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ABSTRACT 

 Multimodal image registration is an essential image processing task in remote 

sensing. Basically, multimodal image registration searches for optimal alignment 

between images captured by different sensors for the same scene to provide better 

visualization and more informative images. Manual image registration is a tedious task 

and requires more effort, hence developing an automated image registration is very 

crucial to provide a faster and reliable solution. However, image registration faces 

many challenges from the nature of remote sensing image, the environment, and the 

technical shortcoming of the current methods that cause three issues, namely intensive 

processing power, local intensity variation, and rotational distortion. Since not all 

image details are significant, relying on the salient features will be more efficient in 

terms of processing power.  Thus, the feature-based registration method was adopted 

as an efficient method to avoid intensive processing. The proposed method resolves 

rotation distortion issue using Oriented FAST and Rotated BRIEF (ORB) to produce 

invariant rotation features. However, since it is not intensity invariant, it cannot 

support multimodal data. To overcome the intensity variations issue, Phase 

Congruence (PC) was integrated with ORB to introduce ORB-PC feature extraction to 

generate feature invariance to rotation distortion and local intensity variation. 

However, the solution is not complete since the ORB-PC matching rate is below the 

expectation. Enhanced ORB-PC was proposed to solve the matching issue by 

modifying the feature descriptor. While better feature matches were achieved, a high 

number of outliers from multimodal data makes the common outlier removal methods 

unsuccessful. Therefore, the Normalized Barycentric Coordinate System (NBCS) 

outlier removal was utilized to find precise matches even with a high number of 

outliers. The experiments were conducted to verify the registration qualitatively and 

quantitatively. The qualitative experiment shows the proposed method has a broader 

and better features distribution, while the quantitative evaluation indicates improved 

performance in terms of registration accuracy by 18% compared to the related works.   
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ABSTRAK 

Pengimejan gambar multimodal adalah tugas pemprosesan imej yang 
penting dalam penginderaan jauh. Pada dasarnya, pengimejan gambar 
multimodal mencari penjajaran optimum antara gambar yang diambil oleh 
sensor yang berbeza bagi pemandangan yang sama untuk memberikan 
visualisasi yang lebih baik dan lebih bermaklumat. Pengimejan gambar secara 
manual adalah tugas yang rumit dan memerlukan lebih banyak usaha, oleh itu 
membangunkan pengimejan gambar automatik adalah sangat penting untuk 
memberikan penyelesaian yang lebih cepat dan boleh dipercayai. Walau 
bagaimanapun, petngimejan gambar menghadapi banyak cabaran dari segi sifat 
imej penginderaan jauh, persekitaran, dan kekurangan kaedah teknikal semasa 
yang menyebabkan tiga isu, iaitu daya pemprosesan intensif, variasi intensiti 
tempatan, dan herotan putaran. Oleh kerana tidak semua butiran gambar adalah 
penting, kebergantungan pada ciri-ciri penting akan lebih efisien dari segi daya 
pemprosesan. Oleh itu, kaedah pengimejan berdasarkan ciri diguna pakai kerana 
ini merupakan kaedah yang efisien untuk mengelakkan pemprosesan intensif. 
Kaedah yang dicadangkan bagi menyelesaikan masalah putaran ialah Oriented 
FAST dan Rotated BRIEF (ORB) untuk menghasilkan ciri putaran invarian. 
Namun, kerana ia  bukan  invariasi intensiti, ia tidak dapat menyokong data 
multimodal. Untuk mengatasi masalah variasi intensiti, Phase Congruence (PC) 
digabung dengan ORB untuk memperkenalkan pengekstrakan ciri ORB-PC bagi 
menghasilkan ciri invarian kepada herotan putaran dan variasi intensiti 
tempatan. Namun, penyelesaiannya tidak lengkap kerana kadar pemadanan  
ORB-PC berada di bawah jangkaan. ORB-PC yang dipertingkatkan 
dicadangkan untuk menyelesaikan masalah pemadanan dengan mengubah 
cirinya. Walaupun pemadanan ciri yang lebih baik dicapai, sebilangan besar 
penyimpangan data multimodal menjadikan kaedah penghapusan outlier umum 
tidak berjaya. Oleh itu, kaedah penghapusan outlier Normalized Barycentric 
Coordinate System (NBCS) digunakan kerana ia dapat mencari padanan yang 
lebih tepat walaupun dengan jumlah outlier yang tinggi. Kajian secara kualitatif 
dan kuantitatif dijalankan untuk mengesahkan pengimejan. Kajian kualitatif 
menunjukkan kaedah yang dicadangkan mempunyai taburan ciri yang lebih luas 
dan lebih baik, sementara penilaian kuantitatif menunjukkan peningkatan 
prestasi dari segi ketepatan pendaftaran sebanyak 18% berbanding  hasil kajian 
lain yang berkaitan. 
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CHAPTER 1  

