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Abstract

A major challenge of the image registration in dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) is related to the image contrast variations caused by
the contrast agent passage. Tracer-kinetic model-driven motion correction is an at-
tractive solution for DCE-MRI, but previous studies only use the 3-parameter mod-
ified Tofts model. Firstly, a generalisation based on a 4-parameter 2-compartment
tracer-kinetic model is presented. A practical limitation of these models is the need
for non-linear least-squares (NLLS) fitting. This is prohibitively slow for image-wide
parameter estimations, and is biased by the choice of initial values. To overcome
this limitation, a fast linear least-squares (LLS) method to fit the two-compartment
exchange and -filtration models (2CFM) to the data is introduced. Simulations
of normal and pathological data were used to evaluate calculation time, accuracy
and precision of the LLS against the NLLS method. Results show that the LLS
method leads to a significant reduction in the calculation times. Secondly, a novel
tracer-kinetic model-driven motion correction algorithm is introduced which uses a
4-parameter 2-compartment model to tackle the problem of image registration in 2D
renal DCE-MRI. The core architecture of the algorithm can briefly described as fol-
lows: the 2CFM is linearly fitted pixel-by-pixel and the model fit is used as target for
registration; then a free-form deformation model is used for pairwise co-registration
of source and target images at the same time point. Another challenge that has
been addressed is the computational complexity of non-rigid registration algorithms
by precomputing steps to remove redundant calculations. Results in 5 subjects
and simulated phantoms show that the algorithm is computationally efficient and
improves alignment of the data. The proposed registration algorithm is then trans-
lated to 3D renal dynamic MR data. Translation to 3D is however challenging due
to ghosting artefacts caused by within-frame breathing motion. Results in 8 pa-
tients show that the algorithm effectively removes between-frame breathing motion
despite significant within-frame artefacts. Finally, the effect of motion correction
on the clinical utility has been examined. Quantitative evaluation of single-kidney
glomerular filtration rate derived from DCE-MRI against reference measurements
shows a reduction of the bias, but precision is limited by within-frame artefacts.

The suggested registration algorithm with a 4-parameter model is shown to be a
computational efficient approach which effectively removes between-frame motion
in a series of 2D and 3D renal DCE-MRI data.
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Chapter 1

Introduction

1.1 Context and Motivation

The desire for accurate quantification of diagnosis and therapy monitoring has led

to the formation of many new medical imaging modalities such as the Magnetic Res-

onance Imaging (MRI). The increased sophistication of MRI has brought additional

challenges to the area of medical image registration. The use of contrast agents for

Dynamic Contrast-Enhanced MRI (DCE-MRI) to alter image contrast in regions

of interest have increased use in recent years [3]. DCE-MRI allows for non-invasive

quantitative analysis for contrast agent to extract quantitative information from

image data in such a way that the information can contribute to clinical care.

The monitoring of uptake and washout of contrast agent in tissues requires long

scan times leading to many images with different contrast and image misalignments

due to motion of the patient during the acquisition. Such misalignments have strong

impact on the analysis of DCE-MRI data and image registration is thus required.

In addition, changes to the intensity of some parts of an image relative to others

are a major challenge as this affects the pixel-by-pixel intensity matching assumed

by many registration algorithms. Image registration is important when someone

is seeking to extract information from multiple images. Good alignment of the

images is required so that equivalent imaging pixels represent the same structures

and therefore can be compared.

DCE-MRI plays a significant role in many applications, such as perfusion imaging,
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MR angiography and MR renography [4]. This thesis focuses on the latter applica-

tion, i.e. DCE-MRI of the kidneys. Glomerular Filtration Rate (GFR) is considered

to be the most useful index of kidney function. It is traditionally measured by ra-

dioisotope measurement techniques which are time consuming and involve ionising

radiation exposure. A potential alternative to radioisotope measurement techniques

is DCE-MRI which enables measurements of single-kidney GFR (SK-GFR) and

renal perfusion in one imaging session.

1.2 Objectives of the Thesis

The different studies presented in this thesis focus on solutions proposed to address

the challenges stated above. The main objective of the presenting work is to develop

and evaluate a registration algorithm which incorporates the tracer-kinetic informa-

tion to motion correction process to account for signal intensity changes due to the

passage of contrast agent. The proposed algorithm is an iterative model-based regis-

tration method. The model fit is used as a target for image registration where each

source image is registered to its corresponding target image instead of registering

all the source images to a single target. Non-linear least-squares methods are the

most commonly used algorithms to fit tracer-kinetic models to the data. This type

of method requires considerable computation time and therefore may become im-

practical for image-wide parameter estimations. This thesis addresses this issue by

presenting a fast linear least-squares method to fit the two-compartment exchange

and filtration models to the data. The effect of motion correction on the clinical

utility is also presented.

The specific objectives of the study as stated above are as follows:

1. Develop a fast linear least-squares method to fit the two-compartment ex-

change and -filtration models.

2. Develop a tracer-kinetic model-driven motion correction algorithm for two-

dimensional (2D) renal DCE-MRI data in order to overcome the problem of

the registration of images containing local contrast changes.

3. Translate the tracer-kinetic model-driven motion correction algorithm to three-

dimensional (3D) renal DCE-MRI data.
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4. Investigate the accuracy and precision of DCE-MRI measured SK-GFR before

and after motion correction, using radioisotope measurements as the reference

method in the context of clinical routine.

1.3 Thesis Overview

The thesis is divided into six main chapters. Each of these contains thematically

related sections and all parts build upon each other. The outline of the thesis reads

as follows:

Chapter 2: Background

Knowledge that is required to comprehend all subsequent chapters is to be provided

in a concise way. A brief description of the concept of MR theory and contrast agents

used in MRI, followed by a more specific presentation of quantitative DCE-MRI is

given. This chapter also introduces background concepts that are the foundation for

the deformable medical image registration. Detailed literature reviews are integrated

in later chapters.

Chapter 3: Linear Least-Squares Method for multi-compartment mod-
els

Non-linear least-squares methods are the most commonly used algorithms to fit

tracer-kinetic models to the data. This type of methods require a choice of initial

values which is updated iteratively using gradient-descent type methods, until the

difference between predicted and measured data is minimal. The process is slow,

and there is a risk of convergence to local minima. If this happens the result is biased

by the initial guess. An alternative is the use of linear least squares methods, which

produce parameter estimates by solving a linear system of equations. This chapter

discusses the development of a fast linear least squares methods to fit the two-

compartment exchange and -filtration models. Preliminary work on the development

of linear least-squares method to fit simpler models such as the Tofts and modified

Tofts models is also presented. The preliminary work aimed to ensure that the claims

stated in the literature are valid. Related work done by other research groups is also

outlined.

Chapter 4: Model-based Motion Correction in DCE-MRI
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This chapter is about motion correction in 2D renal DCE-MRI. A major challenge of

motion correction in DCE-MRI is related to the contrast variations between image

pairs or among temporal sequences caused by the passage of contrast agent. A novel

registration technique which incorporates the use of a 4-parameter 2-compartment

tracer-kinetic model in the motion correction process is introduced and defined as:

tracer-kinetic model-driven registration. The application of the proposed registra-

tion algorithm to a total of 5 DCE-MRI datasets and simulated phantom is presen-

ted. The data processed were acquired under free breathing. Existing methods to

register DCE-MRI data are also discussed.

Chapter 5: Application of Tracer-Kinetic Model-Driven Registration
to Renal DCE-MRI Data

The tracer-kinetic model-driven registration algorithm developed in Chapter 4 is

now extended to 3D renal DCE-MRI data. The extended algorithm is applied

to renal DCE-MRI data acquired during free breathing. The development of 3D

registration is discussed alongside with the analogous problems impacting image

registration due to ghosting artefacts cause by within-frame breathing motion. The

application of registration algorithm is aimed to assess the clinical benefit of using

motion correction as a pre-processing step for quantification of SK-GFR in DCE-

MRI analysis.

Chapter 6: General Conclusions and Future Work

The most important conclusions discussed in the thesis are summarised and closing

remarks are given. Possible directions for future work on related topics are provided.
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Chapter 2

Background

2.1 Introduction

This chapter introduces the background theory to the research area in order to fully

understand the methods used and the different aspects of this work. The chapter

begins with a brief description of the concept of MRI (Section 2.2) followed by

Section 2.3 which gives a more specific presentation of quantitative DCE-MRI tech-

nique used in this thesis. Section 2.4 describes the kidney anatomy and physiology.

Subsequently, a general introduction to tracer-kinetic theory is given in Section 2.5

along with an introduction of the tracer-kinetic models that have become standard

for the analysis of DCE-MRI. Finally, Section 2.6 gives a description of what image

registration is followed by a presentation of its main components and the challenge

of motion correction in DCE-MRI data.

2.2 Magnetic Resonance Imaging

MRI is a non-invasive and relatively recent medical imaging technique. It is based

upon the principle of nuclear magnetic resonance (NMR) and thus does not involve

the use of ionising radiation, unlike other imaging modalities based on X-rays or

radioactive isotopes. MRI makes possible the acquisition in any imaging plane

(axial, coronal, sagittal), see Figure 2.1. The main advantage of MRI is that it gives

good soft-tissue contrast and does not use ionising radiation.
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Figure 2.1: An axial image, a coronal image and a sagittal image of the kidneys.

The principle of magnetic resonance (MR) was discovered in the mid 1940’s by

Felix Bloch and Edward Purcell independently [1]. MR uses the fact that protons

immersed in a static magnetic field can be excited by a radiofrequency (RF) field

at the resonance frequency. In 1971, Raymond Damadian discovered that normal

tissues and tumours excited at the same frequency have different relaxation times

[1]. This has opened the door to a new era of MRI for medical use. In recent years,

MRI has become a powerful imaging tool used for diagnosis, surgery planning and

monitor treatments.

2.2.1 MRI Theory

As mentioned above NMR is the foundation on which MRI is built. NMR is a

physical phenomenon that occurs when certain elements interact with a magnetic

field. In order to demonstrate NMR these elements must have a magnetic moment

and a spin angular momentum [5]. A large percentage of human body is made up

of water about 70%, therefore, the hydrogen atoms in water are a good choice of

magnetic resonance. The hydrogen nucleus exhibits an intrinsic property called spin

angular momentum. In the absence of an external magnetic field, the orientation of
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the spins will be random as illustrated in Figure 2.2.

Figure 2.2: Randomly oriented spins outside a magnetic field.

When inside the static magnetic field of the scanner (B0) spins are going to precess

around B0 in a trajectory describing a cone because of spin angular momentum, as

illustrated in Figure 2.3. It is important to note that the spins never fully assume

a truly parallel or antiparallel orientation with B0. The angular frequency (ω0) of

precession is given by Larmor’s equation:

ω0 = γB0, (2.1)

where γ is the gyromagnetic ratio (constant). The precession is then described by

the Bloch equation:

dµ

dt
= ω0 × µ, (2.2)

where µ is the magnetic moment.

Although the precession of spins is initially isotropic, due to the finite temperature

(e.g. body temperature) of the sample this isotropy breaks down leading to an

anisotropic precession of spins. It is slightly more likely that the cone of precession

of spins are driven towards an orientation with low magnetic energy, that is parallel

to B0, than a high magnetic energy (i.e. antiparallel to B0). This slight difference

results in a net magnetisation (M). When no scanning is taking place the initial net
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magnetisation (M0) is aligned with the static magnetic field B0. MR occurs when

a RF pulse (B1) at the Larmor frequency is applied. This causes M0 to tilt away

from B0. The direction of the B0 field is usually designated as the z-axis. Since M0

is tipped out of alignment with the B0 field it forms a component on the transverse

plane (Mxy), see Figure 2.4. The Mxy component while moving away from the z-axis

is actually precessing around it inducing an electromagnetic field. In the presence

of a receiver coil, the variation of the Mxy induces a current which when amplified

can be detected. This is called the NMR signal or free-induction decay (FID).

Figure 2.3: Schematic representation of precession of an isolated magnetic moment µ in
a static magnetic field B0.

(a) (b)

Figure 2.4: (a) The net magnetisation M0 in the equilibrium state. (b) The presence
of the RF pulse B1 tips the spin towards the xy-plane and produces two magnet-
isation components Mz and Mxy.
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2.2.2 Relaxation Mechanism

The spin system remains in the excited state during the applied RF pulse, how-

ever when the RF is stopped, energy is lost so that the spin system gets back to

its equilibrium state. This process is called relaxation and can be divided into two

mechanism: longitudinal relaxation of the Mz component and transverse relaxation

of the Mxy component. We have already seen that an RF pulse promotes the hy-

drogen nuclei with low energy state to high energy state causing a net absorption

of energy. The longitudinal relaxation of the Mz component corresponds to the

spin-lattice relaxation and is characterised by the time constant T1. This type of re-

laxation is the loss of the excess energy from the system of spins to the surrounding

environment or lattice. The recovery of longitudinal magnetisation is described by

the equation [6]:

Mz(t) = M0(1− e−t/T1). (2.3)

The transverse relaxation corresponds to the spin-spin relaxation and is character-

ised by the time constant T2. This type of relaxation arises in the system of spins

that does not involve an exchange of energy with the lattice, but rather a loss of

phase coherence between spins (i.e. spins have different phase and frequency). The

dephasing due to both T2 decay and the magnetic field inhomogeneities are indicated

as T ∗2 .

