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SUPERVISED MANIFOLD DISTANCE SEGMENTATION 

 

by 

 

Guanyu Wang 

BE., Computer Science and Technique, Xian University of Technology, 2005 

MS., Computer Science, University of New Mexico, 2009 

 

ABSTRACT 

 

In this paper, I will propose a simple and robust method for image and volume data 

segmentation based on manifold distance metrics. In this approach, pixels in an image are 

not considered as points with color values arranged in a grid. In this way, a new data set 

is built by a transform function from one traditional 2D image or 3D volume to a 

manifold in higher dimension feature space. Multiple possible feature spaces like position, 

gradient and probabilistic measures are studied and experimented. Graph algorithm and 

probabilistic classification are involved. Both time and space complexity of this 

algorithm is O(N). With appropriate choice of feature vector, this method could produce 

similar qualitative and quantitative results to other algorithms like Level Sets and 

Random Walks. Analysis of sensitivity to parameters is presented. Comparison between 

segmentation results and ground-truth images is also provided to validate of the 

robustness of this method. 
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1. introduction 

Image segmentation is an important task in many applications. This paper shows an 

algorithm that segments 2D image and 3D volume for interactive visualization 

applications. Users are required to define characteristics of each object to get 

segmentation or classification results for decision making. When recognizing these 

characteristics, an effective algorithm should be able to handle and analysis uncertainty in 

the whole segmentation procedure. In this algorithm, we preserve the uncertainty 

inherently in data for all measurement, classification and visualization processes. To 

achieve this, instead of assigning every image element with one certain label, we 

compute probabilistic distributions. Based on user specified seeds and a geodesic distance 

metric, distances are calculated along connected image elements. The distances could be 

converted into probabilistic distributions, which capture the uncertainty in boundary 

placement. Another part contributes to our algorithm is to compute probabilistic 

classifiers based on samples, the user specified seeds. Parzen Window is chosen as the 

classifier which provides our algorithm more flexibility. For small and isolated areas 

without any seed inside, this classifier can help the algorithm to correctly recognize them. 

This is meaningful for users because it saves them from putting seeds into all disconnect 

areas. In this sense, this algorithm is a combination of segmentation and classification. It 

only takes O(N) in time complexity and provides high-quality visualization results for 

effective decision making. 
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Figure 1. Comparison of Different Approaches 

(a) is a 3D image shown directly by volume rendering. It tries to show bone object but it also shows the 

board. (b)(c)(d) are results generated from Manifold Distance Segmentation. This algorithm offers a fast 

and simple way to locate objects. It is effective and valuable especially when one object is hard to 

distinguish from other based on values and derived measure, like brain and soft tissue in this image. The 

shown 256 × 256 × 256 3D segmentation result finished in 10 minutes including user interaction. 

2. Background 



 3 

In the visual analysis of 3D data like medical image or physical simulation [1], volume 

rendering methods are widely used for many purposes. Commonly they utilize transform 

functions to map original data images into other visible images. For instance, different 

features could be mapped in different color channel, values could be mapped as color 

value and data with certain attributes could be set as highlighted or transparent. These 

functions usually only care about original data values or values derived locally, like 

derivative. However, in this way it cannot distinguish disjoint area with certain similar 

characteristics. A common way to implement transform functions is to build look-up 

tables. Although this approach is simple and effective for interactive applications, it 

limits the dynamic range and dimension of feature space. When the table expend in 

dimension, it will be inevitable to take large chunk of memory. Another disadvantage of 

this approach is that it always requires users with high capacity in understanding the 

abstract mapping relationship from aimed data to certain constrains of vector value. 

Therefore, in some critical situations lookup tables cannot guarantee convenient 

interaction and accurate results for making decision. There are some previous works on 

incorporating uncertainty information in volume rendering applications. Kniss et al. [2] 

introduced a high-quality probabilistic segmentation method of features as part of the 

visualization pipeline. In that case, the transform function utilizes class probabilities 

rather than simply maps feature data values into different color or opacity. The 

boundaries among different classes are no longer static but variable for more flexible 
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identification. Compared to their work focusing on rendering, our work aims at handling 

probabilistic segmentations in interactive volume visualization application. 

2.1 Image Manifolds 

Normally we consider an image as a continuous data set with coordinates. For example, a 

2D gray level image is a data set of gray value with x, y coordinates. If we combine the 

data value and original coordinates together, we could get higher dimension coordinates 

then the image itself becomes a surface in the space-feature domain. This is called 

space-feature manifold. In this way, a 2D gray level image could be considered as a 3D 

manifold with coordinates of x, y and gray level. To show this image in 3D scene, we 

treat the gray level coordinate as z coordinate. Figure 2 illustrate surfaces in 3D space. 



 5 

 

Figure 2. Simple Example of Manifold Image 

(a)(c) are 2D gray level image, in which shortest distance between two points is Euclidean distance. (b)(d) 

are 3D manifold where height is transformed by pixel value. The geodesic distance is the length of shortest 

curve on the surface. 

