us to map and overlay multi-spectral information; the goal is to establish a combined image in which each pixel contains both colour and thermal information. Pixel-level fusion of these distinct modalities is approached using computational stereo methods; the focus is on the viewpoint alignment and correspondence search/matching stages of processing. Frequency domain analysis is performed using a method called phase congruency. An extensive investigation of this method is carried out with two major objectives: to identify predictable relationships between the elements extracted from each modality, and to establish a stable representation of the common information captured by both sensors. Phase congruency is shown to be a stable edge detector and repeatable spatial similarity measure for multi-spectral information; this result forms the basis for the methods developed in the subsequent chapters of this work. The feasibility of automatic alignment with sparse feature-correspondence methods is investigated. It is found that conventional methods fail to match inter-spectrum correspondences, motivating the development of an edge orientation histogram (EOH) descriptor which incorporates elements of the phase congruency process. A cost function, which incorporates the outputs of the phase congruency process and the mutual information similarity measure, is developed for computational stereo correspondence matching. An evaluation of the proposed cost function shows it to be an effective similarity measure for multi-spectral information

    Development Of A High Performance Mosaicing And Super-Resolution Algorithm

    Get PDF
    In this dissertation, a high-performance mosaicing and super-resolution algorithm is described. The scale invariant feature transform (SIFT)-based mosaicing algorithm builds an initial mosaic which is iteratively updated by the robust super resolution algorithm to achieve the final high-resolution mosaic. Two different types of datasets are used for testing: high altitude balloon data and unmanned aerial vehicle data. To evaluate our algorithm, five performance metrics are employed: mean square error, peak signal to noise ratio, singular value decomposition, slope of reciprocal singular value curve, and cumulative probability of blur detection. Extensive testing shows that the proposed algorithm is effective in improving the captured aerial data and the performance metrics are accurate in quantifying the evaluation of the algorithm

    Partial shape matching using CCP map and weighted graph transformation matching

    Get PDF
    La détection de la similarité ou de la différence entre les images et leur mise en correspondance sont des problèmes fondamentaux dans le traitement de l'image. Pour résoudre ces problèmes, on utilise, dans la littérature, différents algorithmes d'appariement. Malgré leur nouveauté, ces algorithmes sont pour la plupart inefficaces et ne peuvent pas fonctionner correctement dans les situations d’images bruitées. Dans ce mémoire, nous résolvons la plupart des problèmes de ces méthodes en utilisant un algorithme fiable pour segmenter la carte des contours image, appelée carte des CCPs, et une nouvelle méthode d'appariement. Dans notre algorithme, nous utilisons un descripteur local qui est rapide à calculer, est invariant aux transformations affines et est fiable pour des objets non rigides et des situations d’occultation. Après avoir trouvé le meilleur appariement pour chaque contour, nous devons vérifier si ces derniers sont correctement appariés. Pour ce faire, nous utilisons l'approche « Weighted Graph Transformation Matching » (WGTM), qui est capable d'éliminer les appariements aberrants en fonction de leur proximité et de leurs relations géométriques. WGTM fonctionne correctement pour les objets à la fois rigides et non rigides et est robuste aux distorsions importantes. Pour évaluer notre méthode, le jeu de données ETHZ comportant cinq classes différentes d'objets (bouteilles, cygnes, tasses, girafes, logos Apple) est utilisé. Enfin, notre méthode est comparée à plusieurs méthodes célèbres proposées par d'autres chercheurs dans la littérature. Bien que notre méthode donne un résultat comparable à celui des méthodes de référence en termes du rappel et de la précision de localisation des frontières, elle améliore significativement la précision moyenne pour toutes les catégories du jeu de données ETHZ.Matching and detecting similarity or dissimilarity between images is a fundamental problem in image processing. Different matching algorithms are used in literature to solve this fundamental problem. Despite their novelty, these algorithms are mostly inefficient and cannot perform properly in noisy situations. In this thesis, we solve most of the problems of previous methods by using a reliable algorithm for segmenting image contour map, called CCP Map, and a new matching method. In our algorithm, we use a local shape descriptor that is very fast, invariant to affine transform, and robust for dealing with non-rigid objects and occlusion. After finding the best match for the contours, we need to verify if they are correctly matched. For this matter, we use the Weighted Graph Transformation Matching (WGTM) approach, which is capable of removing outliers based on their adjacency and geometrical relationships. WGTM works properly for both rigid and non-rigid objects and is robust to high order distortions. For evaluating our method, the ETHZ dataset including five diverse classes of objects (bottles, swans, mugs, giraffes, apple-logos) is used. Finally, our method is compared to several famous methods proposed by other researchers in the literature. While our method shows a comparable result to other benchmarks in terms of recall and the precision of boundary localization, it significantly improves the average precision for all of the categories in the ETHZ dataset