2.2.3 Acquisition

2.2.3.1 Spatial Encoding

The technique for spatial encoding of the NMR signal that allows us to produce

MR images is achieved by using a gradient in the magnetic field, i.e. a static field

increase linearly in strength in the given direction along the x, y or z-axis. In order

to be able to spatially locate different tissue types it is necessary to get a separate

signal from volumes of space (voxels). In 2D acquisition, only one slice is excited at a

time. The first step of spatial encoding is slice selection. To do this, a field gradient

is applied in conjunction with the RF pulse along a given axis of space so that a

9



Chapter 2. Background

thin slab of tissue is excited corresponding to the range of increasing frequencies

generated by the gradient. Each element of the selected 2D slice is then encoded in

frequency and phase.

The first direction encoded by applying a frequency encoding gradient (GFE) at the

time of measurement along one of the two in-plane dimensions of the selected slice

(typically the x-direction). While it is applied, all the spins in that slice are precess-

ing at a frequency, (f), that depends on the static magnetic field plus however much

gradient magnetic field they experienced. The amount of the gradient magnetic field

experienced by those spins depends on their location along the selected direction,

i.e. at any point x the f will be:

f(x) = γ(B0 + xGFE). (2.4)

Hence, the measured signal is composed of different components signals each of

which has a different frequency.

The second direction can be spatially encoded by applying a phase encoding gradient

along the other in-plane dimension (typically the y-axis) which intervenes for a

limited period of time. At this point one should notice that this second gradient

is applied before the frequency encoding gradient. While the gradient is applied, it

temporarily modifies the speed at which proton spins precess, inducing dephasing.

When the gradient is interrupted, spins return back to their original precession

frequency but maintain the phase angle obtained from the gradient applied. The

process is repeated at different strengths of the gradient resulting in a range of

different phases. The number of phase encoding steps defines the number of pixels

in the phase encoding direction [7]. For example, if the matrix size is 128×128 that

would mean that we need 128 phase encoding steps and 128 frequency encoding

steps.

The spatial frequency and phase information that comprise the measured MR signal

are digitized and stored into k-space. A Fourier transform of k-space values is then

decodes this information and generates the final MR image.
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2.2.3.2 Basic Pulse Sequences

Pulse sequences are a pattern of RF pulses and magnetic field gradients that are

used to construct images. In MRI, the two main types of pulse sequences are spin

echo (SE) and gradient echo (GE). Before introduce the main pulse sequence it is

essential to define the term flip angle. The flip angle is the amount of rotation of

the M0 experiences during application of a RF pulse.

In SE sequences a 90◦ RF excitation pulse is applied to excite the hydrogen nuclei,

as illustrated in Figure 2.5. After the 90◦ RF pulse the spins start to dephase

immediately as some are processing faster due to higher local field strength, and

some slower due to lower field strength, than the average. After a certain amount of

time an additional 180◦ is applied, see Figure 2.6. Such a pulse inverts the dephasing

causing a rephasing of the spins, or echo, after a period of time equal to the original

dephasing time. In MRI, the term TE is the echo time (i.e. the time between the

initial 90◦ RF pulse and the spin echo) and TR is the repetition time (i.e. the time

between two consecutive 90◦ RF pulse).

Figure 2.5: Spin echo pulse sequence diagram (modification of [1]).
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(a) (b)

(c) (d)

Figure 2.6: Dephasing and rephasing during the spin echo sequence. (a) Right after
the 90◦ RF pulse. (b) The spins start to dephase. (c) After the 180◦ RF pulse
the sign of the phase lag is changed and the spins start to rephase again. (d) The
individual spins are in phase again at the echo time.

A GE sequence does not require an additional 180◦ pulse, instead a gradient mag-

netic field is applied to rephase the spins (see Figure 2.7). Due to the absence of a

180◦ RF pulse, a GE makes the sequence more time efficient than the SE allowing

MR signal measurements with shorter TR to be achieved. The received signal in

this type of sequence depends on T ∗2 rather than T2. The signal equation for the GE

sequence is given by:

SGE = ρ
(1− e−TR/T1)sin(α)

1− e−TR/T1cos(α)
e−TE/T ∗

2 , (2.5)

where ρ is proportional to the proton density within a specific tissue and α is the

flip angle.
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Figure 2.7: Gradient echo pulse sequence diagram (modification of [1]).
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2.2.4 Effects of MR Contrast Agents

The term ‘contrast agent’ in the context of this work is defined as a substance ad-

ministrated to a patient with the scope of adding value to medical images. Contrast

agents are widely used in clinical imaging to improve sensitivity and specificity and

to increase the ability to identify normal and pathological tissues. The most fre-

quently used contrast agents for MRI are paramagnetic gadolinium-based (Gd) con-

trast agents. Gd injection has magnetic properties which decrease the T1-relaxation

times of surrounding water molecules and therefore T1-weighted images have higher

signal, the strength of which depends on its concentration in the tissue (the higher

the concentration, the more enhanced the signal). The T1-relaxation times after

injection of Gd can be calculated as:

1

T1(t)
=

1

T1,0

+ r1[CA](t), (2.6)

where T1(t) is the longitudinal relaxation at time t of the dynamic series, T1,0 is the

baseline longitudinal relaxation time estimated prior to administration of intraven-

ous contrast agent, r1 is the longitudinal relaxivity of the contrast agent and [CA](t)

is the contrast agent concentration at time t.

Gd-based contrast agent also influence and shortens T2-relaxation times resulting in

a reduced signal on T2-weighted images.

2.3 Dynamic Contrast Enhanced MRI

In Dynamic Contrast-Enhanced MRI (DCE-MRI) we are interested in the T1 reduc-

tion caused by the Gd. The acquisition process starts with a series of pre-contrast

MR images to enable an estimate of the baseline signal. A contrast agent is then

administrated as an intravenous bolus and therefore its arrival and distribution in

tissue is monitored (see Figure 2.8). When Gd reaches a tissue it rapidly diffuses into

the extravascular extracellular space (EES), and accumulates within the tissue caus-

ing an increase in the MR signal. The signal intensity in the tissue starts decaying

until Gd is completely cleared out form the body by renal excretion. The ana-

lysis of the resulting signal intensity changes as a function of time provides valuable
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information on the amount of Gd reaching particular regions, which consequently

gives information on tissue perfusion. Examples of time-intensity curves obtained in

DCE-MRI are shown in Figure 2.9. Moreover, the timing of such intensity variations

(e.g. fast arrival of Gd and slow washout) provides further information on the tissue

vascular properties.

Figure 2.8: Example of DCE-MRI renal data acquired in the coronal plane. (a) pre-
contrast image, (b)-(d) bolus arrival and contrast agent uptake, (e)-(f) post-contrast
washout phase.

2.3.1 Conversion of Signal into Concentration

In Section 2.2.4 has been illustrated how MR signal intensities on T1-weighted images

decrease during the passage of a Gd bolus. In order to extract some more accurate

and meaningful physiological information from this raw data we have to convert

the MR signal intensity information into contrast agent concentration ([CA]). Even

though the MR signal intensities are not directly proportional to [CA], there is a

linear relationship between [CA] and the inverse of T1 relaxation times, given by the
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well-known equation [8]:

[CA](t) =

1

T1(t)
−

1

T1,0

r1

. (2.7)

Therefore, the T1 measurements before, during and after the injection of contrast

agent provide useful information on how to quantify the actual concentration of Gd

from its MR signal.

Figure 2.9: Examples of DCE-MRI time-intensity curves. The shape of the enhancement
profiles show differences in the contrast agent uptake and washout reflecting the local
tissue properties.

2.3.2 Quantitative Dynamic Contrast-Enhanced MRI

DCE-MRI can be assessed qualitatively or quantitatively. A quantitative analysis of

DCE-MRI can be performed using mathematical models that describe the passage

of a bolus of contrast agent through the tissue of interest. The concentration time

series data obtained from the DCE-MRI acquisition depends on many physiological

characteristics of a relevant tissue. The method used to extract the physiological

tissue parameters such as blood flow and volume, capillary permeability and the

volume of extravascular extracellular space is called tracer-kinetic modelling. A

detailed description of tracer-kinetic modelling is given in Section 2.5.
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2.4 Kidney Anatomy and Physiology

The purpose of this section is to offer an understanding of the kidney anatomy as

well as further understanding of the evaluation of kidney perfusion. A number of

factors influence the signal intensity of the kidney such as physiologic mechanisms

of the kidney and characteristics of contrast agents. Blood flow to the kidneys is

received from the abdominal aorta that branches into the left and right renal arteries.

Despite their small weight of approximately 0.5% of the total body weight, the two

kidneys normally receive approximately 22% of the cardiac output, that is, about

1100 ml per minute [9]. Most of the blood entering the kidneys remain in the cortex

and only 1% reaches the medulla [10].

Figure 2.10: Coronal cross section of the left kidney showing the major structures.

The kidneys can be divided into three major regions: the renal cortex, the renal

medulla and the renal pelvis, shown in Figure 2.10. The cortex is the outermost

region of the kidney, followed by the renal medulla. The medulla is made up of

10 to 18 renal pyramids which point inward towards the pelvis. Within the renal

cortex and medulla are about 800,000 to 1,000,000 nephrons, the functional unit of

the kidney (see Figure 2.11). Each nephron consists of two parts: renal corpuscle

and renal tubule. Blood filters by nephrons in the glomerular capillaries. Water

and some solutes of blood plasma form the glomerular filtrate and flow into the

Bowman’s capsule which lies in the the cortex of the kidney. As the fluid enters

the proximal convoluted tubule approximately two-thirds of the filtered water is
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passively reabsorbed. From proximal convoluted tubule, fluid flows through the

descending limb into the loop of Henle located in the medulla of the kidney. Solutes

continues to remove out of the tubular fluid while returning back to the cortex

through the ascending limb of the loop and the distal tubule. The distal tubule

lies in the kidney cortex like the proximal tubule. The fluid leads to the collecting

duct that extends to the kidney medulla, where water reabsorption depends on the

level of antidiuretic hormon. The collecting ducts empty the fluid into the pelvis for

extraction via papillae.

Figure 2.11: Schematic representation of the basic tubular segments of a
single nephron. (The figure is a modification of Biology Animation File, URL:
http://bioanimation.blogspot.co.uk/2011/07/nephronswf.html).

In the particular case of kidneys, the contrast agent first enters into the vascular

space where it distributes over the vascular volume vp. Subsequently through ul-

trafiltration, a fraction of the entering contrast agent is filtered out of the vascular

space and is transported by the tubular flow FT into the tubular system where it

distributes over the tubular volume vT [11]. The contrast agent is then excreted
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completely from the kidneys by the outflow.

2.5 Tracer-Kinetic Modelling

Tracer-kinetic modelling is a mathematical modelling technique used to describe

the distribution of contrast agent in humans and other animal species. The idea

behind this technique is to treat a tissue as a compartment often composed of other

subspaces/compartments. Tracer-kinetic models attempt to describe the relation-

ship between the measurable data and the physiological parameters that affect the

uptake and distribution of the contrast agent. A suitable tracer-kinetic model can

account for most of the biological factors that contribute to the tissue signal. At

this point it is essential to mention that the physiological tissue architecture as well

as the properties of the contrast agent determine the number of compartments in

which a tissue of interest can be expressed.

2.5.1 Basic Principles of Tracer-Kinetic Theory

After injection the Gd contrast agent resides immediately in plasma and diffuses

due to a concentration gradient across the vascular compartment into the EES com-

partment, with their fractional volumes denoted as vp and ve, respectively. The rate

of diffusion depends on the blood flow (Fp), vascular permeability (P ) and vascular

surface area (S) [12]. Gd based contrast agent does not leak into the intracellular

space of the tissue (vi), so its distribution volume depends on vp and ve. A schematic

representation of compartmental modeling of a tissue is illustrated in Figure 2.12.

