2,868 research outputs found

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Multifarious Hierarchies of Mechanical Models for Artist Assigned Levels-of-Detail

    Get PDF
    International audienceWe present a new framework for artist driven level of detail in solid simulations. Simulated objects are simultaneously embedded in several, separately designed deformation models with their own independent degrees of freedom. The models are ordered to apply their deformations hierarchically, and we enforce the uniqueness of the dynamics solutions using a novel kinetic filtering operator designed to ensure that each child only adds detail motion to its parent without introducing redundancies. This new approach allows artists to easily add fine-scale details without introducing unnecessary degrees-of-freedom to the simulation or resorting to complex geometric operations like anisotropic volume meshing. We illustrate the utility of our approach with several detail enriched simulation examples

    Animating Human Muscle Structure

    Get PDF
    Graphical simulations of human muscle motion and deformation are of great interest to medical education. In this article, the authors present a technique for simulating muscle deformations by combining physically and geometrically based computations to reduce computation cost and produce fast, accurate simulations

    Animation, Simulation, and Control of Soft Characters using Layered Representations and Simplified Physics-based Methods

    Get PDF
    Realistic behavior of computer generated characters is key to bringing virtual environments, computer games, and other interactive applications to life. The plausibility of a virtual scene is strongly influenced by the way objects move around and interact with each other. Traditionally, actions are limited to motion capture driven or pre-scripted motion of the characters. Physics enhance the sense of realism: physical simulation is required to make objects act as expected in real life. To make gaming and virtual environments truly immersive,it is crucial to simulate the response of characters to collisions and to produce secondary effects such as skin wrinkling and muscle bulging. Unfortunately, existing techniques cannot generally achieve these effects in real time, do not address the coupled response of a character's skeleton and skin to collisions nor do they support artistic control. In this dissertation, I present interactive algorithms that enable physical simulation of deformable characters with high surface detail and support for intuitive deformation control. I propose a novel unified framework for real-time modeling of soft objects with skeletal deformations and surface deformation due to contact, and their interplay for object surfaces with up to tens of thousands of degrees of freedom.I make use of layered models to reduce computational complexity. I introduce dynamic deformation textures, which map three dimensional deformations in the deformable skin layer to a two dimensional domain for extremely efficient parallel computation of the dynamic elasticity equations and optimized hierarchical collision detection. I also enhance layered models with responsive contact handling, to support the interplay between skeletal motion and surface contact and the resulting two-way coupling effects. Finally, I present dynamic morph targets, which enable intuitive control of dynamic skin deformations at run-time by simply sculpting pose-specific surface shapes. The resulting framework enables real-time and directable simulation of soft articulated characters with frictional contact response, capturing the interplay between skeletal dynamics and complex,non-linear skin deformations

    An Intestinal Surgery Simulator: Real-Time Collision Processing and Visualization

    Get PDF
    International audienceThis research work is aimed towards the development of a VR-based trainer for colon cancer removal. It enables the surgeons to interactively view and manipulate the concerned virtual organs as during a real surgery. First, we present a method for animating the small intestine and the mesentery (the tissue that connects it to the main vessels) in real-time, thus enabling user-interaction through virtual surgical tools during the simulation. We present a stochastic approach for fast collision detection in highly deformable, self-colliding objects. A simple and efficient response to collisions is also introduced in order to reduce the overall animation complexity. Secondly, we describe a new method based on generalized cylinders for fast rendering of the intestine. An efficient curvature detection method, along with an adaptive sampling algorithm is presented. This approach, while providing improved tessellation without the classical self-intersection problem, also allows for high-performance rendering, thanks to the new 3D skinning feature available in recent GPUs. The rendering algorithm is also designed to ensure a guaranteed frame rate. Finally, we present the quantitative results of the simulations and describe the qualitative feedback obtained from the surgeons

    Essential techniques for laparoscopic surgery simulation

    Get PDF
    Laparoscopic surgery is a complex minimum invasive operation that requires long learning curve for the new trainees to have adequate experience to become a qualified surgeon. With the development of virtual reality technology, virtual reality-based surgery simulation is playing an increasingly important role in the surgery training. The simulation of laparoscopic surgery is challenging because it involves large non-linear soft tissue deformation, frequent surgical tool interaction and complex anatomical environment. Current researches mostly focus on very specific topics (such as deformation and collision detection) rather than a consistent and efficient framework. The direct use of the existing methods cannot achieve high visual/haptic quality and a satisfactory refreshing rate at the same time, especially for complex surgery simulation. In this paper, we proposed a set of tailored key technologies for laparoscopic surgery simulation, ranging from the simulation of soft tissues with different properties, to the interactions between surgical tools and soft tissues to the rendering of complex anatomical environment. Compared with the current methods, our tailored algorithms aimed at improving the performance from accuracy, stability and efficiency perspectives. We also abstract and design a set of intuitive parameters that can provide developers with high flexibility to develop their own simulators

    Virtual humans: thirty years of research, what next?

    Get PDF
    In this paper, we present research results and future challenges in creating realistic and believable Virtual Humans. To realize these modeling goals, real-time realistic representation is essential, but we also need interactive and perceptive Virtual Humans to populate the Virtual Worlds. Three levels of modeling should be considered to create these believable Virtual Humans: 1) realistic appearance modeling, 2) realistic, smooth and flexible motion modeling, and 3) realistic high-level behaviors modeling. At first, the issues of creating virtual humans with better skeleton and realistic deformable bodies are illustrated. To give a level of believable behavior, challenges are laid on generating on the fly flexible motion and complex behaviours of Virtual Humans inside their environments using a realistic perception of the environment. Interactivity and group behaviours are also important parameters to create believable Virtual Humans which have challenges in creating believable relationship between real and virtual humans based on emotion and personality, and simulating realistic and believable behaviors of groups and crowds. Finally, issues in generating realistic virtual clothed and haired people are presente
    • …
    corecore