INTRODUCTION 

1.1 Overview 

Image registration is a subsection of the image processing field intend to find 

optimal alignments between images that carry different information for the same 

scene. In the image registration, transformation is only done for one image, which is 

called floating, moving, or target image, while the second image remains constant and 

is known as the fixed or reference image.  

Correct registrations are related to distortion complexity between images, 

therefore, accurate registration sometime requires a different Degree of Freedom 

(DoF) parameters based on search space, rigid or non-rigid transformation model. 

Non-rigid transformation is complex, so it needs to adjust many parameters. 

Nevertheless, non-rigid usually used with medical images because it is more suitable 

for the flexible nature of the human body. On the other hand, rigid transformation is 

less complex, therefore, it needs fewer DoF parameters compared to non-rigid. 

Accordingly, rigid transformation is used in this study because it provides enough 

transformation space necessary to register remote sensing images in most cases (Pluim, 

Maintz and Viergever, 2003; Le Moigne, Netanyahu and Eastman, 2011; Wang et al., 

2015; Rundo et al., 2016). 

Image registration has many applications in medical imaging, remote sensing, 

industry, and machine vision (Goshtasby, 2005; El-Gamal, Elmogy and Atwan, 2016). 

For instance, decision-makers may be required to use an old historical optical image 

with a newly acquired SAR image as an optical image may not be available. The 

effective of SAR sensors are able to see through clouds and take images at night that 

could be the only option during a catastrophic event. However, images obtained from 

SAR sensors have very different characteristics from the optical sensor images. 

Registering those images is not an easy task because of the representation difference, 

such as intensity variation and noise. Such differences must be resolved by a 
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registration method before using these images in various applications such as change 

detection, image fusion, and 3D visualization. Hence, image transformation model has 

a strong relation to registration processing complexity, being either rigid or non-rigid 

(Zitová and Flusser, 2003; Mani and Arivazhagan, 2013).  

There are many approaches for image registration of remote sensing, such as 

multimodal and multi-temporal, each of which serves a certain purpose. Multimodal 

images are captured by different devices and provide different information for the 

same scene. Registering multimodal images make the output image more informative 

that can be visualized better than an individual image. Therefore, there are many 

studies that try to find a solution to correctly align images using multimodal image 

registration methods. While multi-temporal registration can be used to monitor 

developments in a specific area or estimate the damage after a natural disaster over a 

period of time. Image registration is required to align images before the change 

detection model finds changes between the images. In general, accurate registration 

has a high impact on image fusion and change detection (Brown, 1992; Dawn, Saxena 

and Sharma, 2010; Xu et al., 2016). Therefore, proposing a new solution for the issues 

related to multimodal image registration can improve the accuracy of the related 

application. 

