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Abstract 

    Automatic 3D point cloud alignment is a major research topic in photogrammetry, 

computer vision and computer graphics. In this research, two keypoint feature matching 

approaches have been developed and proposed for the automatic alignment of 3D point 

clouds, which have been acquired from different sensor platforms and are in different 3D 

conformal coordinate systems.  

      The first proposed approach is based on 3D keypoint feature matching. First, surface 

curvature information is utilized for scale-invariant 3D keypoint extraction. Adaptive 

non-maxima suppression (ANMS) is then applied to retain the most distinct and well-

distributed set of keypoints. Afterwards, every keypoint is characterized by a scale, 

rotation and translation invariant 3D surface descriptor, called the ‘radial geodesic 

distance-slope histogram’. Similar keypoints descriptors on the source and target datasets 

are then matched using bipartite graph matching, followed by a modified-RANSAC for 

outlier removal.  

      The second proposed method is based on 2D keypoint matching performed on height 

map images of the 3D point clouds. Height map images are generated by projecting the 

3D point clouds onto a planimetric plane. Afterwards, a multi-scale wavelet 2D keypoint 

detector with ANMS is proposed to extract keypoints on the height maps. Then, a scale, 

rotation and translation-invariant 2D descriptor referred to as the ‘Gabor, Log-Polar-

Rapid Transform’ descriptor is computed for all keypoints. Finally, source and target 

height map keypoint correspondences are determined using a bi-directional nearest 

neighbour matching, together with the modified-RANSAC for outlier removal.  
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     Each method is assessed on multi-sensor, urban and non-urban 3D point cloud 

datasets. Results show that unlike the 3D-based method, the height map-based approach 

is able to align source and target datasets with differences in point density, point 

distribution and missing point data. Findings also show that the 3D-based method 

obtained lower transformation errors and a greater number of correspondences when the 

source and target have similar point characteristics. The 3D-based approach attained 

absolute mean alignment differences in the range of 0.23m to 2.81m, whereas the height 

map approach had a range from 0.17m to 1.21m. These differences meet the proximity 

requirements of the data characteristics and the further application of fine co-registration 

approaches. 
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1. Introduction  

Automatic alignment (or co-registration) of 3D point clouds is an active area of research 

in numerous fields of study including photogrammetry, computer vision, laser scanning, 

3D modelling and computer graphics. Co-registration is the process of aligning multiple 

shapes (two or more) in a common coordinate system. It is typically applied to 

overlapping pairs of 2D images or 3D point cloud models. This research concentrates on 

addressing the latter issue of automated 3D pairwise point cloud co-registration.  

    Typical registration tasks usually require the alignment of 3D point clouds that are: i) 

multi-temporal (i.e., collected at different epochs) and/or ii) acquired from various 

sensors (e.g., aerial, terrestrial or mobile laser scanners, satellite systems and unmanned 

aerial vehicles (UAV)) and/or iii) acquired from different viewpoints of the same or 

similar sensors. More specifically, the co-registration of point cloud datasets is required 

for 3D surface completion or reconstruction from partially overlapping 3D points located 

in different coordinate systems (Figure 1.1). Alignment of multi-sensory data has 

numerous applications in 3D building and terrain modelling, change detection and map-

revision in urban and non-urban environments, cultural heritage, crime scene/accident 

reconstruction, and mapping of open-pit mines.  

    The co-registration process is based on the mathematical mapping that projects the 

‘source’ point cloud to its ‘target’ point cloud. The mathematical mapping is expressed 

by the transformation relationship (e.g., scale, rotation, translation and shape 

deformation) between the coordinate systems of the two datasets. Generally, there are 
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Figure 1.1: Illustration of the co-registration problem for 3D point cloud datasets from 

multiple sensor platforms. 

 

three categories of 3D coordinate transformations which are commonly utilized for 3D 

point cloud alignment: i) 3D conformal, ii) 3D rigid, and iii) 3D non-rigid.  

    The 3D conformal transformation accounts for uniform scale, 3 rotations and 3 

translations. The 3D conformal transformation is also referred to as ‘3D similarity 

transformation’, ‘Helmert transformation’ or ‘7-parameter transformation’ (Andrei, 

2006). The 3D rigid transformation estimates 3 rotations and 3 translations. It assumes no 

scale change between the two datasets. 3D non-rigid transformations such as the affine 

transformation and spline functions (Jian and Vemuri, 2005) also model the shape 

deformation between the source and target. There are different types of 3D affine 

transformation solutions (Lehmann et al., 2014), which vary in terms of the number of 

estimated transformation parameters, for example: i) 12-parameters (3 rotation angles, 3 

translations, 3 skew factors (i.e., shearing along each axis) and different scale factors 
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along each axis), and ii) 9-parameters (3 rotation angles, 3 translations and different scale 

factors along each axis).  

    Traditionally, co-registration is achieved by the manual selection of user-specified 

corresponding point features, which is then used as input to compute the transformation 

parameters. However, this is a tedious process particularly when: i) there are a large 

number of datasets to be co-registered, ii) when datasets contain a large number of points 

and iii) when the determination of corresponding features is difficult to establish between 

two point cloud datasets. To overcome these difficulties, an automated process is highly 

desirable. The challenge in this process includes the automatic extraction and 

correspondence of the distinct point features. The extraction of point features relates to 

the automated detection of distinct ‘keypoints’ (e.g., points of sharp topographic variation 

such as building corners). Correspondence relates to the automatic matching of source 

keypoints to their corresponding target entities in the 3D space, which are then used to 

solve for the desired mapping parameters. When there is significant variation between the 

two point cloud datasets to be aligned, for example, large differences in scale, rotation, 

translation, and point characteristics (e.g., point density and spatial distribution), it is 

challenging to establish correct correspondences. 

    In this dissertation, the source and target point cloud datasets to be aligned differ in 

terms of a 3D conformal displacement (Equation 1.1) and in terms of point 

characteristics. 

  

𝑇𝑎𝑟𝑔𝑒𝑡𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑𝑠 = 𝑠𝑅(𝑆𝑜𝑢𝑟𝑐𝑒𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑𝑠) + 𝑇       (1.1) 
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where, 

- 𝑠 is the scaling factor, 

- 𝑅 is a 3x3 orthogonal rotation matrix formed using the 3 rotation angles (ω , φ , κ) 

            about the x, y and z-axes respectively, 

- 𝑇 is a 3x1 translation vector with x, y and z components. 

 

   A minimum of three point correspondences are required to determine the scale, rotation 

and translation 3D conformal parameters. The parameters are commonly estimated 

through the use of a least squares solution which minimizes the sum of squares of the 

spatial distances between the source to target point correspondences, thereby estimating 

the parameters. The solution can be either linear, closed form (Horn, 1987) or non-linear, 

iterative (Luhmann et al., 2006). Upon estimation of the 3D conformal mapping 

parameters, the final step for the alignment is to transform the source point clouds into 

the coordinate system of the target point clouds using Equation 1.1. 

 

1.1 Initial alignment versus refined alignment  

There are two main phases for automated, pairwise 3D point cloud co-registration as 

illustrated in Figure 1.2: i) the initial alignment, and ii) the refined alignment. The former 

case handles the co-registration of point cloud datasets in different coordinate systems 

and there is no proximate matching between the source and target. The latter case 

assumes that an initial alignment has been applied and there is an existing, approximate  
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Figure 1.2: Distinction amongst various 3D point cloud alignment (co-registration) 

approaches (this work concentrates on the framework marked by the dashed outline). 

 

co-registration between the source and target datasets. Both require the computation of a 

mathematical mapping between two point cloud datasets. 

     For over two decades, the refined alignment problem has received considerable 

attention since the development of the influential ‘Iterative Closest Point’ (ICP) 

algorithm (Besl and McKay, 1992; Chen and Medioni, 1992). Rusinkiewicz and Levoy 

(2001) provide an overview of many ICP variants. Bouaziz et al. (2013) developed the 

so-called ‘Sparse ICP’ which is less sensitive to outliers than the classical ICP. In the 

photogrammetric community, Gruen and Akca (2005) proposed an alternative to the ICP 
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referred to as ‘Least Squares 3D Surface Matching’ (LS3D). Resembling the ICP 

approach, LS3D also iteratively minimizes the sum of squares of Euclidean distances 

between two point cloud datasets. However, LS3D differs from ICP in its formulation.  

ICP computes the transformation parameters using Horn’s linear least squares closed-

form solution (Horn, 1987), whereas LS3D uses the Generalized Gauss-Markov 

nonlinear model. Instead of using the closest point concept for correspondences as done 

in ICP, Bae and Lichti (2008) developed the ‘Geometric Primitive ICP’ method, which 

instead uses the point normal vector information together with change in surface 

curvature for point cloud matching. In more recent times, another class of refinement 

techniques are ‘non-rigid’ 3D point cloud alignment approaches (Chui and Rangarajan 

(2003); Lin et al. (2016)). ‘ICP’-based methods assume that the source and target differ in 

terms of a 3D conformal or 3D rigid transformation. However, ‘non-rigid’ techniques 

also handles deformation changes between the pairwise point clouds to be co-registered.   

     ‘Refinement-based’ registration methods strongly depend on a very good initial point 

cloud alignment with sufficient overlap between the source and target. The ‘refinement’ 

methods do not require an intricate feature-matching step as they are typically based on 

minimizing the Euclidean distance between the closest points. If the initial alignment is 

inaccurate, the refinement-based approaches are prone to various mis-registration factors 

such as local minima solutions and exhaustive searching in the solution space, which 

negatively affects computational efficiency. Motivated by these issues, this research work 

concentrates on addressing the initial 3D point cloud co-registration problem. 
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1.2 Initial alignment: global versus local methods 

As shown in Figure 1.2, there are two known primary approaches for initial 3D-to-3D 

point cloud alignment: i) global techniques and ii) local techniques, (Castellani and 

Bartoli, 2012). The global-based initial alignment revolves around the use of the principal 

component analysis (PCA) of the point clouds. The translation can be estimated by the 

difference in centroids of the source and target data. Then, PCA is used to approximate 

the rotation required to align the coordinate systems of the source and target point clouds. 

The global scale factor can be derived based on the ratio of the respective largest 

distances between the source and target data. 

     On the other hand, local techniques are based on the definition of local surface 

properties (i.e., descriptors) for automatically detected ‘key geometric features’ on both 

the source and target point clouds (Note: geometric features can include points, lines, 

curves or planes). The similarities of the descriptors are then assessed for the 

determination of corresponding key geometric features. The global co-registration 

approach suffers when there is partial overlap and/or shape deformation between the 

source and target surfaces. For instance, the centroids of both shapes may differ due to 

deformations or when the source and target have different coverage. This affects the 

estimation of translation parameters. Difference in shape creates similar problems when 

attempting to estimate scale and rotation parameters. Therefore, it can be argued that the 

local alignment technique are better suited for co-registering the ‘stable’ parts of the point 

cloud surfaces, for instance, when dealing with natural terrain datasets which may have 

undergone deformation, for example, landslides, flow of glaciers, etc.   
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1.3 Overview and objectives 

3D point clouds have varying characteristics and be represented in various ways. They 

are represented in 3D or 2D formats such as: i) as raw 3D points, or as ii) interpolated, 

2D height (or depth) map raster images. As shown in Figure 1.3, source and target point 

cloud datasets can also differ in terms of characteristics such as: i) point density (e.g., 

dense versus sparse point spacing), ii) point distribution (e.g., regular, gridded points 

versus irregular, non-gridded points), and iii) missing point data (i.e., data gaps/holes), 

possibly caused by occlusions or by different sensor viewpoint perspectives during data 

acquisition. To handle these different cases (i.e., differences in data representation and 

characteristics) two independent approaches for the automatic co-registration of point 

clouds in different 3D conformal coordinate systems are investigated and explored.  

    Both of the implemented methods are local alignment type techniques which follow an 

automated feature matching pipeline that includes three main phases: i) feature 

extraction, ii) feature description and iii) feature correspondence. The proposed methods 

are based on extracting and matching distinct point landmarks, i.e., keypoints on the 

source and target point clouds.  

    Although both proposed approaches adopt a similar feature matching workflow, their 

inherent individual components are unique, i.e., the techniques used for keypoint 

extraction, keypoint descriptor formation and keypoint matching are different. This stems 

from the two different ways in which the point clouds can be represented, i.e., either as 

3D points or as interpolated, height map 2D raster images. 
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Figure 1.3: Example of two point cloud datasets from different sensors (left: UAV, right: 

Mobile laser scanner) with varying point characteristics such as different point density, 

point distribution and point details. 

 

    In the first proposed approach, feature matching is performed entirely in the original 

3D point cloud space, whilst in the second method, the feature matching process is 

applied to the planimetric, height map projection (i.e., 2D image representation) of the 

3D point clouds. For the latter, even though feature matching is performed in the 2D 

domain, the resulting matched points also have an associated Z or depth component, 

thereby facilitating 3D to 3D co-registration. The objectives of this dissertation are: 
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i) To develop a 3D-based feature matching approach for co-registering 3D point 

clouds in different 3D conformal coordinate systems. 

ii) To develop a height map-based feature matching approach for co-registering 

3D point clouds in different 3D conformal coordinate systems. 

iii) To individually evaluate the experimental findings of each approach on urban 

and non-urban datasets with different point cloud characteristics. 

iv) To assess the performance of both methods relative to each other, as well as 

with existing, state-of-the-art approaches. 

 

1.4 Contributions 

This research work contributes to the alignment of 3D point clouds in the geomatics 

fields of photogrammetry, remote sensing, laser-scanning and geographic information 

systems and incorporates multi-sensor and multi-temporal, urban and non-urban datasets. 

In this section, the main contributions in each of the two proposed 3D point cloud 

alignment methods are listed.  

 

    The contributions in the 3D-based co-registration method are: 

 The development of a scale-invariant 3D keypoint feature extraction method 

using morphological properties, specifically the local surface curvature. 

 The development of a scale, rotation and translation invariant 3D keypoint surface 

descriptor referred to as the radial geodesic distance-slope histogram (RGSH). 
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 The use of bipartite graph descriptor matching for establishing 3D keypoint 

feature correspondences without the need for user-specified thresholds. A 

threshold-free, RANSAC outlier detection algorithm is then used to filter 

incorrect keypoint correspondences (i.e., outliers). 

 

    The contributions in the Height map-based co-registration method are: 

 The development of a multi-scale, wavelet-based 2D keypoint extraction method 

on the height map image representations of the 3D point clouds.  

 The development of a scale, rotation and translation invariant 2D keypoint 

descriptor referred to as the Gabor, Log-Polar-Rapid Transform (GLP-RT) 

descriptor. 

 The use of bi-directional, nearest neighbour descriptor matching for establishing 

height map keypoint correspondences, without the need for user-specified 

thresholds. 

 

1.5 Organization 

The remaining chapters in this dissertation are organized as follows: 

 

Chapter 2: A literature review of relevant works related to initial 3D point cloud 

alignment techniques is discussed. These include a survey of: i) 3D descriptor-based 
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point cloud co-registration methods, ii) 3D non-descriptor-based point cloud co-

registration methods and iii) 2D-image based point cloud co-registration methods. 

 

Chapter 3: This chapter covers the proposed 3D-based point cloud alignment approach. 

An automated 3D feature matching approach is presented. This is achieved by extracting 

scale-invariant 3D keypoints and generating their 3D local surface descriptors. To match 

the 3D keypoints, a one-to-one correspondence approach based on bipartite graphs is 

used. To filter outliers (i.e., incorrect keypoint correspondences), a threshold-free 

modified-RANSAC is applied. Finally, the 3D conformal transformation parameters are 

determined using the established correspondences. 

 

Chapter 4: The second proposed height map-based automated approach for 3D point 

cloud alignment is detailed in this chapter. Unlike the first method, whose feature 

matching process is implemented entirely in the 3D domain, this approach instead uses 

2D height map images of the 3D point clouds to find correspondences. Prior to co-

registration, source and target height map images are generated directly from the source 

and target 3D point cloud datasets respectively. This is achieved by projecting and 

interpolating the 3D point cloud dataset onto the x,y-plane. Afterwards, 2D keypoints are 

extracted on both height map image pairs using a multi-scale wavelet technique. This is 

followed by generation of scale, rotation and translation-invariant 2D keypoint 

descriptors. Source and target descriptors are matched using a bi-directional nearest 

neighbour search in the feature space. Then, the modified-RANSAC developed in 
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Chapter 3 is applied to remove keypoint correspondence outliers. Finally, the 3D 

conformal transformation parameters are determined using the established 

correspondences. 

 

Chapter 5: This chapter presents experimental results for each of the two proposed co-

registration approaches. The methods are evaluated through comparisons with reference 

data, reference 3D conformal transformation parameters. Experiments are also carried out 

to directly evaluate the performance of both proposed methods with each other, as well as 

with existing state-of-the-art 3D point cloud co-registration approaches. 

  

Chapter 6: A summary of the contributions and research findings are outlined in this 

chapter. Also discussed are suggestions for future work and potential improvements.  
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2. Related Works on Initial Point   

   Cloud Alignment 

 

This chapter provides an overview of existing work related to the initial 3D point cloud 

alignment problem. In particular, a review of methods used for solving initial 3D point 

cloud co-registration is discussed from Sections 2.1 to 2.3.  

    Automatic estimation of scale and the six 3D rigid parameters between point clouds is 

a challenging problem. For initial point cloud alignment, it is assumed that there is no 

prior knowledge of the 3D conformal transformation parameters (i.e., single global scale 

factor, 3D rotation angles and 3D translations). However, in some of the reviewed 

literature, the scale factor is assumed to be known and only the six rigid parameters are 

considered as the unknowns to be computed. Instances of such cases for the reviewed 

literature will be identified in this chapter. If scale is assumed to be known, the matching 

(or correspondence) problem is greatly simplified, since geometric elements such as 

lengths, distance between features and surface area can all be utilized to find 

correspondences.  

    There are various approaches one can apply to achieve initial source to target 3D point 

cloud co-registration. These can be classified into three categories (Figure 2.1): i) 3D 

descriptor-based methods, ii) 3D non-descriptor-based- methods and iii) 2D image-based 

methods. There are three general steps to solve the alignment problem: 

detection/extraction of key geometric features, matching/correspondence of these features  
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Figure 2.1: Different approaches for the initial alignment of 3D point clouds. 

 

and assessment of the correspondences. These tasks are explicit or implicit depending on 

the co-registration approach utilized. 

 

2.1   3D Descriptor-based methods 

2.1.1   3D keypoint extraction 

Descriptor-based methods are typically applied in 3D feature matching workflows. They 

usually rely on the extraction of salient key-features (e.g., 3D keypoints) on the point 

cloud surface. For these keypoints, descriptors are formed by utilizing various types of 

local neighbourhood shape attributes of the point cloud. Similar descriptors on source and 

target point clouds can then be matched using a similarity cost function to find 

corresponding keypoints.  

    Interest points or keypoints are well utilized for matching and registration problems in 

various 2D image-processing applications such as object recognition (Lowe, 1999; Azad 

INITIAL POINT CLOUD ALIGNMENT 

3D Descriptor-
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based methods 

2D image-
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et al., 2009) and scene reconstruction (Hartley and Zisserman, 2000). Keypoint detectors 

can be regarded either as: i) a fixed scale detector, where the user has to manually define 

a local neighbourhood around a candidate point to perform the required checks for 

keypoint detection, or ii) a scale-invariant detector, where the local scale (i.e., local 

neighbourhood of interest) around a keypoint is automatically defined by the algorithm. 

The concept of scale invariance is that the attribute or features of an object should not 

change when the object is scaled by a multiplicative factor. The definition of a similar 

local scale for a corresponding source and target keypoint is important since it ensures 

that they both have the same local neighbourhood regions, which can then be used for 

computing comparable keypoint descriptors (or attributes). Scale-invariant detectors are 

typically used for this purpose. 

    Automated scale selection mechanisms have been popularly applied for 2D keypoint 

detectors. Examples include the Scale Invariant Feature Transform (SIFT) detector 

(Lowe, 2004), which uses a ‘Difference-of-Gaussian’ (DoG) framework for estimating 

the local scale, whereas another detector, i.e., the Harris-Laplacian interest point operator 

(Mikolajczyk and Schmid, 2004) uses Lindeberg’s automatic scale selection approach 

(Lindeberg, 1998). The DoG approach smoothes the data with Gaussian kernels of 

differing standard deviations and then takes the difference of smoothed outputs to build a 

scale-space representation. The details of Lindeberg’s approach will be discussed in 

Chapter 3. 

    With the increasing use of point clouds for 3D object recognition and matching (Lai 

and Fox, 2010; Tam et al., 2013), there are numerous 3D keypoint detectors including the 
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intrinsic shape signature (ISS) (Zhong, 2009), the mesh-Difference of Gaussians (mesh-

DoG) (Zaharescu et al., 2009), Heat Kernel Signature (HKS) (Sun et al., 2009) and Harris 

3D (Sipiran and Bustos 2011). ISS is a fixed scale detector. ISS uses the ratios of the 

eigenvalues of the local neighbourhood to determine surface variation. Points with large 

surface variations are marked as keypoints. The mesh-DoG, HKS and Harris 3D detectors 

operate on mesh representations of the point clouds. The mesh-DoG is a scale-invariant 

detector which uses a DoG-based scale-space representation. For mesh-DoG, the ratios of 

eigenvalues from the Hessian matrix of the local mesh neighbourhood are used for 

keypoint definition. The HKS is related to the surface curvature of a point and is based on 

the diffusion of heat on a surface mesh using the Laplace-Beltrami operator. This 

operator is extensively used in 3D shape analysis to describe physical processes such as 

heat diffusion and wave propagation (Wetzler et al., 2013). Keypoints are determined by 

searching for local maxima HKSs across the surface mesh (Teran and Mordohai). HKS is 

not a scale-invariant detector, however, Bronstein and Kokkinos (2010) have presented 

an approach to address this problem. Harris 3D is a fixed scale detector. It fits a local 

surface quadratic patch to the point data and computes the so-called ‘Harris-response’ 

(Harris and Stephens, 1988) for each mesh vertex. Query vertices with large responses 

are classified as keypoints.  