2.2 Image Segmentation 

Image segmentation is usually defined as breaking image into connected regions relative 

to different objects. From user’s perspective, image segmentation algorithms could be 

divided into two classes, supervised segmentation and unsupervised segmentation, based 

on whether requires user input or not, respectively. Some popular algorithms are 

introduced here and will be compared to our algorithm. 

Level Set [3] is a supervised segmentation method which utilizes an implicit function 

over the image domain. Non-linear partial derivative equation is always used by the 

implicit function. The image is segmented with specified levels. In this method, users are 

required to set seeds to each label and parameters to determine the function. Another 
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supervised segmentation algorithm is Random Walks [4]. This algorithm also needs to 

specify seeds for an image. These seeds for each label are considered as start points or 0 

distance points, from which distances for all other non-seed points are calculated. Similar 

to our algorithm, one label corresponds with shortest distance for a point is assigned as 

the label of this point. Watershed segmentation [5] is an unsupervised algorithm which 

only needs pre-defined parameters rather than seeds for each image. In this algorithm, 

value of each pixel is considered as height of that position. Water continuously fills into 

the image field and these disjoint water areas will consciously merge together finally into 

one. With a certain height constrain, connected area is consider as one object. This 

method is competitive in running time but easy to get many small pieces as result. Mean 

Shift [6,7] is another widely used unsupervised segmentation that iteratively merges 

points with their most similar neighbors. The similarity is calculated by local static of the 

data. This algorithm also used space-feature manifold of an image. 

3. Definitions 

In this section we present mathematical definitions used in this thesis. These definitions 

here assume volumetric images like 3D images with a domain which is subset of ℝ3. 

Actually they also generalize to 2D and higher dimension ones like 4D images use time 

as the fourth component. Section 3.1 provides a formal definition of an image as a 

smooth function. Section 3.2 introduces the image manifold we use, which is a surface in 

a space with coordinate combining original spatial position and data value. In this section 
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we also show how to calculate distance on this surface. Section 3.3 describes the 

transformation among distance, probability and energy. 

3.1 The Image Function 

Our work focuses on a continuous fuzzy classification of a smooth continuous image. As 

for a 3D volume image, x   is a point in original spatial domain Ω ⊂ ℝ3 and y   is a 

point in the feature space domain ℝv . Since spatial coordinate is part of feature space 

coordinates and one point in spatial domain could only be transformed into one point in 

feature space. We can define a mapping function 

Iv : x  ∈ Ω → y  ∈ ℝv   (1) 

Pixel or point pi is discrete sample in ℝv . Given a data value set Vi  in ℝv , an image 

can be represented as a convolution function 

Iv x   =  k(s − x  ) Vi    δ(s − pi    )d
n
i=1Ω

s   (2) 

where δ is a Dirac Delta function and k is a interpolation function. In another way, this 

expression could be 

Iv x   =  Vi    i∈Nx k(pi    − x  )  (3) 

where Nx  is the neighboring lattice points of x. 

Equation (2) and (3) are equivalent and give the formal concept of image interpolation. 

With these equations we can compute value at any position inside domain Ω. Different 

interpolation function k could bring different degrees of continuity. Equation (2) utilizes 

convolution function which is widely used in signal processing realm. Equation (3) is 
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more practical from software engineering prospective. 

3.2 The Image manifold 

For a 3D volume with spatial domain Ω ⊂ ℝ3, we can consider it as manifold Iv  in 

higher dimension space ℝ3 × ℝv . This could be expressed as 

Iv ↪ ℝ3 × ℝv = {(x  , Iv x   )|∀x  ∈ Ω}  (4) 

This manifold combines original spatial position and values in feature space. It is often 

called space-feature manifold. Two simple examples of this are given in figure 2. In this 

figure, we show two 2D gray images and their manifolds in 3D space. In Figure 2(a), we 

can see there are two points located on the plain of the image. The shortest distance of 

these two points is the 2D Euclidean distance. In figure 2(b), the shortest path could be a 

curve avoiding the bumps. In figure 2(c), there are points x2 and x3 which closer than 

points x1 and x3 on a 2D plane. But in figure 2(d), x1 could be closer to x2 than x3. 

Because the path from x1 to x2 is flat while the path from x3 to x2 very bumpy and that 

brings longer distance. 

Given two points p1 and p2, we can define the path metric dv(p1, p2) on an image 

manifold as the geodesic from p1 to p2 on the manifold surface. Then the shortest distance 

is the length of the geodesic. With this concept, a precise definition of metric tensor G is 

gi,j = αiδij +  β
k
2v

k=1
∂Ik

∂xi    

∂Ik

∂x j    
  (5) 

where δij  is the Kronecker Delta, αi  and β
k
 are scale factors controls the effects from 

position and value respectively. The default rule we used for these factor are αi =
1

di
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where di is the size of the i-th dimension of the image and β
k
=

s

rk
 where rk is the range 

of the k-th image value and s is another scale factor with default value of 1. With this 

metric tensor we can calculate distance for infinitesimal changes in x  . The distance, 

length of a curve c(τ) with beginning point x1    = c(a) and end point x2    = c(b) is 

measured by 

L =    gij c(τ)  
dxi

dt
c(τ)  

dx j

dt
c(τ) dtD

i=1,j=1
b

a
  (6) 

We want to calculate distances of all unlabeled points from seeds, the pre-labeled points. 