Multimodal image registration methods have four approaches, intensity-based, 

hybrid, coarse-to-fine, and features-based. The intensity-based method computes the 

optimal registration by finding the highest degree of similarity between the images at 

the pixel level (El-Gamal, Elmogy and Atwan, 2016). Hybrid methods integrate 

intensity-based, feature-based, or other methods to accomplish registration tasks 

(Murphy et al., 2016). Coarse-to-fine find near to optimal solution in the first phase 

then uses a more accurate method for optimal registration in the second phase (Gong 

et al., 2014). Usually, the fine phase is more computationally expensive than the coarse 

phase because it adopts intensity-base methods. Feature-based is the most 

computational efficient approach because it uses salient image features for registration 

(Li, Hu and Ai, 2018).  
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1.2 Problem Background 

Image registration solves the spatial distortion between the images before 

image fusion and analysis are carried out. Any small amount of distortion between the 

images has a negative impact on the results; thus, many solutions were proposed to 

overcome this issue. Interestingly, the first use of this method was for remote sensing 

at the beginning of the 1970s (Goshtasby, 2012). Later, multimodal image registration 

began to be used in the medical field (Goshtasby, 2012).  

The beginning of image registration was based on correlation coefficients 

(Svedlow, Mcgillem and Anuta, 1978), until the breakthrough in image registration 

method introduced a multimodal image registration method called mutual information. 

Viola (1995) introduced mutual information in (Viola and WELLS III, 1997). Since 

then, mutual information has been used as an essential method for similarity measure 

in multimodal image registration. In addition, many MI-based methods were proposed 

such as, normalized mutual information (NMI) (Studholme, Hill and Hawkes, 1999), 

the regional mutual information (Studholme et al., 2006), the localized mutual 

information (Klein et al., 2008), the conditional mutual information (Loeckx et al., 

2010), and symmetric form of mutual information, so-called Jeffery’s divergence (Xu 

et al., 2016). Because intensity-based method need a lot of processing powers so the 

feature-based method start raising as a less expensive (Woo, Stone and Prince, 2015) 

but an accurate solution. 

Feature-based multimodal registration mainly focuses on improving feature 

extraction and matching. Feature extraction utilizes image structures to extract salient 

features for the registration process (Li, Hu and Ai, 2018). Well-known feature 

extraction methods, such as Scale-invariant feature transform (SIFT), has been adopted 

for multimodal image registration to poor results as these methods were designed for 

monomodal images. In related works (Mukherjee, Velez-Reyes and Roysam, 2009; 

Schwind et al., 2010), it was proven that directly using SIFT in multimodal may 

wrongly represent the features due to local intensity variations. Therefore, certain 

improvements to multimodal images are necessary. 
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New feature-based image registration methods have been developed to support 

local intensity variation in multimodal images. Hasan, Pickering and Jia, (2012a) 

proposed a modified SIFT feature extraction for multimodal images that used edge 

detection based on image gradient. Uniform Robust SIFT (UR-SIFT) is a strategy for 

an entropy-based high-quality SIFT feature extraction method that creates a uniform 

distribution that is then filtered for mismatches to get more accurate results (Sedaghat, 

Mokhtarzade and Ebadi, 2011). Adaptive Binning Scale-Invariant Feature Transform 

(AB-SIFT) computes local feature descriptors using an adaptive binning gradient 

histogram, which makes it more robust against local geometric distortions (Sedaghat 

and Ebadi, 2015). These feature-based methods generally use gradient information to 

identify and describe features. However, they are highly susceptible to local intensity 

variations. In other words, the robust features mean they are not affected by local 

intensity variation or spatial distortion. 

Gradient-based feature methods cannot provide good results with multimodal 

images as these methods are affected by local intensity variations as well as other 

intensity changes, such as illumination and noise (Ma et al., 2018). These effects are 

common in multimodal images, so gradient-based feature methods produce unstable 

and imprecise features (Ma et al., 2018). The main issue is that the feature extraction 

method may have the wrong feature descriptions. Thus, there are insufficient correct 

matches, which decreases feature position accuracy. Therefore, a new method is 

needed to solve this issue. 