    ISS, mesh-DoG, HKS and Harris 3D are examples of detectors which utilize surface 

geometry for the extraction of 3D keypoints. There are also volume-based methods which 

utilize 3D voxel representations instead of direct point cloud data for keypoint detection 

(Yu et al., 2013). These include a 3D extension of the SIFT method (Rusu and Cousins, 
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2011; Hänsch et al., 2014). 3D-SIFT is scale-invariant and utilizes a ‘Difference-of-

Gaussian’ scale-space approach, where a series of downsampling/smoothing is applied to 

the point data to determine keypoints and their local scale. 3D-SIFT encompasses both 

keypoint detection, as well as keypoint description (Section 2.1.2). Volume-based 

approaches operate on voxel representations of the 3D model, whereas surface geometry-

based methods use geometric attributes from surface patches, normals or contours of the 

3D point clouds.  

 

2.1.2  Matching of 3D keypoints using descriptors 

Following the extraction phase, attributes (or descriptors) must be assigned to the 

keypoints. Then a search strategy is employed to find keypoint descriptors with high 

similarities. The generation of uniquely discriminable descriptors is an important step 

since it influences the keypoint matching success rate. Descriptors can be represented in 

various forms including: 1D vectors, 2D / 3D histograms or multi-dimensional arrays. 

    Volume-based 3D keypoint descriptors such as the 3D-SIFT implementations have 

been used for video sequences and 3D medical images (e.g., MRI and CT scans) 

(Scovanner et al., 2007; Flitton et al., 2010). In these cases, the 3D data is first converted 

into a 3D array of voxels containing data points and the descriptor is generated based on 

the gradient magnitude and orientation of these voxels.  

    There has also been various surface geometry 3D point cloud descriptors developed 

over the years. Some of these include the Spin Images (Johnson and Hebert, 1999), Fast 

Point Feature Histograms (FPFH) (Rusu et al., 2009) and Signature of Histograms of 



19 

Orientations (SHOT) (Tombari et al., 2010). The HKS described in the previous section 

can also be used as a descriptor for surface keypoints (Section 2.1.1).  

    For Spin Images (Figure 2.2), every point within the local keypoint neighbourhood are 

assigned two coordinates, α and β ; α is the distance from the keypoint to the projection 

of the neighbourhood point on the local surface tangent plane (i.e., the plane tangent to 

the normal vector of the keypoint). β is the distance from the neighbourhood point to the 

local tangent plane. For every point in the local neighbourhood, these pair of coordinates 

is accumulated into a 2D array, thus forming the descriptor.  

 

 

 

 

 

 

 

 

Point Clouds Spin Image coordinate system 

Figure 2.2: Concept of Spin Image point cloud descriptor formation. Left: Keypoint 

(red point) with its normal vector N and tangent plane to this vector (blue region). 

Right: Coordinate system of spin image where the coordinate pair (α, β) is defined by 

the vector projecting from the keypoint (red point) to a neighbouring point cloud 

(yellow point). (Modified after: Ruiz-Correa et al., 2004) 
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    FPFH is a histogram-based descriptor which bins three angular attributes defined by 

the relation between every neighbourhood point and the keypoint (Figure 2.3). SHOT is 

also a histogram-based descriptor which defines a spherical neighbourhood around the 

  

                 

Figure 2.3: Concept of FPFH formation showing the triplet angular relation (α, θ, φ) 

between ps (the keypoint) and pt (neighbouring point). The u,v and w vectors defines a 

local coordinate frame of the point cloud and is computed using the normal vector of the 

keypoint. (From: Rusu, 2009). 

 

keypoint (Figure 2.4). This spherical neighbourhood is then partitioned into spherical grid 

sectors. For each grid sector, the angles between the normals at the neighbouring points 

and the normal at the keypoint are accumulated into a local histogram. The local 

histograms of all grid sectors are then concatenated to form the SHOT descriptor. 

    Geometry-based descriptors such as Spin Images, FPFH and SHOT require a local 

point cloud neighbourhood to be defined around the keypoint. A user-specified distance 
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can be applied to define local neighbourhoods when the source and target point clouds 

have the same scale. However, in situations where there is a scale difference between the 

source and target datasets, the descriptors are not scale-invariant and will fail during the 

feature matching process. As discussed earlier, scale-invariance is typically provided by 

local keypoint scales estimated from a front-end detector. Mellado et al. (2016) 

developed an approach for scale-invariant co-registration of multi-sensor point clouds 

based on a descriptor known as ‘Growing Least Squares’ (GLS). The GLS descriptor is 

built in a logarithmic scale space by fitting algebraic spheres on the point cloud data. 

 

                                               

Figure 2.4: Illustration of the SHOT descriptor. It is based on the partitioning of sectors 

within a spherical grid structure around the keypoint. (From: Tombari et al., 2010). 

 

    Descriptor-based matching usually comprises of three main components: i) the design 

of a cost (or similarity) function to assess the similarities of source and target keypoint 

descriptors, ii) a searching mechanism to efficiently compare the descriptors in their 

feature space (i.e., 1D, 2D, 3D or multi-dimensional feature space) for establishing one-
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to-one keypoint correspondences and iii) an approach to filter false (or outlier) keypoint 

matches. 

    Weber et al. (2015) developed a descriptor-based point-matching framework to 

automatically align surface point clouds collected from a Microsoft Kinect sensor. The 

method fuses multiple Kinect-based point clouds of an object or scene. Their approach 

uses the FPFH point cloud descriptor and does not extract points of interest or keypoints. 

Instead, the descriptors are computed for every point cloud in the dataset. The local point 

cloud neighbourhood used to compute the surface descriptors are defined by a user-

specified radius value. This indicates that the approach is not scale-invariant as the same 

radius value is applied on both source and target point clouds. Thus, the approach is 

unable to handle cases where the point clouds to be co-registered differ by a global scale 

factor. The descriptor-based point matching is determined using the nearest neighbour 

distance ratio (NNDR) (Szeliski, 2010) followed by the RANdom SAmple Consensus 

(RANSAC) (Fischler and Bolles, 1981) for removal of correspondence outliers. The 

combination of NNDR and RANSAC is a popular strategy for matching keypoints using 

descriptors.  

    NNDR is based on searching for the target keypoint that is the ‘nearest neighbour’ for 

a source keypoint within the descriptor feature space. The nearest neighbour is the target 

keypoint with the minimum Euclidean distance to the source keypoint in the feature 

space. In this case, the Euclidean distance metric is the similarity (or cost) function. 

Efficient nearest neighbour searching is typically achieved using k-d trees (Bentley, 

1975) 
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    It is possible that 1
st
 and 2

nd
 nearest neighbour target matches have similar distances to 

the source keypoint. NNDR compares the ratio of these two distances. A distance ratio 

that tends to 1 indicates matching ambiguity and thus the source keypoint should not be 

included in the final set of correspondences. RANSAC is used to further filter wrong 

matches. It is based on randomly sampling the minimum number of correspondences 

required to compute the transformation parameters. Then all the source keypoints are 

back-projected onto the target domain using these parameters. Matches are then 

established by searching for source to target keypoints which are in close proximity to 

each other based on a threshold. The number of correspondences are then recorded. 

RANSAC is iterative and the final set of matches is the sample set which gives the 

highest amount of correspondences. The disadvantage of utilizing both the NNDR and 

RANSAC is that user-defined thresholds are required to filter potentially incorrect point 

matches. If there is no information about the coordinate systems of the source and target 

point clouds prior to matching, it becomes difficult to determine optimal threshold values 

without some empirical analysis.   

    Zeng et al. (2016) proposed a 3D local volumetric patch descriptor algorithm referred 

to as ‘3DMatch’. The approach is based on deep learning which requires training the 

descriptors on large volumes of data. This can be time-consuming and also depends on 

the availability of training data. 
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2.2   3D Non-descriptor-based methods 

There are also descriptor-free approaches which address the initial 3D point cloud 

alignment problem based on the data and data-derived geometric primitives. A common 

approach for global co-registration is the utilization of PCA or SVD (Singular Value 

Decomposition). PCA (or SVD) is used to approximate the rotation required to align the 

coordinate systems of the source and target point clouds. The translation can be estimated 

by the difference in centroids of the source and target data. However, when there is 

partial overlap and/or shape deformation between the source and target surfaces this 

approach does not provide the correct transformation parameters (Salvi et al., 2007; 

Castellani and Bartoli, 2012).  

    Other non-descriptor based methods utilize various geometric constraints and 

relationships amongst points, lines or planes. In terms of the plane-based methods, von 

Hansen (2006) presented a framework for terrestrial laser scanning (TLS) co-registration. 

Firstly, planes are extracted from point cloud data and this is followed by an exhaustive 

search for corresponding planes. The method does not cater for scale differences between 

the point clouds. Brenner et al. (2008) derived two methods for the initial co-registration 

of TLS data: a plane-based scoring approach and another which uses the normal 

distributions transform (NDT) (Biber, 2003). In the first method, plane triplet 

correspondences are scored using the similarity of their normal vector directions, in 

combination with distances to the plane origin. The second method sliced the 3D scans 

into 2D layers, and then used the 2D NDT algorithm for co-registration. NDT is an 

optimization-based co-registration algorithm which tries to maximize a probabilistic 
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matching score between two 2D scans. Only the 3D roto-translational parameters were 

accounted for in their work.  

    Stamos and Leordeanu (2004) used both linear and planar features to align laser scans 

of buildings. Properties such as length of the lines, in addition to plane sizes were used to 

discard possible erroneous matches, thus reducing the combinatorial correspondence 

search space. This was accomplished using a variety of heuristically set thresholds. Their 

method solved for the six rigid parameters. Yang et al. (2016) used semantic features 

from urban scenes for automated TLS co-registration. The point cloud data was 

segmented into ground and non-ground followed by the extraction of vertical linear 

features. The vertical features were then triangulated to form a network. Then a hashing 

table with triangular constraints were used to find matching source and target triangles. 

The method used various Euclidean distance-based constraints and thresholds which can 

only be applied when source and target point clouds are of the same scale. A geometric 

object approach was proposed by Chan et al. (2016) where a single, octagonal lamp pole 

was used for the alignment of terrestrial laser scans in different coordinate systems (i.e., 

different 3D position and orientation). The premise of the approach is to fit an octagonal 

pyramid model to the raw point clouds. Then, virtual points from the lamp pole structure 

are computed and used within an iterative matching strategy to estimate the registration 

parameters. 

     Linear features extracted from point clouds have been used to match Airborne Laser 

Scanning (ALS) and TLS data (von Hansen et al., 2008). This method sequentially 

computed the 3D rotation and translation parameters. Rotation was derived via the 
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correlation of line orientation histograms. Afterwards, translation was determined using a 

‘generate and test’ scheme, where the quality of all line correspondence combinations are 

assessed using the proximity of matching between ALS and TLS line midpoints. Yang et 

al. (2015) presented an approach for ALS to TLS alignment in urban scenes. They 

employed a spectral graph correspondence approach for matching building outlines. The 

graph matching utilized scale-variant geometric constraints such as distances together 

with several other spatial relations derived from the TLS and ALS building outlines. 

Urban areas typically contain many other rich descriptive details such as road networks, 

street furniture and vegetation. Therefore, the method may falter in urban datasets where 

there is a lack of building structures. 

    Aiger (2008) developed the ‘4-Point Congruent Set’ (4PCS) method for initial rigid 

alignment of point clouds. The approach begins by sampling four-point coplanar tuples 

from the source point cloud, followed by a search based on an affine ratio to find 

corresponding four-point tuples in the target point cloud. The best transformation is then 

selected from multiple candidate transformations formed by the set of matching quad- 

ruples. There have been several extensions/variations of 4PCS. Theiler et al. (2014) 

combined 3D keypoints with the 4PCS for the alignment of terrestrial laser scans. In 

other work, Mellado et al. (2014) developed a speeded up version of 4PCS. In context of 

full initial registration (i.e., solving for scale and rigid parameters), Corsini et al. (2013) 

presented an extension of 4PCS which can handle scale changes between datasets. 

    Yang et al. (2013) developed an ICP method referred to as ‘Globally Optimal ICP’. 

This ICP approach does not require any initial alignment and is based on a branch and 
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bound optimization search for optimal registration parameters. However, as mentioned in 

Theiler et al. (2014), the globally-optimized ICP is not efficient when applied to large 

scale data such as laser scans. 

    In comparison to non-descriptor based methods, descriptor-dependent approaches take 

into account local data information, i.e., it considers neighbouring elements for attribute 

definition. Descriptor-based methods provide semantic context, thus strengthening the 

matching process with richer information about the local keyfeatures (for example, 

enabling the elimination of false matches by comparing descriptor similarity). 

 

2.3   2D image-based methods 

Another active branch of research which addresses initial point cloud alignment are 

image-based approaches. The concept revolves around the utilization of image-based 

representations of the point cloud data collected from various sensor acquisition systems. 

One type of image representation can be obtained from optical cameras which are 

mounted to and synchronised with the laser scanners during point cloud data collection. If 

the transformation between the camera coordinate system and the laser scanning system 

is established prior to data collection, then the relative orientation of an image pair can be 

used to derive the transformation parameters between the associated source and target 

laser scans. Image representations can also be 2D reflectance intensity images formed 

from the energy of the backscattered laser light on a laser scanning system. Another type 

of image representation are 2D height maps or range images. The pixels of height maps 

store the 3D coordinates of a point cloud. Usually each height map image pixel is a 
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visualization of the point cloud surface elevation. However, depending on the application, 

the other axes directions of the point cloud’s 3D coordinate system can also be used to 

project the point clouds into the 2D height map/range image domain. 

    Manasir and Fraser (2006) used the relative orientation of optical image pairs to co-

register multiple TLS datasets. However, a significant amount of work instead focuses on 

TLS point cloud co-registration using reflectance intensity images (Böhm and Becker, 

2007; Wang and Brenner, 2008; Kang et al., 2009; Weinmann et al., 2011). These works 

all follow a similar alignment framework based on 2D keypoint matching between 

reflectance image pairs.  

    Various interest point operators can be used for extracting 2D keypoints including the 

Förstner operator (Förstner and Gülch, 1987), and Moravec and Harris corner detectors 

(Moravec, 1980; Harris and Stephens 1988). 2D descriptors such as SIFT (Lowe, 2004) 

and Speeded Up Robust Features (SURF) (Bay et al., 2008) can then be used for 

matching the 2D keypoints. The SURF descriptor is based on the computation of Haar 

wavelet filter statistics in both the horizontal and vertical image directions. 

    The matched 2D feature points from the intensity images also have accompanying 3D 

point cloud coordinates, therefore 3D transformations can be directly computed for 3D 

point cloud co-registration. A common trend in these works is the usage of Lowe’s SIFT 

keypoint detector and descriptor algorithm coupled with RANSAC. This due to the scale 

and rotation invariance properties of SIFT. SIFT has also been applied to match 2D 

keypoints on range images for the purposes of 3D point cloud alignment (Barnea and 

Filin, 2007; Sehgal et al., 2010).  
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    Barnea and Filin (2008) proposed a combinatorial keypoint approach for terrestrial 

point cloud matching using panoramic range images. Range image keypoints are 

extracted using a so-called ‘min-max’ interest point detector. These keypoints are then 

subjected to RANSAC. Firstly, a triplet of keypoints is randomly selected. Then 

differences in 3D Euclidean distances between source and target keypoint pairs from the 

sample set are used as a check for the verification step within RANSAC. For multi-sensor 

point clouds which may have scale differences, this verification check will not suffice. 

Additionally, depending on the amount of keypoints extracted from scene to scene, the 

correspondence search space can significantly increase and be time consuming.  

    Novák and Schindler (2013) used height maps for the co-registration of 3D laser 

scanning and photogrammetric point clouds. Point clouds are firstly converted to height 

maps by projecting onto a planimetric x, y-plane. Then gradient information and 

RANSAC are used to match points on source and target height maps. Afterwards, ICP is 

applied to refine the 3D point cloud registration accuracy.  

 

2.4   Summary 

From the reviewed literature, a considerable amount of 3D approaches (both descriptor 

and non-descriptor based methods) are not scale-invariant and only consider the 

estimation of 3D rigid transformation parameters. This work addresses the alignment of 

3D point clouds which differ in terms of a 3D conformal transformation. In Chapter 3, a 

modified approach of Lindeberg’s local scale selection mechanism (Lindeberg, 1998) for 

scale invariant extraction of 3D surface keypoints is proposed.  
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    In terms of 3D descriptors, most current methods utilize geometric relations (e.g., 

angles) between the 3D points. The proposed 3D descriptor uses surface morphology 

characteristics for the local neighbouring region around the keypoints. 

    From the reviewed works on 2D image-based methods for 3D point cloud co-

registration, many of the current approaches utilize intensity-based methods for 

extracting and matching 2D keypoints. The majority of them uses a rectangular grid 

system for descriptor definition. In Chapter 4, this research studies the wavelet scale-

space structure of the height map images for keypoint extraction. In addition, a biological 

vision-inspired gridding system for space-variant sampling is utilized for generating the 

2D descriptors.  
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3. A 3D-based Approach for Point     

   Cloud Alignment 

 

In this chapter, a 3D keypoint-based feature-matching framework is proposed for co-

registering multi-temporal, multi-sensor, natural and anthropogenic (man-made) 3D point 

clouds. There are four main components: i) the development of a scale-invariant 3D 

keypoint feature extraction method using morphological properties, specifically the local 

surface curvature, ii) the development of a rotation, translation and scale invariant 3D 

keypoint surface descriptor based on surface topography, iii) the application of a bipartite 

graph descriptor matching method for establishing initial keypoint feature 

correspondences without the need for user-specified thresholds, and iv) the development 

of a threshold-free, RANSAC-like outlier detection algorithm to eliminate wrong 

keypoint correspondences.  

    Once the final set of keypoint correspondences are found, a 3D conformal 

transformation is applied to recover the seven parameters (i.e., a global scale factor, three 

rotation angles and three translations), which will enable source to target point cloud co-

registration. 
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3.1   3D-based Point Cloud Alignment  

        Methodology 

 

This work follows a surface geometry-based approach, using: i) 3D points for estimating 

surface curvature in the keypoint extraction process and ii) point surface patches for 

capturing local 3D surface topography details which are utilized in the descriptor 

generation process. The proposed approach uses an automated feature-matching pipeline 

which includes feature extraction, feature description and feature correspondence.  

    The presented method is based on extracting and matching distinct 3D point landmarks 

referred to as keypoints on the source and target point clouds. A couple of the main 

challenges lie in the establishment of: i) keypoints which are scale-invariant (i.e., point 

features which can be used for matching source and target datasets which differ by a 

global scale factor), and ii) keypoint descriptors, which must be invariant to scale, 

rotations and translations as a result of the 3D conformal displacement between source 

and target datasets.  

    Figure 3.1 is an illustration of the keypoint matching concept, where two point cloud 

datasets are given and differ by a rotation matrix R, translation T and scale factor s. 

Distinct keypoints (small blue circles) are extracted on both point cloud datasets. A scale-

invariant neighbourhood (large circles) is determined for each keypoint. This 

neighbourhood is used to compute descriptors D (or attributes) for the keypoints. Source 

and target descriptors (DSOURCE and DTARGET) are matched using a similarity metric 𝑆𝑖𝑚𝐶𝑜𝑠𝑡 

to find corresponding keypoints. The descriptors, DSOURCE and DTARGET are shown as 1D  
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Figure 3.1: Concept of keypoint matching between source and target point clouds. 

 

histograms (y-axis show the descriptor frequency and the x-axis show the descriptor 

dimensionality which is the descriptor size) for visual purposes. However, descriptors can 

also be represented in higher orders (e.g., 2D or 3D histograms). 

    For photogrammetric and mobile mapping applications, there is no guarantee of source 

and target datasets being in the same coordinate system and in close proximity to each 

other. For example, un-georeferenced source point clouds versus geo-referenced target 

point clouds. Common examples of such instances are when Global Positioning System 

(GPS) signals are lost during a mobile laser scanning operation or the generation of 

photogrammetric point clouds from platforms such as UAVs using structure-from-

motion. In both cases, the resulting point data are in local coordinate systems. Hence, this 

work focuses on developing a co-registration framework which estimates the seven-

parameter 3D conformal transformation between source and target point clouds without 
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any proximate matching assumptions. The proposed 3D keypoint extraction and 

descriptor methods utilize various terrain characteristics such as curvature, slope and 

surface distances, specifically for the co-registration of urban and natural point cloud 

datasets. Figure 3.2 illustrates the proposed registration framework. In the following 

sections, each component of the framework is presented.  

 

3.2  Extraction of 3D Surface Keypoints 

In this section, the aim is to establish discrete, 3D, stable and repeatable keypoints on the 

point cloud surface. Repeatable keypoints are those points that can be detected at the 

same location on both the source and target data, even in the presence of scale changes 

and rigid motion. To achieve this aim, a 3D detector has been developed which utilizes 

surface morphology, namely, the curvature of the point cloud surface, to find points of 

significance. The input datasets used in this 3D-based co-registration pipeline comprise 

of 3D point clouds with (x, y, z) coordinates. To classify a 3D surface query point cloud 

𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 as a possible keypoint, the curvature at 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is computed. Given that 

𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is centered on a circular neighbourhood of surface point clouds 𝒩, the local 

surface curvature is estimated by utilizing the local covariance matrix 𝐶𝑜𝑣𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝒩 . 𝒩 

comprises of the 𝕂-nearest point neighbours around 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (Equation 3.1).  