    Enhanced phase congruency feature-based image registration for multimodal remote sensing imagery

    Get PDF
    Multimodal image registration is an essential image processing task in remote sensing. Basically, multimodal image registration searches for optimal alignment between images captured by different sensors for the same scene to provide better visualization and more informative images. Manual image registration is a tedious task and requires more effort, hence developing an automated image registration is very crucial to provide a faster and reliable solution. However, image registration faces many challenges from the nature of remote sensing image, the environment, and the technical shortcoming of the current methods that cause three issues, namely intensive processing power, local intensity variation, and rotational distortion. Since not all image details are significant, relying on the salient features will be more efficient in terms of processing power. Thus, the feature-based registration method was adopted as an efficient method to avoid intensive processing. The proposed method resolves rotation distortion issue using Oriented FAST and Rotated BRIEF (ORB) to produce invariant rotation features. However, since it is not intensity invariant, it cannot support multimodal data. To overcome the intensity variations issue, Phase Congruence (PC) was integrated with ORB to introduce ORB-PC feature extraction to generate feature invariance to rotation distortion and local intensity variation. However, the solution is not complete since the ORB-PC matching rate is below the expectation. Enhanced ORB-PC was proposed to solve the matching issue by modifying the feature descriptor. While better feature matches were achieved, a high number of outliers from multimodal data makes the common outlier removal methods unsuccessful. Therefore, the Normalized Barycentric Coordinate System (NBCS) outlier removal was utilized to find precise matches even with a high number of outliers. The experiments were conducted to verify the registration qualitatively and quantitatively. The qualitative experiment shows the proposed method has a broader and better features distribution, while the quantitative evaluation indicates improved performance in terms of registration accuracy by 18% compared to the related works

    Generalized least squares-based parametric motion estimation and segmentation

    Get PDF
    El análisis del movimiento es uno de los campos más importantes de la visión por computador. Esto es debido a que el mundo real está en continuo movimiento y es obvio que podremos obtener mucha más información de escenas en movimiento que de escenas estáticas. En esta tesis se ha trabajado principalmente en desarrollar algoritmos de estimación de movimiento para su aplicación a problemas de registrado de imágenes y a problemas de segmentación del movimiento. Uno de los principales objetivos de este trabajo es desarrollar una técnica de registrado de imágenes de gran exactitud, tolerante a outliers y que sea capaz de realizar su labor incluso en la presencia de deformaciones de gran magnitud tales como traslaciones, rotaciones, cambios de escala, cambios de iluminación globales y no espacialmente uniformes, etc. Otro de los objetivos de esta tesis es trabajar en problemas de estimación y la segmentación del movimiento en secuencias de dos imágenes de forma casi simultánea y sin conocimiento a priori del número de modelos de movimiento presentes. Los experimentos mostrados en este trabajo demuestran que los algoritmos propuestos en esta tesis obtienen resultados de gran exactitud.This thesis proposes several techniques related with the motion estimation problem. In particular, it deals with global motion estimation for image registration and motion segmentation. In the first case, we will suppose that the majority of the pixels of the image follow the same motion model, although the possibility of a large number of outliers are also considered. In the motion segmentation problem, the presence of more than one motion model will be considered. In both cases, sequences of two consecutive grey level images will be used. A new generalized least squares-based motion estimator will be proposed. The proposed formulation of the motion estimation problem provides an additional constraint that helps to match the pixels using image gradient information. That is achieved thanks to the use of a weight for each observation, providing high weight values to the observations considered as inliers, and low values to the ones considered as outliers. To avoid falling in a local minimum, the proposed motion estimator uses a Feature-based method (SIFT-based) to obtain good initial motion parameters. Therefore, it can deal with large motions like translation, rotations, scales changes, viewpoint changes, etc. The accuracy of our approach has been tested using challenging real images using both affine and projective motion models. Two Motion Estimator techniques, which use M-Estimators to deal with outliers into a iteratively reweighted least squared-based strategy, have been selected to compare the accuracy of our approach. The results obtained have showed that the proposed motion estimator can obtain as accurate results as M-Estimator-based techniques and even better in most cases. The problem of estimating accurately the motion under non-uniform illumination changes will also be considered. A modification of the proposed global motion estimator will be proposed to deal with this kind of illumination changes. In particular, a dynamic image model where the illumination factors are functions of the localization will be used replacing the brightens constancy assumption allowing for a more general and accurate image model. Experiments using challenging images will be performed showing that the combination of both techniques is feasible and provides accurate estimates of the motion parameters even in the presence of strong illumination changes between the images. The last part of the thesis deals with the motion estimation and segmentation problem. The proposed algorithm uses temporal information, by using the proposed generalized least-squares motion estimation process and spatial information by using an iterative region growing algorithm which classifies regions of pixels into the different motion models present in the sequence. In addition, it can extract the different moving regions of the scene while estimating its motion quasi-simultaneously and without a priori information of the number of moving objects in the scene. The performance of the algorithm will be tested on synthetic and real images with multiple objects undergoing different types of motion