Extracted features using the gradient-based feature are not efficient for 

multimodal images. A method based on the frequency domain, called Phase 

Congruency (PC), was introduced to image registration to improve feature consistency 

in multimodal data (Kovesi, 2003). PC has great advantages in feature extraction and 

detection for multimodal images as it is not affected by illumination and contrast 

variations while being robust to handle the speckled noise that appears in radio images 

such as SAR (Dellinger et al., 2015; Ma et al., 2018) 

Synthetic Aperture Radar - Scale-Invariant Feature Transform (SAR-SIFT) 

operators improved SIFT feature extraction when registering noisy SAR images 
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(Dellinger et al., 2015). However, it cannot be applied directly to a multimodal image. 

To address this issue, Ma et al., 2018 (Ma et al., 2018) introduced phase congruency 

(PC) for SAR-SIFT. PC-SAR-SIFT successfully integrated PC into SAR-SIFT 

operators to support multimodal images. Outliers were removed using spatial 

constraints such as position and orientation. Consequently, PC shows good results for 

multimodal images and assists feature extraction methods in getting more robust 

features with different modalities. The PC also increases the correct matching rate, 

which improves registration accuracy. 

Radiation-Invariant Feature Transform (RIFT) adopts a Maximum Index Map 

(MIM) for feature extraction. MIM is created using PC convolution sequences, 

according to log-Gabor. MIM has significant advantages with an intensity variation 

robustness that is computationally inexpensive (Li, Hu and Ai, 2018).  

The particular problems of feature-based image registration lie within two main 

factors; local intensity variation from different pattern representations over modalities 

and spatial distortion from external environmental factors (Ghaffari and Fatemizadeh, 

2014; Xu et al., 2016). Local intensity variation has gained much attention from 

scientists, and many solutions have been proposed to deal with it. Similar to local 

intensity variation, the effect of spatial distortion is significant and always exists 

between registered images. Therefore, scientists proposed solutions to solve different 

types of distortion, such as horizontal, vertical, and scale. However, rotation distortion 

does not gain the same attention from the research community as other kinds of spatial 

distortion (Xu et al., 2016; Ye et al., 2017). Also, rotation distortion has limited feature 

extraction methods to deal with, therefore, rotation distortion is still an open challenge 

(Wei et al., 2013). 

Figure 1.1 presents the gap discovery scenario for image registration in change 

detection and image fusion for multimodal remote sensing. The gap implies by 

limitations of existing studies and challenges facing registration methods. The 

limitation of the existing studies is required to discover the gap and the motivation to 

address it. A reliable image registration method should also be able to cope with 

multimodal limitations, which are intensity variations and rotation distortions. In other 
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words, the reliable registration method provides similar results even with a different 

dataset as it has limited affected by data variation. 

Finally, the desired solution is characterized to resolve the gap with satisfactory 

results. The solution should be rotation and intensity invariant, so accurate registration 

can be found efficiently. 

 

Figure 1.1 Research Problem Scenario 
 

1.3 Problem Statement 

Multimodal image registration is a method behind many essential remote 

sensing applications, such as image fusion and change detection (Ye and Shan, 2014). 

This method is capable of providing better and more informative visualization of an 

image, which can help remote sensing analysis. Due to the complementary information 

content of remote sensing images from different sensors, it is necessary to integrate 

these images for analyses, such as land cover change detection. Image registration 
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brings images captured by different sensors into a single spatial domain. Image 

registration needs further research to enhance accuracy. However, current methods 

have a limited capability to registrar images when rotation distortion is present.  

The multimodal image registration community has proposed many methods to 

solve image registration issues, such as intensity variation or rotation distortion. These 

methods can be categorized as intensity-based, feature-based, and others. Feature-

based methods use the matched features between images to calculate transformation 

parameters for the floating image. Calculations for feature-based image registration 

requires feature detection, feature description, and feature matching methods that can 

deal with intensity and pattern variations in multimodal images. However, the reason 

behind choosing feature-based over other approaches is explained in Chapter 2 in 

detail. 