                                                     𝒩 =

[
 
 
 
 
 
N1

N2

.

.

.
N𝕂]

 
 
 
 
 

                                    (3.1) 
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Figure 3.2: Workflow of the proposed 3D-based point cloud co-registration approach. 

 

𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the focal point of 𝒩, from which 𝐶𝑜𝑣𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝒩  is estimated using Equation 3.2.  

 

𝐶𝑜𝑣𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝒩 =

1

𝕂 − 1
∑(Nj − 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒).

𝕂

𝑗=1

(Nj − 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒)
𝑇          (3.2) 
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    Eigen-decomposition of 𝐶𝑜𝑣𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝒩  provides three eigenvalues 𝜆𝑢 and corresponding 

eigenvectors 𝑉𝑢 given in Equation 3.3. 𝑉𝑢 represents the three axes of the local, 3D 

orthogonal coordinate frame ℱ for 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒. 𝜆𝑢 represents the magnitude of the three ℱ 

axes and 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is ℱ’s origin. The magnitude of 𝜆𝑢 is as a result of the dispersion of 

𝒩in each of ℱ’s 3 orthogonal axis directions. 

 

                                        𝐶𝑜𝑣𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝒩 . 𝑉𝑢 = 𝜆𝑢. 𝑉𝑢                      (3.3) 

where, 𝑢 = (1,2,3) is in ascending order of 𝜆′𝑠 magnitude  

 

    𝜆1, is the minimum eigenvalue of 𝐶𝑜𝑣𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝒩  whose eigenvector is the surface normal 

for the local region around 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒. The surface normal is the orthogonal axis direction, 

which has the smallest variation relative to the local tangent plane on the point cloud 

surface. 𝜆2 and 𝜆3 indicate the deviation of 𝒩’s points in the other two axes directions on 

the local neighbourhood’s tangent plane. Utilizing the eigenvalues, the surface curvature 

at 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is established as the ratio of the surface normal variation 𝜆1 to the total 

variance ∑ 𝜆𝑢
3
𝑢=1  (Equation 3.4; Pauly et al., 2003; Bae and Lichti, 2008). 

 

                                   𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 (𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒) =
𝜆1

∑ 𝜆𝑢
3
𝑢=1

                         (3.4) 

 

    A keypoint is a surface point that can be distinguished from its local neighbours 𝒩. 

The surface curvature is used for this purpose; however, an approach to determine the 
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boundary extent of 𝒩 has yet to be established. These neighbouring points are critical 

since they also serve as the local region for computing the subsequent keypoint 

descriptors. A radius can be user-specified to define a circular local region around the 

keypoint candidate and establish this local point neighbourhood. However, if the source 

and target point clouds differ by an unknown global scale factor, a manually applied 

radius value is not feasible for obtaining similar local regions (hence, similar descriptors), 

which is an important criterion for finding corresponding source and target keypoints. 

Therefore, a scale-invariant keypoint extraction process is applied, based on ranges of 

radii, to automatically delineate homogeneous source and target neighbourhood regions 

under any apparent scale change between the two point cloud datasets to be co-registered 

(Figure 3.3). Every 3D point belonging to the input source and target data is examined as 

a possible keypoint location. For each point, multiple curvature values are computed by 

gradually increasing the size of point neighbourhoods based on a range of radii, thus 

using a ‘scale-space’ representation. 

 

3.2.1  Scale invariance for 3D keypoints 

SIFT (Lowe, 2004), and its 3D-based extensions use a 'Difference-of-Gaussian' approach 

for obtaining scale-invariant keypoints. The Harris-Laplacian interest point operator has 

been shown to have higher discriminative capabilities than Difference-of-Gaussian-based 

detectors (Mikolajczyk and Schmid, 2004; Grauman and Leibe, 2011). Harris-Laplacian 

uses Lindeberg’s method (Lindeberg, 1998) for automatic keypoint scale selection. 

Lindeberg’s method is based on selecting the optimal scale value (and hence the optimal  
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Figure 3.3: Workflow for the proposed 3D keypoint extraction process. 

 

local neighbourhood of a keypoint candidate) as the strongest local maxima of a scale 

parameter-dependent function (SPDF) across a range of scales. The proposed 3D scale-

invariant keypoint extraction approach follows a similar framework to Harris-Laplacian 

by combining 3D curvature information with Lindeberg's automated scale estimation 

method. For the presented approach in this dissertation, the scale parameter is the radius, 

which defines the concentric local neighbourhoods around possible keypoint candidates. 
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The 3D point clouds within these neighbourhoods are then used to compute the surface 

curvature of the local region around the keypoint candidate. Since the curvature of a local 

region varies depending on the radii used, in this context, the curvature measure serves as 

the SPDF.     

    The respective SPDF signals for a correspondence pair (i.e., matching source and 

target keypoints) would have comparable shapes since the two keypoints are focal points 

defining similar local point cloud regions. However, depending on the magnitude of the 

global scale factor ‘s’, the shapes of source and target SPDF signals can be compressed or 

stretched versions of each other (Figure 3.4). The SPDF signal may have several local 

maximas. For a correspondence pair, the distinct local maxima (i.e., global maxima) of 

the curvature responses on both the source and target SPDF signals would give us the two 

radii, 𝑟𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 for obtaining the same local point neighbourhoods, regardless of 

the scale difference between the source and target point clouds. The ratio of 𝑟𝑠𝑜𝑢𝑟𝑐𝑒 and 

𝑟𝑡𝑎𝑟𝑔𝑒𝑡 is equivalent to 𝑠. 

    Scale-invariant candidate keypoints are established when the 3D surface query point 

cloud 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 exhibits a distinct local maxima across the range of curvature scales. 

SPDF signals are shown in the plots of Figure 3.4 for a source and target point cloud pair, 

which differ by a global scale factor. The signals exhibit similar shapes since the same 

keypoint exists on both point cloud datasets. The distinct SPDF maximas also establish 

the same local regions around the keypoints on both the source and target point clouds. 

Therefore these keypoint candidates would now also have an associated local 

neighbourhood, thus ensuring their keypoint descriptors are also scale-invariant.  
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     Figure 3.4: Concept of obtaining scale-invariant keypoints. 

 

    Both the input source and target point cloud coordinates are normalized between [0~1]. 

The step of normalized radius values 𝛿𝑟 used for generating the neighbourhoods is set at 

0.001 intervals, where 𝛿𝑟 ∈ [0.010, 0.011, 0.012, ….., 𝜉]. 𝛿𝑟 is stopped at a maximum 

outer radius bound 𝜉. The value of 𝜉 has been empirically set as 10% of the maximum 

extent on the point cloud surface. These are the default parameters set in all experiments, 

however, the 𝛿𝑟 range and its intervals can optionally be changed since they depend on 

the point spacing resolution of the point clouds datasets to be co-registered. 

    Until now, the initial set of point cloud keypoints are those that have a ‘distinct local 

maxima across scales’. In the next step, a search performed to identify the ‘distinct local 

maxima across the local neighbourhood’, i.e., the surface curvature of the candidate 

keypoint 𝐾𝑃𝑐𝑎𝑛𝑑 is compared with the surface curvature of the points inside its local 
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neighbourhood. Thus, a point cloud keypoint, 𝐾𝑃, is retained if this local-maxima criteria 

is met (Equation 3.5).  

 

Retained 𝐾𝑃;  if 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒(𝐾𝑃𝑐𝑎𝑛𝑑) >  𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒(𝒩)         (3.5) 

 

3.2.2  Keypoint refinement by adaptive non-maxima  

          suppression 

 

Thus far, the keypoints have been determined using a dominant local maxima approach 

i.e., comparing the surface curvature strength of a candidate keypoint with respect to the 

surface curvature strength of local neighbourhood points. However, these initial 

detections can suffer from poor spatial localization, i.e., there may be multiple keypoint 

detections which are close to each other. These unwanted additional points increase the 

computational time for the feature-matching phase and may also cause matching 

ambiguity due to the closeness of multiple keypoints. To remove spurious keypoints and 

retain the most distinctive and strongest ones on the point cloud surface, global non-

maxima suppression is applied.  

    The 𝑛-th strongest keypoints can simply be chosen based on those with the greatest 

surface curvature strength. However, this does not guarantee uniform distribution of 

keypoints across the point cloud surface since the strongest features may be clustered 

together in certain regions. Therefore, a keypoint suppression approach has been 

implemented. The approach is similar to the adaptive non-maximal suppression (ANMS) 

technique originally proposed by Brown et al. (2005). ANMS compromises between the 
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elimination of relatively weak keypoints and at the same time ensuring a regular 

distribution of distinct keypoints across the point cloud surface. In contrast to the 2D 

corner strength function for image keypoints utilized by (Brown et al., 2005), the surface 

curvature is used as the ‘strength indicator’ for interest points on the point cloud surface. 

    The suppression process begins by letting 

𝐾𝑃𝑛𝑢𝑚 (𝑛𝑢𝑚 = 1,2, . . , number of initial 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠), be the initial set of detected 

keypoints. For each 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 ∈ 𝐾𝑃𝑛𝑢𝑚 , a search is performed to find its closest 

neighbouring keypoint, 𝐾𝑃𝑐, which is of greater curvature strength. The distances 

between 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 ∈ 𝐾𝑃𝑛𝑢𝑚 and their respective 𝐾𝑃𝑐 are stored and sorted from the 

largest to smallest. Keypoints found to have a large distance from their nearest, ‘stronger’ 

neighbour are then retained. A large distance represents a discrete 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 ∈

𝐾𝑃𝑛𝑢𝑚 that is not suppressed since its 𝐾𝑃𝑐 is spatially far away. This criterion encourages 

a final set of keypoints, which are well-distributed on the point cloud surface. Therefore, 

the accepted keypoints are those with the largest ℳ distances. The remaining keypoints 

are eliminated from 𝐾𝑃𝑛𝑢𝑚 , where ℳ is the maximum number of final keypoints which 

the user wishes to keep after suppression. The ℳ parameter is dataset specific, depending 

on the size and coverage of point cloud datasets used. For the point cloud datasets used in 

this dissertation, the parameter ℳ is set as 60% of the total number of initially detected 

keypoints. Figure 3.5 illustrates sample results of keypoint extraction on a glacial icefield 

(non-urban) point cloud dataset before and after ANMS is applied. 
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Figure 3.5: Example of keypoint extraction on point cloud surfaces. a) Before ANMS b) 

After ANMS. 

 

(a) 

(b) 
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3.3   3D Surface Descriptors for Keypoints 

In the previous section, a neighbourhood around each 3D keypoint was defined, based on 

a scale-space approach. For every source keypoint, its best keypoint match on the target 

point cloud surface must be obtained. Hence, neighbourhood attributes are used to define 

descriptors for the source and target keypoints. A corresponding source and target 

keypoint would have closely matching descriptors. In this section, a descriptor is 

developed that captures the local surface properties of the neighbourhood around the 

keypoint to ensure uniqueness during the point-to-point matching phase. 

 

3.3.1  Rigid invariance for local 3D descriptors 

The descriptors are computed using the local scale-invariant neighbourhoods established 

in Section 3.2.1. This means that the descriptors themselves are inherently scale-

invariant. However, descriptor invariance with respect to the 3D rigid parameters (i.e., 

3D rotation and 3D translation) is also required. To achieve this, the local orthogonal 

coordinate frame ℱ (defined in Section 3.2) of each 𝐾𝑃 is utilized. The eigenvector with 

the maximum eigenvalue is the 𝑥-axis of ℱ and the eigenvector with the minimum 

eigenvalue is the 𝑧-axis (in the direction of the local surface normal). The 𝑦-axis is the 

remaining eigenvector. However, the directions of the eigenvectors are not always 

repeatable if the surface point clouds undergo a rotation (Tombari et al, 2010).  

    To overcome this ambiguous effect and ensure consistency in axes directions, the 

directions between 𝑣𝑒𝑐𝑠(𝐾𝑃 ,𝒩)  and 𝑣𝑒𝑐(𝑂𝑟𝑡ℎ𝑜-𝐴𝑥𝑖𝑠) are compared; where 
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i) 𝑣𝑒𝑐𝑠(𝐾𝑃 ,𝒩) are all the vectors formed from the 𝐾𝑃 to its neighbouring points 

belonging to 𝒩and, ii) 𝑣𝑒𝑐(𝑂𝑟𝑡ℎ𝑜-𝐴𝑥𝑖𝑠) is the vector for one of the 3 major axes.  This 

is done by utilizing the sign of the dot product between 𝑣𝑒𝑐𝑠(𝐾𝑃 ,𝒩) and 

𝑣𝑒𝑐(𝑂𝑟𝑡ℎ𝑜-𝐴𝑥𝑖𝑠). For instance, if the dot product between 𝑣𝑒𝑐(𝑂𝑟𝑡ℎ𝑜-𝐴𝑥𝑖𝑠) and a 

vector, 𝑣𝑒𝑐(𝐾𝑃 ,𝒩) is negative, then they have opposite directions. Likewise, if their dot 

product is positive, then they share similar directions. The idea behind the choice of axes 

directions is that each eigenvector forming the local coordinate frame should be in the 

same main direction as the majority of keypoint-to-neighbourhood point vectors. Hence, 

the number of positive and negative signs as a result of the dot product between 

𝑣𝑒𝑐𝑠(𝐾𝑃 ,𝒩) and each of the three 𝑣𝑒𝑐(𝑂𝑟𝑡ℎ𝑜-𝐴𝑥𝑖𝑠) are counted. If the amount of 

positive signs is greater than the amount that are negative, then an eigenvector direction 

remains as is, otherwise, the eigenvector is flipped by changing its sign (i.e., positive to 

negative or vice versa). This procedure is applied for both the 𝑥-axis and 𝑧-axis of ℱ. The 

unambigious, repeatable 𝑦-axis is therefore the cross product of the 𝑥-axis and 𝑧-axis, 

whose directions have already been verified. 

    After forming the rotation and translation-invariant, repeatable ℱ, 𝒩 is transformed 

from its original, global coordinate frame to the local ℱ (Equation 3.6). This is to ensure 

the subsequent descriptors are also rotation and translation-invariant. First, the 

coordinates of 𝒩are translated relative to the 𝐾𝑃. Then 𝒩 is rotated with respect to 𝑅ℱ , 

which is the 3x3 rotation matrix comprising the repeatable, direction-verified 

eigenvectors forming ℱ. 
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                                                �̂� = 𝑅ℱ (𝒩 − 𝐾𝑃 )                      (3.6)     

where, �̂� is the scale-invariant and rigid-invariant local point neighbourhood used to 

compute 𝐾𝑃’s descriptor. 

 

3.3.2  Local 3D surface description 

The 3D surface keypoint descriptor must capture the local topographic morphology of the 

surrounding surface structure. The descriptor is developed by utilizing point cloud 

surface information. Specifically, the descriptor is referred to as the radial geodesic 

distance-slope histogram (RGSH). RGSH encodes the joint distribution of: i) the 

geodesic distance (i.e., shortest path travelled between two points along the point cloud 

surface) from the keypoint to all other points in the local neighbourhood, and ii) the slope 

around each point belonging to �̂�.  

    Delaunay triangulation (Li et al., 2005) is applied on the point cloud surface to 

generate a mesh representation. Local keypoint descriptor regions now consist of points, 

edges (point-to-point connections) and triangular faces (formed from three closed edges). 

For a given 𝐾𝑃 with local region �̂�, the RGSH descriptor is constructed as follows:  

1. Geodesic distances are computed between 𝐾𝑃 and every point ℙ𝑗 ∈ �̂� using 

Kimmel and Sethian’s Fast Marching algorithm (Kimmel and Sethian, 1998). This 

results in a set of geodesic paths resembling a radial pattern emanating from 

𝐾𝑃 (Figure 3.6).  
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Figure 3.6: Local keypoint neighbourhood on the surface mesh. Geodesic paths running 

in radial pattern from keypoint (neighbourhood focal point) to all its neighbouring points 

(in black) are shown. 

 

 

 

 

 

 

 

 

 

Figure 3.7: Illustration of 1-ring mesh neighbourhood around a point ℙ𝑗  on the surface 

mesh and the geometry for obtaining its slope. 
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2. For every ℙ𝑗, the slope around each of their 1-ring mesh neighbourhoods are 

estimated. The 1-ring neighbourhood consists of the mesh faces formed from the 

surrounding point clouds ℚ, which share an edge with ℙ𝑗 and also share edges 

between themselves (Figure 3.7). 𝑆𝑙𝑜𝑝𝑒1-𝑟𝑖𝑛𝑔 is the magnitude of the 1-ring area 

gradient (Equation 3.7).  

              

                                                          𝑆𝑙𝑜𝑝𝑒1-𝑟𝑖𝑛𝑔 = ‖∇𝐴1-𝑟𝑖𝑛𝑔‖                 (3.7)  

where, 

- 𝐴1-𝑟𝑖𝑛𝑔 is the 1-ring area, 

- ∇𝐴1-𝑟𝑖𝑛𝑔 is the gradient of 𝐴1-𝑟𝑖𝑛𝑔 relative to ℙ𝑗, 

- ∥  ∥  is the magnitude. 

 

𝐴1-𝑟𝑖𝑛𝑔 is the sum of each triangular mesh face area.  ∇𝐴1-𝑟𝑖𝑛𝑔 is computed using the 

cotangents of the angles in the two triangles opposite the edge formed by ℙ𝑗 and its 

neighbour ℚ𝑘 (where 𝑘 =1,2,3,…, # of 1-ring neighbourhood points belonging to ℙ𝑗)  

(Equation 3.8; Pinkall and Polthier, 1993; Desbrun et al., 1999). 

 

∇𝐴1 −𝑟𝑖𝑛𝑔 =
1

2
∑ (cot 𝜂𝑘 +cot 𝛾𝑘)(ℚ𝑘 − ℙ𝑗)             (3.8)

# 1−ring points ∈ℙ𝑗

𝑘=1
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    After obtaining a radial geodesic distance and slope measure for every ℙ𝑗, both pairs of 

values are normalized relative to their maximum values within the local neighbourhoods 

of each keypoint. Then both sets of values are projected into a 2D histogram ℋ. ℋ is 

divided into a space of uniform 𝐵 × 𝐵 bins (where bin intervals are: 𝑏 = 1,2, … , 𝐵). 

Figure 3.8 is an example of the RGSH descriptor with 6 x 6 bins (the size of 𝐵 is 

determined experimentally using a ‘tuning’ dataset and details are provided in Chapter 5, 

Section 5.1.1).  

 

                                         

Figure 3.8: Illustration of the 2D radial geodesic distance-slope histogram (the gray scale 

shows binning frequency). 

 

    The Chi-square distance 𝜒2 (Berretti et al., 2013) is used to measure the similarity cost 

𝑆𝑖𝑚𝐶𝑜𝑠𝑡 between a source histogram descriptor ℋ𝑠 with a target histogram descriptor 

ℋ𝑡 (Equation 3.9). Lower costs indicate higher similarity between a source and target 

keypoint. 
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𝑆𝑖𝑚𝐶𝑜𝑠𝑡𝜒2(ℋ𝑠,ℋ𝑡) =
1

2
∑

(ℋ𝑠(𝑏) − ℋ𝑡(𝑏))
2

ℋ𝑠(𝑏) + ℋ𝑡(𝑏)
               (3.9)

𝐵

𝑏=1

 

 

3.3.3   3D Keypoint matching using RGSH descriptor 

The objective here is to establish optimal one-to-one, source to target 

𝐾𝑃 correspondences with a minimum total matching cost. This is a combinatorial 

optimization problem, i.e., where bijective correspondences are sought at the lowest 

possible cost. The bipartite graph matching approach is applied to address this problem. 

This method for finding point-to-point feature correspondences has been utilized in other 

related point matching works such as by Belongie et al. (2002). Alternative approaches 

for matching keypoints with descriptors include the ‘Nearest Neighbour Distance Ratio’ 

(Szeliski, 2010). However, unlike bipartite graph matching, nearest-neighbour based 

descriptor matching methods are dependent on user-defined matching acceptance 

thresholds. To solve for the correspondences via bipartite graph matching, firstly, a 

(𝑚 × 𝑛) cost matrix 𝑆𝑖𝑚𝐶𝑜𝑠𝑡𝑖𝑗 is formed using Equation 3.10 for every permutation, i.e., 

every source and target 𝐾𝑃 combination pair. 

 

                           𝑚𝑖𝑛∑𝑆𝑖𝑚𝐶𝑜𝑠𝑡𝑖𝑗                       (3.10)

𝑖𝑗

 

 

    Let 𝑢𝑖 be the source 𝐾𝑃s and 𝑣𝑗  the target 𝐾𝑃s, where 𝑖 = 1,… . .𝑚 and 𝑗 = 1,… . . 𝑛, 

(𝑚 is the total number of source 𝐾𝑃s and 𝑛 is the total number of target 𝐾𝑃s). In cases 
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where 𝑚 ≠ 𝑛, ‘slack’ (or ‘dummy’) nodes are used to ensure a square 𝑆𝑖𝑚𝐶𝑜𝑠𝑡𝑖𝑗. Each 

entry into the 𝑆𝑖𝑚𝐶𝑜𝑠𝑡𝑖𝑗 matrix is essentially a weight associated with a bipartite graph 

edge (𝑢𝑖, 𝑣𝑗) (Figure 3.9). To solve the bipartite graph matching optimization by 

minimizing the total cost of Equation 3.10, the Hungarian algorithm (Bourgeois and 

Lassalle, 1971) is used (Appendix A). During the optimization, if a source 𝐾𝑃 has a large 

cost with respect to the target 𝐾𝑃s, i.e., it has no existing point correspondence; it is 

assigned to a dummy node and recorded as a non-match. 