Since images are sets of discrete points, we can consider them as graph and calculate the 

distances iteratively. At the beginning, we can compute distance for all neighboring 

points, then we can treat an image as a graph G(V, E). Vertex set V is the set of all points 

in the image and edge set E is the set of all edges between every two neighboring points. 

Here we define neighboring point as point with distance equal or less than 1 along each 

spatial axis. For example, a point has 8 neighboring points in a 2D image, 26 neighboring 

points in a 3D image and 80 neighboring points in a 4D image. The edge weight is 

manifold distance between two points 

wi,j =   α  (xi    − xj    ) 
2
+  β  (I xi     − I(xj    )) 

2
  (7) 

where xi     is the position of point i. To solve the shortest distance problem, the most 

common algorithm is Dijkstra’s algorithm with time complexity of O(N logN). However, 

we can see that the graph we need to deal with is not a general graph. Under this 

condition, we can see the graph generated by an image is a planner graph with 
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non-negative edges. This kind of graph allows us to use an updated algorithm 

significantly reduces time complexity compared to Dijkstra’s algorithm. This updated 

algorithm will be introduced in section 4. 

It should be pointed out that we assume the image is using a linear interpolation kernel. 

Sometimes people prefer high-order interpolation kernel, like cubic kernel such as 

Catmull-Rom. In this situation the Equation 7 could only be considered as an 

approximation. To compare our assumption with Catmull-Rom spline interpolation, we 

show two groups of images in Figure 3. This is a comparison between utilizing linear 

interpolation and cubic interpolation. We rescale our original images into 10 times larger 

images by Catmull-Rom interpolation and use our algorithm on the new images. The Left 

column shows distance map (Figure 3(a), Figure 3(c)) and labeled segmentation result 

(Figure 3(e)) from our original image. The right column shows the corresponding results 

generated from the cubic-interpolated image. Because the two experiments are using 

different scale images, to compare the absolute distance is meaningless. Therefore the 

distance map image showed here are all under normalization ranging from 0 to 1. Then 

we show the difference of distance results is less than 0.02 percent. In the final labeled 

segmentation results, we can find some isolated small areas are different, but totally these 

two results are qualitatively similar. 
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Figure 3. Different Interpolation Kernel 

The left column is linear interpolation kernel on a 256 × 256 image and the right column is bicubic 
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interpolation kernel simulation image. (a)(b) and (c)(d) are manifold distance for two objects. (e)(f) are 

labeled segmentation results. 

3.3 Distance, Probability and Energy 

Mahalanobis Distance is a way to determine the similarity of unknown data samples to 

known data samples which are pre-labeled seed points in our approach. Given a mean μ 

and covariance matrix Σ, Mahalanobis Distance is 

dM x =   x− μ TΣ−1(x− μ)  (8) 

If we assume the samples follow normal distribution with mean μ, the Mahalanobis 

Distance is equivalent to 

dM x ≡  − ln(N(x) + ln( Σ  2π)  (9) 

where N(x) is  

N x =
1

 Σ  2π
e− x−μ TΣ−1(x−μ)  (10) 

The 
1

 Σ  2π
 part is to ensure this probability density function could integrate to 1. With 

this relation between probability and distance, we can get distance function from any 

probability density function p(x) that is 

dp x =  − ln(p(x) + ln(α)  (11) 

where α is a flexible given value which could bring different meaning to the distance 

function. For instance if α is set to be p(μ), that means the distance for x equals to 

mean is 0. Given a distance function d(x), the transformation function to a probability 

density function is 
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pd x =
1

 e−d(s)
2
ds
e−d(s)

2
  (12) 

Here the distance dp x  is different from the metric distance between two points. We 

only want to build a logically reasonable relationship between distance and probability. 

Then in our distance segmentation approach we can utilize properties from probabilistic 

segmentation or classification. 

When transforming from energy to probability, we need to use Gibbs measure 

p x =
1

Z(β)
e−βE(x)  (13) 

where 
1

Z(β)
 plays a normalization role and E(x) is the energy function, which could be 

expressed as 

E x = − ln(p(x) + ln(α)  (14) 

where α is a factor similar to that in Equation (11). Then we can easily get the relation 

between energy and distance expressing as 

dE x =  E(x)  (15) 

and 

E x = d(x)2  (16) 

From equations above we can see the minimum energy situation is the maximum 

likelihood situation. It is intuitive to understand the relation between distance and energy. 

The longer the distance is, the more energy it takes to move from one point to another 

point. 

4. Approach 
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Our segmentation algorithm computes manifold distance from user specified seed points 

to establish a spatial prior. The final distance measure is a combination of manifold 

distance and distance transformed from a probabilistic classifier for each category. We 

can use the distance results to segment the image by the rule of minimum distance. Or we 

can generate probabilities for each category and use maximum a-posterior rule to 

segment the image. The algorithm could be briefly described as 

Algorithm 1: Manifold Distance Segmentation Algorithm 

 

The final distance, or likelihood distance is simply add manifold distance and 

foreach object 1 to k, do 

set seed points for each object 

end 

foreach object 1 to k, point x ∈ Ω do 

compute manifold distance dmk (x) 

compute probabilistic distance dpk (x) 

combine dmk (x) and dpk (x) to dlk(x) 

end 

foreach point x ∈ Ω, do 

choose minimum distance of dlk (x), set k as the label 

end 
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probabilistic distance with a scale factor. 

dlk  x = dmk  x + ξdpk (x)  (17) 

where ξ is a constant value allowing users to weight the effects of these two terms. 