Feature detection for monomodal images can be used to detect corners, which 

are a preferable feature (Li, Hu and Ai, 2018), as discussed later in this thesis. 

However, feature descriptions that work effectively for monomodal images cannot be 

applied directly to multimodal images because the feature description will not be 

matched with their corresponding features due to different representations in each 

image. In this thesis, Phase Congruency (PC) was adopted for multimodal image 

registration to make the features more relevant. 

Remote sensing rotation distortion is an inevitable issue for image registration. 

Existing methods can deal with horizontal and vertical distortion, but rotation still 

needs further research. Methods such as Radiation-Invariant Feature Transform 

(RIFT) (Li, Hu and Ai, 2018) and SIFT-based methods (Hasan et al., 2010; Hasan, 

Pickering and Jia, 2012b; Dellinger et al., 2015; Ma et al., 2017, 2018) still need 

improvements in terms of registration accuracy. Therefore, developing rotation-

invariant features is inevitable because it can help in finding more matches and 

improving registration accuracy. To solve this issue, this study adopts Oriented FAST 

and Rotated BRIEF (ORB) (Rublee, Rabaud and Konolige, 2011) because it extracts 

rotation-invariant features efficiently. However, ORB cannot deal with multimodal 
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data as it is designed for monomodal images. Thus, this study integrated ORB with PC 

to support intensity invariance.  

Based on the above issues, the main research question is: 

How to build an efficient and accurate image registration method that 
can find optimal alignments between two imperfect multimodal remote 
sensing images according to rigid transformations? 

 

Thus, the following issues need to be addressed: 

(a) Could the proposed method extract intensity invariant and rotation invariant 

features from multimodal images? 

(b) Could the proposed method improve matching rate accuracy between the 

extracted features? 

(c) Could the matching process find correct correspondences and avoid outliers to 

enhance registration accuracy? 

 

1.4 Research Goal 

The main goal of this research is to develop a feature-based registration method 

for multimodal remote sensing images that achieves more accurate registration by 

extracting robust correspondence features using the proposed method in the presence 

of local intensity variations and rotation distortions. 

1.5 Study Objectives  

To accomplish the research goal, this study addressed the following objectives: 

(a) To propose an integration between the ORB feature extraction method and 

Phase Congruency (ORB-PC) to minimize local intensity variation effects. 
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(b) To improve the feature matching rate by introducing the enhanced ORB-PC 

(EORB-PC) feature extraction through the adoption of the BRIEF feature 

description method to resolve misrepresented features issue. 

(c) To enhance registration accuracy by integrating the EORB-PC feature 

extraction method with Normalized Barycentric Coordinate System (NBCS) 

feature matching so more correct matches can be found. 

 

1.6 Research Scope  

This research presents a feature-based registration method for remote sensing 

images. The scope of this research covers the following:  

(a) The type of variation between the images is local intensity variation. 

(b) This study mainly focuses on rigid transformations for multimodal remote 

sensing images, specifically, rotation distortions. 

(c) In this study, all experiments were conducted with remote sensing datasets in 

different locations. 

This work also adopts a rigid transformation for remote sensing images similar 

to (Xu et al., 2016; Li, Hu and Ai, 2018).  

1.7 Study Significance  

Multimodal image registration problems are present in many fields and play a 

vital role in common remote sensing applications, such as image fusion and change 

detection (Hasan, Pickering and Jia, 2012b; El-Gamal, Elmogy and Atwan, 2016). 

Manual registration is a time-consuming and tedious process that is not suitable for 

real-life applications, therefore, developing an automatic image registration is 

essential.  
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The goal of developing a fully automated image registration method was to 

overcome the challenges facing existing registration methods, such as intensity 

invariance or spatial distortion. To achieve this goal, feature-based registration 

methods have been developed with reliable intensity invariance features and robust 

matching methods. Existing image registration studies have shown improved accuracy 

and decreased error rates. However, these results are inconclusive because sometimes 

rotation distortion was not taken into account even though it may be present in 

naturally collected remote sensing images (Wu et al., 2015). In this case, testing 

images with different degrees of rotation is necessary to confirm the effectiveness of 

these methods for actual scenarios. 