 

                                              

Figure 3.9: Example of bipartite graph for keypoint point matching (Thick lines are the 

bipartite edges which show the final one-to-one source to target correspondences). 

 

3.3.4  Removal of 3D keypoint correspondence outliers 

The output of the Hungarian algorithm is the point correspondences giving the least total 

cost. To co-register the source point clouds to the target point clouds, transformation 

parameters have to be computed via a 3-D conformal transformation. However, before 

. 

. 

. 

. 

. 

. 

. 
 
. 

. 

. 

. 
 
 

. 

. 

. 

. 
 
. 

. 



52 

the final transformation is computed, false source to target 𝐾𝑃 correspondences are 

filtered (i.e., outliers). An approach similar to RANSAC (Fischler and Bolles, 1981) is 

employed for this purpose. However, a slight modification is made to the typical 

RANSAC framework at the threshold-based inlier-checking phase, by instead employing 

a threshold-free approach.  

    The classical RANSAC approach begins by randomly selecting the minimum number 

of point matches required to compute the transformation parameters. This is the 

‘hypothesis generation’ phase. Afterwards, the estimated parameters must be validated 

via a ‘hypothesis verification’ step. In the first stage of hypothesis verification, all the 

source points are projected into the target space using the estimated parameters. In the 

second stage, correct/inlying matches are counted by checking the Euclidean distance 

between target points and the projected source points. Inliers are accepted if the 

Euclidean distance is less than a user-defined distance threshold. 

    Source and target point clouds may be in different coordinate systems, and in this 

research, no prior information about their respective coordinate systems is assumed to be 

known. Therefore, it becomes difficult to manually set an appropriate user threshold for 

inlier-checking. Additionally, thresholds used for inlier counting is subjective and an 

‘acceptable’ threshold may vary from one user to another. 

    Instead, this problem is eliminated by employing a threshold-free, inlier consistency 

check. The concept behind the proposed inlier-checking is based on the verification of 

initial descriptor-based point matches using the spatial nearest neighbour between source 

and target points. For example, consider a correct descriptor-based match, 𝑆𝑜𝑢𝑟𝑐𝑒𝑃𝑡𝐴  
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Algorithm 3.1. REMOVAL OF OUTLYING KEYPOINT CORRESPONDENCES 

 

1. Randomly select a triplet of point correspondences from the initial correspondence set 

acquired via descriptor matching. 

 

2. Using the randomly sampled triplet set, compute the 3D conformal transformation 

parameters via Horn’s closed form solution (Horn, 1987). 

 

3. Project all source points to the target dataset using the estimated parameters. 

 

4. For all initial source to target point correspondences acquired from the descriptor 

matching phase, determine how many of these source points (when projected to the 

target) are also the spatial nearest neighbours to their corresponding target points. This 

is recorded as the total inlier count. 

 

5. Repeat steps 1 through 4 for a maximum of L iterations (L is determined using the 

approach from Fischler and Bolles (1981). At each iteration, check the total inlier count. 

Update the set of inliers if it is greater than those found at previous iterations. 

 

6. After exiting the loop (steps 1 to 5), re-estimate (i.e., refine) the 3D conformal 

parameters by a non-linear least squares adjustment (Luhmann et al., 2006) using all the 

verified inliers. 

 

 

 

and 𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑡𝐴. When 𝑆𝑜𝑢𝑟𝑐𝑒𝑃𝑡𝐴 is projected to the target point cloud dataset, then the 

transformed 𝑆𝑜𝑢𝑟𝑐𝑒𝑃𝑡𝐴 and 𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑡𝐴 should also be nearest neighbours on the target 

point cloud domain. Specifically, the transformed 𝑆𝑜𝑢𝑟𝑐𝑒𝑃𝑡𝐴 should have minimal 

spatial distance with 𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑡𝐴 when compared to the other target points. Therefore, 

this consistency check, which utilizes both descriptor and spatial domains, will accept 

inlying matches if estimated parameters generated via the random sampling-based 

hypothesis generation are correct. The overall procedure is presented in Algorithm 3.1. 

After step 6 in Algorithm 3.1 is completed, the source and target point clouds are co-

registered (aligned) using the estimated parameters.  
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3.4   Summary 

A 3D approach for aligning 3D point clouds has been proposed. First, a method for 

automatically extracting scale-invariant keypoints was developed. The keypoint detector 

used surface curvature as a measure to identify points of sharp topographic variation. 

Surface attributes such as the local slope around points and geodesics distances between 

points were used to form a histogram-based keypoint descriptor. The descriptors provided 

a unique identifier for the keypoints. The similarities of the descriptors were assessed and 

matched using the Hungarian algorithm (bipartite graph matching). Outliers were filtered 

using a threshold-free RANSAC. In the next chapter, an independent, alternative co-

registration approach based on the 2D height map representation of the 3D point clouds is 

presented. 
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4. A Height Map-based Approach for                              

    Point Cloud Alignment 

 

A 2D height map keypoint matching framework is proposed to address the alignment of 

3D point clouds from multiple data acquisition platforms. The approach uses height map 

image pairs as input (i.e., a source and target height map). These height maps are 

generated directly from 3D point cloud data. This is done by projecting the 3D point 

cloud dataset along its the z-axis direction onto the x,y-plane, followed by inverse 

distance weighting interpolation (Childs, 2004).  

    Similar to the 3D-based co-registration method presented in Chapter 3, the following 

2D approach does not require any approximate matching between the source and target 

and it assumes that the point cloud datasets to be aligned are in different coordinate 

systems. First, distinct 2D keypoints on the source and target height maps are extracted 

using a multi-scale wavelet approach. Afterwards, scale, rotation and translation invariant 

height map-based 2D descriptors are generated and utilized for keypoint matching. The 

proposed 2D descriptor is inspired by the dense scale invariant descriptor (DSID) 

originally developed by Kokkinos et al. (2012). It is based on two modifications to the 

DSID, which include the use of Gabor filter derivatives and the Rapid Transform.  
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4.1  Height Map-based Point Cloud Alignment   

       Methodology 

The height map-based 2D keypoint correspondence pipeline has three main phases as 

illustrated in Figure 4.1: i) Multi-scale 2D keypoint extraction, where a wavelet transform 

is adopted to create a multi-scale representation of the height map image. This supports 

the extraction of distinct 2D keypoints across the height map image scale-space using an 

energy function. Adaptive non-maxima suppression is then applied to retain strong and 

well-distributed keypoints. Extraction is performed on both the source and target height 

maps, ii) Generation of scale, rotation and translation-invariant 2D keypoint descriptors, 

where attributes / descriptors are assigned to the detected keypoints. The descriptor for 

each keypoint is generated in two phases. It begins with log-polar sampling and mapping 

of derivatives computed from local height map patches around the keypoint. The log-

polar strategy enables scale and rotation invariance. However, corresponding source and 

target log-polar descriptors are prone to cyclic shifts depending on the magnitude of their 

scale and rotation differences. To make the descriptor translation-invariant, the Rapid 

Transform (Reitboeck and Brody, 1969) is utilized, and iii) Height map image keypoint 

matching, where a bi-directional (i.e., source to target and vice versa) descriptor matching 

is used to find corresponding keypoints. Outliers are then filtered using the modified, 

threshold-free RANSAC method proposed in Chapter 3. Finally, the matched keypoints 

are used to compute a 3D conformal transformation for source to target point cloud 

alignment. 
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Height Map Keypoint Matching 

Co-registration Result 

Multi-scale Keypoint Extraction 

Source height map  Target height map 

Rapid Transform 

   

Log-polar sampling & mapping of 

height map derivatives 

 Scale, Rotation & Translation Invariant Keypoint Descriptor 

Input Data  (different coordinate systems and scale) 

Interpolation used for  
point cloud height map generation 

Figure 4.1: Overview of the height map image point matching approach for co-registering  

3D multi-sensor point clouds. 
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4.2  Multi-scale 2D keypoint extraction 

In the first step of the height map matching framework, 2D keypoints are automatically 

extracted. The proposed multi-scale keypoint extraction approach is based on the Dual 

Tree Complex Wavelet Transform (DTCWT) (Kingsbury, 1998). The utilization of the 

DTCWT for extracting keypoints was inspired by the method in Fauqueur et al. (2006). 

They used a DTCWT-based keypoint energy function to determine the points of interest 

on images. Their function required two user-specified scale space-related parameters. The 

proposed keypoint extraction framework in this dissertation is similar to Fauqueur et al. 

(2006). However, an alternative parameter-free keypoint energy function is utilized in 

combination with an adaptive non-maxima suppression (Brown et al., (2005)) to acquire 

salient, well-distributed keypoints on the height map images.  

    There are several existing scale-space extrema-based keypoint detection methods one 

can utilize. In addition to 'Difference-of-Gaussian' and Lindeberg’s scale-space method, 

wavelets also provide an approach for scale-space representation. Wavelets are well 

developed in the field of scale-space theory for multiscale feature detection (Mallat and 

Zhong, 1992).  

    For addressing feature matching problems, keypoint descriptors typically achieve 

scale-invariance (i.e., the capability to perform matching between datasets which differ 

by a scale factor) through the use of a front-end keypoint detector such as SIFT or the 

Harris-Laplacian operator. However, the estimation of local scales from front-end 

keypoint detectors such as SIFT can be unstable (Dorkó and Schmid, 2006; Kokkinos and 

Yuille, 2008). 
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    For typical image matching problems where methods such as SIFT are usually 

employed, the general assumption is that the source and target images are captured from 

the same sensor (i.e., cameras). However, this dissertation uses source and target point 

clouds collected from different viewpoints (e.g., airborne vs. terrestrial platforms), as 

well as with different point sampling densities and distributions to form the height map 

image pairs via interpolation. Therefore, the resultant source and target height map 

images are heterogeneous since they have different texture variation and noise from each 

other. This is caused by rasterization during the interpolation process and particularly 

significant along object boundary edges (e.g., building boundaries) in the urban datasets. 

Hence, source and target keypoints detected on identical structures (e.g., building 

corners) may have dissimilar contextual details within their respective local regions of 

interest as defined by the local scale estimation procedure from a front-end detector such 

as SIFT. This will negatively impact the descriptor matching process as the source and 

target keypoint descriptors will be different. 

    Instead, scale, as well as rotation invariance is achieved directly during the descriptor 

generation phase through the use of log-polar sampling and mapping around the detected 

keypoints (Section 4.3). The primary objective during the keypoint detection phase is to 

detect the most salient points of interest using multi-scale image analysis. Multi-scale or 

multi-resolution image analyses are particularly useful when trying to identify the 

strongest interest points of the most prominent structures across the image scale-space 

(e.g., image pyramids). It is used for simulating the scale-space representation of real 

world objects as typically perceived by human vision. That is, as one physically moves 
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away from an object, the finer details are lost whilst ‘stronger’ and more prominent 

features remain visible. Wavelet transforms are utilized because these transforms provide 

a natural, multi-scale representation of an image through a series of smoothing and down-

sampling. This supports the extraction of distinct keypoints across the scale-space using 

the proposed energy function.  

 

4.2.1   2D keypoint extraction using DTCWT 

Wavelet transforms are popular in the areas of computer vision (Mallat, 1996; Tang 

2011) and remote sensing (Ranchin and Wald, 1993; Martínez and Gilabert, 2009). The 

discrete wavelet transform (DWT) (Mallat, 1989) is the most commonly applied wavelet 

transform. The DWT is not shift-invariant and has limited directional selectivity. At each 

scale level, the 2D DWT provides directional details in three major directions: horizontal, 

vertical and diagonal (Ranchin and Wald, 1993). However, images naturally contain 

features in various random orientations and may not be optimally represented via the 2D 

DWT. For keypoint extraction, it is critical that blobs and multi-oriented edge structures 

which form corners are well defined. Kingsbury (1998) introduced the DTCWT to 

overcome some of the disadvantages of DWT. The DTCWT comprises of six complex-

valued wavelet functions defined at six different orientations and is approximately shift-

invariant. The increased angular resolution with the real and imaginary components 

captures more image content than the regular 2D DWT (Hill et al., 2005).      

    As its name implies, the DTCWT uses two wavelet filter trees, one tree produces real 

coefficients and the other gives imaginary coefficients. However, this is for the one-
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dimensional case (e.g., 1D signals). The two-dimensional case is required. For 2D image 

decomposition, the 2D-DTCWT has a pair of trees for generating real coefficients 

(𝑇𝑟𝑒𝑒𝐴, 𝑇𝑟𝑒𝑒𝐵) and another pair for imaginary coefficients (𝑇𝑟𝑒𝑒𝐶 , 𝑇𝑟𝑒𝑒𝐷). In 

combination, the two pairs of trees form a single set of complex coefficients. The size of 

the trees is defined by the number of image decomposition (i.e., scale) levels specified by 

the user. Across the various levels on each tree, a series of high-pass and low-pass filters 

are used. At each level, the input image is down-sampled and the wavelet coefficients 

generated by the high-pass and low-pass filters of the four trees are used to form six 

complex-valued sub-band images (Selesnick et al., 2005). 𝑇𝑟𝑒𝑒𝐴 and 𝑇𝑟𝑒𝑒𝐵 produce six 

real-valued sub-bands, whereas 𝑇𝑟𝑒𝑒𝐶 and 𝑇𝑟𝑒𝑒𝐷 generate six imaginary-valued sub-

bands. The real and imaginary sub-band images are combined to give the final six 

complex-valued sub-bands. Each sub-band image 𝜉 corresponds to one of the six 

directions of the wavelets, i.e., {−75°, −45°, −15°, 15°, 45°, 75°} (Coria et al., 2008). 

    The number of decomposition levels used for the DTCWT depends on the size of the 

height maps. At extremely low decomposition levels, structural details are lost due to the 

continuous down-sampling of the height-map and hence provide no benefit for the 

keypoint extraction process. As a result, no more than three levels of decomposition are 

exceeded, i.e., the first level of decomposition down-samples the height map at 50%, the 

second level down-samples at 25% and the final, third level down-samples at 12.5%. 

Figure 4.2 illustrates the result of DTCWT when applied to a point cloud height map.  
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Figure 4.2: Scale-space representation of a height map produced by the dual tree 

complex wavelet transform at three levels of decomposition. Each level shows the six 

sub-band images. 

 

𝜉1 = −75° 𝜉2 = −45° 𝜉3 = −15° 𝜉4 = 15° 𝜉5 = 45° 𝜉6 = 75° 
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    Following the generation of DTCWT coefficients, a keypoint energy map 𝐾𝑃𝑒𝑛𝑒𝑟𝑔𝑦 is 

computed using the harmonic mean of the six sub-band images at each decomposition 

level (Equation 4.1). Since three decomposition levels were applied, three keypoint 

energy maps are generated. The use of the harmonic mean as a measure for establishing 

keypoints has also been applied by Brown et al. (2005). 

 

𝐾𝑃𝑒𝑛𝑒𝑟𝑔𝑦 =
𝑆

∑ 𝜉𝑏
−1𝑆

𝑏=1

                      (4.1) 

where, 

-  𝑆 is the number of sub-band images (i.e., 𝑆=6 at each decomposition level) and 

𝑏 = 1,2,3, … . 𝑆.  

 

    Figure 4.3 shows the keypoint energy maps generated for the three decomposition 

levels. From each energy map, a search is performed to determine the various local 

maxima (i.e., keypoints) using the non-maxima suppression (NMS) algorithm (Neubeck 

and Van Gool, 2006). The use of NMS for directly establishing interest points from a 

saliency measure has also been applied in previous works by Tuytelaars and Van Gool 

(2004) and Tombari and Di Stefano (2014). The concept of NMS is that a query location 

on the energy map is selected as a keypoint if its 𝐾𝑃𝑒𝑛𝑒𝑟𝑔𝑦 is greater than those of its 

neighbours. A 3x3 neighbourhood similar to Fauqueur et al. (2006) is used to define the 

set of neighbours around the query pixel. A small neighbourhood was used to ensure that  
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Figure 4.3: Keypoint energy maps generated at each of the three decomposition levels. 

(a) Level 1, (b) Level 2, (c) Level 3. Colour bar indicates keypoint energy value for a 

point on the energy map. Higher values indicate stronger keypoint candidate locations. 

 

local variation is captured as the closer points have higher influence in detecting salient 

interest points.  

    After keypoints from all three energy maps have been acquired by NMS, the next step 

is to retain the strongest keypoints based on their energy responses and remove spurious  

(a) (b) 

(c) 

Level 1  Level 2  

Level 3  
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keypoints which are in very close spatial proximity or overlap with other keypoints. This 

is done using an adaptive non-maxima suppression (ANMS) algorithm (Brown et al., 

2005). This algorithm prevents an uneven distribution of keypoints by keeping those 

whose energy (Equation 4.1) is greater than those of its neighbouring keypoints. ANMS 

compromises between the elimination of relatively weak keypoints and at the same time 

ensuring a regular distribution of distinct keypoints throughout the height map. Rescaling 

to the original image scale is applied to ensure keypoint locations from the down-sampled 

energy maps are in the same pixel coordinate system as the original height map image 

before ANMS is applied. In contrast to the 2D corner strength function utilized by 

(Brown et al., 2005), the 𝐾𝑃𝑒𝑛𝑒𝑟𝑔𝑦 measure (Equation 4.1) is used as the ANMS ‘strength 

indicator’ for filtering interest points on the height map. 

    To begin the ANMS process, let 𝐾𝑃𝑛𝑢𝑚 (𝑛𝑢𝑚 = 1,2, . . , number of initial 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠) 

be the set of detected keypoints combined from all three 𝐾𝑃𝑒𝑛𝑒𝑟𝑔𝑦 maps. For each 

𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 ∈ 𝐾𝑃𝑛𝑢𝑚 , a search is performed to find its closest neighbouring keypoint, 

𝐾𝑃𝑐 which is of greater energy strength. The distances between 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 ∈ 𝐾𝑃𝑛𝑢𝑚 and 

their respective 𝐾𝑃𝑐 are stored and sorted from the largest to smallest. The algorithm then 

retains those keypoints which have a large distance from their nearest, ‘stronger’ 

neighbour. A large distance represents a distinct 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 ∈ 𝐾𝑃𝑛𝑢𝑚 that is not 

suppressed since its 𝐾𝑃𝑐 is spatially far away. This criterion encourages a final set of 

keypoints which are well-distributed on the height map. Therefore, the accepted 

keypoints are those with the 𝒯 largest distances, where 𝒯 is the maximum number of 

final keypoints which the user wishes to keep after suppression. The remaining keypoints 
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are eliminated from 𝐾𝑃𝑛𝑢𝑚. The parameter 𝒯 is dataset specific and depends on the size 

and coverage of point cloud height map image. For the height map datasets used in the 

experiments (Chapter 5), 𝒯 = 60% of the total number of detected keypoints 

accumulated from all three DTCWT levels. This value is used because it was empirically 

observed that it led to higher true positive keypoint matching rates. Figure 4.4 illustrates 

sample results of keypoint extraction on a height map before and after ANMS is applied. 

 

4.3  Scale, rotation and translation invariant 2D   

       keypoint descriptor 

 

In this section, a scale, rotation and translation invariant 2D keypoint descriptor referred 

to as the Gabor, Log-Polar-Rapid Transform (GLP-RT) descriptor is proposed. The 

descriptor is inspired by the approaches developed in Tola et al. (2010) and Kokkinos et  
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Figure 4.4: Keypoint extraction results. (a) Initial keypoints (before ANMS).  

(b) Final keypoints (after ANMS). 
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al. (2012). Tola et al. (2010) used Gaussian kernel-based directional derivatives sampled 

on a polar-grid to efficiently compute the so-called dense ‘DAISY’ descriptor. However, 

the DAISY descriptor is not scale and rotation invariant. Kokkinos et al. (2012) 

addressed this by applying local log-polar grid sampling and mapping of the DAISY-like, 

Gaussian-based directional derivatives around image points to achieve scale and rotation 

invariance. The log-polar transform of an image and its scaled and rotated version is the 

same (Zokai and Wolberg, 2005). However, the magnitude of the scale and rotation 

differences between the image and its scaled, rotated version are represented as a cyclical 

translational shift between their respective log-polar images. Kokkinos et al. (2012) 

utilized the Fast Fourier Transform (FFT) (Cooley and Tukey, 1965) to achieve shift-

invariance. 

    A similar descriptor framework is utilized, with some variations. The proposed 

descriptor algorithm consists of the following two general steps: i) log-polar sampling 

and mapping of Gabor filter-based directional derivatives, and ii) transformation of the 

preliminary, scale and rotation invariant log-polar-based descriptors formed in i) into a 

cyclic-shift invariant descriptor using the 2D Rapid Transform (RT) (Reitboeck and 

Brody, 1969). The following sections provide details on the construction of proposed 

GLP-RT keypoint descriptor, as well as, the motivation for using the Gabor filter-based 

derivatives and the 2D RT. 
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4.3.1  Log-polar sampling and mapping for 2D scale and   

          rotation invariance 

 

In the first step of the descriptor formation, a log-polar grid is applied around the local 

neighbourhood of a keypoint to determine descriptors characterizing the keypoint based 

on local height changes. Log-polar grid systems represent the height image information 

with a space-variant resolution inspired by the visual system of mammals (Traver and 

Bernadino, 2010). The log-polar grid is a series of concentric rings with exponentially 

increasing size which are split into various sectors by a set of radial rays projecting from 

the keypoint.  

    For any scale and rotation differences between regions around corresponding keypoints 

on the source and target height map, the log-polar transform is utilized to form source and 

target height map descriptors which manifest these differences as a translational shift 

between the two descriptors. The log-polar transform is well-known for its scale and 

rotation invariant characteristics (Zokai and Wolberg, 2005). It has been used for various 

image processing applications such as automatic, global image registration (Reddy and 

Chatterji, 1996), face detection and tracking (Jurie, 1999) and image-based texture 

classification (Pun and Lee, 2003). Similar to Gabor filters, the use of the log-polar 

transform is also biologically motivated. Its logarithmic space-variant sampling scheme is 

reminiscent of the retina as represented in the visual cortex of humans (Schwartz, 1994).  