2.5.1.1 Tracer-Kinetic Modelling of an arbitrary tissue

Let us assume that we have a tissue with a number of inlets and outlets, which

transport the contrast agent in and out of the tissue as illustrated in Figure 2.13. The

tissue concentration C is equal to the amount of contrast agent in the tissue divided

by the total volume of the tissue. We will define the contrast agent’s volume of

distribution v (in ml/100 ml) as the fraction of tissue that is accessible to the contrast

agent. The contrast agent concentration c is defined as the amount of contrast agent
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Figure 2.12: Tissue compartmentalization. The figure is a modification of the corres-
ponding figure from [2].

in the distribution space divided by the volume that the tracer occupies, the so-called

volume of distribution. The tissue concentration is then given by [13, 14]

C(t) = vc(t), where 0 ≤ v ≤ 1. (2.8)

The amount of contrast agent that passes through an inlet or outlet per unit of time

will be referred to as the flux J . For simplification, J is normalised to the tissue

volume so it has units of mmol/min/100 ml [15]. The clearance, F , of an inlet or

outlet is the ratio of J to the concentration c at that particular inlet or outlet [15]

and is given by the following relation:

J(t) = Fc(t). (2.9)

The clearance F has several physiological interpretations depending on the mech-

anism that transports the contrast agent: if the contrast agent is transported by

convection, then F is the flow of the carrier fluid [15].

The conservation of contrast agent mass implies that no contrast agent is created or

destroyed inside the tissue. In that case, the rate of change of tissue concentration

C(t) is given by the difference between the total inlets and outlets [13, 14]:
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dC(t)

dt
=
∑

i∈Inlets

Ji(t) −
∑

o∈Outlets

Jo(t), (2.10)

where Ji and Jo denote the flux of contrast agent through an inlet and outlet,

respectively.

A compartment is defined as a well mixed space where the contrast agent is uniformly

distributed. The equation of mass conservation for a compartment depends on c(t)

and the inlet concentrations. Inserting Eqs. (2.8) and (2.9) into (2.10) we have:

v
dc

dt
(t) =

∑
i∈Inlets

Fici(t) −
∑

o∈Outlets

Foco(t). (2.11)

A multi-compartment model can be seen as a system of n ∈ N interacting compart-

ments, where an outlet of one compartment is the inlet of another [14]. Applying

Eq. (2.11) to each of the compartments gives a system of n differential equations

where the impulse response function I(t) is a sum of n exponential functions [16, 17]:

I(t) =
n∑
i=1

Aie
−tBi . (2.12)

This implies that in the case of one-compartment the impulse response function I(t)

will be a mono-exponential function.

A relationship between the inflow and outflow can be obtained through the notion

of contrast agent transit time (in min). The transit time of the contrast agent is

the time elapsed between entering and leaving the tissue. This link between the

inflow and outflow is based on two fundamental assumptions that the system is

both linear and stationary. A system is said to be linear if the response to an influx

is assumed to be proportional to the contrast agent dose and it is stationary if the

distribution of the transit time is independent of the time of injection. In this work,

we consider a tissue with a single inlet a through which the arterial plasma flow Fp

(in ml/min/100 ml) enters it. The concentration in the blood plasma of the feeding

artery ca(t) is also called the arterial input function (AIF). When the assumptions

of a linear and stationary tissue hold and the AIF satisfies ca(0) = 0, the tissue

concentration C(t) is then described by a convolution (denoted by the symbol ⊗)
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of the impulse response function I(t) and the AIF:

C(t) = I(t)⊗ ca(t). (2.13)

The convolution product f ⊗ g of two functions f(t) and g(t) is defined as follows:

(f ⊗ g)(t) =

∫ t

0

f(τ) g(t− τ) dτ. (2.14)

We will denote the concentration in the vascular space and EES as cp and ce, re-

spectively. A mathematical expression that describes the total tissue concentration

may be obtained by applying Eq.(2.10) to all of the compartments comprising the

model, to result into:

C(t) = vpcp(t) + vece(t). (2.15)

Figure 2.13: Schematic representation of an arbitrary system. The system has two inlets
(Ji1 and Ji2) and two outlets (Jo1 and Jo2).

2.5.2 Tracer-Kinetic Models

Extracting the physiologic characteristics of tissue from DCE-MRI can be done

through tracer-kinetic modelling. This approach was first introduced by Kety [18]

in the context of general gas exchange in the lungs and was subsequently used by

Crone [19] in the context of contrast agent diffusion. Models developed in the early
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90s have become a standard in many applications. While simpler models describe

only the amount of contrast agent that flows into the kidneys, other more complex

models describe the tubular outflow with one or more compartments. An overview

of some of these models is given below.

2.5.2.1 Definitions and Notations

Before introducing some of the standard tracer-kinetic models, it is essential to

introduce some definitions and notations. Let the mean transit time in the vascular

and tubular compartments be denoted as Tp and TT , respectively. Tp and TT measure

how long it takes for the contrast agent molecule to pass through the plasma and

tubules (in min), respectively. Extraction fraction (E) measures how much of the

blood plasma delivered to the tissue is filtered out by the glomeruli (in %). Let

us denote the concentration of the contrast agent in the arterial and tubular space

as ca(t) and cT (t), respectively. One should note that the central volume theorem

provides a fundamental relation between the parameters characterising the vascular

space [17]:

Fp = vp/Tp. (2.16)

2.5.2.2 Two-compartment filtration model (2CFM)

The two-compartment filtration model (2CFM) divides the kidney into two com-

partments, the vascular and tubular compartment, see Figure 2.14(a). The total

tissue concentration is then given by

C(t) = vpcp(t) + vT cT (t). (2.17)

As introduced in Section 2.5.1.1 the change of tracer mass in the tubular com-

partment is the difference between the concentration that flows into the tubular

compartment from the vascular compartment and the concentration that flows out.

The mass balance equation of the tubular space then amounts to:

vT
dcT (t)

dt
= FT cp(t)− FT cT (t). (2.18)
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Here we defined:

FT = vT/TT , (2.19)

where FT denotes the tubular flow.

A similar expression can be also derived by expressing the conservation of tracer

mass in the vascular compartment:

vp
dcp(t)

dt
= Fpca(t)− Fpcp(t). (2.20)

Because the transit times in a compartment are exponentially distributed [17], the

vascular concentration can be expressed as:

cp(t) = T−1
p e−t/Tp ⊗ ca(t). (2.21)

Solving Eq.(2.18) for cT (t) leads to the following convolution equation:

cT (t) = T−1
T e−t/TT ⊗ cp(t). (2.22)

Substituting Eq.(2.21) into Eq.(2.22) results in:

cT (t) =
1

TpTT
e−t/Tp ⊗ e−t/TT ⊗ ca(t). (2.23)

Substituting cp(t) and cT (t)) into Eq.(2.17), the total tissue concentration leads to:

C(t) =

(
vp
Tp
e−t/Tp +

vT
TpTT

e−t/Tp ⊗ e−t/TT
)
⊗ ca(t) (2.24)

The 2CFM is defined by the Eq.(2.24), which is completely determined by the four

parameters Tp, TT , vp and vT .
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2.5.2.3 Modified Tofts model

The modified Tofts model is one of the most widely used models in T1-weighted

DCE-MRI analysis. It was originally developed for use in the brain with a relatively

low temporal resolution [20]. This model states that the contrast agent resides in

and exchanges between two compartments in the tissue: the vascular space and the

EES, see Figure 2.14(b). With the additional assumption that the concentration in

the vascular space, cp, is equal to the concentration at the arterial input throughout

the tissue:

cp(t) = ca(t). (2.25)

Eq.(2.18) then becomes:

vT
dcT (t)

dt
= FT ca(t)− FT cT (t). (2.26)

One can solve this equation for cT to find

cT (t) = T−1
T e−t/TT ⊗ ca(t). (2.27)

Similar to the 2CFM the total tissue concentration is given by Eq.(2.17). Thus,

substituting Eqs. (2.25) and (2.27) into Eq.(2.17), leads to:

C(t) = vpca(t) +
vT
TT
e−t/TT ⊗ ca(t). (2.28)

The modified Tofts model does not allow for the measurement of plasma flow, Fp.

Instead, the three fitted parameters are the vp, vT and TT . The modified Tofts model

is only valid in tissues with a relatively high flow.

2.5.2.4 Tofts Model

Tofts et al. [20] firstly proposed a one-compartment model commonly known as

the Tofts model. The Tofts model describes the transfer of contrast agents between

the capillaries and the EES. The assumption underlying this model is that the

vascular compartment is assumed to have a negligible contribution to the total tissue
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concentration, i.e. vp = 0 (Figure 2.14(c)). This leads to the following relation:

C(t) = vT cT (t). (2.29)

Substituting Eq.(2.22) into (2.29) leads to:

C(t) =
vT
TT
e−t/TT ⊗ cp(t). (2.30)

The total concentration in tissue is defined by Eq.(2.30), which is completely de-

termined by the two parameters vT and TT .

2.5.2.5 Two-compartment Exchange Model (2CXM)

The two-compartment exchange model (2CXM) features four parameters, see Fig-

ure 2.14(d). The contrast agent transport through plasma compartment and its

exchange in the capillaries with the EES. The exchange of contrast agent between

the two compartments is assumed to be symmetric and is quantified by the PS [21].

The total tissue concentration is given by:

C(t) = vpcp(t) + vece(t). (2.31)

The plasma space and EES are both modeled as well mixed compartments. The

mass conservation for extravascular compartment then reads:

ve
dce(t)

dt
= PS(cp(t)− ce(t)). (2.32)

A similar expression can also be derived by expressing the concentration of tracer

mass in the vascular compartment:

vp
dcp(t)

dt
= Fp(ca(t)− cp(t)) + PS(ce(t)− cp(t)). (2.33)

The differential equations stated above can be written as a nonhomogeneous system
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of the form:

u′(t) = Ju(t) + g(t), (2.34)

where J is an n×n constant matrix and g(t) is an n×1 vector. The general solution

of the differential equation (2.34) takes the form [22]:

u(t) = W(t)c + W(t)

∫ t

t0

W−1(s)g(s) ds, for any c ∈ Rn. (2.35)

Using Eqs. (2.32) and (2.33) lead to the following system of equations (writing c′e(t)

for the time derivative of ce(t)):

c
′
e(t)

c′p(t)

 =


−PS
ve

PS

ve

PS

vp
−(PS + Fp)

vp


ce
cp

+


0

Fp
vp
ca(t)

 . (2.36)

The discriminant (∆) of the above system is equal to:

∆ =

(
veFp + PS(ve − vp)

vevp

)2

+
4PS2

vevp
> 0. (2.37)

We then find the eigenvalues of the matrix J given by:

λ1,2 =
1

2

[(
Fp
vp

+
PS

vp
+
PS

ve

)
±
√

∆

]
, (2.38)

and the corresponding eigenvectors:

v1,2 =


1

ve
PS

λ1,2 + 1

 . (2.39)
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Thus the basic solutions of the homogeneous system are

u1,2(t) = eλ1,2(t)


1

ve
PS

λ1,2 + 1

 . (2.40)

The matrix W (t) can then constructed from the solutions u1,2(t):

W(t) =


eλ1t eλ2t

eλ1t
( ve
PS

λ1 + 1
)

eλ2t
( ve
PS

λ2 + 1
)
 . (2.41)

The inverse of W(t) equals to:

W−1(t) =
PS

ve

1

λ2 − λ1


( ve
PS

λ2 + 1
)
e−λ1t −e−λ1t

−
( ve
PS

λ1 + 1
)
e−λ2t e−λ2t

 . (2.42)

We assume cp(0) = ce(0) = ca(0) = 0 which leads to the initial condition

u(0) = 0. (2.43)

Finally, substituting for W−1(s)g(s) and W(t) in Eq.(2.35) gives the solution u(t)

of the system (2.34):

u(t) =


A

∫ t

0

eλ1(t−s)ca(t)ds+ A

∫ t

0

eλ2(t−s)ca(t)ds

AB1

∫ t

0

eλ1(t−s)ca(t)ds+ AB2

∫ t

0

eλ2(t−s)ca(t)ds

 , (2.44)

where A =
PSFp
vevp

1

λ2 − λ1

, B1 = λ1
ve
PS

+ 1 and B2 = λ2
ve
PS

+ 1.

Hence the ce and cp can be expressed as:
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ce(t) =

(
PSFp
vevp

(
eλ1t + eλ2t

λ2 − λ1

)
+
Fp
vp

(
λ1e

λ1t + λ2e
λ2t

λ2 − λ1

))
⊗ ca(t), (2.45)

cp(t) =
PSFp
vevp

(
eλ1t + eλ2t

λ2 − λ1

)
⊗ ca(t). (2.46)

Substituting cp(t) and ce(t) into Eq.(2.31), the total tissue concentration leads to:

C(t) = Fp

(
PS(vp + ve)

vevp

(
eλ1t + eλ2t

λ2 − λ1

)
+
ve
vp

(
λ1e

λ1t + λ2e
λ2t

λ2 − λ1

))
⊗ ca(t). (2.47)

The 2CXM is defined by Eq.(2.47) which is completely determined by the four

parameters Fp, vp, ve and PS.