Nonetheless, the significance of this study is not exclusive to multimodal image 

registration, but it will also contribute to knowledge development. 

1.8 Thesis Structure and Organization 

This thesis consists of seven chapters as follows:  

 Chapter 1 

This chapter presents the research gap and the steps used to resolve it with well-

established objectives. The research aim, scope, and significance are explained and 

summarized in Table 1.1 Each objective achieved part of the solution to get a better 

image registration method. The contributions of each objective enhanced the results of 

the next step and became an essential part of its improvement. Also, the benchmarks 

used to qualitatively and quantitatively validate the results of each objective were 

explained in the same table. 

 Chapter 2  

This chapter provides an overview of related studies on multimodal image 

registration and defines the common problem that motivated this study. The chapter 
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also describes the most important image registration components and why particular 

research objectives were included or excluded. 

 Chapter 3  

This chapter describes the research methods and strategies used to achieve the 

study objectives. It also explains the datasets and measures used to validate the 

proposed method. 

 Chapter 4 

This chapter, titled ‘Oriented FAST and Rotated BRIEF with Phase 

Congruency Feature Extraction for Local Intensity Invariant’, gives a detailed 

explanation of the proposed feature extraction that improves feature extraction 

accuracy in terms of intensity variation and rotation distortion. 

 Chapter 5 

This chapter Enhances ORB-PC feature extraction by modifying the ORB 

feature descriptor to simplify the features by resolving features misrepresentation, thus 

increase the matching rate. The enhancement was discussed in detail, and many 

features samples before and after the modification are demonstrated. Finally, the 

method tested and compared with the related works. 

 Chapter 6 

EORB-PC feature extraction and NBCS has been integrated to form ORB-PC 

image registration. EORB-PC feature extraction can provide reliable features that are 

required to calculate the registration. Invalid feature matches are high with multimodal 

images, so NBCS feature matching is adopted because it can find the correct matches 

even with high outliers rate efficiently. The proposed registration method has been 

evaluated qualitatively and quantitatively in a variety of real experiments.  
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 Chapter 7 

This chapter contains the thesis conclusion and the main study contributions. 

This chapter draws general conclusions from the results, summarizes important 

findings, and presents the research contributions. Several recommendations for 

addressing the limitations of the proposed methods are explained to provide potential 

future research directions. 
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Table 1.1 Summary table 

 

 Objective     Findings Contribution Benchmark  Validation method 

1 To propose an integration between the 

ORB feature extraction method and 

Phase Congruency (ORB-PC) to 

minimize local intensity variation 

effects. 

- Handle local intensity variation by 

introducing Phase Congruency (PC) 

to ORB. 

- Minimize rotation distortion effect 

by ORB 

- ORB-PC feature 

extraction method 

- ORB - Number of 

matches (NM) 

- RMSE 

2 To improve the feature matching rate by 

introducing the enhanced ORB-PC 

(EORB-PC) feature extraction through 

the adoption of the BRIEF feature 

description method to resolve 

misrepresented features issue. 

- Increase the number of matches and 

matching rate by adopting BRIEF 

for feature description 

- EORB-PC feature 

extraction method 

- ORB 

- ORB-PC 

- NM  

- RMSE 

3 To enhance registration accuracy by 

integrating the EORB-PC feature 

extraction method with Normalized 

Barycentric Coordinate System (NBCS) 

feature matching so more correct 

matches can be found. 

- Enhance the matching accuracy of 

EORP-PC features using NBCS. 

- EORB-PC + NBCS 

image registration 

method 

- ORB 

- RIFT 

- Qualitative  

- RMSE 

- NCM 
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