    The log-polar transformation is done relative to the center point of the log-polar grid, 

i.e., the keypoint. The log-polar grid around the keypoint is defined by four parameters: 
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the minimum ring radius minR and maximum ring radius maxR (both in pixels), the 

number of bisecting rays 𝑀 on the grid, as well as, the number of specified concentric 

rings 𝑁. 𝑁 logarithmically, equally spaced radii values, ℛ𝑛 (where, 𝑛 = 1,2,3, … . , 𝑁) are 

computed between log-decades 10
minR

 and 10
maxR

. These logarithmically-scaled radii 

serve as the radius values used to generate each of the 𝑁 concentric rings on the log-polar 

grid. Each concentric ring is partitioned into 𝑀 uniformly spaced radial rays with angles 

𝛼𝑗 =
2𝜋𝑗

𝑀
 (where, 𝑗 = 1,2,3, … . ,𝑀). Sampled points on the log-polar grid are the points of 

intersection formed by the 𝑀 radial rays and 𝑁 concentric rings.  

    For each ring on the log polar grid, smoothed Gabor-filter based derivatives are 

generated at four orientations 𝜃𝜐 (where, 𝜐 = 1,2,3,4) and recorded for each sampled 

point. Orientations are computed in the horizontal (180°), vertical (90°), positive (45°) 

and negative (-45°) diagonal directions. The number of orientations can be increased but 

based on experimental analysis there are no significant benefits of increased descriptor 

performance. However, the trade-offs are disadvantageous, with an increase in descriptor 

dimensionality and longer computation times. Therefore, four derivative orientations (the 

procedure for derivative computation is provided in the next section) are used. The 

locally oriented derivatives of each sampled point on the log-polar grid are then mapped 

to the log-polar descriptor domain (Equation 4.2; Kokkinos and Yuille, 2008; Kokkinos 

et al., 2012). The log-polar sampling is done on the Gabor-based derivatives of the height 

map and not the height map itself since the derivatives provide the intensity-invariant 

structural information which is useful for the descriptor formation. The log-polar 
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coordinate system (Figure 4.5, right) comprises of two axes, with each being defined by 

𝑀 rays and 𝑁 concentric rings. Therefore, the log-polar descriptor domain 𝐼𝐿𝑃 is a 2D 

𝑀 × 𝑁 array. The minR, maxR, 𝑀 and 𝑁 parameters are empirically determined in 

Chapter 5, Section 5.2.2.  

 

                 𝐼𝐿𝑃[𝑀,𝑁] = [ 𝐼𝐺(ℛ𝑛 cos 𝛼𝑗 + 𝑥𝑘𝑝) ,  𝐼𝐺(ℛ𝑛 sin 𝛼𝑗 + 𝑦𝑘𝑝) ]                 (4.2) 

 

where, 

-  𝐼𝐿𝑃 is the 2D log-polar descriptor, 

-  𝐼𝐺  is a directional derivative image for one of the 4 specific orientations, 

-  (𝑥𝑘𝑝, 𝑦𝑘𝑝) is the keypoint on the height map, 

-  ℛ𝑛 is the logarithmically-scaled radius (𝑛 = 1,2,3, … . , 𝑁), 

-  𝛼𝑗 is the sector angle for the log-polar grid (𝑗 = 1,2,3,… . , 𝑀). 

 

 

   

 

 

 

 

 

 

 

 

𝑀 

𝑁 

 

Figure 4.5: Example of log-polar sampling and mapping. Left: Exponential log-polar grid 

sampling that is applied to height map derivatives. Right: mapping of gridded points into 

uniformly-spaced log-polar domain, forming a log-polar descriptor (right diagram). Red 

circles are grids located on the 3
rd

 ring and green circles are located on the 8
th

 ray. 
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4.3.1.1  Generation of Gabor filter-based derivatives 

The motivation for using Gabor filter-based derivatives is due to their robustness to 

illumination changes, image noise and natural image background variations (Kamarainen 

et al., 2006). This is important as the height map image pairs to be matched are generated 

from the different data collection platforms and contain significant texture variations 

from one dataset to another. The use of the Gabor filter is also mathematically motivated. 

The Gabor function has greater flexibility in terms of the number of ‘free’ parameters 

which can be modified to define the function shape, in comparison to the Gaussian 

function (Jones and Palmer, 1987; Zambanini and Kampel, 2013). The 2D Gabor filter 𝒢, 

(Equation 4.3), is a sinusoidal plane wave with a defined wavelength and orientation that 

is modulated by a Gaussian kernel (Hamamoto et al., 1998; Haghighat et al., 2013).  

 

                        𝒢(𝑥, 𝑦, 𝜃, 𝜎𝑛) = 𝑒
[−0.5(

𝑊1
2+𝑊2

2

𝜎𝑛
2 )]

× 𝑒[𝑖
2𝜋𝑊1

𝜆
]                          (4.3)              

where, 

- 𝑊1 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 and 𝑊2 = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃, 

-  𝜆 is the wavelength of the sinusoidal plane wave and controls the frequency of 

the 𝒢 (where, 𝜆 = 2𝜎𝑛 as in Konishi et al. (2003) ), 

- 𝜃 is the orientation of 𝒢, 

-  𝑖 is the imaginary unit, 

- 𝜎𝑛 is the scale and is a function of the varying radii for each circle on the  
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             concentric log-polar grid (where, 𝜎𝑛 =
ℛ𝑛

𝑁
 ; (𝑛 = 1,2,3, … . , 𝑁)). Note: this is    

             similar to the 𝜎 setting in Tola et al. (2010). 

 

    The Gabor filter is a complex valued filter (i.e., the filter has a real and imaginary 

component). In this work, the priority is to capture the structural details from edge 

features in various orientations on the height map to generate highly discriminative 

descriptors for the keypoints. Therefore, the imaginary part of the Gabor filter (Equation 

4.4) is used since it has been shown to efficiently provide robust edges (Jiang et al., 

2009).  

                           𝒢(𝑥, 𝑦, 𝜃, 𝜎𝑛)𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 = 𝑒
[−0.5(

𝑊1
2+𝑊2

2

𝜎𝑛
2 )]

× sin (
2𝜋𝑊1

𝜆
)              (4.4) 

 

 

    Two dimensional Gabor-filter derivatives are computed via convolution of the height 

map image with 𝒢(𝑥, 𝑦, 𝜃, 𝜎𝑛)𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 in each of the four 𝜐 directions. For each of these 

𝜐 oriented directions, a form of multi-scale smoothing is applied to the derivatives 

generated at each ring (Tola et al., 2010). With the increasing radius value for each ring 

on the log-polar grid, the scale 𝜎 of the Gabor filter is also incrementally increased as the 

concentric rings become larger, i.e., smoothing increases as the ring size increases. This 

low-pass filtering of the height map image is done to prevent any aliasing effects when 

computing the derivatives and to ensure the source and target descriptors are as similar as 

possible. Aliasing is caused by the rasterization of object boundaries (e.g., building edges 

in urban datasets) as a result of the 3D point cloud to height map interpolation process. 
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Aliasing also arises due to the exponential space-variant pattern of log-polar sampling 

(Tabernero et al., 1999; Palander and Brandt, 2008).  

 

4.3.2  Descriptor invariance to 2D cyclic-shifts using the Rapid      

            Transform 

 

The log-polar descriptors generated in Section 4.3.1 convert scale and rotation changes 

between local regions of corresponding keypoints on the source and target height maps 

into a representation which differs by a cyclical translation (or cyclical shift). This 

translation difference between source log-polar descriptors and target log-polar 

descriptors can occur along the horizontal or vertical axes of the log-polar domain and 

will lead to incorrect point correspondences. Therefore, the cyclic shift is addressed by 

applying the translation-invariant 2D Rapid Transformation (RT) versus the FFT as used 

by Kokkinos et al. (2012). The RT was developed by Reitboeck and Brody (1969) for 

pattern recognition applications. They showed that the RT was computationally more 

efficient and 10-100 times faster than the translation-invariant FFT. RT was also able to 

outperform FFT for hand-printed letter recognition in the presence of inclinations and 

small rotations. In more recent work, Li et al., (2014) developed an RT-based descriptor 

for texture classification again citing speed advantages over the FFT as the motivation for 

its usage. In terms of computational efficiency, the RT variables are real numbers, 

whereas FFT variables are complex numbers, therefore RT requires twice as less storage 

capacity than FFT. 
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    In this section, the 2D RT algorithm is applied to the 2D descriptors which were 

initially formed in the log-polar domain (Figure 4.6). Even though the RT is inherently a 

one-dimensional algorithm, it is extended to two dimensions by applying 1D RT twice. 

Specifically, the 1D RT is first applied on each row of 𝐼𝐿𝑃, thereby generating a ‘row-

transformed’ 2D coefficient array. The 1D RT is then used again on each column of the 

row-transformed 2D array. The output of the 2D RT is the final form of the proposed 

GLP-RT descriptor, which has a dimensionality similar to Kokkinos et al. (2012), i.e., 

number of derivative gradient orientations × 𝑀 × 𝑁. 

 

 

Figure 4.6: Concept of applying Rapid Transform to correct cyclical shift between log-

polar descriptors on corresponding keypoints (i.e., red dots on left-most figure). 
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    The FFT computation process can be represented in the form of a signal flow (or 

‘butterfly’) structure which is based on a divide and conquer approach (Herman, 2013). 

The computation of RT is also determined using a butterfly structure. An example is 

presented illustrate the concept of the 1D RT algorithm. For an input 1D data vector 

�⃗⃗� = [𝐷1, 𝐷2, 𝐷3, … . . , 𝐷𝐾] of size 𝐾, RT computes the transform coefficients 𝒞  = 

[𝒞1, 𝒞2, 𝒞3, … . . , 𝒞𝐾] using the signal flow structure similar to the steps illustrated in 

Figure 4.7. 𝐾 is assumed to be of the form 𝐾 = 2𝑝 where 𝑝 is a positive integer.  

    This requirement that 𝐾 must be a power of 2 does not limit the generality of the RT 

algorithm, as a zero-padding (Stoica and Moses, 2005) is applied to the next power of 2 

for data which requires it. Similarly to FFT, the RT algorithm comprises of a total  𝐿  

transformation stages (where, 𝐿 = 𝑙𝑜𝑔2𝐾 (Herman, 2013)) that are required to convert 

the original data into the transformed coefficients. Figure 4.7 is an example of the RT 

with �⃗⃗�  comprising of 8 data points (i.e., 𝐾 = 8) and a total of 𝐿 = 3 transformation stages. 

At each stage, a pair of commutative functions 𝐷 (Equation 4.5) is applied on each data 

element. In the first stage (i.e., 𝐿 = 1), these operators are applied to the initial values of 

the input data elements whereas, in the subsequent stages (i.e., 𝐿 = 2 and 𝐿 = 3), the 

operators are applied to the output data elements from the previous stage.                                         

 

                                                    𝐷𝑖
(𝐿)

= 𝐷𝑖
(𝐿−1)

+ 𝐷𝑖 + 𝐾 2⁄
(𝐿−1)

    

                  (4.5)                  

                                                          𝐷𝑖 + 𝐾 2⁄
(𝐿)

= |𝐷𝑖
(𝐿−1)

− 𝐷𝑖 + 𝐾 2⁄
(𝐿−1)

| 

 

where, 

-  𝑖 = 1,2,3, …… ,𝐾.  
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Figure 4.7: Computation steps of the 1D rapid transform based on the signal flow (or 

‘butterfly’) structure when 𝐾 = 8. 
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    As shown in Figure 4.7, after the first stage, the value of 𝐾 is continuously halved and 

its value is updated at each of the remaining stages. This is due to divide and conquer 

approach used in the signal flow process which splits the output data sequence at each 

stage into two individual sequences. Further details on the RT are given in Appendix B. 

 

4.3.3   2D keypoint matching using GLP-RT descriptor 

For typical nearest neighbour-based matching, a source keypoint is compared to all the 

target keypoints by computing the Euclidean distance between their descriptors. The 

Euclidean distance serves as a measure of descriptor similarity. The corresponding target 

keypoint (i.e., the nearest neighbour) is chosen as the one giving the smallest Euclidean 

distance relative to the source keypoint descriptor. However, to increase the robustness of 

descriptor correspondence determination, the nearest neighbour matching is also applied 

in the opposite direction to assess the bi-directional similarities of source and target GLP-

RT descriptors. That is, a target descriptor is compared with all source descriptors to find 

its nearest neighbour match. A check is then performed to determine the same point 

correspondences which are obtained in both directions. Another alternative approach is 

the ‘nearest neighbour distance ratio’ (Szeliski, 2010). However, this measure was not 

utilized since it is dependent on a user-defined matching acceptance threshold, which can 

vary amongst different datasets.  

    To illustrate the approach, assume 𝑆𝑜𝑢𝑟𝑐𝑒𝐾𝑃𝐴
 and 𝑇𝑎𝑟𝑔𝑒𝑡𝐾𝑃𝐴

 are true point 

correspondences. In the first step of the matching process, a nearest neighbour search is 

applied to obtain the closest target descriptor match 𝑇𝑎𝑟𝑔𝑒𝑡𝐾𝑃𝑁𝑁
 for 𝑆𝑜𝑢𝑟𝑐𝑒𝐾𝑃𝐴

. 
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Similarly, nearest neighbour search is applied again to obtain the closest source 

descriptor match 𝑆𝑜𝑢𝑟𝑐𝑒𝐾𝑃𝑁𝑁
 for 𝑇𝑎𝑟𝑔𝑒𝑡𝐾𝑃𝐴

. A final point to point correspondence is 

established if the 𝑇𝑎𝑟𝑔𝑒𝑡𝐾𝑃𝑁𝑁
 and 𝑇𝑎𝑟𝑔𝑒𝑡𝐾𝑃𝐴

 are the same points and if 𝑆𝑜𝑢𝑟𝑐𝑒𝐾𝑃𝑁𝑁
 

and 𝑆𝑜𝑢𝑟𝑐𝑒𝐾𝑃𝐴
 are the same points (Figure 4.8). This process is applied for all source 

and target keypoints to determine a set of point correspondence pairs. However, outliers 

(i.e. false correspondences) are a possibility. Therefore, to prune these initial point 

matches, the RANSAC-based outlier detection method (Algorithm 3.1) developed in 

Chapter 3, Section 3.3.4 was applied. Recall that the 2D height map coordinates also have 

an associated elevation (i.e., Z coordinate component). Thus, the inputs for Algorithm 3.1 

are 3D keypoint coordinates (i.e., X, Y and Z) of the source and target correspondences, 

since the objective is to find the most optimal 3D conformal transformation parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Concept of bi-directional keypoint descriptor matching showing a successful 

correspondence (dashed arrows) and an unsuccessful correspondence (solid arrows). 

 

 

a) Source to Target matching b) Target to Source matching 
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4.4   Summary 

A 2D height map-based keypoint matching approach has been proposed for the alignment 

of 3D point clouds. First, a Dual Tree Complex Wavelet Transform-based keypoint 

extraction method was implemented to detect salient interest points on the height maps. 

After, a 2D keypoint descriptor was developed to characterize the keypoints with a 

unique identifier. The descriptor was based on log polar sampling and mapping, and the 

2D Rapid Transformation to be scale, rotation and translation invariant. A bi-directional 

matching strategy was then employed to assess and match keypoints based on their 

descriptor similarities. The threshold-free RANSAC was used to filter outliers. In the 

next chapter, the results and analysis of the two proposed co-registration methods are 

presented. 
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5. Results and Analysis  

This chapter presents the results and analysis of the two proposed point cloud alignment 

approaches. Experiments are performed on multi-sensor, urban and non-urban datasets to 

individually assess the accuracy of each of the two proposed methods. A comparative 

study on the two approaches is also done, as well as comparisons with state-of-the-art 

algorithms. The source and target datasets used differ in terms of scale, 3D rotation and 

3D translation. Various experiments are also performed on source and target datasets 

with different overlapping coverage, point density, spatial point distribution and point 

details (i.e., missing data gaps). Specifically, the datasets are from three different 

locations: two different urban areas in Ontario, Canada and one non-urban area in 

Western Canada. The two urban areas are referred to as “Loc1” and “Loc2” respectively, 

whilst the non-urban area is identified as “Loc3”.  

    Also included are experiments which are used to select the respective parameter 

settings for the developed 3D-based RGSH keypoint descriptor and height map-based 

GLP-RT keypoint descriptor. Section 5.1 provides details of the experiments and analysis 

for the 3D-based alignment method. Section 5.2 presents the experiments and analysis for 

the height map-based alignment method. Finally, Section 5.3 evaluates the two proposed 

methods relative to each other, as well as with state-of-the-art 3D keypoint-based co-

registration methods.  
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5.1  Results for Method 1: 3D-based Point Cloud  

       Alignment 

 

In this section, results from the first proposed matching framework developed in Chapter 

3 are presented, i.e., the 3D-based point cloud co-registration approach. In particular, 

results are illustrated from the keypoint extraction and descriptor generation phases for 

datasets that vary in terms of scale, rotation and translation. The capability of the co-

registration framework is assessed under two different cases: i) using a ‘controlled’ 

setting, where the source and target point cloud datasets are from the same sensor 

acquisition system and time period and also have the same point density, and overlap and 

ii) using a ‘varied’ setting, where the source and target point cloud dataset are collected at 

different time periods and generated from different sensor acquisition systems with 

different point density, partial overlap and deformation. The quality of the scale (𝑠), 3 

rotation angles (ω, φ, κ) and 3 translation (Tx, Ty, Tz) parameters are analyzed by means 

of: i) results provided by least squares adjustment residual statistics from estimation of 

3D conformal transformation parameters, and ii) differences in results obtained by the 

proposed automated method versus those from known reference parameters.  

    The presented approach is assessed using data from urban and non-urban digital 

surface models (DSMs). The 3D (x, y, z) point clouds from the DSMs are directly used. 

Figure 5.1 illustrates a pair of urban DSMs representing coverage over York University, 

Toronto, Ontario, Canada (Loc2). The DSM in Figure 5.1(a) was generated using aerial 

photos acquired in 2005, whilst Figure 5.1(b) shows a DSM produced from airborne 
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LIDAR data collected in 2009. Figure 5.2 shows natural (non-urban) DSMs of the 

Columbia Icefield, situated along the border of Alberta and British Columbia, Canada 

(Loc3). The DSM in Figure 5.2(a) was generated using aerial photos from 1950 and the  

DSM in Figure 5.2(b) was produced using WorldView-2 satellite imagery acquired in 

2010. In addition to co-registration experiments, also presented are the empirical results 

used for selecting the number of bins for the RGSH descriptor. The planimetric and 

vertical positioning accuracy of the urban dataset was in the range of 0.2m to 0.5m. The 

planimetric and vertical positioning accuracy of the non-urban dataset was in the range of 

2.0m to 5.0m. 

 

5.1.1  Empirical selection of RGSH descriptor bin size 

The bin size 𝐵 is a critical parameter for the co-registration experiments as it defines the 

RGSH descriptor’s discriminability (i.e., the descriptor’s uniqueness for each keypoint). 

The number of bins was experimentally determined using a ‘tuning’ dataset based on the 

bipartite graph descriptor matching. The use of ‘tuning’ datasets to set the parameters of 

3D feature detectors and descriptors has also been applied in similar works, such as Salti 

et al. (2012). The tuning dataset comprises of 4 arbitrarily selected ‘training’ sites from 

each of the 4 DSMs in Figures 5.1 and 5.2 (these sites are labeled as ‘Training area 1’, 

Training area 2’, ‘Training area 3’ and ‘Training area 4’). For each of the 4 sites, 

manually defined transformation parameters were applied to generate scaled, rotated and 

translated versions of the original point clouds. In this way, each of the 4 training sites 
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Figure 5.1: Urban DSMs used for co-registration experiments to evaluate the proposed 

3D-based alignment method. (a) Aerial photo DSM (b) Aerial LIDAR DSM.  
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Figure 5.2: Icefield (Non-Urban) DSMs used for co-registration experiments to evaluate 

the proposed 3D-based alignment method. (a) Aerial photo DSM (b) WorldView-2 DSM. 
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has source and target point clouds to be used for matching. The manual parameters 

applied to generate the respective target point cloud datasets for Figures 5.1(a), 5.1(b), 

5.2(a) and 5.2(b) are shown in Table 5.1. 

    A low value of B (i.e., coarse bin resolution) can lower the discriminative power of the 

descriptor. This would lead to wrong point matching results, since the descriptors would 

lose some of their uniqueness due to the coarse bin cell partitioning. On the other hand, a 

dense bin resolution with fine bin cell partitioning will have the opposite effect and ‘over-

sensitize’ the descriptor, thus making it difficult to find similar matching source and 

target descriptors. 

 

Table 5.1: Manually-defined transformation parameters used for generating target point 

clouds of the 4 training sites in the tuning dataset. 

Transformation 

Parameter 

Training 

area 1 

Training 

area 2 

Training 

area 3 

Training 

area 4 

𝑠 0.3 0.4 0.5 0.6 
ω (°) 3 5 7 9 
φ (°) 2 4 6 8 
κ (°) 1 4 7 10 

Tx (m) 10 15 20 25 
Ty (m) 12 14 16 18 
Tz (m) 14 18 22 26 

     

    To measure the performance of various bin sizes and its effect on the descriptor’s 

matching performance, recall vs. 1-precision graphs (Ke and Sukthankar, 2004) were 

utlilized. The recall (𝑅𝑒) metric (Equation 5.1) provides an indication of the number of 

true positive (TP) matches found after matching relative to the total number of actual 
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correct matches (the total number of correct matches are manually checked and known a 

priori). The 1-precision (1 − 𝑃) metric (Equation 5.2) is the number of false positive (FP) 

matches relative to the total number of recovered point matches (including both TP and 

FP matches). High recall and low 1-precision will indicate optimal bin size. A TP is 

considered to be two matching keypoints from the same corresponding positions on the 

source and target point cloud surfaces. Likewise, a FP is recorded when two matching 

keypoints come from different positions on the source and target point cloud surfaces. 