29



Chapter 2. Background

(a)

(b)

(c)

(d)

Figure 2.14: Tracer kinetic models: (a) Two-compartment filtration model, (b)
Modified Tofts model and (c) Tofts model and (d) Two-compartment exchange
model.
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2.5.3 Arterial Input Function in Tracer-Kinetic Modelling

Tracer-kinetic models require an AIF to provide information on the arrival and deliv-

ery of the bolus to tissue, see Figure 2.15. As mentioned previously, the parameters

extracted form tracer-kinetic modelling of tissue response to contrast agent passage

are used to evaluate the response to treatment of malignant tumors. Hence, reliable

model fitting to produce accurate parameter values is important in clinical diagnosis,

prognosis and therapy. In order to achieve reproducible model fitting, accurate rep-

resentation of the AIF describing the arrival and the way the contrast agent bolus is

transmitted along the local arteries and network of arterioles is essential. The AIF

may be estimated either by average inputs from experimentally derived input func-

tions [23] or by using standard functional forms [24]. In addition several techniques

have been developed based on automatic selection of the AIF [25, 26].

Figure 2.15: Example of AIF.
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2.6 Image Registration

Image registration is the process of finding a coordinate transformation that spa-

tially aligns two or more images. This process involves designating one image that

is not change during registration, called target image and applying geometric trans-

formations to the other image, called source image, so that it aligns with the target.

The image which is made increasingly similar to the target image is called motion

corrected image and is defined as:

Icorr(x) = Isource(T
(
x)
)
, (2.48)

where Icorr(x) and Isource(x) is the intensity of motion corrected image and source

image in position x, and T(x) is the transformation to be identified.

Image registration can be defined between images acquired by the same imaging

modality (mono-modal) or between images acquired by two different types of mod-

alities (multi-modal) such as the registration of an MR image to a PET image.

Registration algorithms can be classified into two main categories: feature-based

and intensity-based. In feature-based registration methods a pre-processing step is

required to extract geometrical features from one image and then match them with

their counterparts in the second image. These features can either be extracted from

contours of anatomical structures or corner points, or from markers with known loc-

ations [27]. An advantage of these methods is their dimensionality reduction which

consequently reduces the computational time. However, a key limitation of using

this type of methods is the dependence of the registration process on the feature ex-

traction pre-processing step. As opposed to feature-based methods, intensity-based

registration methods align images directly based on their pixel intensity values.

Thus, a key advantage of this type of methods is that the registration process uses

all the available image information and does not rely on any pre-processing step [27].

A downside of intensity-based methods is that they are based solely on intensities

and currently remain a great challenge for multi-modal image registration where the

images to be registered have totally different intensity distributions.

A registration algorithm usually contains three main components: the transforma-

tion model, the similarity measure and the optimisation method. An overview of

the main components of medical image registration can be found below.
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2.6.1 Transformation Model

The first component of an image registration algorithm is the transformation model.

As mentioned above, the transformation model defines the set of transformations

that is required to spatially align the Icorr with Itarget. The number of parameters

needed to describe a transformation are often called degrees of freedom. The num-

ber of degrees of freedom depends on the type of the transformation and on the

dimensionality of the images. The most well-known types of transformations are ri-

gid, affine and non-rigid. Rigid transformations allow only translation and rotation,

see Figure 2.16. Affine transformations increase registration flexibility since they

include rigid transformation plus scaling and shearing, see Figure 2.16. Non-rigid

registration is the most interesting and challenging work in image registration today.

Non-rigid transformations can account for more general deformations as it allows

to the object to deform, at the cost of increased complexity. Among the most im-

portant families of geometric transformations, one may cite transformations derived

from interpolation theory. One of the most important families inspired by interpola-

tion theory is that of Free-Form Deformations (FFD). In the particular case of FFD,

the transformation function in Eq.(2.48), defines how to transform pixel coordinates

in the source image to match pixel coordinates in the target image. This type of

information is usually stored in the so called deformation field. A deformation field

is formally a vectorial function d : Ω→ R2,3, on the image domain Ω and is usually

used in the transformation function. An example of a deformation field can be seen

in Figure 2.17. At a spatial location x = (x, y, z), the transformation function of a

FFD is of the general form [28]:

T(x) = x + d(x), x ∈ Ω. (2.49)

2.6.1.1 Free-Form Deformations

In recent years, transformation models using FFD have gained significant popular-

ity in registration of medical images. Sederberg and Parry [29] first described the

concept of FFD as a powerful modelling tool which can be used to represent complex

deformations. The basic idea of the FFD is to deform an image by manipulating an

underlying mesh of control points that are distributed throughout the image, pro-
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Figure 2.16: Examples of 2D rigid and affine transformations.

Figure 2.17: The deformation field gives for every pixel location in the motion corrected
image the direction and distance how it has to move in order to match the target image.
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ducing a smooth transformation. This requires a regular mesh of uniformly spaced

control points. The locations of the individual pixels between the control points is

computed from the positions of the neighboring control points.

To define an FFD, let us denote the image domain as the rectangle Ω = {(x, y, z)|0 ≤
x < X, 0 ≤ y < Y, 0 ≤ z < Z}. When image Ω is deformed, its shape can be

represented by the vectorial function, d. Let nx × ny × nz be a mesh of control

points with uniform spacing δ overlaid on image Ω. In the initial configuration of

the said mesh, the ijkth control point is at its initial position, i.e. dijk = (i, j, k).

The deformation field is then defined as:

d(x) =
∑

i,j,k∈IΦ

Wi,j,k(x)di,j,k, (2.50)

where IΦ is an N -dimensional discrete array representing the set of all control point

coordinates in the image and Wi,j,k is a weighting function which equals to 1 in the

control point at location i, j, k and equals to 0 in the other control points.

2.6.1.2 Splines

Originally, splines were devised to model ships and planes using long flexible strips

of wood or metal, i.e. the splines. The strips were bent to the desired shape by

applying a set of weights at specific positions. In spline based image transformations

the applied weights correspond to the displacement of a specific point. Nowadays,

splines in conjunction with FFD are widely applied in many image registration

techniques which use splines based transformation model.

2.6.1.3 B-Splines Parametrisation

FFD gained wide acceptance in the medical image registration when coupled with

B-splines [30, 31, 32]. Rueckert et al. [30] first proposed the use of FFD based

on B-splines which is most frequently cited as the reference of FFD based image

registration. In the case of B-splines based image registration, the dense deformation

field is parametrised by a sparse set of control points, resulting in the formation of

two grids: a dense grid and a sparse control point grid [33]. Similarly to Eq.(2.50),
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the deformation field is given according to [30, 34, 35] as:

dcubic(x) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)di+l,j+m,k+n, (2.51)

where i = b x
nx
c − 1, j = b y

ny
c − 1, k = b z

nz
c − 1, u = x/nx − b xnx

c, v = y/ny − b yny
c,

w = z/nz − b znz
c, and Bl(u) are the uniform B-spline basis functions evaluated at

u. They are defined as:

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6.

The basis functions for Bm(v) and Bn(w) are defined similar. B-splines are locally

controlled and have a limited support which makes them computationally efficient

even for a large number of control points [30]. That is, changing a control point

affects the transformation only the in neighborhood of the particular control point.

In case of cubic B-splines this neighborhood consists of 16 control points in 2D case

and 64 control points in 3D case.

A FFD could also be formulated as a summation of linear B-splines instead of cubic

B-splines. In case of linear B-splines the displacement field simplifies to:

dlinear(x) =
1∑
l=0

1∑
m=0

1∑
n=0

Bl(u)Bm(v)Bn(w)di+l,j+m,k+n, (2.52)

where the uniform B-spline basis functions Bl(u) are defined as:

B0(u) = (1− u)

B1(u) = u.

In case of linear B-splines transformation function the neighborhood consists of 4

control points in 2D case and 8 control points in 3D case.
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2.6.1.4 Bilinear Interpolation

In the particular case of 2D image registration, the current implementation of the

proposed registration algorithm is based on bilinear interpolation. Interpolation

is required during the registration iterations to interpolate the dense deformation

grid according to the sparse control point grid. Bilinear interpolation considers the

closest 2 × 2 neighborhood of known pixel values surrounding the unknown pixel

[36]. Let us assume that we want to find the displacement of the point P at an

arbitrary location (x, y). Suppose we know the value of the displacement d at the

four points (xi, yj), (xi, yj+1), (xi+1, yj) and (xi+1, yj+1), as shown in Figure 2.18.

The interpolation formula by definition is given by:

dlinear(x, y) = (1−u)(1−v)di,j+u(1−v)di+1,j+(u−1)vdi,j+1 +uvdi+1,j+1. (2.53)

For reasons of consistency Eq.(2.53) can be written as follows:

dlinear(x, y) = pdi,j + qdi+1,j + rdi,j+1 + sdi+1,j+1, (2.54)

where p, q, r and s are defined as follows:

p = (1− u)(1− v),

q = u(1− v),

r = (1− u)v,

s = uv.

2.6.2 Similarity Measures

The second component of a registration algorithm is the similarity measure. The

similarity measure compares the target image and the motion corrected image and

measure how different these are. The motion corrected image is the image which is

made increasingly similar to the target image, as defined in Eq.(2.48). The choice of

the similarity measure depends on the modality of the images to be registered. The
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Figure 2.18: Geometric visualisation of bilinear interpolation on a unit square.

most popular for registration of mono-modal images are Sum of Squared Differences

(SSD) and Cross-correlation. These similarity measures are based on the assump-

tion that similar anatomical structures in the two images have similar intensities

[37]. Mutual information and normalised mutual information are commonly used

for registration of multi-modal images. In this case the assumption that similar

structures share similar intensity values is not valid [37].

The registration algorithm presented in this thesis is targeted at mono-modal image

registration problem. The similarity measure used in the algorithm is based on the

SDD. The SDD method is widely used in image registration due to its simplicity

and it relies on the fact that similar structures share similar intensity values on the

two images Itarget and Icorr, i.e.:

SSD(Itarget, Icorr) =
∑
x∈Ω

(
Itarget(x)− Icorr

(
T(x)

))2

, (2.55)

where Itarget(x) is the intensity of the target image in position x.

2.6.3 Optimisation Method

The last component of a registration algorithm is the optimisation method. The

optimisation approach can be viewed as the connection between the transformation

model and the similarity measure. The transformation that relates the target image
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and the motion corrected image is estimated by iteratively minimising the cost

function to find the optimum match between the two images. This procedure can

be formulated as a minimisation problem:

d̂(x) = arg min
d
C
(
Itarget(x), Icorr(x)

)
, (2.56)

where d̂ denotes the optimal solution and the cost function C equals the similarity

metric.

In order to define the optimal set of parameters d̂ an iterative optimisation approach

is employed, of the general form:

dk+1 = dk + aksk, k = 0, 1, 2, . . . (2.57)

with sk represents the search direction at iteration k and ak > 0 is a scalar factor

controlling the step size along the search direction. Several optimisation techniques

have been proposed in the literature [38, 39], usually they differ in the way they

compute the ak and sk. Standard optimisation approaches are Gradient Descent,

Conjugate Gradient and Quasi-Newton method. Evaluation of optimisation meth-

ods is beyond the scope of this work. An extensive review of optimisation methods

for medical image registration can be found in [40]. The process of the optimisation

approach is illustrated in Figure 2.19.

A gradient descent method is implemented in this work [39]. This method takes

steps in the direction of the negative gradient of the cost function:

dk+1 = dk − akG(dk), (2.58)

where G(dk) is the derivative of the cost function evaluated at the current position

dk.
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Figure 2.19: Iterative optimisation approach: The start point at the top of the graph with
high cost function value represents the images before registration. The optimal solution
corresponds to the point at the bottom of the graph with minimum cost function value.
The arrows represent the series of iterative steps taken in order to find the minimum.

40



Chapter 2. Background

2.6.3.1 Multiresolution Strategy

A multiresolution strategy is a step by step hierarchical approach, in which the

registration process starts on a level with reduced complexity, then continuing to

levels with increased complexity, until the desired level is reached [41]. To reduce

complexity two approaches are distinguished: reduction of data complexity (i.e.

downsampled images) and reduction of transformation complexity. This work focus

on multiresolution approach that reduce the transformation complexity. A detailed

description of the multiresolution strategies can be found in [42].