When ξ = 1, by Equation (12), dmk  x + dpk (x) is equivalent to 

p x ωk = pdk (x)pk(x)  (18) 

The last step, labeling image is to determine which object or category a point should 

belong to. If we consider from distance prospective, among k likelihood distance values, 

the object with the minimum distance would be considered as the label at this pixel. From 

probabilistic prospective, we can label images by maximum likelihood or we can get 

posterior probabilities for all categories from Bayes rule. The category with maximum 

probability is assigned as the label of that point. 

There are multiple choices of pk(x), in our application users could use either normal 

distribution or Parzen window. For normal distribution, we calculate mean and 

covariance for each category from given seed points. The distance is calculated follow 

Mahalanobis Distance algorithm. For Parzen window classification we use normal 

distribution as the kernel, then the Parzen window is 

pk x =
1

Mw 2π
 e

−
 I x −I(s i ) 

2

w2M
i=1   (19) 

where M is the number of seed points for category k, si is the location of seed and w is 

the width of the window. After translation to distance, we can get the probability distance 

mentioned above. The time complexity of normal distribution and Mahalanobis distance 
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is O(N) . The time complexity of Parzen window is O(NM) . However, for low 

dimensional feature spaces, we can build a lookup table in O(M) time and make the 

algorithm with time complexity of O(N). For example, a gray level image has only 256 

levels for its value, considering 256 as a constant number we can build this lookup table 

in O(M) time. 

Figure 4 shows results of different step in the whole process. (a) is the original image. (b) 

is the seed file, in which different color points are seeds for different category. (c) is the 

final segmentation result. (d)(e)(f) show manifold distance, probability distance and 

likelihood distance for brain respectively where the probability distance utilizes Parzen 

window and ξ = 3.5. (g)(h)(i) show the same terms of about for category soft. (j)(k)(l) 

are likelihood distance image of back, bone and sinus. 
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Figure 4. Elements of Manifold Distance Segmentation 

(a) and (b) are input images. (a) is the original image to be segmented. (b) is the seed image. Seeds with 

different label are represented with different color. (c) is segmentation result based on shortest distance. (d) 

is manifold distance from brain. (e) is probability distance using Parzen Window from brain. (f) is 

combination of manifold distance and probability distance from brain. (g) is manifold distance from soft 

tissue. (h) is probability distance using Parzen Window from soft tissue. (i) is combination of manifold 

distance and probability distance from soft tissue. We can see (e) and (h) are very similar. (j) is the 

likelihood distance, the combination of manifold distance and probability distance, from back. (k) is 

likelihood distance from bone. (j) is likelihood distance from sinus. 
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Figure 5. Combination of Segmentation and Classification 

(a) is pure Voronoi tessellation of seed points based on manifold distance. (b)(c)(d)(e)(f) are combination 

with different ξ value. (g) is pure classification result by Parzen Window classifier. 

4.1 Implementation 

Since our algorithm uses a combination of manifold distance and probability distance, we 

can consider this algorithm as a probabilistic segmentation or a classification with a 

spatial prior. We can control the effects from both sides by setting different ξ value. For 

an extreme situation, if ξ = 0, that means the probabilistic term does not affect at all then 

the algorithm is a pure segmentation method. If ξ goes to infinite, after normalization 

the manifold distance term will go to zero, which means in this situation the algorithm is 

a probabilistic classification method. Figure 5 shows labeled results with different ξ 

value. Notice the different details in white blank for bone and black blank for sinus. 

There is no user specified seeds in these small pieces of area, but this algorithm can still 

label them out when the ξ value is appropriately chosen. Users can choose different ξ 
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value to compare and get the best segmentation they want. It can also save users from the 

tedious work of setting seed points inside every disjoint region. Even this capacity is not 

what users want, it can also be eliminated in O(N) time by checking whether there is 

seed point inside. 

When computing manifold distance, we use a modified Dijkstra’s algorithm for shortest 

distance. The time complexity for Dijkstra’s algorithm is O(N logN) when using a 

priority queue to store current nodes. In practical situation, since we only need to store 

current nodes in the queue, the time complexity could be less than O(N log N). In our 

experiment, the average number of current nodes is about 0.01N, which gives us time 

complexity of O(N log 0.01N) . That means for a 512 × 512  image, the time 

complexity is about O(11N) and for a 1024 × 1024 image the time complexity is 

about O(13N). 