 

𝑅𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃𝑠 𝑓𝑜𝑢𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑘𝑛𝑜𝑤𝑛 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖
                   (5.1) 

      

1 − 𝑃 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃𝑠 𝑓𝑜𝑢𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃𝑠 𝑎𝑛𝑑 𝑇𝑃𝑠 𝑓𝑜𝑢𝑛𝑑 𝑎𝑓𝑡𝑒𝑟 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔
         (5.2) 

 

    The RGSH descriptor was evaluated at the following coarse-to-dense bin sizes: 

𝐵 = 2, 4, 6, 8, 10, 12, 14. Figure 5.3 shows the recall vs. 1-precision graphs. Individual 

recall vs. 1-precision graphs was generated for the urban and non-urban training sites 

respectively. In Figure 5.3(a), the best performance was achieved at 𝐵 = 6 for the urban 

training sites. For the non-urban training, the best performance was attained at 𝐵 = 8 

(Figure 5.3(b)). However, this was closely followed by 𝐵 = 6. This was reflected upon 

observation of the matching results from two non-urban training sites, where there was 

minimal disparity between the number of correspondences at both of these bin 

resolutions. When 𝐵 = 8, there were 147 TP matches and 4 FP matches. Whilst when  
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Figure 5.3: Recall vs. 1-precision graphs for selecting optimal bin size of the RGSH 

descriptor across a range of coarse to dense bin resolutions using the DSM tuning dataset. 

(a) Plot for 2 urban training sites. (b) Plot for 2 non-urban training sites. (c) Plot for entire 

tuning dataset (2 urban and 2 non-urban training sites combined). 

 

𝐵 = 6, 145 TP matches and 6 FP matches were found. Therefore, to get an overall 

indication of a suitable bin size across urban and non-urban scenes, a recall vs. 1-

(a) (b) 

(c) 
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precision plot was also generated, when the TPs and FPs of the urban and non-urban 

training sites are combined (Figure 5.3(c)). The highest recall rate and the lowest 1-

precision rate occurred at 𝐵 = 6. Therefore, a histogram bin resolution of 6x6 was used 

for the RGSH descriptor in the experiments as this produced the highest matching 

success rate based on empirical observations. 

 

5.1.2  Case 1: Same sensor datasets, different coordinate   

          systems 

 

The method is assessed using a ‘controlled’ environment. In this case, a target point cloud 

dataset was generated by applying manually defined 3D conformal parameters to a source 

point cloud dataset. Hence, both the source and target data to be co-registered are from 

the same sensor with the same point density and overlap. In this way, the keypoint 

extraction, descriptor correspondence and co-registration results were analyzed between a 

source dataset and target dataset without the influence of data noises and artificial 

geometric deformations/distortions, which may arise when trying to match multi-sensor 

and multi-temporal datasets. 

    To demonstrate a sample result of the keypoint extraction and descriptor matching 

processes, the area labeled as ‘Test site for Case 1’ in Figure 5.1(b) was used. This urban 

site is the source point cloud dataset and comprises of two buildings with a coverage of 

44,055m
2
. The target point clouds were generated by applying the following scale, 
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rotation and translation parameters to the source point cloud dataset: 𝑠 = 0.7, ω =

15°, φ = 30° , κ = 45° , Tx=3m , Ty=5m , Tz=7m. These are the ‘reference’ parameters.  

    Keypoints were extracted on the source and target datasets, their descriptors were 

generated and initial point correspondences along with ‘dummy’ matches were found. 

The dummy matches were those keypoints that have no existing point correspondence, 

and which were automatically determined by the bipartite graph matching. Outlying 

matches were then automatically identified using the approach outlined in Algorithm 3.1 

(Chapter 3, Section 3.3.4). Figure 5.4 illustrates the final set of keypoint matching results. 

In Figure 5.4, keypoints with circles and identical numbers indicate inlying matches. 

Keypoints with the same numbers and triangles are the detected outliers. Keypoints with 

the squares are the dummy matches. 

    In Table 5.2, the source descriptors ℋ𝑠, target descriptors ℋ𝑡, and the similarity score 

𝑆𝑖𝑚𝐶𝑜𝑠𝑡𝜒2(ℋ𝑠,ℋ𝑡)  are shown for various keypoint correspondences on the source and 

target point clouds of Figure 5.4. Rows (a) and (b) of Table 5.2 show the results for two 

inlying matches, i.e., keypoints with IDs 16 and 43 on both the source and target datasets. 

Row (c) of Table 5.2 is an outlier match (keypoint ID 9). On visual inspection of Figure 

5.4(a) and (b), keypoint ID 9 on the source and target are non-corresponding, different 

keypoint locations. From another visual check, the true match should be keypoint ID 4 on 

the source dataset and keypoint ID 9 on the target dataset (i.e., row (d) of Table 5.2). The 

smaller the value of 𝑆𝑖𝑚𝐶𝑜𝑠𝑡𝜒2(ℋ𝑠,ℋ𝑡), the greater the similarity between a source and 

target keypoint. From Table 5.2, the incorrect match is due to the similarity score of row 

(d) being larger than the score of row (c). Keypoints 4 and 9 on the source point cloud  
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Figure 5.4: Keypoint matching under scaling, rotation and translation. Same number IDs 

on both the source and target datasets indicate keypoint correspondences (a) Original 

point clouds (source dataset), (b) Scale, rotated and translated point clouds (target 

dataset). (Note: surface points for (a) and (b) are: i) illustrated in planar-like views for 

visualization purposes, and ii) shown in their individual coordinate systems). 

 

dataset were located on similar structures, thereby resulting in similar descriptors and 

matching ambiguity. 

    Table 5.3 illustrates the results of transformation parameters obtained using the 

proposed approach versus the reference parameters.  Additionally, the difference between  

the reference and proposed parameters (∆𝑝𝑎𝑟𝑎𝑚), the precision of the proposed 

parameters (𝜎𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 ) and the root mean square error (RMSE) of least squares 

adjustment residuals in the X, Y and Z directions are also reported in Table 5.3. These 

least squares adjustment statistics are derived from the computation of the 3D conformal 

transformation parameters using inlying keypoint matches. After the outlier removal 

algorithm (Algorithm 3.1, Chapter 3, Section 3.3.4) is applied, 4 false point matches were 

removed and 42 valid ones were retained for this urban scene. 

    A similar ‘controlled’ co-registration experiment was carried out for the non-urban, 

Icefield scene. The area labeled as ‘Test site for Case 1’ in Figure 5.2(b) was used as the 

source point cloud dataset. Manually defined ‘reference’ scale, rotation and translation 

values were applied to generate a target point cloud dataset (see Table 5.4). The site 

chosen on the Columbia Icefield is the Dome Glacier with coverage of 21.32km
2
. Co-  
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Table 5.2: Descriptor matching for various keypoints on Figure 5.4. 

 

registration results of the Icefield are shown in Table 5.4, and for this dataset there were 2 

false keypoint matches and 79 correct keypoint matches. For the ‘Case 1’ urban and non- 
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Table 5.3: Co-registration result for ‘Case 1’ Urban dataset. 

Transformation 

Parameter 
Reference 

Proposed 

Approach 
𝜎𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 

𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 ∆𝑝𝑎𝑟𝑎𝑚 

𝑠 0.7 0.6893 0.051 0.0107 
ω (°)   15 14.93 0.137 0.0700 
φ (°) 30 29.93 0.087 0.0700 
κ (°) 45 44.85 0.045 0.1500 

Tx (m) 3 3.030 0.030 -0.0300 
Ty (m) 5 5.010 0.074 -0.0100 
Tz (m) 7 7.020 0.049 -0.0200 

RMSEx (m) - 0.013 - - 

RMSEy (m) - 0.147 - - 

RMSEz (m) - 0.052 -  - 

 

Table 5.4: Co-registration result for ‘Case 1’ Icefield (Non-Urban) dataset. 

Transformation 

Parameter 
Reference 

Proposed 

Approach 
𝜎𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 

𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 ∆𝑝𝑎𝑟𝑎𝑚 

𝑠 0.85 0.8514 0.019 -0.0014 
ω (°)   6 5.923 0.093 0.0770 
φ (°) 12 12.15 0.055 -0.1500 
κ (°) 18 18.14 0.068 -0.1400 

Tx (m) 9 9.011 0.009 -0.0110 
Ty (m) 18 17.89 0.005 0.1100 
Tz (m) 27 26.87 0.010 0.1300 

RMSEx (m) - 1.539 - - 

RMSEy (m) - 1.963 - - 

RMSEz (m) - 1.746 - - 

 

urban datasets, the ∆𝑝𝑎𝑟𝑎𝑚  changes are equivalent to an absolute mean alignment 

difference of 0.23(±0.05)m and 2.81(±0.16)m respectively. The absolute mean rotational  

error (AMRE) (i.e., average value of the absolute differences between the automatically-

derived and reference angular parameters), as well as the absolute mean translation error 

(AMTE) (i.e., average value of the absolute differences between the automatically-

derived and reference translation parameters) for each dataset is given in Table 5.5. The 
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urban scene had minimum and maximum residuals of -0.87m and 1.05m. The non-urban 

scene had minimum and maximum residuals of -4.77m and 4.15m. 

 

Table 5.5: Average Angular and Translation errors for ‘Case 1’ datasets. 

Error Measure Urban Co-registration Glacier Co-registration 
AMRE (°) 0.097 0.122 
AMTE (m) 0.020 0.084 

 

 

5.1.3  Case 2: Different sensor datasets, different coordinate   

          systems 

 

Compared to the ‘Case 1’ tests, this section utilizes multi-sensor datasets, which 

introduce new challenges to the co-registration process. These include matching points 

between source and target point clouds which i) have been generated from different 

sensor data sources, ii) have partial overlap, as a result of less coverage in case of the 

urban scene or as a result of deformation in the glacial regions of the icefield, iii) have 

been generated using multi-temporal datasets, iv) have been geo-referenced using 

different ground control points during the DSM generation process (causing mis-

registration errors and requiring a refined alignment), and v) have different point density. 

To assess the developed co-registration method on the multi-sensor datasets, the 

respective regions labeled as ‘Test site for Case 2’ on Figures 5.1 and 5.2 were used. That 

is, the aerial photo point clouds are matched with the aerial LIDAR point clouds for the 

urban scene. Likewise, the aerial photo point clouds are matched with the WorldView-2 
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point clouds for the Icefield scene. The observations used in the least squares adjustment 

were of equal weights assuming similar accuracies. 

    The urban scene contains buildings, trees, shrubs and bare terrain. The aerial photo 

urban test site has an area of 56,416m
2
, whilst the urban aerial LIDAR data covers 

152,460m
2
. The urban aerial photo dataset has a point spacing of 1m and the airborne 

LIDAR has a point spacing of 0.78m. The non-urban test site is the Saskatchewan Glacier 

located on the Columbia Icefield. Both of the point cloud datasets to be co-registered 

have an equivalent point spacing of 1m. The Saskatchewan glacier has an area of 

53.55km
2
 and comprises of the glacial ice cap in addition to surrounding snowy 

mountainous regions. Given the 60-year time lapse between the aerial photo and 

WorldView-2 data collection periods, deformation has occurred on the icefield. The 

glacier cap has been subjected to severe ice ablation over time where some parts of the 

upper mountains are snow accumulation areas. This dataset highlights the importance of 

co-registration for possible change detection applications. 

    The source and target point clouds of the urban and non-urban multi-sensor datasets 

were already pre-processed by the data providers and referenced in the same coordinate 

system. Therefore, to validate the approach, significant transformation parameters were 

applied for scale, rotation and translation. These serve as the ‘reference’ parameters. 

Tables 5.6 and 5.7 show the reference parameters in comparison to those estimated via 

the proposed automated method.  

    The automated keypoint matching resulted for the urban dataset resulted in 9 false 

point correspondences, which were filtered via the outlier removal algorithm, as well as 
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Table 5.6: Co-registration result for ‘Case 2’ Urban dataset. 

Transformation 

Parameter 
Reference 

Proposed 

Approach 
𝜎𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 

𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 ∆𝑝𝑎𝑟𝑎𝑚 

𝑠 0.5 0.4986 4.0e-11 0.0014 
ω (°)        13 13.76 0.003 -0.7600 
φ (°) 17 18.51 0.012 -1.5100 
κ (°) 21 21.28 0.009 -0.2800 

Tx (m) 200 200.01 0.013 -0.0100 
Ty (m) 400 400.03 0.020 -0.0300 
Tz (m) 600 600.00 0.007 0.0000 

RMSEx (m) - 0.515 - - 

RMSEy (m) - 0.820 - - 

RMSEz (m) - 0.682 - - 

 

Table 5.7: Co-registration result for ‘Case 2’ Icefield (Non-Urban) dataset. 

Transformation 

Parameter 
Reference 

Proposed 

Approach 
𝜎𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 

𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 ∆𝑝𝑎𝑟𝑎𝑚 

𝑠 0.6 0.5998 2.3e-09 0.0002 
ω (°)   30 30.12 6.3e-04 -0.1200 
φ (°) 45 45.09 0.031 -0.0900 
κ (°) 60 59.99 9.6e-03 0.0100 

Tx (m) 1100 1100.01 4.4e-04 -0.0100 
Ty (m) 1500 1500.02 3.7e-04 -0.0200 
Tz (m) 1900 1899.99 0.001 -0.0100 

RMSEx (m) - 0.902 - - 

RMSEy (m) - 0.934 - - 

RMSEz (m) - 0.232 - - 

 

72 inlying, correct point correspondences. The inlying matches were used to compute the 

final transformation parameters. For the Saskatchewan glacier dataset, 11 false 

correspondences were eliminated by the outlier removal algorithm and 141 correct 

correspondences were used to compute the automated parameters.  For the ‘Case 2’ urban 

and non-urban datasets, the ∆𝑝𝑎𝑟𝑎𝑚  changes are equivalent to an absolute mean 

alignment difference of 1.35(±0.29)m and 1.88(±0.91)m respectively. Table 5.8 
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illustrates the AMRE and AMTE errors relative to the reference parameters for each 

‘Case 2’ dataset.  

     Relative to the coverage of the study areas, there is a dense network of keypoints (i.e., 

approximately 1 point per 28x28m
2 

for the urban dataset and 3 points per 1km
2
 for the 

non-urban dataset). Therefore, the degrees of freedom are large resulting in estimating the 

transformation parameters with high precision (Tables 5.6 and 5.7). The minimum and 

maximum of the correspondence residuals from the least squares adjustment for the urban 

scene were -3.05m and 2.11m respectively with mean of 0.78m and standard deviation of   

1.19m. The non-urban scene had minimum and maximum residuals of -2.89m and 3.47m 

with mean of 0.22m and standard deviation of 1.34m. The alignment errors from the 

proposed 3D co-registration method met the proximity requirements of the data 

characteristics. Specifically, for the urban dataset with planimetric and vertical 

positioning accuracies in the range of 0.2 to 0.5m, the 3D approach obtained errors in the 

range of 0.5 to 0.8m. For the non-urban data with a positioning accuracies in the range 

2.0 to 5.0m, the 3D approach obtained errors in the range of 0.2 to 0.9m. 

    Figures 5.5 and 5.6 show the co-registration results produced by the developed 3D-

based alignment method for the urban and glacier scenes respectively. Noticeably, Figure 

5.6(c) (dashed lines) shows an area of significant ice loss on the glacier after automated 

alignment. Figure 5.6(c) is visualized from a side-view for illustration of alignment of the 

glacier. Source and target point clouds in Figures 5.5 and 5.6 are shown at 1:1 scaling in 

their individual coordinate systems and as triangulated meshes for visualization purposes. 
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It is important to note that refinement-based algorithms such as the ICP can now be 

applied to possibly improve the co-registration results and overall accuracy statistics. 

         Figure 5.7 illustrates the alignment differences (i.e., displacement) between the 

source and target datasets for the ‘Case 2’ urban and non-urban scenes respectively. In 

Figure 5.7 (b), the maximum distances of approximately 184m are due to the changes of 

the glacier (red and green areas), while the majority of displacements for the rigid 

portions were several meters (blue areas). ‘Non-rigid’ refinement algorithms (e.g., Li et 

al., 2008) can be applied to morph (or warp) the deformed regions for full alignment. 

 

Table 5.8: Average Angular and Translation errors for ‘Case 2’ datasets. 

Error Measure Urban Co-registration Glacier Co-registration 
AMRE (°) 0.850 0.073 

 AMTE (m) 0.013 0.013 
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Figure 5.5: Alignment of urban test scene (Urban, Loc2). (a) 2005 Aerial photo point 

cloud surface, (b) 2009 Airborne LIDAR point cloud surface, (c) Co-registration result.  

(a) 

(b) 

(c) 
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Figure 5.6: Alignment of Saskatchewan Glacier test site (Non-Urban, Loc3). (a) 1950 

Aerial photo point cloud surface, (b) 2010 WorldView-2 point cloud surface, (c) Co-

registration result (dotted line shows region of significant ice loss on glacier).  

(c) 

(a) 

(b) 
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Figure 5.7: Alignment differences between source and target point clouds for ‘Case 2’ 

datasets. (a) Urban test scene, (b) Non-Urban scene. 

(b) 

(a) 
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5.2  Results for Method 2: Height Map-based   

       Point Cloud Alignment  

 

In this section, results from the second proposed matching framework developed in 

Chapter 4 are presented, i.e., the height map-based point cloud co-registration. Various 

experimental results are used to evaluate the proposed multi-scale keypoint detector and 

the GLP-RT descriptor for height map point matching and 3D point cloud co-registration. 

In the first experiment, the performance of the 2D keypoint correspondence framework is 

compared with existing 2D keypoint detection and descriptor methods including SURF 

(Bay et al., 2008) and SIFT (Lowe, 2004). The second experiment assesses the quality of 

the automatically estimated 3D conformal transformation parameters for source to target 

point cloud co-registration. This is done by comparing against known, reference 

transformation parameters. However, prior to any experiments, the evaluation datasets 

are introduced and empirical tuning is performed to determine the optimal parameters for 

the GLP-RT descriptor. 

 

5.2.1 Experimental datasets 

To demonstrate the capability of this matching and co-registration framework, various 

urban (Loc1 and Loc2) and non-urban (Loc3), multi-sensor 3D point clouds were used. 

Point cloud pairs used for matching: i) have different point distributions (e.g., the source 

point clouds can be uniformly distributed while the target point clouds have non-uniform 

distribution), ii) have different overlapping coverage, iii) have varying point densities 
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between them, and iv) are in different coordinate systems (i.e., source and target point 

clouds to be matched differ by a 3D conformal transformation). Three different datasets 

(i.e., Figures 5.8, 5.9 and 5.10) are used for experimental analysis. Prior to keypoint 

extraction, descriptor generation and matching, point clouds are converted to 2D height 

map images using inverse distance weighting interpolation (Childs, 2004).  

 

5.2.1.1  Dataset 1 (Urban, Loc1) 

The first dataset (Figure 5.8) includes non-uniform point clouds generated from: i) aerial 

images collected by a UAV platform, ii) a mobile laser scanner, and iii) a terrestrial laser 

scanner. The study area is located in Toronto, Ontario, Canada (Loc1). This test site 

comprises of a single building surrounded by vegetation, bare land, paved roadways and a 

parking lot. Vertical (nadir-looking) images (6000 x 4000 resolution) were acquired from 

a 19mm Sony Nex-7 camera mounted on a Geo-X8000 UAV. Afterwards, 657,829 points 

(Figure 5.8(a)) were generated by structure from motion using the Agisoft Photoscan 

(Agisoft, 2016) photogrammetric software. Mobile laser scanning (MLS) point clouds 

(75,105,924 points) were also acquired from Optech’s Lynx mobile mapping vehicle 

(Figure 5.8(b)) and an Optech ILRIS long range terrestrial laser scanner collected 

57,338,771 points (Figure 5.8(c)). The UAV-based point clouds are generated in a non-

georeferenced, local image coordinate system, whilst both the mobile laser and terrestrial 

point clouds are georeferenced. 
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Figure 5.8: Dataset 1 (Urban, Loc1) used to evaluate the proposed height map-based 

point cloud alignment method. (a) UAV-based point clouds (points visualized with RGB 

texture). (b) Mobile laser scanning (MLS) point clouds. (c) Terrestrial laser scanning 

(TLS) point clouds. 

 

5.2.1.2  Dataset 2 (Urban, Loc2) 

The second dataset (Figure 5.9) comprises of point clouds derived from i) aerial images 

acquired from a UAV platform, ii) aerial photos collected from a manned aircraft and iii) 

an airborne laser scanner. This test site is located at York University, Toronto, Ontario, 

Canada (Loc2). This dataset is mainly populated with buildings, pedestrian walkways 

(a) (b) 

(c) 
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Figure 5.9: Dataset 2 (Urban, Loc2) used to evaluate the proposed height map-based 

point cloud alignment method. (a) UAV-based point clouds (points visualized with RGB 

texture). (b) Airborne laser scanning (ALS) point clouds. (c) Photogrammetric point 

clouds from nadir-looking aerial images. 