In order to reduce transformation complexity it is common to start the registration

process with fewer degrees of freedom for the transformation model. In the particular

case of FFD the degrees of freedom equals the number of elements of the deformation

field, i.e. the number of control points. Several types of deformations can be occur

to a tissue. In a series of images that need to be registered there can be movement

on a relatively large scale such as breathing or movement on a relatively small scale

such as heartbeat. Large deformations between the images to be registered can

be modeled with a comparatively coarse control point grid (i.e. small number of

control points). On the other hand, small deformations will hardly be reconstructed

since few control points have to move over relatively small distances. Thus, to take

advantage of both coarse and fine control point grid the registration first run on the

coarsest resolution in order to capture large deformations and then the resolution

of the grid is constantly increasing to account for small deformations. At each

resolution level of the grid an interpolation method takes place. The control point

grid obtained from the previous coarser level is interpolated to initialise the next

finer control point grid. In the current implementation of the registration algorithm

presented in this thesis a bilinear and trilinear interpolations are used. Although this

technique improves the convergence of the registration and reduces the computation

time, it should be obvious that the computational complexity increases with the

transformation complexity, i.e. the resolution of the control point grid.

2.6.4 Motion Correction of DCE-MRI data

As mentioned previously, DCE-MRI data are collected over a period of minutes in

order to monitor the uptake and washout of the contrast agent in tissues. Thus,

various sources of patient motion affect its performance during the image acquisition
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and cause inter-frame misalignments. Abdominal DCE-MRI is mainly affected by

respiratory motion. The magnitude of motion due to breathing of abdominal organs

such as the liver, kidneys and spleen has been observed to be about 15 mm under

normal breathing conditions along the superior-inferior axis [43]. Such movements

significantly reduce the accuracy of DCE-MRI analysis and image registration is thus

required. A major challenge of the image registration in DCE-MRI is related to the

contrast variations between image pairs or among temporal sequences caused by the

passage of contrast agent. An overview of existing methods to register DCE-MRI

data in Chapter 4.

2.7 Conclusion

To sum up, MRI utilises the spin properties of hydrogen nuclei which are abund-

ant in the human body to generate signals which are then converted to images. In

order to create these images, a selection of pulse sequences is then required to en-

able differentiation of the different tissue properties. Gd based contrast agents are

administrated to alter image contrast and to provide additional structural and func-

tional information. Consecutive improvements in DCE-MRI such as higher spatial

and temporal resolution have driven the development of more complex compartment

models to extract useful information from the acquired data. However, the mon-

itoring of contrast agent uptake and washout in different tissues require long scan

times and image misalignments are caused by the movements of the patient. Such

misalignments cause errors in the quantitative MRI analysis and therefore should be

corrected for. The following chapters will discuss some of these challenges in more

detail and the proposed solutions.
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Linear Least-Squares Method for

Multi-Compartment Models

In previous chapter, background details of DCE-MRI and models for performing

quantitative DCE analysis were reviewed. The aim of the study presented in this

chapter was to develop a fast linear least-squares method to fit a 4-parameter 2-

compartment tracer kinetic model. The standard method for fitting this model to

the data is the non-linear least-squares method. However, this method is prohibit-

ively slow for image-wide parameter estimations, and is biased by the choice of initial

values. Following a presentation of the existing linearised Tofts model and modified-

Tofts model, a new fast linear least-squares method for the two-compartment ex-

change and -filtration models is introduced. A large part of this work was published

in Magnetic Resonance in Medicine [44].

3.1 Introduction

As has already been mentioned in the previous chapter, DCE-MRI involves the

serial acquisition of T1-weighted MR images before, during, and after an intraven-

ous administration of contrast agent. Tracer-kinetic analysis of the data produces

physiological parameters such as tissue blood flow, capillary permeability, and the

volume of the EES [13].

The most common class of tracer-kinetic models are the multi-compartment models,
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which are also widely used in other modalities such as positron-emission tomography

(PET) and computed tomography (CT). Current standards in DCE-MRI are the

two- or three parameter Patlak and Tofts models [45, 46], which do not produce

a measurement of tissue blood flow. In recent years, the increasing availability of

DCE-MRI at high temporal resolution has promoted the use of four-parameter flow-

weighted models such as the two-compartment exchange model (2CXM) [21] and

the renal two-compartment filtration model (2CFM) [47, 11].

Non-linear least squares (NLLS) methods are the most commonly used algorithms

to fit the model to the data [48]. They require a choice of initial values which is up-

dated iteratively using gradient-descent type methods, until the difference between

predicted and measured data is minimal. The process is slow, and there is a risk

of convergence to local minima [49, 50]. If this happens the result is biased by the

initial values. A potential solution is to repeat the fit over a grid of initial values,

but this requires massive computing capacity for pixel-based analysis [51].

An alternative is the use of linear least squares (LLS) methods, which produce para-

meter estimates by solving a linear system of equations. This is a fast computation

that is guaranteed to have a single global minimum and does not require initial

values. A classic LLS method is the Patlak plot [45] which solves a two-parameter

model using simple linear regression analysis. In 2004, Murase [52] introduced a

LLS method for the modified Tofts model. Simulations demonstrated that this im-

proves calculation times significantly without an associated cost in accuracy and

precision. The method is rapidly becoming a standard in applications of DCE-MRI

[53, 54, 55, 56].

A LLS method for the Tofts model and modified Tofts model has first been performed

as preliminary work to ensure that the observations in [52] are valid. The NLLS

method for the modified Tofts and Tofts model is based on an explicit analytical

solution of the Eqs.(2.28) and (2.30), respectively (see Sections 2.5.2.3 and 2.5.2.4).

The linear derivation for the modified Tofts that is to follow is a repetition of a

previous study by Murase [52].

To derive a linear inversion method for the modified Tofts model we substitute

Eq.(2.25) into Eq.(2.17) which leads to:

C(t) = vpca(t) + vT cT (t). (3.1)

44



Chapter 3. Linear Least-Squares Method for Multi-Compartment Models

Differentiate Eq.(3.1) and use Eq.(2.26) to eliminate c′T (writing c′T for the time-

derivative of cT ):

C ′ = vpc
′
a + FT (ca − cT ). (3.2)

Solving Eq.(3.1) for cT (t) results in:

cT (t) =
1

vT
c(t)− vp

vT
ca(t). (3.3)

Inserting Eq.(3.3) into Eq.(3.2) leads to a first-order differential equation that only

depends on the data C, ca, and the unknown model parameters. The result is more

transparent when expressed in terms of the parameters vp, vT , TT .

C ′ = − 1

TT
C + vpc

′
a +

vp + vT
TT

ca. (3.4)

In order to derive a linear inversion method for the Tofts model we first differentiate

Eq.(2.29) and use Eq.(2.26) to eliminate c′T :

C ′ = FT ca − FT cT . (3.5)

Solving Eq.(2.29) for cT results in:

cT (t) =
1

vT
C(t). (3.6)

Inserting Eq.(3.6) into Eq.(3.5) leads to a first-order differential equation that only

depends on the data C, ca, and the unknown model parameters. The result in terms

of the parameters vT and TT is given by:

C ′ = − 1

TT
C +

vT
TT
ca. (3.7)

A LLS method for the more general 2CXM and 2CFM has not yet been proposed

in the field of DCE-MRI, but in nuclear medicine it is well-known that such more

45



Chapter 3. Linear Least-Squares Method for Multi-Compartment Models

general models can be linearised too [49, 57, 58, 59, 60, 61]. The aim of this study

is to develop a LLS method for the Tofts model and modified Tofts model as pre-

liminary work to ensure that the observations presented in the literature are valid

and to further develop a newly LLS method for the 2CXM and 2CFM, and evaluate

calculation time, accuracy and precision using simulated data. A standard NLLS

with a single set of initial values is used as a point of comparison.

3.2 Theory and Definitions

Although some of the concepts presented in this chapter have already been in-

troduced in previous chapter, they are restated here so this chapter is essentially

self-contained. In order the 2CFM to be comparable with the 2CXM we changed

the notation from FT and vT , as used in previous chapter, to PS and ve, respect-

ively. The 2CFM is depicted graphically in Figure 3.1. The key difference is that

the flux out of the extravascular space is either directed back into the plasma space

(2CXM) or directly to the outside (2CFM). Since the physiological interpretation

of the parameters is not relevant for the purposes of this chapter, the conventional

notations of the 2CFM parameters [11] are modified to emphasize the symmetries

and eliminate redundant notations.

Figure 3.1: Diagram of the 2CFM.

The four independent model parameters are vp, ve, Fp and PS. The mean transit

times of the extravascular compartment (Te) and combined system (T ) have the

same form in both models:

Te =
ve
PS

, T =
vp + ve
Fp

. (3.8)
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The measured tissue concentration C(t) is a weighted average of the concentrations

cp(t) and ce(t) in the individual spaces:

C = vpcp + vece (3.9)

The mass-balance for ce(t) is the same for both models (writing c′e for the time-

derivative of ce):

vec
′
e = PS(cp − ce) (3.10)

The difference between 2CXM and 2CFM lies in the mass-balance for cp(t). Given

the arterial concentration ca(t), we have [21, 11]:

2CFM : vpc
′
p = Fp(ca − cp), (3.11)

2CXM : vpc
′
p = Fp(ca − cp) + PS(ce − cp). (3.12)

We assume that cp(0) = ce(0) = ca(0) = 0 which immediately leads to the initial

conditions

C(0) = C ′(0) = 0. (3.13)

3.3 Methods

3.3.1 Non-Linear Least-Squares

As we have seen in previous chapter, the NLLS method is based on an explicit

analytical solution of the models:

C(t) = Fp

(
T − T−
T+ − T−

e−t/T+ +
T+ − T
T+ − T−

e−t/T−
)
⊗ ca(t). (3.14)

The difference between 2CXM and 2CFM lies in the relation between T± and the

physiological parameters Fp, vp, PS, ve. The formulae are most straightforward in

terms of the mean transit times (Eqs.(3.8)):

2CFM : T+ = Te, T− = Tp, (3.15)
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2CXM : T± =
1

2

(
T + Te ±

√
(T + Te)

2 − 4TpTe

)
. (3.16)

The analytical solution of the 2CXM as introduced in previous chapter in Eq.(2.47)

is equivalent to Eq.(3.14) when the following relation between the eigenvalues and

T± taken into account:

λ1,2 = − 1

T∓
. (3.17)

The conventional NLLS method uses gradient-descent type techniques to minimise

the mean-square difference between left- and right hand sides of Eq.(3.14).

3.3.2 Linear Least-Squares

The LLS method is based on a reduction of the two first-order differential equations

for the unmeasurable concentrations cp(t) and ce(t) (Eqs.(3.10), (3.11) and (3.12))

to a single second-order differential equation for the measurable concentration C(t)

(Eq.(3.9)). The derivation follows a standard recipe that applies more generally to

arbitrary N -compartment models [57].

We will present the derivation in more detail for the 2CFM alone, as the procedure

is exactly the same for the 2CXM. First, differentiate Eq.(3.9) and use Eqs.((3.10),

(3.11)) to eliminate c′e and c′p:

C ′ = Fp(ca − cp) + PS(cp − ce). (3.18)

Then repeat the same process: differentiate Eq.(3.18), use Eqs.(3.10) and (3.11) to

eliminate c′e and c′p, and simplify the result:

C ′′ = Fpc
′
a − (Fp − PS)

Fp
vp

(ca − cp)− PS
PS

ve
(cp − ce). (3.19)

We have now produced 3 equations (Eqs.(3.9,3.18,3.19)) that only contain two un-

known functions cp(t) and ce(t). The first two of these equations are used to solve for

these unknown functions, and the results are then inserted into the third. Explicitly,

solving Eqs.(3.9) and (3.18) for cp and ce leads to:

cp =
PSC − (Fpca − C ′)ve
PSvp + (PS − Fp)ve

, (3.20)
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ce =
Fpvpca + (PS − Fp)C − vpC ′

PSvp + (PS − Fp)ve
. (3.21)

Inserting Eqs.(3.20) and (3.21) into Eq.(3.19) leads to a single second-order equation

that only depends on the data C, ca, and the unknown model parameters. The result

is most transparent when expressed in terms of the parameters Fp, T , Tp, Te. After

some simplification a very similar result arises for 2CFM and 2CXM:

C ′′ = −αC − βC ′ + γca + Fpc
′
a. (3.22)

The parameters (α, β, γ) are defined as:

2CFM : α =
1

TeTp
, β =

Te + Tp
TeTp

, γ =
FpT

TeTp
(3.23)

2CXM : α =
1

TeTp
, β =

Te + T

TeTp
, γ =

FpT

TeTp
(3.24)

To avoid the problems associated with numerical differentiation of noisy data, Eq.(3.22)

can be integrated twice over time. Using the following notation for the integral:

f̄(t) =

∫ t

0

f(τ) dτ (3.25)

this leads to:

C(t) = −α ¯̄C(t)− β C̄(t) + γ ¯̄ca(t) + Fp c̄a(t). (3.26)

If the data C(t) and ca(t) are measured at N time points t0, t1, . . . , tN−1, then

Eq.(3.26) leads to a system of N linear equations. They can be summarised as

a matrix equation C = AX, where C = [C(t0), . . . , C(tN−1)] is a vector holding

the measured concentrations, and X = [α, β, γ, Fp] contains the unknowns. The

4×N -element matrix A is given explicitly by:

A =



− ¯̄C(t0) −C̄(t0) ¯̄ca(t0) c̄a(t0)

− ¯̄C(t1) −C̄(t1) ¯̄ca(t1) c̄a(t1)

...
...