The modified Dijkstra’s algorithm we use has a significant difference that is we need not 

to extract the minimum one from the current node list. This character allows us to use a 

ring buffer data structure instead of a priority queue. With this data structure, we can do 

insertion and extraction with O(1) time then the total time complexity is the times of 

inserting points into the list. However, within this algorithm we cannot constrain that 

every node only be inserted into the list only one time. So for a general graph the worst 

case time complexity of this modified Dijkstra’s algorithm is O(N2). We should think of 

this situation like that of Quick Sort, which also takes O(N2) in worst case but normally 
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works better than many other O(N log N) sorting algorithms. Empirically we measure 

this time complexity as O(CN), where C is the average times of update for every pixel.  

 

Figure 6. Shortest Distance Update 

The sequence of images shows the procedure of computing shortest distance. It begins with 0 distance area 

of seeds then expands to the whole image gradually. The gray level indicates distance after affine 

transformation and quantization. 

Algorithm 2: Modified Dijkstra’s Algorithm 
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dmk  x = 0 

dmk  y = −∞ 

dmk  x = −dmk  x  

dy = dmk  x + weight(x, y) 

dmk  y = −dy  

set all dmk  x = ∞ 

foreach x ∈ Seeds, do 

foreach neighboring point y of x, do 

insert y 

end 

end 

foreach x in ring buffer, do 

foreach neighboring point y of x, do 

if dy < 𝑎𝑏𝑠(dmk  y ), then 

if dmk  y > 0, then 

insert y 

end 

end 

end 

end 
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The signed distance in the algorithm is just a practical way to indicate status of a node. 

There is no actual negative distance in this algorithm. We experiment images with 

different dimension and scale. The average value of C is 3.5 and it is relatively steady for 

all images. We also found the value of C does not increase with the scale of images. The 

reason we can get a linear time complexity is that our graph is a regular lattice with 

constrained edge weight range. The edge weight never range from 0 to infinite which 

could bring the worst case situation. In this situation, algorithm with linear time 

complexity has been introduced by Thorup [8]. The constant term could range for 

different images. We show examples with different constant term in Figure 7. (a) is a 

critical image for our algorithm which performs a constant term of 15 in this experiment. 

That means for this image with scale of 512 × 512, our modified algorithm even runs 

slower than Dijkstra’s algorithm. (b) is also critical image and we expect a high constant 

term but this time C is only 3.9. (c) is generated from a uniform image. It shows a 

Voronoi graph with constant term almost equals to 1, which is the same as we expect. (d) 

is generated from a random image that has random value at every point. The constant 

term is about 4 and the segmentation result is similar to (c). 

In our implementation, another work we add upon the algorithm described above is to 

sort the ring buffer at a certain number, s of insertion. This work can significantly reduce 

the constant term C because it could reduce the times of updating a point. When s = 1, 

this algorithm pops the minimum one from current node list. This is the same as 



 23 

Dijkstra’s algorithm and minimizes the times of total insertions. However, the sorting is 

also an expensive operation so we need to find an appropriate frequency of operating 

sorting. Figure 8 shows the relation between sorting frequency and run time for 3D 

images with different scale.  

 

Figure 7. Critical Test for Modified Dijkstra’s Algorithm 

All images’ sizes are 512 × 512. In each image, there are two segmented objects represented by black and 

red. (a) needs a constant factor C=15. (b) C=3.9. The results of (a) and (b) are highly accurate. (c) is 

generated from a pure white image and two seeds located at top-right and bottom-left corner. C=1. (d) uses 
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the same seed file as (c) uses but the original image is a random image, in which every pixel has a random 

value. C=4. 

 

Figure 8. Runtime with Different Sorting Strategy 

The horizontal axis is interval of insertion times between every two sorting. The number is exponent of 2. 

The vertical axis is runtime using second as unit. 
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5. Discuss 

In this section a comprehensive discussion of Manifold Distance Segmentation algorithm 

will be presented. One key point of this algorithm, the rule of building image manifold is 

explored. Image noise as a common problem in image segmentation is analyzed. We also 

compare our algorithm with other popular image segmentation algorithms in time 

complexity and quality of results. In the end of this section we indicate current limitation 

and possible improvement in the future. 

From a software engineering point of view, we evaluate this method by validation and 

verification process. For validation process, the aim is to determine whether the 

segmentation results reflect the location and boundary of objects. Some of the original 

images are geometry shapes with blur or noise generated by ourselves. For these images 

we only need to compare the segmentation results with the ground-truth images label by 

label. For those images without ground-truth standard, like physical simulation images, 

the test is based on human experiences. Both kinds of experiments indicate that this 

approach satisfies the specified requirement. In the verification process, we make 

experiment and analyze results to make sure that every step in the procedure satisfy the 

requirements and design specification. In the selection of feature space, we evaluate 

different choices with signal to noise ratio. When computing shortest distance, various 

critical situations are experimented and show expected results. In the combination with 

classification method, we study the sensitivity of regularization parameter and provide 
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relative expressions. These step by step unit tests give this algorithm a successful 

dynamic verification. 

5.1 Feature Space 

We studied various locally derived terms to fill the feature space. The basic and original 

feature is only the data value of an image. For instance, a gray level image has 1D feature 

space, gray value. A color image has 3D feature space of red, green and blue color value. 