 

and vegetation. The non-uniform point clouds (7,144,275 points) in Figure 5.9(a) were 

generated using a combination of oblique and nadir-looking video images (640 x 480 

resolution) captured from a Photo3S camera on-board an Aeryon Scout UAV. Agisoft 

Photoscan was used to generate the point clouds. The 57,911 points in Figure 5.9(b) were 

generated from nadir-looking, vertical, aerial digital images captured at 0.15m digital 

resolution and provided by First Base Solutions. The 76,226 points in Figure 5.9(c) were 

obtained from an Optech airborne LIDAR system (ALS) flown from an altitude of 

(a) (b) 

(c) 
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2300m and 0.78m grid spacing. Similar to Dataset 1, the UAV point clouds are in a non-

georeferenced local image coordinate system, whereas the other two datasets are 

georeferenced. 

 

5.2.1.3  Dataset 3 (Non-Urban, Loc3) 

In comparison to the first two datasets, this third dataset is non-urban. The study site is 

the Columbia Icefield situated in Western Canada (Loc3). The icefield comprises snowy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Dataset 3 (Non-Urban, Loc3), the Columbia Icefield, used to evaluate the 

proposed height map-based point cloud alignment method. (Note: elevation-based colour 

ramps are used here for visualization purposes). (a) Photogrammetric point cloud surface 

model from aerial photos of the icefield. (b) WorldView-2 point cloud surface model of the 

icefield. (c) Point cloud surface model from ASTER. 

 

(a) 
(b) 

(c) 
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mountainous regions, glaciers and rivers. The dataset consists of three gridded digital 

surface models of the icefield, which were photogrammetrically generated from imagery 

data collected by different platforms and at different epochs. Figure 5.10(a) has 5,636,140 

points and was generated using aerial photographs collected in 1950. The data in Figure 

5.10(b) was generated from 2010 WorldView-2 (WV-2) satellite imagery and contains 

6,225,640 points. The data in Figure 5.10(c) was acquired from the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital 

Elevation Model (GDEM) and has 9,484,360 points. The 1950 aerial photo point clouds 

were referenced in a local coordinate system, whilst the WV-2 and ASTER point clouds 

were georeferenced. 

 

5.2.1.4  Tuning and testing datasets 

The three presented datasets are split into two separate categories: a tuning dataset group 

and a testing dataset group. The tuning dataset are source and target height map pairs 

used to empirically select the optimal parameters for the GLP-RT descriptor based on 

sensitivity analysis performed in the next section. The testing datasets are independent 

source and target height map pairs not included in the tuning process and are instead used 

for evaluating the accuracies of the height map point matching and 3D point cloud co-

registration. The tuning and testing datasets comprise of source and target height map 

images which differ by scale and a rotation around the Z-axis. The scale ranges from 0 to 

1, for example an applied scale of 0.5 represents downsampling of the original image by 

one-half in each of the two respective image dimensions. There is only one-directional 
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rotation since the simulated data are 2D height map images. These images are rotated 

around an axis perpendicular to the image plane and passing through the image center. 

   Beside the real datasets, additional tuning and training height map datasets were also 

generated to increase the sample size for: i) descriptor parameter selection, and ii) 

evaluating the developed keypoint matching approach in comparison to state-of-the-art 

methods. The datasets are created by applying a rotation and scale change to a source 

height map to produce a simulated target height map. Table 5.9 shows the respective 

source and target combinations which were used for the empirical tuning. Table 5.10 are 

the datasets used in the testing experiment. In total, there are nine tuning height map pairs 

(i.e., three from the ‘real’ datasets and six from the ‘simulated’ datasets) and six testing 

height map pairs (i.e., three from the ‘real’ datasets and three from the ‘simulated’ 

datasets). 

 

5.2.2  Empirical tuning: Selection of GLP-RT descriptor   

          parameters 

 

Empirical tuning for setting the parameter values of feature descriptors has been applied 

in related works such as Guo et al. (2013) and Huang et al. (2014). The GLP-RT keypoint 

descriptor has four parameters: i) the minimum radius minR for the log-polar sampling 

area, ii) the maximum radius maxR for the log-polar sampling area, iii) the number of 

subdividing rays  𝑀 for the log-polar grid, and iv) the number of concentric rings 𝑁 for 

the log-polar grid. In this section, the impact of the individual descriptor parameters on 
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the keypoint matching process is investigated. This is done by varying the values of each 

parameter across heuristically set ranges and evaluating the descriptor on the nine tuning 

datasets from Table 5.9. The objective is to select the parameter values which yield the 

best matching performance based on the recall vs. 1-precision metric (Ke and 

Sukthankar, 2004) defined in Equation 5.1 and Equation 5.2. 

 

Table 5.9: Simulated and real source and target datasets which are used for the empirical 

tuning. (Note: The simulated dataset column includes the rotation and scale values used 

to generate the respective simulated target height maps).  

 

 Simulated tuning dataset 

(Source, Target) 

Real tuning dataset 

(Source, Target) 

Dataset 1 i) UAV, UAVrotation=10°, scale=0.8  

ii) TLS, TLSrotation=15°, scale=0.75 

 

UAV, TLS 

Dataset 2 i) UAV, UAVrotation=20°, scale=0.7 

ii) Aerial image, Aerial image rotation=25°, scale=0.65 

UAV, Aerial image 

Dataset 3 i) Aerial photo, Aerial photo rotation=30°, scale=0.6  

ii) ASTER, ASTER rotation=35°, scale=0.55 

 

Aerial photo, ASTER 

 

 

Table 5.10: Simulated and real source and target datasets which are used for the testing 

experiment. (Note: The simulated dataset column includes the rotation and scale values 

used to generate the respective simulated target height maps). 

 

 Simulated testing dataset 

(Source, Target) 

Real testing dataset 

(Source, Target) 

Dataset 1 i) MLS, MLS rotation=20°, scale=0.7  
 

UAV, MLS 

Dataset 2 i) ALS, ALS rotation=30°, scale=0.6  
 

UAV, ALS 

Dataset 3 i) WV-2, WV-2 rotation=40°, scale=0.5 Aerial photo, WV-2 
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    A TP is recorded when two matching keypoints are from the same corresponding 

positions on the source and target height maps. Similarly, a FP occurs when two 

matching keypoints are from different positions on the source and target height maps. 

   The recall vs. 1-precision graphs are generated by alternately varying one parameter 

while keeping the others fixed. For the source and target height maps in each of the nine 

tuning datasets, keypoints are extracted using the proposed multi-scale detection method, 

their GLP-RT descriptors are computed and correspondences are found via bi-directional 

matching. Their combined recall and 1-precision results are illustrated in Figure 5.11 for 

each GLP-RT parameter. Optimal parameter values are those with high recall and low 1-

precision rates.  

 

5.2.2.1  The minimum radius 

The minR parameter is the radius value of the smallest concentric circle on the log-polar 

sampling grid. The minR should ideally have a value (in pixels) to ensure important 

features at smaller scales are modelled by the descriptor. The minR was tested in 

following range: 0.4% to 1.8% of the maximum dimension of the height map image (in 

pixels). Testing is done at 0.2% intervals for this range. The height, width and cross-

directional dimension of the height map image are considered when choosing the 

maximum dimension. On observing Figure 5.11(a), when the minR values increase 

beyond 1.4%, the descriptor’s performance degrades since critical structural information 

existing at finer scales is not captured / sampled by the log-polar grid. Therefore, the 
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recall vs. 1-precision plots in Figure 5.11(a) indicate that the descriptor performs best at a 

value of minR =1.4% of the maximum height map dimension (in pixels).  

 

5.2.2.2  The maximum radius 

The maxR parameter (in pixels) defines the radius of the outermost circle on the log-polar 

grid. If its value is too small, the descriptor will have insufficient contextual information 

to disambiguate keypoints which exist on similar structures, for instance, similarly 

shaped building corners. On the other hand, when there are keypoints in the vicinity of 

the height map boundaries, exceedingly large maxR values will go beyond the height map 

image limits. This will cause the descriptor to include sampled grid points in regions 

where no useful information exists, thus, distorting the descriptor. The maxR parameter 

was tested between the ranges of 15% to 50% of the maximum dimension of the height 

map image (in pixels). Testing was done at 5% intervals for this range. Figure 5.11(b) 

illustrates that from values 15% to 35%, there is a gradual rise in descriptor performance. 

As the value increases from 35% to 50% there is degradation in the accuracy. On 

analysing the point matching results, this is due to the larger maxR values, which cause 

the majority of the sampled points on the log-polar grid to be outside the height map 

image, thus reducing descriptor’s discriminative ability. Based on Figure 5.11(b), maxR 

was set to be 35% of the maximum height map dimension (in pixels). 
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5.2.2.3  The number of rays and number of rings 

Both the 𝑀 and 𝑁 parameters influence the descriptor dimensionality and 

discriminability (i.e., the descriptor’s ability to distinguish one keypoint from another). If 

the number of rays and rings are too small, the descriptor’s discriminative power will be 

lowered, thus increasing the likelihood of wrong keypoint correspondences. 

Alternatively, if the number of rays and rings are too large, the descriptor can become 

‘over-sensitized’, i.e., the descriptors will be too unique. This will make it difficult to 

establish true source to target point matches. In addition to this, there are also increased 

computations with higher values of 𝑀 and 𝑁. The values of 𝑀 and 𝑁 were tested for the 

range: 20 to 40, over intervals of 4. Observing Figure 5.11(c) and Figure 5.11(d) 

respectively, the descriptor is most optimal when 𝑀=32 and 𝑁=36. Table 5.11 provides a 

summary of the GLP-RT parameter values found by empirical tuning. These descriptor 

parameters are used for the remaining experiments conducted in the dissertation. 

 

Table 5.11: Optimal GLP-RT descriptor parameters after tuning. 

 

Parameter Value 

Minimum radius minR 1.4% (of max. height map dimension) 

Maximum radius maxR 35% (of max. height map dimension) 

Number of rays 𝑀 32 

Number of rings 𝑁 36 
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(a)  

(b) 

(c) (d) 
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Figure 5.11: Recall vs. 1-precision graphs for selecting optimal GLP-RT descriptor 

parameters using the tuning datasets. (a) The minimum radius minR (right plot is a 

magnification of the rectangle in the left plot). (b) The maximum radius maxR (right plot 

is a magnification of the rectangle in the left plot). (c) The number of rays 𝑁. (d) The 

number of rings 𝑀. 

 

5.2.3  Testing experiment: Assessment of the 2D height map  

          approach with other 2D keypoint detectors and   

          descriptors 

 

In this section, the performance of the proposed multi-scale keypoint detector and GLP-

RT descriptor are compared to other state-of-the-art 2D keypoint detectors, as well as, 

with state-of-the-art scale–and rotation–invariant 2D descriptors. This is done using the 

six simulated and real test height map datasets in Table 5.10. Table 5.12 depicts the 

various combinations of detectors and descriptors which are evaluated. For the source 

and target height maps in each of the six test datasets, keypoints are extracted, their 

descriptors are computed and correspondences are found via bi-directional matching. The 

recall vs. 1-precision criterion is used for evaluation. The plots of Figure 5.12 are the 

results showing the average recall and 1-precision value of all 6 datasets for each 

combination. The proposed multi-scale keypoint detection with the GLP-RT descriptor 

(i.e., Combination 8) outperformed the other combinations. The only instance of inferior 

GLP-RT performance was in combination with the SURF detector (i.e., Combination 5), 
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where DSID (i.e., Combination 3) achieved higher matching rates. In terms of keypoint 

detection methods, it was also observed that the proposed wavelet-based detector has 

comparable matching accuracies with the SIFT and SURF detectors. However, this 

occurs when the SIFT and SURF detectors are used in combination with the proposed 

GLP-RT or the DSID descriptors. 

    Figure 5.12 reveals a noticeable disparity. The descriptors (i.e., the SIFT and SURF 

descriptors as used for Combinations 1, 2, 6 and 7) relying on local keypoint scales 

estimated from the detectors have lower matching accuracies in comparison to those not 

relying on scales from detectors (i.e., the GLP-RT and DSID descriptors as used for 

Combinations 3, 4, 5 and 8). On examining the keypoint matching results, it was 

observed that the local estimated scales from the front-end detectors negatively affected 

the matching accuracy due to two main factors.  

    First, the estimated scales provide an insufficient level of local neighbourhood context 

to ensure descriptor discriminability. That is, at the defined scales, the local descriptor 

neighbourhoods were too small and did not capture enough local image content. Second, 

matching between source and target keypoints could not be established because their 

corresponding local neighbourhoods, as defined by their respective keypoint scales, were 

not consistent. That is, source and target descriptor neighbourhoods did not contain 

similar local regions. The lack of similar local scales around keypoints to establish 

correspondence was associated with differences in texture variation and noise between 

the source and target multi-sensor height map images, particularly around object 

boundaries (e.g., building corners). Visual point matching results for the three real test 
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datasets (from Table 5.10) based on the proposed feature matching framework are shown 

in Figures 5.13, 5.14 and 5.15. 

 

Table 5.12: Combinations of 2D keypoint detectors and 2D descriptors evaluated on the 

height map testing datasets. 

 

 Detector Descriptor 

Combination 1 Proposed multi-scale approach SIFT 

Combination 2 Proposed multi-scale approach SURF 

Combination 3 Proposed multi-scale approach DSID 

Combination 4 SIFT Proposed GLP-RT 

Combination 5 SURF Proposed GLP-RT 

Combination 6 SIFT SIFT 

Combination 7 SURF SURF 

Combination 8 Proposed multi-scale approach Proposed GLP-RT 

 

 

 

 

Figure 5.12: Recall vs. 1-precision graphs of the six test datasets using different keypoint 

detectors/descriptor combinations from Table 5.12 (right plot is a magnification of the 

square in the left plot). 
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Figure 5.13: Height map point matching results for real test dataset 1 using proposed 

multi-scale keypoint extraction and GLP-RT descriptor (Left: UAV height map, Right: 

MLS height map). (a) After bi-directional matching. (b) After modified-RANSAC. 

 

(a) 

(b) 



118 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Height map point matching results for real test dataset 2 using proposed 

multi-scale keypoint extraction and GLP-RT descriptor (Left: UAV height map, Right: 

ALS height map). (a) After bi-directional matching. (b) After modified-RANSAC. 

(b) 

(a) 
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Figure 5.15: Height map point matching results for real test dataset 3 using proposed 

multi-scale keypoint extraction and GLP-RT descriptor (Top: Aerial photo height map, 

(a) 

(b) 
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Bottom: WorldView-2 height map). (a) After bi-directional matching. (b) After modified-

RANSAC. 

 

5.2.4  Accuracy analysis of 2D height map-based point cloud   

          co-registration 

 

3D point-cloud co-registration results based on the height map keypoint matching 

approach for the three real test datasets from Table 5.10 are presented and discussed. The 

accuracy of the scale (𝑠), 3 rotation angles (ω, φ, κ) and 3 translation (Tx, Ty, Tz) 

parameters are assessed in two ways based on the: i) results provided by least squares 

adjustment statistics and ii) differences between the seven transformation parameters 

obtained using the proposed automated point matching method versus those from known 

‘reference’ parameters. The reference parameters for the real datasets were computed by 

manually selecting distinct, well distributed corresponding landmark points on both the 

source and target point clouds (8 correspondences were selected for real test datasets 1 

and 2, whilst 27 correspondences were selected for real test dataset 3). Afterwards, a 3D 

conformal transformation least squares adjustment is used to obtain the seven parameters. 

A larger number of corresponding points than the minimum three points required to 

estimate the 3D transformation was used to ensure redundancy of feature point 

observations in the non-linear least squares optimization. This non-linear minimization 

was initialized using Horn’s linear closed-form 3D conformal solution (Horn, 1987). 

From the least squares adjustment, the precision of the parameters (σ) and the root mean 
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square error (RMSE) of the least squares adjustment point observation residuals in the X, 

Y and Z directions were computed. It is noted that: i) when computing the co-registration 

parameters, the point clouds in the local coordinate systems are set as the source point 

cloud, whilst the georeferenced point clouds are set as the target point cloud and ii) large 

georeferenced ‘X’ and ‘Y’ coordinate values are shifted to a local system to avoid 

numerical instabilities during the least squares adjustment. The observations used in the 

least squares adjustment were of equal weights assuming similar accuracies. 

   The minimum and maximum residuals for real test dataset 1 was -0.62m and 1.07m 

with mean of 0.04m and standard deviation of 0.53m. For real test dataset 2, the 

maximum and minimum residuals were -0.96m and 1.58m respectively, with mean of 

0.12m and standard deviation of 1.10m. For real test dataset 3, the maximum and 

minimum residuals were -4.12m and 3.80m with mean of 0.26m and standard deviation 

of 1.35m. The alignment errors from the proposed height map co-registration method met 

the proximity requirements of the data characteristics. Specifically, for the two urban 

datasets with planimetric and vertical positioning accuracies in the range of 0.2 to 0.5m, 

the proposed height map approach obtained errors in the range of 0.3 to 0.6m. For the 

non-urban data with positioning accuracies in the range 2.0 to 5.0m, the height map 

method obtained errors in the range of 0.4 to 1.0m. 

    Tables 5.13, 5.14 and 5.15 contain results of the reference parameters in comparison to 

those estimated using the automated approach. The difference between both are reflected 

by ∆𝑝𝑎𝑟𝑎𝑚. For real test datasets 1, 2 and 3, the ∆𝑝𝑎𝑟𝑎𝑚  changes are equivalent to an 

absolute mean alignment difference of 0.17(±0.09)m, 0.48(±0.13)m and 1.21(±0.37)m 
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respectively. On observing the RMSE in the three directional components, the automated 

method obtained errors of approximately 1m from the three tested datasets. Figures 5.16, 

5.17 and 5.18 show the visual co-registration results for each of the three real tested 

datasets. 

 

Table 5.13: Co-registration result for real test dataset 1 (Urban, Loc1). 

Transformation 

Parameter 
Reference 𝜎𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

Proposed 

Approach 
𝜎𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 

𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 ∆𝑝𝑎𝑟𝑎𝑚 

𝑠 45.17 0.065 45.25 0.043 0.080 
ω (°)   39.25 0.026 38.94 0.012 0.310 
φ (°) -2.86 0.019 -3.01 0.036 0.150 
κ (°) -34.61 0.032 -34.45 0.005 0.160 

Tx (m) 750.29 0.027 750.40 0.040 0.110 
Ty (m) 418.75 0.031 418.72 0.009 0.030 
Tz (m) 126.11 0.014 125.98 0.006 0.130 

RMSEx (m) 0.267 - 0.190 - - 

RMSEy (m) 0.458 - 0.243 - - 

RMSEz (m) 0.509 - 0.414 -  - 

 

Table 5.14: Co-registration result for real test dataset 2 (Urban, Loc2). 

Transformation 

Parameter 
Reference 𝜎𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

Proposed 

Approach 
𝜎𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 

𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 ∆𝑝𝑎𝑟𝑎𝑚 

𝑠 5.74 0.033 5.73 0.048 0.010 
ω (°)   2.76 0.037 2.92 0.022 0.160 
φ (°) -15.89 0.027 -16.32 0.031 0.430 
κ (°) 4.46 0.035 4.15 0.029 0.310 

Tx (m) 170.92 0.049 171.31 0.022 0.390 
Ty (m) 796.35 0.047 795.89 0.018 0.460 
Tz (m) 162.57 0.059 162.21 0.030 0.360 

RMSEx (m) 0.526 - 0.619 - - 

RMSEy (m) 1.003 - 0.744 - - 

RMSEz (m) 0.281 - 0.460 -  - 
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Table 5.15: Co-registration result for real test dataset 3 (Non-Urban, Loc3). 

Transformation 

Parameter 
Reference 𝜎𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

Proposed 

Approach 
𝜎𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 

𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 ∆𝑝𝑎𝑟𝑎𝑚 

𝑠 11.65 0.001 11.63 1.4e-03 0.019 
ω (°)   -9.10 0.014 -9.09 0.011 0.009 
φ (°) 7.70 0.006 7.72 0.009 0.020 
κ (°) 18.45 0.005 18.44 0.004 0.009 

Tx (m) 835.59 0.209 836.72 0.138 1.130 
Ty (m) 1184.33 0.183 1183.29 0.151 1.039 
Tz (m) 2530.65 0.281 2531.05 0.096 0.400 

RMSEx (m) 0.326 - 0.391 - - 

RMSEy (m) 0.607 - 0.753 - - 

RMSEz (m) 0.728 - 1.011 -  - 

 

    Figure 5.19 illustrates the visual alignment differences (i.e., displacement) for points 

which were common on both the source and target real test datasets. For Figure 5.19 c), 

the maximum distances of approximately 400m were due to the unaligned deformation 

areas existent on the icefield. 
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Figure 5.16: Co-registration of point clouds for real test dataset 1(Urban, Loc1). 

 

UAV point clouds  MLS point clouds  

Co-registration result 
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Figure 5.17: Co-registration of point clouds for real test dataset 2 (Urban, Loc2). 

 

UAV point clouds  ALS point clouds  

Co-registration result 
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Figure 5.18: Co-registration of point clouds for real test dataset 3 (Non-Urban, Loc3). 

 

 

 

 

 

 

 

 

Aerial photo surface model  

WorldView-2 surface model  

Co-registration result 
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a) 

b) 

Figure 5.19: Alignment differences between source and target point clouds for the real 

test datasets. a) (Urban, Loc1), b) (Urban, Loc2), c) (Non-Urban, Loc3). 

 

c) 
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5.3  Overall assessment of the proposed 3D-based  

       and height map-based co-registration methods 

 

In this section, the quality of co-registration results obtained from the two proposed 

methods is compared with each other for the three real test datasets in Table 5.10.   