    Generalized least squares-based parametric motion estimation and segmentation

    Get PDF
    El análisis del movimiento es uno de los campos más importantes de la visión por computador. Esto es debido a que el mundo real está en continuo movimiento y es obvio que podremos obtener mucha más información de escenas en movimiento que de escenas estáticas. En esta tesis se ha trabajado principalmente en desarrollar algoritmos de estimación de movimiento para su aplicación a problemas de registrado de imágenes y a problemas de segmentación del movimiento. Uno de los principales objetivos de este trabajo es desarrollar una técnica de registrado de imágenes de gran exactitud, tolerante a outliers y que sea capaz de realizar su labor incluso en la presencia de deformaciones de gran magnitud tales como traslaciones, rotaciones, cambios de escala, cambios de iluminación globales y no espacialmente uniformes, etc. Otro de los objetivos de esta tesis es trabajar en problemas de estimación y la segmentación del movimiento en secuencias de dos imágenes de forma casi simultánea y sin conocimiento a priori del número de modelos de movimiento presentes. Los experimentos mostrados en este trabajo demuestran que los algoritmos propuestos en esta tesis obtienen resultados de gran exactitud.This thesis proposes several techniques related with the motion estimation problem. In particular, it deals with global motion estimation for image registration and motion segmentation. In the first case, we will suppose that the majority of the pixels of the image follow the same motion model, although the possibility of a large number of outliers are also considered. In the motion segmentation problem, the presence of more than one motion model will be considered. In both cases, sequences of two consecutive grey level images will be used. A new generalized least squares-based motion estimator will be proposed. The proposed formulation of the motion estimation problem provides an additional constraint that helps to match the pixels using image gradient information. That is achieved thanks to the use of a weight for each observation, providing high weight values to the observations considered as inliers, and low values to the ones considered as outliers. To avoid falling in a local minimum, the proposed motion estimator uses a Feature-based method (SIFT-based) to obtain good initial motion parameters. Therefore, it can deal with large motions like translation, rotations, scales changes, viewpoint changes, etc. The accuracy of our approach has been tested using challenging real images using both affine and projective motion models. Two Motion Estimator techniques, which use M-Estimators to deal with outliers into a iteratively reweighted least squared-based strategy, have been selected to compare the accuracy of our approach. The results obtained have showed that the proposed motion estimator can obtain as accurate results as M-Estimator-based techniques and even better in most cases. The problem of estimating accurately the motion under non-uniform illumination changes will also be considered. A modification of the proposed global motion estimator will be proposed to deal with this kind of illumination changes. In particular, a dynamic image model where the illumination factors are functions of the localization will be used replacing the brightens constancy assumption allowing for a more general and accurate image model. Experiments using challenging images will be performed showing that the combination of both techniques is feasible and provides accurate estimates of the motion parameters even in the presence of strong illumination changes between the images. The last part of the thesis deals with the motion estimation and segmentation problem. The proposed algorithm uses temporal information, by using the proposed generalized least-squares motion estimation process and spatial information by using an iterative region growing algorithm which classifies regions of pixels into the different motion models present in the sequence. In addition, it can extract the different moving regions of the scene while estimating its motion quasi-simultaneously and without a priori information of the number of moving objects in the scene. The performance of the algorithm will be tested on synthetic and real images with multiple objects undergoing different types of motion
    corecore