We can expand feature by various measures like partial derivatives, gradient magnitude 

and mean value of neighbors. If we add these three terms on, a gray level 2D image 

would have a 5D feature space. It is meaningless to expand the feature space as large as 

possible. Figure 9 shows segmentation results using different feature spaces. In all these 

experiments we set ξ = 0, which means only manifold distance is taken into account 

because the feature space is not related with probability distance and we do not want that 

affect now. All feature spaces take data value as a necessary term and different other 

terms as option. To give a quantitive measure of segmentation result instead of just 

human eyes, we build an expected image I′ to compare with original image I. The 

expected image is generated by 

I′ x =  p(ωk|x)μk
K
k=1   (20) 

where p(ωk|x) is the posterior probability. The expected value for one category k, 

μ
k
=  I(xi)p(x|ωk)

N
i=1   (21) 

where  p(x|ωk) is the likelihood. Finally we check the difference between original 
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image and expect image by Signal to Noise Ratio 

SNR = 20 log10(
 μI 

   I xi −I
′(xi) 

2N
i=1

)  (22) 

where μ
I
 is the average value of original image, the signal. The sum of difference 

between two images is noise. Figure 10(a-e) shows the posterior probability for each 

category of a brain image. (f) is we called label-expected image, for which we use the 

mean value of each object to fill all area labeled as that object. We can consider it as the 

signal part. (h) is the expected image. Different from (f), (h) is calculated from Equation 

(20), not replaces with mean value. (i) shows the difference of them, which could be 

considered as noise part. The ideal scenario of this image should be pure dark. We see in 

this image the bone area has relative high value. This is because bone has a wide value 

range then the variance of this object is high. The signal to noise ratio is 8.7 dB with 

ξ = 3.5. 

Compared with figure 9, we find that under this standard the natural feature space, which 

contains data values and positions is the best solution in all feature spaces we experiment. 

This group of results is compatible with human experience. In figure 9, we show labeled 

segmentation result utilizing different feature space. From the signal to noise ratio shown 

we can see all these features do not help to improve results. The gradient magnitude is 

calculated from the two neighboring points for each axis. The mean, median and variance 

are calculated from a 2D local 5 × 5 lattice with center at the point. Although we show 
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that many common feature spaces are not successful and there are also some unsuccessful 

one we do not post on this thesis, we cannot deny that there are possible feature spaces 

would improve our current algorithm. In the future we can try other features to optimize 

our algorithm. 

 

Figure 9. Exploration of Feature Spaces 

(a) uses only original image data value. (b) uses original data value and gradient magnitude. (e) uses 

original data value and 5 times of gradient magnitude. (c)(d)(f) use mean, median and variance computed 

from 5 × 5 neighboring points around the point. From signal to noise ratio shown in top-right corner of 

each image, we can see none of the additional term improves the performance. 



 29 

 

Figure 10. Posterior Probabilities and Expected Images 

(a)(b)(c)(d)(e) are posterior probabilities for each label shown in bottom-right corner. (f) is called 

label-expected image. (g) is original image. (h) is expected image. (i)=|(g)-(h)|. 

5.2 Noise Sensitivity 

Most segmentation algorithms prefer data sets with distinct value of each object and 

sharp boundary between objects. However images in practical situation like medical 
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images and physical simulations could be mixed with undesired noise. These irrelevant 

and meaningless data could affect the final segmentation results in different extent. A 

robust segmentation algorithm should be able to perform stably with noise. 

 

Figure 11. Segmentation from Images with Noise 

In the first row are results from images with noise ratio of 0, 0.08 and 0.2, from left to right. The second 

row are results from iamges with noise ratio of 0.3, 0.5, 1.0. 

We can see this approach can segment a rounded circle when the noise ratio is 0.3. Even 

when the noise ratio is 1.0, it can still capture the rough shape of the four rectangle 

objects. Experiments with slight noise images for various segmentation algorithms are 

shown in next section. 

5.3 Comparisons 
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In this section we compare our algorithm with other common and widely used 

segmentation algorithms we briefly mentioned before. They are supervised algorithms 

Level Sets, Random Walks and unsupervised algorithms Watershed, Mean Shift. 

Supervised algorithms need users input seeds to define number of objects and 

characteristics of each object. Usually they are more robust in segmenting disjoint areas if 

seeds are appropriated set. Unsupervised algorithm has no given information. Therefore 

they will possibly segment one category into multiple pieces. However, unsupervised 

algorithms may behave better in running time than supervised algorithms because they do 

not need to iteratively compute for each object like supervised ones. 

5.3.1 Complexity 

As discussed above, our algorithm could perform a O(N) time complexity. For Level 

Sets algorithm, the time complexity ranges largely depending on the selection of implicit 

function. Fully evolved implicit functions could make the method perform O(N2) time 

complexity. If the segmented region is small and only the region near the level-set of the 

implicit function is updated, the algorithm could run in O(N) time. Random Walks 

algorithm requires a O(N2) time complexity in a naively computing way. However, if 

this algorithm uses iterative conjugate gradient to compute, it only requires O(MN) time 

complexity where M is the number of unique eigenvectors of the system. M has an upper 

boundary of N in which case the time complexity is still O(N2) but normally it is less 

than N. Grady et al. also introduced an approximate solution to solve Random Walks. In 
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this method a reduced set of pre-computed eigenvectors replaces the set of all unique 

eigenvectors [9]. For example, it needs 40 eigenvectors to segment a 512 × 512 image. 