...
...

− ¯̄C(tN−1) −C̄(tN−1) ¯̄ca(tN−1) c̄a(tN−1)


(3.27)
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The matrix elements can be calculated via Eq.(3.25) by numerical integration of the

data C(tn) and ca(tn). The matrix equation can be solved using standard methods

for linear least squares problems, e.g. the ordinary LLS yields:

X = (ATA)−1ATC. (3.28)

Since the typical number of time points in DCE-MRI is in the 100’s, and there are

only 4 unknowns, this presents a strongly overdetermined system.

It remains to derive the physiological parameters T , Te, Tp from given α, β, γ, Fp

by inverting Eqs.(3.23) and (3.24). For the 2CXM this is most straightforward:

T =
γ

αFp
, Te =

β

α
− T, Tp =

1

αTe
. (3.29)

In the 2CFM, the formula for T is the same, but Te and Tp are the solutions of a

quadratic equation:

Tp =
β −

√
β2 − 4α

2α
, Te =

β +
√
β2 − 4α

2α
. (3.30)

A second solution could be derived by reversing the roles of Tp and Te, but in reality

it is safe to assume that contrast agent passes faster through the microvasculature

than through the extravascular space (Tp < Te). Since α and β are measured there

is no a priori guarantee that these solutions are real. In case they are not (β2 < 4α)

the best solution in the least squares sense is:

Tp = Te =
β

2α
. (3.31)

The parameters vp, ve and PS can be derived from Fp, T , Tp, Te by inverting

Eqs.(3.8):

vp = FpTp, ve = Fp(T − Tp), PS =
ve
Te
. (3.32)
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3.3.3 Weighted Linear Least-Squares

Eq.(3.26) can be generalised by multiplying both sides with an arbitrary weighting

function W (t):

WC = −αW ¯̄C − β WC̄ + γ W ¯̄ca + FpWc̄a. (3.33)

With W (t) = 1 this reduces to the LLS, but a large number of possible weighting

functions W (t) could be used. To investigate the effect and potential of weighting

we will consider in this study the strategy W (t) = ca(t), i.e. we use the signal itself

for weighting the data. As the arterial input function is strongly weighted by the

first pass data, one would expect this to improve the accuracy in the parameters Fp

and Tp which are mainly determined by the high-frequency components occuring in

this time window.

3.4 Simulation Setup

Simulations were used to evaluate the sensitivity of the LLS to two important types

of data error, random noise and temporal undersampling. Simulations were per-

formed for the 2CFM and the 2CXM as well as for the modified Tofts and Tofts

models. Simulations were written in IDL 6.4 (Exelis VIS, Boulder, CO) conducted on

a desktop PC with a 3.4 GHz Intel Core processor and 32GB memory. All simulation

code for the 2CFM and the 2CXM can be found online (https://github.com/plaresmed

ima/Linear-2CM).

As the 2CFM is typically applied to renal data, a representative set of five whole-

kidney tissues were defined: one representing normal kidneys with parameter values

measured in healthy volunteers [11], and four pathological kidneys taken from a re-

cent patient study [62]. Cases were selected by identifying the kidneys corresponding

to the 10th and 90th percentiles in Te and vp. The parameters are summarised in

Table 3.1.

To generate an exact ground-truth C(t), one of the five tissue types was selected at

random with equal probability, and C(t) was calculated with the analytical solution

(Eq.(3.14)). A literature-based arterial input function ca(t) was used [23], prepadded

with zeroes to create a 20s baseline. C(t) and ca(t) were created at a pseudo-

continuous temporal resolution of 10msec for times ranging from t = 0s to a total
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Tp (sec) Te (sec) vp ve
Normal 6.5 125 0.24 0.62

Patient 1 9.5 102 0.17 0.24
Patient 2 13.9 153 0.31 0.24
Patient 3 7.27 117 0.19 0.26
Patient 4 10.3 214 0.29 0.18

Table 3.1: Parameter values of the simulated data sets.

of Tacq = 300s. All convolutions in this study are calculated using a formula that is

optimised for convolutions with an exponential factor (see Appendix A).

Measurements with a given uniform sampling interval TR (sec) and Contrast-to-

Noise Ratio (CNR) were simulated. CNR is defined in this study as the ratio of

peak arterial concentration to the standard deviation (SD) of the noise, i.e. CNR =

max(ca)/SD. In DCE-MRI this is a better measure for the noise level than Signal-

to-Noise Ratio (SNR) as the analysis is performed on signal changes rather than on

absolute signal values. The first time-point t0 of the measurement was determined by

selecting a random number from a uniform distribution on the interval [0,TR]. Then

time-points tn = t0 + nTR were added with n = 1, . . . , N − 1 and N = bTacq/TRc.
Downsampled C(tn) and ca(tn) were created by interpolating linearly between the

values of the pseudo-continuous curves, and Gaussian noise was added.

The LLS matrix (Eq.(3.27)) was calculated by numerical integration of the measured

C(tn) and ca(tn) using the trapezoidal rule. The least-squares system was solved

by inverting the 4×4 normal equations to obtain the solution (3.28). The NLLS

was implemented by fitting the analytical solution (Eq.(3.14)) using the Levenberg-

Marquardt algorithm with the function MPFIT [63]. Convolutions were calculated

with the iterative formula in the Appendix A. Partial derivatives with respect to

the model parameters were calculated numerically and default values were used for

the termination tolerance (10−3) and maximum number of iterations (200). No

constraints were placed on any of the parameters, and fixed initial values were used.

They were taken at approximately half the exact values in normal tissue to avoid a

bias with respect to a particular tissue type (Tp = 3s, Te = 60s, vp = 0.1, ve = 0.3).

In the particular case of the preliminary study, the input data C(t) and ca(t) were

numerically generated for the modified Tofts models and Tofts model in the same

way as in 2CFM and 2CXM. It is essential to mention that the data have been

simulated and then fitted using the modified Tofts model and Tofts model individu-
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ally. The sensitivity of the LLS method with respect to random noise and temporal

resolution has been tested only in normal kidneys. To simulate the effect of noise

alone on accuracy and precision of the LLS, TR was fixed to 1s and CNR was varied

from 50 to 250 in 9 steps. To isolate the effect of temporal undersampling, TR is

ranging from 0.001s to 9s in 9 steps at fixed CNR value of 1000.

3.5 Data Analysis

For each reconstruction Pi of a parameter P = Fp, PS, Tp, Te, the error Ei(P ) was

determined as a percentage of the exact value:

Ei(P ) = 100 ∗ Pi − P
P

(3.34)

The goodness-of-fit was quantified in a similar way as the relative distance between

the fitted concentrations Cfit
i (tn) and measured concentrations Cmsr

i (tn):

Ei(C) = 100 ∗ ‖C
fit
i − Cmsr

i ‖2

‖Cmsr
i ‖2

(3.35)

Simulations for given TR and CNR were repeated 10,000 times to determine the

distribution of results. The median relative error E50 was recorded as a measure of

the systematic error, and the 90% confidence interval CI = E95 − E5 as a measure

of the random error.

The performance of the LLS or WLLS was quantified via two figures of merit (FoM),

one for the accuracy and one for the precision:

FoM (Accuracy) = |E50(NLLS)| − |E50(LLS)| (3.36)

FoM (Precision) = CI(NLLS)− CI(LLS) (3.37)

A positive (negative) FoM means that the LLS improves (reduces) the accuracy or

precision. Numerically, a FoM of 1% implies that LLS reduces the systematic or

random error by 1% of the exact parameter value. FoM’s were determined explicitly

for 3 different protocols:

• Protocol 1 (CNR=50 and TR=1.25s) models single-voxel data at high tem-
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poral resolution (and thus high noise levels).

• Protocol 2 (CNR=10000 and TR=12.5s) models ROI data at low temporal

resolution (and thus low noise levels).

• Protocol 3 (CNR=10000 and TR=1.25s) models ideal conditions of high tem-

poral resolution and low noise levels.

Protocols 1 and 2 represent realistic boundary regimes, and may be used to measure

Fp-maps (protocol 1) or ROI-based PS (protocol 2). Protocol 3 represents a limiting

case of error-free data that cannot be realised in practice but is useful to help

understand the fundamental behavior of the methods. Realistic CNR and TR values

for protocol 1 were estimated by measurement on a patient data set acquired with a

standard 2D acquisition protocol [11]. Values for protocol 2 were estimated on the

same data after time-averaging to a TR of 12.5s.
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3.6 Results

3.6.1 Preliminary Work

Figures 3.2 and 3.3 show the relative error of the estimated parameter values for the

normal tissues, as functions of the TR, obtained using the LLS and NLLS methods

for the Tofts model and modified Tofts model, respectively. From these figures it

can be seen that both LLS and NLLS show close agreement in terms of precision

and accuracy.

Figures 3.4 and 3.5 show the same relative error of the estimated parameter values

for the normal tissue, but as functions of the percentage of noise, obtained using

the LLS and NLLS methods for the Tofts and modified Tofts model, respectively.

The figures show that the LLS and NLLS methods show close agreement in terms

of precision and accuracy.

Regarding the calculation time, for the modified Tofts model the LLS method is

faster than the NLLS method by a factor of 56. In absolute terms, for an MR image

of 256 × 256 pixels the computation time on a laptop PC is 1.7 sec and 1.6 min

for the LLS and NLLS methods, respectively. For Tofts model the LLS method is

faster than the NLLS method by a factor of 49. In absolute terns, for an MR image

of 256× 256 pixels the computation time on a laptop PC is 1.6 sec and 1.3 min for

the LLS and NLLS methods, respectively.
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Figure 3.2: Error distribution of the Tofts model at fixed CNR=1000 but variable TR.
The circles indicate the median error and the error bars represent the 90% confidence
interval. Results are shown for each method (LLS - left column, NLLS - right column)
and for each parameter (TT - top row, vT - lower row).
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Figure 3.3: Error distribution of the modified Tofts model at fixed CNR=1000 but vari-
able TR. The circles indicate the median error and the error bars represent the 90%
confidence interval. Results are shown for each method (LLS - left column, NLLS - right
column) and for each parameter (TT - top row, vp - middle row, vT - lower row).
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Figure 3.4: Error distribution of the Tofts model at fixed TR=1s but variable CNR with
a minimum of CNR=50. The circles indicate the median error and the error bars represent
the 90% confidence interval. Results are shown for each method (LLS - left column, NLLS
- right column) and for each parameter (TT - top row, vT - lower row).
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Figure 3.5: Error distribution of the modified Tofts model at fixed TR=1s but variable
CNR with a minimum of CNR=50. The circles indicate the median error and the error
bars represent the 90% confidence interval. Results are shown for each method (LLS - left
column, NLLS - right column) and for each parameter (TT - top row, vp - middle row, vT
- lower row).
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3.6.2 Two-compartment Model

Figures 3.6 and 3.7 provide an illustration of the data and model fits at the highest

noise level considered in this study using the 2CFM and 2CXM, respectively. The

plots show that the fit to the data is significantly poorer with LLS than with NLLS,

which provides an almost exact reconstruction of the underlying concentrations des-

pite high levels of noise.

(a)

(b)

(c)

Figure 3.6: Example of simulated data for single-voxel curve (protocol 1) at TR=1.25s and
CNR=50. (a) The figure shows results in the arterial plasma. The dashed line represent
the exact concentration. The insert gives the Figures of Merit for each of the parameters
in this particular case. (b) The figure shows results in the tissue with an overlay of the
LLS fit (full line) using the 2CFM. The dashed line represent the exact concentration
and the diamonds indicate the simulated measurements. (c) The figure shows results in
the tissue with an overlay of the NLLS fit (full line). The dashed line represent the exact
concentration and the diamonds indicate the simulated measurements.
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(a)

(b)

(c)

Figure 3.7: Example of simulated data for single-voxel curve (protocol 1) at TR=1.25s and
CNR=50. (a) The figure shows results in the arterial plasma. The dashed line represent
the exact concentration. The insert gives the Figures of Merit for each of the parameters
in this particular case. (b) The figure shows results in the tissue with an overlay of the
LLS fit (full line) using the 2CXM. The dashed line represent the exact concentration
and the diamonds indicate the simulated measurements. (c) The figure shows results in
the tissue with an overlay of the NLLS fit (full line). The dashed line represent the exact
concentration and the diamonds indicate the simulated measurements.
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Tables 3.2 and 3.3 provide the FoM’s under the conditions of high noise and high

temporal resolution (protocol 1) for the 2CFM and 2CXM, respectively. In this

regime the LLS is associated with a significant loss in accuracy in all parameters

(2CFM: −30%, 2CXM: −34% on average). Adding weighting improves the accuracy

in all parameters, but it is still lower than with NLLS (2CFM: −9%, 2CXM: −11%

on average). The effect on precision depends on the parameter: LLS causes a major

loss in precision for Tp (2CFM: −95%, 2CXM:−119%), but improves the precision

for PS and Te. In this case the weighting has a benefit as it reduces the loss in

precision for Tp. But the effect remains significant and also leads to a reduction in

precision of Fp.

