65 research outputs found

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    Random walker image registration with inverse consistency

    Full text link
    One important property of a registration solution is in-verse consistency. While often overlooked, this property is critical in many medical applications, including radiation-therapy treatment planning and unbiased atlas-construction. In this paper, we propose a novel extension to the graph-based random walker image registration (RWIR) algorithm to ensure its inverse consistency. In contrast to many exist-ing inverse-consistent algorithms, where two bi-directional transformations are independently sought and subsequently averaged, we calculate both transformations simultaneously by performing a constrained graph labeling in a common domain onto which both images are mapped, and employ a set of coupled labels so that both transformations are computed within a single optimization step. As our results on synthetic and real problems involving cardiac, thigh and brain images demonstrate, our method not only improved in-verse consistency of RWIR, but also statistically significantly improved its accuracy. Comparison to another state-of-the-art symmetric algorithm on various datasets also gave highly encouraging results. 1

    Supervised manifold distance segmentation

    Get PDF
    In this paper, I will propose a simple and robust method for image and volume data segmentation based on manifold distance metrics. In this approach, pixels in an image are not considered as points with color values arranged in a grid. In this way, a new data set is built by a transform function from one traditional 2D image or 3D volume to a manifold in higher dimension feature space. Multiple possible feature spaces like position, gradient and probabilistic measures are studied and experimented. Graph algorithm and probabilistic classification are involved. Both time and space complexity of this algorithm is O(N). With appropriate choice of feature vector, this method could produce similar qualitative and quantitative results to other algorithms like Level Sets and Random Walks. Analysis of sensitivity to parameters is presented. Comparison between segmentation results and ground-truth images is also provided to validate of the robustness of this method

    Regmentation: A New View of Image Segmentation and Registration

    Get PDF
    Image segmentation and registration have been the two major areas of research in the medical imaging community for decades and still are. In the context of radiation oncology, segmentation and registration methods are widely used for target structure definition such as prostate or head and neck lymph node areas. In the past two years, 45% of all articles published in the most important medical imaging journals and conferences have presented either segmentation or registration methods. In the literature, both categories are treated rather separately even though they have much in common. Registration techniques are used to solve segmentation tasks (e.g. atlas based methods) and vice versa (e.g. segmentation of structures used in a landmark based registration). This article reviews the literature on image segmentation methods by introducing a novel taxonomy based on the amount of shape knowledge being incorporated in the segmentation process. Based on that, we argue that all global shape prior segmentation methods are identical to image registration methods and that such methods thus cannot be characterized as either image segmentation or registration methods. Therefore we propose a new class of methods that are able solve both segmentation and registration tasks. We call it regmentation. Quantified on a survey of the current state of the art medical imaging literature, it turns out that 25% of the methods are pure registration methods, 46% are pure segmentation methods and 29% are regmentation methods. The new view on image segmentation and registration provides a consistent taxonomy in this context and emphasizes the importance of regmentation in current medical image processing research and radiation oncology image-guided applications

    Tracer-Kinetic Model-Driven Motion Correction with Application to Renal DCE-MRI

    Get PDF
    A major challenge of the image registration in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is related to the image contrast variations caused by the contrast agent passage. Tracer-kinetic model-driven motion correction is an attractive solution for DCE-MRI, but previous studies only use the 3-parameter modified Tofts model. Firstly, a generalisation based on a 4-parameter 2-compartment tracer-kinetic model is presented. A practical limitation of these models is the need for non-linear least-squares (NLLS) fitting. This is prohibitively slow for image-wide parameter estimations, and is biased by the choice of initial values. To overcome this limitation, a fast linear least-squares (LLS) method to fit the two-compartment exchange and -filtration models (2CFM) to the data is introduced. Simulations of normal and pathological data were used to evaluate calculation time, accuracy and precision of the LLS against the NLLS method. Results show that the LLS method leads to a significant reduction in the calculation times. Secondly, a novel tracer-kinetic model-driven motion correction algorithm is introduced which uses a 4-parameter 2-compartment model to tackle the problem of image registration in 2D renal DCE-MRI. The core architecture of the algorithm can briefly described as follows: the 2CFM is linearly fitted pixel-by-pixel and the model fit is used as target for registration; then a free-form deformation model is used for pairwise co-registration of source and target images at the same time point. Another challenge that has been addressed is the computational complexity of non-rigid registration algorithms by precomputing steps to remove redundant calculations. Results in 5 subjects and simulated phantoms show that the algorithm is computationally efficient and improves alignment of the data. The proposed registration algorithm is then translated to 3D renal dynamic MR data. Translation to 3D is however challenging due to ghosting artefacts caused by within-frame breathing motion. Results in 8 patients show that the algorithm effectively removes between-frame breathing motion despite significant within-frame artefacts. Finally, the effect of motion correction on the clinical utility has been examined. Quantitative evaluation of single-kidney glomerular filtration rate derived from DCE-MRI against reference measurements shows a reduction of the bias, but precision is limited by within-frame artefacts. The suggested registration algorithm with a 4-parameter model is shown to be a computational efficient approach which effectively removes between-frame motion in a series of 2D and 3D renal DCE-MRI data

    Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The joint workshop of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, and the Vision and Fusion Laboratory (Institute for Anthropomatics, Karlsruhe Institute of Technology (KIT)), is organized annually since 2005 with the aim to report on the latest research and development findings of the doctoral students of both institutions. This book provides a collection of 16 technical reports on the research results presented on the 2009 workshop

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    High-fidelity graphics using unconventional distributed rendering approaches

    Get PDF
    High-fidelity rendering requires a substantial amount of computational resources to accurately simulate lighting in virtual environments. While desktop computing, with the aid of modern graphics hardware, has shown promise in delivering realistic rendering at interactive rates, real-time rendering of moderately complex scenes is still unachievable on the majority of desktop machines and the vast plethora of mobile computing devices that have recently become commonplace. This work provides a wide range of computing devices with high-fidelity rendering capabilities via oft-unused distributed computing paradigms. It speeds up the rendering process on formerly capable devices and provides full functionality to incapable devices. Novel scheduling and rendering algorithms have been designed to best take advantage of the characteristics of these systems and demonstrate the efficacy of such distributed methods. The first is a novel system that provides multiple clients with parallel resources for rendering a single task, and adapts in real-time to the number of concurrent requests. The second is a distributed algorithm for the remote asynchronous computation of the indirect diffuse component, which is merged with locally-computed direct lighting for a full global illumination solution. The third is a method for precomputing indirect lighting information for dynamically-generated multi-user environments by using the aggregated resources of the clients themselves. The fourth is a novel peer-to-peer system for improving the rendering performance in multi-user environments through the sharing of computation results, propagated via a mechanism based on epidemiology. The results demonstrate that the boundaries of the distributed computing typically used for computer graphics can be significantly and successfully expanded by adapting alternative distributed methods

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license
    • …
    corecore