If we ignore the procedure of calculating the eigenvectors, this algorithm runs in O(N) 

time, although the constant factor is large, say, 40 in this example. Mean Shift 

segmentation algorithm’s time complexity is affected by multiple factors. Say P is the 

number of pixels in spatial kernel, V is the size of value kernel, I is the number of 

iteration the algorithm needs to coverage. The time complexity of this algorithm is 

O(PVIN), which is hard to compare with others. Watershed segmentation algorithm 

requires O(LN) time complexity, where L is the size of water-table recording altitude 

levels used. There is optimization on this algorithm which could reduce time complexity 

to O(N) [10] with a large constant term. Table 1 shows runtime of three algorithms for 

three 3D volume images with different scales. From the table we can see our manifold 

distance segmentation algorithm runs 5-10 times faster than other two. 

 Head Blade Mhc 

Level Sets 370s 680s 4218s 

Watershed 595s 1790s 7200s+ 

Manifold Distance 34s 127s 454s 

Table 1: Runtime comparison 

The first line shows three image files. Head is a 128 × 128 × 128 image with 5 object labels. Blade is a 

128 × 256 × 256 image with 3 object labels. Mhc is a 256 × 256 × 256 image with 5 object labels. All 
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images are gray level images. All programs are run under same hardware and software environment with 

single thread. Figure 12 shows results of this group of experiments. 

 

Figure 12. 3D Segmentation Results 

Images shown here are slices of 3D result images from Manifold Distance Segmentation. 

5.3.2 Results 

All the algorithms we experimented to compare with our algorithm are implemented 

posted from reliable sources. Level Sets and Watershed are applications from Insight 

Toolkit [11]. Random Walks application is gained from Matlab code posted on Leo 

Grady’s website [12]. We use “Edge Detection and Image Segmentation System” 

(EDISON) [13] as Mean Shift application. For all supervised algorithms, Level Sets, 

Random Walks and ours, we used exactly same seed information. Although the seed 

image files could be different because these applications require different input files, the 

positions and labels for all seeds are the same. All experiments are done under the same 

hardware and software environment. We use a desktop with a 3.0G Intel core2 quad CPU 

and 3G RAM. IDEs are Microsoft Visual Studio 2005 or Matlab R2007a under Window 
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XP OS. Random Walks application uses default Matlab sparse system solver. We do not 

put Random Walks and Mean Shift results in Table 1 is because in the applications we 

get, they cannot operate on 3D volume images. 

In Figure 13, the finger-ring image is a test image for Mean Shift in the work of 

Comaniciu et al. [6] This image is a natural picture with texture and intricate shapes so it 

is difficult for image segmentation. Among all other results listed, the Manifold Distance 

Segmentation is the best one and the only one could compare with the result of Mean 

Shift. But the runtime of Manifold Distance Segmentation is much less than that of Mean 

Shift. For Mean Shift algorithm, parameters hs and hr could significantly affect the 

runtime. We choose these parameters exactly same as Comaniciu’s choice. For Mean 

Shift, if parameters are appropriately chosen, runtime could be largely reduced with only 

little quality loss. In this experiment, Random Walks could hardly segment any category. 

Figure 14 shows image used as Random Walks’ test image in Grady’s work [12]. This 

time Random Walks precisely segments the area containing the seed points, while 

Manifold Distance Segment could not get an even close result. However, if we replace 

the old seed information with our new 4 label seeds, Manifold Distance Segmentation 

could clearly label all four categories. Figure 15 shows a bunch of results based on a 

group of ring images provided by Kniss et al. [2]. Each row of results is from the same 

algorithm and each column is from the same source image. The four source images have 

different degree of blur that could represent a wide range of images. We can see all 
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algorithms show artifacts at various ways. The bottom line is expected images of 

Manifold Distance Segmentation with means based on the ground-truth colors. We can 

see the blurring of expected images is consistent with their corresponding source images. 

The Signal to Noise Ratio of them is at least 17 dB. 
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Figure 13. Segmentation Results of Finger-ring from Various Algorithms 

(f) is the original image. The Threshhold Level Set (a) uses upper-lower bounds [54,89] for the hand and 

[60,150] for the ring. Distance is set as 5 and curvature is set as 10. Runtime is 25 seconds. Random Walks 

(b) algorithm uses β = 25. Runtime is 5 seconds. Watershed (c) uses conductance=3, iteration=10, 

threshold=0.0001, level=0.06 and principal component=1. Runtime is 40 seconds. Meanshift (d) uses hs=16, 

hr=19 and M=40. Runtime is 40 seconds. Manifold Distance uses ξ = 3.5. Runtime is 23 seconds. In this 

experiment, Mean Shift perfectly defeats all other algorithms. Although Random Walks runs fast, its result 

is far from correct. Manifold Distance (e) is the only one could compare with Mean Shift. 
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Figure 14. Comparison between Random Walks and Manifold Distance 

The first row shows results of Random Walks and Manifold Distance with seed points provided by the 

demo experiment of Random Walks. Random Walks works well while Manifold Distance does very poor. 