LLS WLLS
Accuracy(%) Precision(%) Accuracy(%) Precision(%)

Fp -19 -5 -3 -17
Tp -45 -95 -9 -32
PS -31 32 -16 4
Te -23 1810 -7 1985

Table 3.2: Figures of Merit (FoM) of the 2CFM for LLS and WLLS for protocol 1 at high
noise level (CNR=50) and high temporal resolution (TR=1.25s).

LLS WLLS
Accuracy(%) Precision(%) Accuracy(%) Precision(%)

Fp -23 -7 -3 -18
Tp -42 -119 -1 -26
PS -33 24 -19 5
Te -39 279 -22 598

Table 3.3: Figures of Merit (FoM) of the 2CXM for LLS and WLLS for protocol 1 at
high noise level (CNR=50) and high temporal resolution (TR=1.25s).
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Tables 3.4 and 3.5 provide the FoM’s under the opposite conditions of low noise

and low temporal resolution (protocol 2) for the 2CFM and 2CXM, respectively.

Under these conditions the LLS shows a clear improvement in accuracy (2CFM:

+10%, 2CXM: +11% on average) and precision in all parameters. In this particular

scenario there is no numerical benefit in adding a weighting with W (t) = ca(t). The

gain in precision is +4763% for the 2CFM and +4672% for the 2CXM on average,

but this is largely determined by an outlier (Te). Excluding this, the gain in precision

is still +129% using the 2CFM and +139% using he 2CXM on average.

LLS WLLS
Accuracy(%) Precision(%) Accuracy(%) Precision(%)

Fp 14 265 -14 122
Tp 13 49 -13 -242
PS 7 74 6 -40
Te 6 18664 -0.1 18680

Table 3.4: Figures of Merit (FoM) of the 2CFM for LLS and WLLS for protocol 2 at low
noise level (CNR=10000) and low temporal resolution (TR=12.5s).

LLS WLLS
Accuracy(%) Precision(%) Accuracy(%) Precision(%)

Fp 14 310 -16 147
Tp 13 52 -14 -217
PS 7 56 5 -55
Te 8 18269 9 18264

Table 3.5: Figures of Merit (FoM) of the 2CXM for LLS and WLLS for protocol 2 at low
noise level (CNR=10000) and low temporal resolution (TR=12.5s).
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Tables 3.6 and 3.7 provide the FoM’s under the ideal circumstances of protocol 3

(low noise and high temporal resolution) for the 2CFM and 2CXM, respectively. The

results show that LLS leads to small changes in both accuracy (0.1% improvement

on average) and precision (0.1% loss on average) for both models. As for protocol

2 there is no numerical benefit in adding a weighting with W (t) = ca(t) in this

particular scenario.

LLS WLLS
Accuracy(%) Precision(%) Accuracy(%) Precision(%)

Fp 0.27 -0.11 0.1 -0.2
Tp 0.15 -0.14 0.01 -0.2
PS -0.01 -0.1 -0.13 -0.2
Te -0.01 -0.1 -0.07 -0.3

Table 3.6: Figures of Merit (FoM) of the 2CFM for LLS and WLLS for protocol 3 under
ideal conditions of low noise level (CNR=10000) and high temporal resolution (TR=1.25s).

LLS WLLS
Accuracy(%) Precision(%) Accuracy(%) Precision(%)

Fp 0.24 -0.13 0.1 -0.2
Tp 0.19 -0.16 0.01 -0.2
PS -0.1 -0.1 -0.15 -0.2
Te -0.01 -0.1 -0.07 -0.3

Table 3.7: Figures of Merit (FoM) of the 2CXM for LLS and WLLS for protocol 3 under
ideal conditions of low noise level (CNR=10000) and high temporal resolution (TR=1.25s).
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Figures 3.8 and 3.9 show that the differences in accuracy and precision are small

under the ideal conditions of protocol 3. The distinction between LLS and NLLS is

most pronounced in the parameter Fp, where NLLS and LLS produce relative errors

in the range 0.4%± 0.6% and 0.2%± 0.4%, respectively (median ± half of 90% CI)

in both models.

Figures 3.10 and 3.11 visualise the transition in the low-noise regime for 2CFM and

2CXM, respectively, from protocol 3 (high temporal resolution) to protocol 2 (low

temporal resolution) in more detail. Both figures show that the improved accuracy

and precision of the LLS persists across the whole range of temporal resolutions,

becoming gradually more pronounced towards protocol 2 at the low temporal resol-

ution (right side of the plot).

Figures 3.12 and 3.13 visualise the transition in the high temporal resolution regime

for the 2CFM and 2CXM, respectively, from protocol 3 (low noise) to protocol 1

(high noise). Both figures show that the errors increase in a systematic manner with

CNR, showing the stronger noise-sensitivity of LLS. For a measurement targeting

the vascular parameters Fp and Tp, the NLLS is more reliable at all noise levels.

The NLLS is also preferred for the permeability parameters PS and Te, except in

the high-noise limit of protocol 1 where the WLLS is the optimal.

Regarding the calculation time, the LLS method is faster than the NLLS method by

a factor of 200, i.e. two orders of magnitude. In absolute terms, for an MR image

of 256× 256 pixels the computation time on a laptop PC is 3 sec and 9 min for the

LSS and NLLS methods, respectively.
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3.7 Discussion

As expected, the LLS leads to a massive reduction in computation time with a factor

200. The current study showed a reduction from 9 min to 3 sec for a 256×256 mat-

rix, but the total saving depends on computing hardware, implementation details,

and the number of time points in the data. It also depends on the implementation

of the NLLS. In this study a fixed initial value was used rather than a grid of initial

values, and in that sense the estimate of NLLS calculation time represents a best

case scenario. The improvement in calculation time is not of practical significance

for a ROI-based analysis, where other steps in the analysis form the main bottle-

necks (e.g. data transfer, segmentation). However for a pixel-based analysis the

improvement may have significant implications for clinical practice. The effect may

also be important for other methods that use pixel-based tracer-kinetic modeling as

an intermediate step, such as model-based segmentation or registration techniques,

or data undersampling strategies using the temporal structure as a constraint.

Overall the results from the preliminary work were consistent with Murase [52]

linearising the modified-Tofts model. Our results suggested that the LLS for the

linearised modified Tofts and Tofts model can estimate the kinetic parameters faster

than the NLLS with no distortion in accuracy and precision, as expected based on

previous studies [52, 64]. In the case of the Tofts model, Figure 3.2 shows that for

the parameters TT and vT the median values for the relative error is very close to

zero showing that the inversion with either the LLS or NLLS method produces very

accurate results. This study showed a reduction in computation time when the LLS

used, as expected. From 1.6 min to 1.7 sec for the modified Tofts model and from

1.3 min to 1.6 sec for the Tofts model for a 256 × 256 matrix. The total saving

depends on the reasons stated above.

The effect of LLS on accuracy and precision is more ambiguous for the 2CFM and

2CXM. Key observations are summarised in Figure 3.14. As a general rule, the LLS

is preferred at low-noise conditions and the NLLS at high temporal resolution. In

the ideal conditions where these two regimes meet (protocol 3), their performance

is comparable and both can be used interchangeably. The NLLS is slightly more

reliable as the gain in precision offsets the loss in accuracy, but the differences are

small and not likely to be significant for clinical applications. In that sense, the LLS

may be preferred in view of its computational benefit. There is no benefit of adding

a weighting with W (t) = ca(t) except for the leakage parameters under conditions
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of very high noise and high temporal resolution (protocol 1). This regime is less

relevant as all measurements are unreliable under these conditions. For the same

reasons the regime of low temporal resolution and high noise level is not of practical

interest (upper right corner of Fig.3.14).

Figure 3.14: Summary of the observations regarding accuracy and precision. The figure
maps different experimental conditions in the TR - CNR plane showing the location of
the three protocols for which the Figures-of-Merit have been simulated (circles) and the
different limiting regimes of high/low noise level and high/low temporal resolution (dotted
lines). Optimal choices of methods (NNLS, LLS) are indicated next to the respective
protocols.

The systematic error of the LLS at higher noise levels is unexpected from an MRI

perspective as previous experiences with the linearised modified Tofts model have

shown an improved accuracy at higher noise levels [52, 64]. In part, this discrepancy

may be due to implementation differences in the NLLS between the current and

previous studies [52]. However, it is likely that the effect is mostly due to the added

complexity of a 2nd-degree linear model. A key difference with the modified Tofts

model is that the linearised equation of the 2CXM or 2CFM contains a second-order

derivative. This leads to the double integrals in Eq.(3.26) which effectively add a

strong weight on the later time points where little temporal structure is available.

As a result the solution becomes less well determined than in the NLLS, where the
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first-pass data carry a strong weight due to the high signal values in this regime.

This is also consistent with the observation that a weighting factor W (t) = ca(t)

reduces the systematic errors significantly: at high temporal resolution the function

ca(t) is dominated by the first pass where most of the temporal structure can be

found. The chosen weighting does not remove the error completely, but alternative

weighting strategies have not been explored and could lead to further improvement.

An alternative solution that may be worth considering is the use of the differential

form combined with temporal filtering to reduce the noise sensitivity [64]. However,

it is not clear whether this remains beneficial in second order.

In the nuclear medicine literature it is well-known that LLS methods for 4-parameter

2-compartment models cause a bias in the parameters [49, 59, 58, 57, 65, 66]. There

is no a priori guarantee that these observations translate to DCE-MRI (or DCE-

CT). Noise levels, temporal resolutions and acquisition times generally lie in entirely

different regimes. A more fundamental difference lies in the typical data structure

of first-pass DCE-MRI or -CT, where all high-frequency information is stored in a

narrow and early time interval. This explains why the weighting effect of the double

integration is more significant in DCE-MRI. Nevertheless, our study confirms that

LLS at high noise levels causes a bias in all DCE-MRI parameters.

This raises the question of whether the solutions proposed for PET could help to

reduce the bias. Feng et al. [57, 49] proposed a generalized linear least-squares

(GLLS) method, which has found some use in pixel-based parameter estimation for

PET [67]. However, a more recent comparative study indicated that it still exhibits

large bias and poor precision at higher noise levels [59]. Zeng et al. [61] proposed a

more general weighted integration method to address the problem. Instead of integ-

rating the linear equation (Eq.(3.19)) twice over time, it is multiplied with wavelets

g(t, T ) on a support t ∈ [0, T ], and integrated once over that interval. Despite ap-

pearances, this method is not fundamentally different from double integration, and

it is identical when the wavelets are chosen as g(t, T ) = T − t. This follows from the

identity: ∫ T

0

dt (T − t)f(t) = ¯̄f(T ). (3.38)

Hence, one would not expect an improved performance. Zeng et al. [61] did not

observe a bias, but the scope of their simulations was limited and restricted to

data with low temporal resolution and relatively low noise levels. This corresponds

roughly to the low-noise regime where we have also observed that the LLS is more
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robust (lower right corner of Fig.3.14). The wavelet-based method does have the

advantage that different families of wavelets can be used, but there is no evidence

that this would eliminate the observed bias.

Another question that could be asked is whether the LLS problem suffers from ill-

posedness and could benefit from regularisation. At first glance, the strong noise

sensitivity of a parameter like Te could be seen as an indication thereof, but the

problem appears in the NLLS as well. In this case the sensitivity of Te most likely

reflects a limitation of the data: the “population” contains a case (patient 4) with

a Te-value (214s) that is relatively close to the acquisition time Tacq (300s). In

that case the washout of tracer is not well-resolved and its transit time cannot be

determined reliably except with ideal noise-free data.

This work also raised a number of issues that require further study. One import-

ant point is the effect of weighting, Eq.(3.33), and the choice of a suitable weight

W (t). Our purpose here was to demonstrate that adding a weight may have a sig-

nificant effect on the results, but the choice of an optimal weighting strategy is a

non-trivial issue that deserves a more in-depth study. Possibly a sensitivity analysis

involving partial derivatives may be used in selecting an optimal weight [68]. Exper-

ience in other areas has demonstrated that a suitable weighting strategy may have

a significant impact on the results [69], but it is currently unclear whether these

conclusions apply here. A second issue is the risk of data or model errors leading

to a situation where no exact solution to Eq.(3.30) exists. In that case the best

solution is one with equal transit times (Eq.(3.31)) which is not physiological. It

is currently unclear under what conditions exactly this problem may arise. To get

some insight we counted the number of times the problem occurred and found that

it never happened in any of our simulated data. Possibly the problem may arise

when significant model errors are present, but this requires further investigations.