Comparisons are also made with two existing 3D keypoint matching pipelines. For scale-

invariant 3D keypoint detection, the 3D-SIFT algorithm (Rusu and Cousins, 2011; 

Hänsch et al., 2014) was used. For local attribute assignment around the scale-invariant 

keypoints, two rotation-invariant, histogram-based 3D point cloud descriptors were 

evaluated: Fast Point Feature Histograms (FPFH) (Rusu et al., 2009), and Signature of 

Histograms of OrienTations (SHOT) (Tombari et al., 2010). The 3D-SIFT, FPFH and 

SHOT implementations from the Point Cloud Library (Rusu and Cousins, 2011) were 

used. The number of bins for FPFH and SHOT were empirically tuned in a similar 

manner to the RGSH and also using the same tuning dataset defined in Section 5.1.1. 

    Using the ‘reference’ parameters, three measures to indicate co-registration quality 

were computed: (i) the absolute value of the difference between automatically computed 

scale and the reference scale value, |𝑠𝑒𝑟𝑟𝑜𝑟|, (ii) the absolute mean rotational error 

(AMRE) (i.e., average value of the absolute differences between the automatically-

derived and reference angular parameters), and iii) the absolute mean translation error 

(AMTE) (i.e., average value of the absolute differences between the automatically-

derived and reference translation parameters). 
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    From Table 5.16, when compared to reference data, the height map co-registration 

method produced: (i) scale errors range from 0.010 to 0.080, (ii) rotation errors range 

from approximately 0.013° to 0.300° and (iii) translation errors range from 0.090m to 

0.856m. Tables 5.17, 5.18, 5.19 show the co-registration errors for the 3D keypoint 

matching approaches: (i) the proposed surface curvature-based 3D keypoint detector and 

the proposed RGSH point cloud descriptor, (ii) the 3D-SIFT keypoint detector and the 

FPFH point cloud descriptor, and (iii) the 3D-SIFT keypoint detector and the SHOT point 

cloud descriptor.  

 

5.3.1  Observations for real datasets 1 and 2 (Urban, Loc1 and  

          Urban, Loc2) 

 

For the real test datasets 1 and 2, the 3D keypoint descriptor methods (i.e., FPFH, SHOT 

and the proposed RGSH) did not retrieve any inlying point correspondences and hence 

co-registration was unsuccessful. From the 3D keypoint detector phase, for both the 3D-

SIFT and the proposed surface curvature-based detector, it was observed that the scale-

invariant local neighbourhoods around ‘true corresponding’ source and target keypoints 

were generally dissimilar. This resulted in the non-matching of the source and target 

descriptors. For the 3D descriptor formation phase, the FPFH, SHOT and RGSH were all 

affected by dissimilar number of points between local source and target keypoint 

neighbourhoods. 

    Two main factors were primarily responsible for unsuccessful matching when using 

the 3D-descriptor based methods on real test datasets 1 and 2 (Urban, Loc1 and Urban, 
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Loc2). The first factor relates to missing 3D point clouds due to different viewing 

perspectives while collecting data. For example, in real test dataset 1, the building façade 

details are missing from the UAV point clouds, whilst the roof structure details are 

nonexistent on the MLS point clouds. For instance, the lack of points on the building 

walls from the source UAV, and the absence of points on the roof for the target MLS 

datasets produced dissimilar descriptors between ‘corresponding’ source and target 

keypoints on building corners. A similar issue was also present for real test dataset 2, 

where there was a sparsity of building façade details for the ALS point clouds. The 

second factor for unsuccessful matching relates to significant differences in 3D point 

cloud density and point distribution between the source and target datasets. In particular, 

this affects the matching of lower resolution to higher resolution point clouds or vice 

versa, as well as, the matching of regularly gridded, uniform point clouds to those which 

have an irregular, non-gridded distribution or vice versa. In Section 5.1.3, the proposed 

surface curvature-based 3D keypoint detector and the RGSH point cloud descriptor 

successfully co-registered urban datasets with slight differences in point density. 

However, both of these source and target datasets had similar point distribution patterns 

which were uniform and regularly gridded.  

    The experiments on the urban real test datasets 1 and 2 highlight the weaknesses of 3D 

co-registration methods to remain robust when applied to source and target 3D point 

clouds with different characteristics. These include different 3D point cloud sampling 

density and distribution (amount of detail), as well as absence of 3D point clouds caused  
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Table 5.16: Co-registration errors using proposed multi-scale wavelet 2D keypoint 

detector and GLP-RT descriptor. 

Error measure real test dataset 1 

(Urban, Loc1) 

real test dataset 2 

(Urban, Loc2) 

real test dataset 3 

(Non-Urban, Loc3) 

# source KPs/target KPs  148/189 215/314 216/225 

# correspondences 8 11 25 

|𝑠𝑒𝑟𝑟𝑜𝑟| 0.080 0.010 0.019 

AMRE (°) 0.207 0.300 0.013 

AMTE (m) 0.090 0.403 0.856 

 

 

 

 

Table 5.17: Co-registration errors using proposed surface curvature-based 3D keypoint 

detector and RGSH descriptor. 

Error measure real test dataset 1 

(Urban, Loc1) 

real test dataset 2 

(Urban, Loc2) 

real test dataset 3 

(Non-Urban, Loc3) 

# source KPs/target KPs  363/641 330/552 576/608 

# correspondences 0 0 384 

|𝑠𝑒𝑟𝑟𝑜𝑟| - - 0.008 

AMRE (°) - - 0.006 

AMTE (m) - - 0.439 

 

 

 

 

Table 5.18: Co-registration errors using 3D-SIFT 3D keypoint detector and FPFH 

descriptor. 

Error measure real test dataset 1 

(Urban, Loc1) 

real test dataset 2 

(Urban, Loc2) 

real test dataset 3 

(Non-Urban, Loc3) 

# source KPs/target KPs  301/527 278/491 187/251 

# correspondences 0 0 46 

|𝑠𝑒𝑟𝑟𝑜𝑟| - - 0.017 

AMRE (°) - - 0.011 

AMTE (m) - - 0.733 
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Table 5.19: Co-registration errors using 3D-SIFT 3D keypoint detector and SHOT 

descriptor. 

Error measure real test dataset 1 

(Urban, Loc1) 

real test dataset 2 

(Urban, Loc2) 

real test dataset 3 

(Non-Urban, Loc3) 

# source KPs/target KPs  301/527 278/491 187/251 

# correspondences 0 0 49 

|𝑠𝑒𝑟𝑟𝑜𝑟| - - 0.017 

AMRE (°) - - 0.009 

AMTE (m) - - 0.684 

 

 

by different data collection viewpoints (which produces ‘holes’ in the 3D dataset). 

Similar observations have been also been reported by Mahiddine et al. (2015) and 

Mellado et al. (2016). The influence of such heterogeneous point data properties is 

minimized when feature matching is applied on the height map image pairs.  

 

5.3.2  Observations for real dataset 3 (Non-Urban, Loc3) 

In the non-urban, real test dataset 3 experiments, where the source and target datasets 

have the same point density and point distribution characteristics, the 3D-based methods 

(Tables 5.17 to 5.19) produced a larger number of inlying correspondences compared to 

the height map approach (Table 5.16). This is associated with the strength of the 3D-

based co-registration methods which directly utilize the point cloud’s 3D surface 

structure information for extracting keypoints and for defining descriptors. In contrast, 

the height map-based descriptors are limited to morphological terrain attributes from a 

2D perspective.  
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    For real test dataset 3, there is a notable disparity in the number of detected and 

matched keypoints between the two existing 3D co-registration methods (i.e., 3D-

SIFT/FPFH and 3D-SIFT/SHOT in Tables 5.18 and 5.19) and the proposed 3D co-

registration pipeline (Table 5.17). Both the keypoint detection and descriptor generation 

phases determine the amount of valid matches. Specifically, these factors include: i) the 

number of detected keypoints, ii) detection of keypoints at similar locations on both the 

source and target with similarly defined local scales (i.e., similar descriptor 

neighbourhood regions), and iii) descriptor discriminability (i.e., uniqueness).  

    For the proposed 3D detector, keypoint density is controlled by the adaptive non-

maxima suppression parameter ℳ. For complex surfaces such as the icefield where 

deformation has taken place, it is preferable to have more keypoints to increase 

correspondence rates. Therefore, ℳ = 60% was used for all experiments (urban and non-

urban cases). For real test dataset 3, to achieve similar keypoint density to 3D-SIFT, ℳ 

should be in the range of 25% (Table 5.20). 

It was observed for similar keypoint densities, the proposed 3D detector had 112 more 

occurrences of similar keypoint locations (with similar local neighbourhood regions) on 

both the source and target in comparison to 3D-SIFT (Table 5.20). This is associated with 

the different local scale-space extrema detection approaches used by each method. 

Furthermore, the 3D-SIFT computes keypoints using a voxel grid representation of the 

data versus the raw 3D points used by the proposed method. 

    The number of matches obtained for real test dataset 3 was also influenced by the 3D 

descriptor used. For further evaluation, the proposed 3D detector (ℳ =25%) was used in 



134 

Table 5.20: Comparison of 3D keypoint detectors for ‘real dataset 3’ based on 

localization accuracy and similarity of local keypoint scales. 

 

3D Keypoint detector 

# of detected 

keypoints 

(source/target) 

# of keypoints at 

same locations on 

source & target with 

similar local scales 

Density 

(point/km
2
) 

3D-SIFT  187/251 64  ≈ 1 

 Proposed surface 

curvature approach 

(ℳ =25%) 

     241/254 

 

176 

 

          ≈ 1 

Proposed surface 

curvature approach 

(ℳ =60%) 

576/608 429 

 

≈ 2 

 

 

combination with the FPFH and SHOT descriptors, producing 104 and 123 inlying 

matches respectively. In comparison, a higher number of correspondences (i.e., 134) were 

obtained when the proposed RGSH descriptor was used. This highlights the 

discriminative strength of the RGSH, i.e., its capability to provide a unique set of 

attributes for matching keypoints on 3D point cloud surfaces. 

 

5.4  Computation time 

Based on height map matching performed on the 15 datasets (listed in Tables 5.9 and 

5.10), the average computation time for the pipeline (i.e., from keypoint detection to 

modified-RANSAC) is 2 minutes and 17 seconds using MATLAB code on an Intel CPU 

at 3.4 GHz. Processing times for the 3D co-registration framework depend on the density 

and size of the point cloud datasets. From all the evaluated datasets for the proposed 3D 
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keypoint matching method, the Columbia icefield dataset had the largest coverage and 

greatest number of point clouds (i.e., ‘Real dataset 3’ in Section 5.3). On an Intel CPU at 

3.4 GHz using MATLAB code, the total processing time for alignment of this scene was 

4 hours and 47 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



136 

6. Conclusions  

This research has investigated and proposed two approaches for automating the 

alignment of 3D source and target point clouds collected from various data acquisition 

systems (e.g., UAVs, LIDAR and satellite imagery). The developed methods do not 

require approximate alignment between the point cloud datasets to be co-registered. The 

first approach is a 3D-based point cloud co-registration method and the second approach 

is a 2D height map-based point cloud co-registration method.  

      Both of these methods follow a feature matching workflow which includes three main 

steps: keypoint extraction, keypoint descriptor generation and matching of keypoint 

descriptors. The proposed alignment methods can be used for co-registering source and 

target point clouds which differ in terms of a global scale factor, 3D rotation, 3D 

translation and having overlapping coverage without the need for initial transformation 

parameters. The first method is carried out entirely in the 3D point cloud domain whereas 

the second method uses height map images of the 3D point clouds for 2D-based keypoint 

feature matching. 

    Experimental analysis showed that the selection of using one co-registration method 

instead of the other depends strongly on the characteristics of the point cloud dataset. The 

3D-based method for point cloud co-registration relies on local neighbourhood patches 

with similar point characteristics to facilitate strong local region matching. However, 

point cloud pairs to be aligned can have different point densities, different point 

distributions and different level of details (i.e., missing point clouds due to data being 
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collected from different viewing perspectives). These factors increase the fragility of 3D 

descriptors. Such issues can be addressed by using the continuous 2D height map image 

representation of the point clouds to perform feature matching operations. While both 

methods are automated approaches with respect to the extraction and matching of 

keypoints, prior knowledge of the dataset characteristics is required for the selection of 

the method. 

    The work and contents of this dissertation have contributed to the following 

publications (Persad and Armenakis 2015, 2016, 2017a, 2017b, 2017c; Persad et al., 

2017). 

 

6.1  Research outcomes  

This dissertation has presented several research contributions towards solving the 3D 

point cloud alignment problem. For each of the two developed approaches, these 

contributions are summarized, as well as the various findings from their respective 

experimental tests. 

 

6.1.1  Summary of the 3D-based point cloud alignment method 

An automated 3D-based point cloud alignment method for urban and non-urban scenes 

has been presented. The approach can be used for aligning point cloud pairs in different 

3D conformal coordinate systems. There are several components within this framework 

which has been proposed for automatically extracting and matching 3D point features. 
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These include the development of: (a) a scale invariant, curvature-based keypoint 

extraction method with adaptive non-maxima suppression, (b) a scale, rotation and 

translation invariant 3D surface keypoint descriptor, and (c) an approach which uses 

bipartite graph descriptor matching and a RANSAC-type outlier detection method to find 

corresponding keypoints independent of any user-specified thresholds.  

    Experiments conducted in Section 5.1 showed that the automated approach recovered 

3D conformal transformation parameters which were comparable to the known reference 

parameters, even in the presence of significant scale, rotation, and translation changes. 

The approach was tested under two different scenarios. In the first scenario, the co-

registration method was assessed under a “controlled”, noise-free setting, whereby the 

source and target pairs are from the same sensor data acquisition system but with 

different reference systems. In the second case, the method was evaluated using source 

and target point clouds which were in different reference systems and generated from 

different sensors, thereby introducing additional challenges to the matching process such 

as different overlap, different point density, geometric noise/distortions, and deformation. 

The experiment for the first case, using an urban scene, produced an absolute scale factor 

error of 0.0107, an average rotation error of 0.097°, and an average translation error of 

0.020 m relative to the reference parameters. The experiment for the non-urban, glacier 

dataset resulted in an absolute scale factor error of 0.0014, an average rotation error of 

0.122°, and an average translation error of 0.084m. In the second case, the results for the 

urban scene showed an absolute scale factor error of 0.0014, an average rotation error of 

0.850°, and an average translation error of 0.013m. For the non-urban scene, the co-
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registration of the glacier point cloud pair had an absolute scale factor error of 0.0002, an 

average rotation error of 0.073°, and an average translation error of 0.013m. On these 

evaluated datasets, the absolute mean alignment differences relative to reference 

transformation parameters are in the range of 0.23m to 2.81m. The alignment errors from 

the proposed 3D co-registration method met the proximity requirements of the data 

characteristics. 

    The developed method was also assessed on the entire Columbia icefield dataset 

(Section 5.3). For this experiment, the proposed 3D co-registration approach produced 

the highest number of correspondences and the lowest parameter transformation errors in 

comparison to the other evaluated approaches.  

  

6.1.2  Summary of the Height map-based point cloud  

          alignment method 

A height map-based approach for the automatic co-registration of multi-sensor 3D point 

clouds in different 3D conformal coordinate systems has been presented. The method 

uses height maps formed from the 3D point clouds for the extraction of keypoints, 

formation of keypoint descriptors and their subsequent matching. Specific contributions 

are in the development of (i) a wavelet-based, multi-scale 2D keypoint detector, (ii) a 2D 

scale, rotation and translation invariant keypoint descriptor utilizing Gabor derivatives 

and the Rapid transform, and (iii) a bidirectional nearest neighbor approach to find 

matching keypoints.  
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    Based on experiments performed in Section 5.2, the method overcomes some of the 

limitations faced by 3D descriptor-based co-registration approaches and is able to 

automatically align multi-sensor, urban and non-urban 3D point clouds which differ in 

terms of overlap, point distribution and density, sensor viewpoint variations (i.e., missing 

data), scale, 3D rotation and 3D translation. Co-registration experiments with urban and 

non-urban scenes produced scale errors ranging from 0.010 to 0.080, 3D rotation errors in 

the order of 0.013º to 0.300º and 3D translation errors from 0.090m to 0.856m. On these 

evaluated datasets, the absolute mean alignment differences relative to reference 

transformation parameters are in the range of 0.17m to 1.21m. The alignment errors from 

the proposed height map-based co-registration method met the proximity requirements of 

the data characteristics. 

    The proposed 2D detector and 2D descriptor obtained higher true positive and lower 

false positive height map keypoint matching accuracies when compared to existing 2D-

based keypoint correspondence methods (Section 5.2.3).  

     

6.2  Recommendations for future work 

There are several aspects of each approach which can be explored for future research. 

The 3D-based co-registration method currently utilizes two surface attributes for the 

RGSH descriptor formation. Expansion of this descriptor with additional 3D surface 

attributes can potentially improve keypoint correspondence results by introducing 

supplementary shape information into the matching process. Furthermore, the proposed 

3D co-registration approach is not robust to variations in point density and point 
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distribution. Future work can investigate the generation surface mesh descriptors which 

are independent of any point-based attributes. The computational efficiency of the 3D-

based co-registration pipeline can also be improved by conversion to a low-level 

language (e.g., C++) and through the use of parallel programming for subtasks such as 

keypoint detection and descriptor generation. 

    The GLP-RT descriptor for the height map-based co-registration method is multi-

dimensional. In future research, descriptor dimensionality reduction can also be explored 

using methods such as PCA. A more compact and compressed descriptor representation 

can potentially improve overall discriminability and the matching results. 

    For both the 3D-based and height map-based approaches, expansion of the respective 

descriptor tuning databases is highly recommended. The use of more tuning data will 

refine the descriptor’s parameters and accommodate overall descriptor generalization for 

use with other datasets.  

    Both of the proposed co-registration methods utilize keypoints for feature 

correspondences. Alternatively, other geometric primitives can be extracted and used for 

matching, namely keylines or keyplanes. Such higher order features provide more 

geometrical and structural information about the scene in comparison to point features 

(Fan et al., 2010). For instance, linear or planar features can provide additional 

geometrical attributes such as line or plane orientation similarity, which can potentially 

strengthen the matching process when used in combination with local point descriptors. 

Curvilinear features such as ridges or crestlines as used in medical image analysis 

(Pennec et al., 2010) can also be explored. 
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    The descriptors used in this work can handle changes in scale, rotation and translation 

between the source and target. For the icefield dataset, surface deformation changes were 

prevalent in certain regions. The developed RGSH and GLP-RT descriptors were not 

invariant to such deformations and thus, were unable to match keypoints in these areas. 

Therefore, future work can explore the development of surface deformation-invariant 

descriptors. 
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Appendix A 

Bipartite matching using the Hungarian method 

This appendix demonstrates the general procedure for solving the Bipartite matching 

(one-to-one correspondence problem) using the Hungarian method. Assume that the 

following cost matrix is given, where 𝐾𝑃 
𝑆and 𝐾𝑃 

𝑇 are the source and target keypoints 

respectively (the values within the matrix are the matching scores): 

                   

    In the cost matrix above, there are 4 target keypoints and 3 source keypoints, so a 

dummy column is added to the cost matrix. The values within the dummy column are 

assigned the highest cost value from the cost matrix as follows: 
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    After, a similar procedure is applied in a column-wise manner, i.e., each element in a 

column is subtracted from the minimum value of that column: 

 

 

 

    The objective of the next step is to cover all zeros with the least amount of lines 

possible: 

                                   

    Then, subtract all uncovered matrix elements with the minimum uncovered value, i.e., 

0.006. Also, add the minimum value, i.e., 0.006 to those elements covered by two lines: 

                               

    Repeat step 4, i.e., cover all zeros with the least amount of lines possible. The overall 

objective is to stop this procedure when the number of lines is equivalent to the number 

of rows (or columns) of the matrix. As shown below, there are 4 lines and the number of 

rows (or columns) is 4, so this iterative process stops: 
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    Finally, select a set of zeros such that it unique to only one row and one column: 

                            

 

    Thus, based on the locations of zeros, the one to one correspondence list is given as 

follows with a minimum matching cost of 1.603 (i.e., 0.539+0.529+0.535, which is the 

sum of values from the input cost matrix for the selected correspondence row and column 

locations): 

 

a) 𝐾𝑃1
𝑇 , 𝑑𝑢𝑚𝑚𝑦 

b) 𝐾𝑃2
𝑇 , 𝐾𝑃1

𝑆 

c) 𝐾𝑃3
𝑇 , 𝐾𝑃2

𝑆 

d) 𝐾𝑃4
𝑇 , 𝐾𝑃3

𝑆 

 

 

 

 

 

 

 

  

0.225 0.006 0.256 0
0 0 0.024 0.041

0.279 0 0.300 0.034
0 0.006 0 0.044

  

 

   
     

     
        

   
  

   
  

   
  

   
  

 

 

  

0.225 0.006 0.256 0
0 0 0.024 0.041

0.279 0 0.300 0.034
0 0.006 0 0.044

  

   
     

     
        

   
  

   
  

   
  

   
  



158 

Appendix B 

Rapid Transform  

The rapid transform can be used for identifying the similarity between a pair of images if 

there is a cyclic shift between them (i.e., translation-invariant pattern matching). Rapid 

transform takes the pixel values of the images as input and applies a pair of commutative 

functions (Equation 4.5) on the rows and columns of the images. These functions are 

independent of the position of the pattern contents of the image and its shifted version. 

    The following example (Figure B.1) illustrates the rapid transform as applied on a 

synthetic image and a cyclic-shifted version of the same image. The shifts are in both 

horizontal and vertical directions. The output of both the original image and its shifted 

version are the rapid transform coefficients which are both identical.  
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Figure B.1: Example showing rapid transform on a pair of synthetic images with 

translation differences. Top left: Original Image, Top right: Cyclic-shifted version of the 

original image. Bottom: Rapid transform coefficients indicating the similarity of the two 

images regardless of the cyclic shifts. 
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