However, when we define the image as more objects and corresponding characteristics, Manifold could 

also works very well (bottom-right image). In this experiment, Random Walks uses β = 25 and Manifold 

Distance uses ξ = 1.0. 

Original Image: 

 

Threshold Level Set: 
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Random Walks: 

 

Watershed: 

 

Mean Shift: 

 

Manifold Distance: 
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Manifold Distance Expected Image: 

 

Figure 15. Comparison of Different Algorithms with a Serial of Ring Images 

The first row shows original images. (a) is low-blur gray level image without noise. (b) is high-blur gray 

level image with noise. (c) is high-blur color image without noise. (d) is high-blur color image with noise. 

The second to the sixth row are segmention result from Level Set, Random Walks, Watershed, Mean Shift, 

and Manifold Distance respectively. The seventh row lists expected images. The result is generated from 

the original image in the same column. All supervised segmentation algorithms share the same seeds which 

are shown as color dots in Random Walks results. In this experiment, Manifold Distance Segmentation 

performs the best especially for the situations with noise. 

5.4 Limitations 

We find Manifold Distance Segmentation performs better on images with stable color 

and clear boundary for each category. On the other hand, it meets difficulty when 

handling images with large quantity of noise or texture. This is true for almost all image 
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segmentation algorithms. Texture segmentation is possibly a solution to solve this 

problem. In that case we do not have a constant feature space but an approximate one in 

which the difference of pixel value is texture similarity, not based on raw data values. 

5.4.1 Boundary Leak 

When we check result images carefully, we can see in the boundary area between two 

categories, it is not rare to see that a third party category occupies a slim line. We think 

the reason is when we calculating distance, in the boundary area, where distances change 

quickly, it is possible that the distance is between these two neighboring categories but 

similar to a third party category. In this case, it is possible the in the final result the 

boundary is labeled as that third-party category. We study and try to fix this problem by 

adding the weight with another term that is sensitive to the direction of gradient. We 

hoped this will stop a third-party category invading into the boundary area because from 

that direction these will be a term added on the weight then defend the invasion. This 

term is called resistance. In order to conveniently control the effect of this term, a 

parameter 𝜁 is introduced. The new weight of edge between two nodes i and j could be 

expressed as: 

𝑤𝑖 ,𝑗
′ = 𝑤𝑖 ,𝑗 + 𝜁 ∙ 𝑟𝑖 ,𝑗  (23) 

where 𝑤𝑖 ,𝑗  is the original weight, 𝜁 is a numerical parameter and 𝑟𝑖 ,𝑗  is the resistance 

term. 
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Figure 16. Boundary Leak Resistance 

The top left iamge is the source image with blured boundaries. The rest images are segmentation results 

with different 𝜁 value. It varies from 0, 0.3, 0.6, 0.7 and 0.9 from top to down, left to right. 

The results show although we indeed stop invasion as we expected, the new term also 

brings new problems because it make distances cross boundary relatively shorter. 

5.4.2 Reliance on User Input 

As a supervised algorithm, users are required to provide specified seed information for 

every input image. Even with a well designed GUI tool, this work is still tedious and easy 

to fault. Like the Mhc image in Figure 12, the isolated blue points outside head is caused 

by inaccurate seeds. Another situation is the segmentation results from same image could 

be different in details because of different user input. Therefore, in order to reduce works 
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for user and keep stable performance, this algorithm should be improved in reliance on 

user input. Users will be required to provide quite limited number of seeds or just number 

of labels. An ideal plan is to transform this algorithm into an unsupervised segmentation 

algorithm. 

Without user input information, the approach needs to define characteristics of labels by 

itself. At first we can build a histogram of data value from the original image. Since 

pixels belonging to the same object share similar data value, a small continuous range 

with large number of pixels can be considered as one object. These ranges with small 

number of pixels are considered as boundary areas. In these narrow areas data values 

vary in a large scope. One object range should be clamped be two boundary ranges. In 

this meaning, seeds should be picked from object ranges instead of boundary ranges. 

Assume pixels distributed normally in each object range, seeds should be chosen near the 

mean area. For a range in histogram, the peak area, or the area with minimum gradient 

magnitude should be selected as the mean area of normal distribution. 

In this way it seems like this algorithm goes back to a classification method since it does 

nothing with distinguishing disjoint objects with similar data value. To solve this problem, 

a combination of special information and data value could substitute for only data value. 

But this also could bring new problems, say mapping points in different object to a same 

label after combination. Besides, one object can also consist of multiple disjoint areas. 

Further progress solving this problem is mandatory to changing this current supervised 
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segmentation algorithm into an unsupervised one. 

6. Conclusion 

Manifold Distance Segmentation is a high efficiency and quality image segmentation 

algorithm. It preserves uncertainty in the whole process. Its time and space complexity 

are both O(N) and with a relatively small constant term. This algorithm could be 

affected in runtime and result by parameter setting. It is a combination of distance 

segmentation and probabilistic classification method. It is suitable in interactive 

visualization applications. In the feature we could study more different feature spaces, 

less user input and resistance to boundary leaks. 
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