A third issue is the role of a delay between artery and tissue. It is a limitation of

the method as discussed here that a delay parameter was not included in the model.

This is often added to correct for a shift due to upstream AIF sampling [47]. In

NLLS approaches a delay is typically determined from a separate procedure at the

cost of significant computation times [70]. These methods can easily be adapted to

apply to LLS methods as well.
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3.8 Conclusion

The LLS method for Tofts model and modified Tofts model is more efficient than

the NLLS and has comparable accuracy. The LLS method for solving the 2CXM or

2CFM reduces the computation times by two orders of magnitude, and is at least as

accurate and precise as the NLLS at low noise levels. At higher noise levels the LLS

becomes exceedingly inaccurate compared to the NLLS, but this may be improved

by using a suitable weighting strategy.
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Chapter 4

Model-based Motion Correction in

DCE-MRI

4.1 Introduction

As outlined in Chapter 2, a major challenge of the image registration in DCE-MRI is

related to the contrast variations between image pairs or among temporal sequences

caused by the passage of contrast agent. This chapter addresses the challenge of

image registration in renal DCE-MRI data. Following a presentation of the existing

registration methods for DCE-MRI data, a novel fully-automated pixel-based non-

rigid method for registration of free breathing 2D DCE-MRI data is introduced.

One problem with non-rigid pixel-based registration algorithms is their high com-

putational cost. Hence, this study aimed to increase computational efficiency of the

proposed algorithm by precomputing the gradients of the cost function as well as the

coefficients of B-splines. A systematic evaluation of the algorithm using simulated

and clinical 2D renal DCE-MRI data is also presented.
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4.2 Registration of DCE-MRI Data

4.2.1 Existing Methods

A number of registration methods have been proposed to correct the motion and

produce well-aligned features over the time series. Several rigid registration methods

are reported in the literature to address the problem of renal DCE-MRI registra-

tion. In an early study, Lee et al. [71] manually aligned the contours defined around

each kidney. Sun et al. [72] proposed a multi-step approach, where image gradient

information was initially used to roughly align the images, followed by a level-set

based segmentation of the kidney. Fine registration is then applied onto the seg-

mented images by incorporating regional inhomogeneity of pixel intensities. Zikic

et al. [73] explored the use of normalised gradient fields in a template-matching

method to correct for rigid motion. The authors here concluded that motion cor-

rection based on template matching method was superior to deformable method

with a large number of degrees of freedom. A fully automatic registration that

corrects for rigid motion was introduced by Song et al. [74]. The authors applied

an edge-preserving anisotropic diffusion to pre-process the images, followed by an

edge-detection using a 3D dyadic wavelet expansion. Registration is then applied

based on Fourier transform. More recently, Positano et al. [75] performed a two-step

rigid registration algorithm: first a pre-registration to perform an initial alignment

of the image sequences by minimising the sum of the squares of errors between the

reference and current images; and second, a registration step by maximising the

mutual information between consecutive image frames.

In contrast to the above rigid registration techniques, Sance et al. [76] and other

investigators [77] proposed an intensity-based non-rigid registration method. Their

registration algorithm consists of two steps: initially, a simple rigid algorithm to

correct global geometrical differences, followed by a non-rigid registration algorithm

where the transformation is defined by a deformation model based on a grid of

control points described by B-splines basis functions to correct also local geometrical

differences. A slight adaptation of the deformable non-rigid method by Wang et al.

[78] has been applied to renal 3D data by Yang et al. [79]. Work by Merrem et

al. [80] modified a non-rigid registration method originally posed for multi-modal

image matching [81]. In order to smooth the estimated deformation field at each

step, the authors introduced an isotropic Gaussian kernel in combination with the
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cross-correlation as a similarity measure. However, this method is sensitive to the

size of the smoothing kernel and may lead to misregistration if not selected properly.

Another class of methods are those based on geometric features rather than image

intensities. Khalifa et al. [82] proposed a two-step registration method: after affine

registration and kidney segmentation, the authors applied a non-rigid registration

algorithm which involves a Laplace-based search for point-to-point correspondences

between the boundaries of the segmented kidneys. Liu et al. [83] developed a

multiscale non-rigid shape-based registration scheme consisting of two steps: (i)

segmented geometries of interest with a level set method, (ii) estimated non-rigid

deformation by minimizing the shape discrepancy in the vicinity of geometry of

interest. More recently, [84] proposed an edge-based image registration method

which manually highlights the kidney contour and uses it as a target for aligning all

other frames.

None of the above motion correction methods consider the behavior of the time-

intensity curves of contrast enhancement. The registration is performed in a pairwise

fashion with the selection of the first (or any other) image as the target image, and

then register all the other images to the target image. Another variation of pairwise

registration is to register temporally adjacent frames: the second image is registered

to the first one, the third image is then registered to the previously registered second

image and so on. Such an approach is very sensitive to the choice of target image,

as images at early time points have very different contrast from images at later time

points.

Melbourne et al. [85] proposed a non-rigid technique that does not rely upon the use

of segmentation. Principal components analysis was used to create a set of enhan-

cing target images from the unregistered data using a limited number of components.

Registration is then performed time-point by time-point to these target images gen-

erated using the principal components of the unregistered data. After registration, a

new set of synthetic target images were created using the newly registered data. An

iterative process of target images generation and registration occurs until stopping

criteria are met. This method has been used to register data acquired using repeat

breath-hold protocols. However, the authors found that this method depends on the

nature of motion and it may fails in the presence of periodic motion as it appears

in the principal components along with the contrast changes. Similar to [85], an

application in free breathing DCE-MRI has been done by Wollny et al. [86] using
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the independent component analysis to decompose data prior registration. More

recently, Hamy et al. [87] investigated the use of robust principal component ana-

lysis for data decomposition before registration. In this method, contrast changes

are assumed to appear in the sparse component and motion in the low rank com-

ponent of the input data. The algorithm was demonstrated to successfully register

liver data acquired using single breath-hold followed by shallow breathing protocol.

However, the assumption that motion should appear in the low rank component

may be limited when motion elements occur locally over a short period of time [87].

A further approach is to incorporate a pharmacokinetic model into the motion cor-

rection process. Adluru et al. [53] developed a work on enhancement-driven registra-

tion and tested it in segmented breath hold cardiac MRI. The 3-parameter modified

Tofts model is initially fit to the unregistered data to generate target images for

registration. Similar to [85], a new set of target images were constructed using

the registered data, followed by an iterative process of synthetic targets generation

and registration. Buonaccorsi et al. [88] proposed a similar approach based on the

3-parameter modified Tofts model for use on manually delineated tumor volumes

of interest. In both studies, registration was simplified by considering only trans-

lational motion corresponding to an assumption of tissue rigidity. More recently,

Likhite et al. [89] combined the use of a rigid and deformable model based image

registration in segmented cardiac perfusion MR images. Similar to [53, 88] the au-

thors used the 3-parameter modified Tofts model to generate target images. The

method uses a preliminary rigid registration step where for each frame the previous

and next frames are averaged together to generate the target image. This prelim-

inary step corrects for sudden motion between frames. A deformable registration is

then followed by the generation of synthetic target images using the modified-Tofts

model, as described above.

4.2.2 Aim and Objectives

While the existing tracer-kinetic model-driven registration methods [53, 88, 89] suc-

cessfully registered DCE-MRI data, they employed a 3-parameter modified-Tofts

model without a Fp term. This model is therefore unsuitable for renal DCE-MRI

studies. The motivation for this is given by previous studies showing that the 3-

parameter modified-Tofts model does not fit the renal data very well [11, 13]. The

purposes of the study were to generalize existing tracer-kinetic model-driven regis-
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tration methods [53, 88, 89], by using a 4-parameter 2-compartment tracer-kinetic

model to generate synthetic target images, followed by non-rigid registration us-

ing FFD; and to improve the efficiency of the proposed registration algorithm by

precomputing steps to avoid redundant calculations.

4.3 Tracer-Kinetic Model-Driven Registration

4.3.1 Registration Algorithm - Architecture

At a spatial location x ∈ Ω ⊂ R2,3 on the image domain Ω and time t ∈ {t1, t2, . . . , tN},
the measured tissue concentration is defined by C(x, t) and the arterial concentra-

tion by ca(t). As stated previously in Chapter 3, the standard method of fitting

tracer-kinetic models to the data is the NLLS method. However, this method re-

quires considerable computation time. Therefore, it is impractical in image-wide

pixel-by-pixel based parameter estimation. An alternative rapid fitting method is

the use of LLS method [44] as introduced in Chapter 3:

C(x, t) = −α(x) ¯̄C(x, t)− β(x)C̄(x, t) + γ(x) ¯̄ca(t) + Fp(x)c̄a(t). (4.1)

For more details about the notation of the above equation we refer the reader to

Section 3.3.2.

As outlined in Chapter 2, a deformation field is formally a vectorial function dt : Ω→
R2,3 which typically stores the information on how to transform pixel coordinates x

in measured source image Isource(x, t) to coordinates in the motion corrected image

Icorr(x, t), defined as:

Icorr(x, t) = Isource(x + dt(x), t). (4.2)

Although the signal intensities (I) are not directly proportional to contrast agent

concentration C (see Section 2.3.1), here we assumed a linear relation between I

and C. Therefore conversion of I to C is obtained as:
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C(x, t) = I(x, t)− I(x, 0). (4.3)

4.3.2 Registration Algorithm - Implementation

The process of tracer-kinetic model-driven registration algorithm can be described as

follows: the breathing induced deformation field is initialized to be zero, i.e. dt(x) =

0 and the following steps are iterated. The registration algorithm architecture can

be found in Appendices B.1.1 - B.1.3.

Step 1: Create Icorr by applying Eq.(4.2).

Step 2: Apply Eq.(4.3) to Icorr to get the corrected concentrations

Ccorr(x, t) = Icorr(x, t)− Icorr(x, 0). (4.4)

The Icorr(x, 0) is estimated as an average over the baseline:

Icorr(x, 0) ∼=
1

nb

nb∑
t=0

Icorr(x, t), (4.5)

where nb defines the number of Icorr constituting the baseline.

Step 3: Fit Eq.(4.1) time-point by time-point to Ccorr(x, t) to determine estimates

of αfit(x), βfit(x), γfit(x) and Fpfit
(x).

Then, calculate the fit using the Ccorr, namely,

Cfit(x, t) = −αfit(x) ¯̄Ccorr(x, t)− βfit(x)C̄corr(x, t) + γfit(x) ¯̄ca(t) + Fpfit
(x)c̄a(t). (4.6)

The 2CFM fit is performed using a LLS algorithm to produce parameter estimates,

as described in Chapter 3. For more details we refer the reader to Appendix B.3.3.

Step 4: Generate time series of target images from the fitted parameters (from Step

3) which include the signal variations due to contrast enhancement, but display no

motion from time-point to time-point, see Appendix B.3.2. The time series of target
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images is obtained using Eq.(4.6):

Itarget(x, t) = Icorr(x, 0) + Cfit(x, t). (4.7)

Step 5: Proceeding time-point by time-point, each Icorr frame is registered to its

corresponding Itarget frame using FFD non-rigid registration. The process of regis-

tration can be formulated as a minimization problem:

d̂t(x) = arg min
d
C
(
Itarget(x, t), Icorr(x, t)

)
, (4.8)

where d̂t denotes the optimal solution and the cost function C is the similarity

metric. The implementation details of cost function can be found in Section 4.3.2.1.

4.3.2.1 Cost Function

The cost function, C, in Eq.(4.8) equals the sum of squared difference similarity

metric, namely SSD:

C
(
Itarget(x, t), Icorr(x, t)

)
=

1

2

∑
x∈Ω

(
Itarget(x, t)− Icorr(x, t)

)2
. (4.9)

The deformation is obtained by minimizing the similarity measure between the Itarget

and Icorr using a gradient-descent method as introduced in Section 2.6.3, with ana-

lytically calculated gradients and a backtracking line search. The explicit derivation

of the analytical gradients will be explained below in Section 4.3.2.2. The backtrack-

ing routine attempts to find a step size for reducing the value of the function C given

the current point and a direction. At each optimization cycle, the backtracking is

terminated if the step to the new point is so small that it triggers termination in

the main algorithm. In the default implementation, iterations are repeated until the

step size falls in precision of 1 pixel. Failing that, the algorithm will terminate when

a certain number of iterations is reached, say 300. We refer the reader to Appendix

B.3.6 for more details of this process.
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4.3.2.2 Gradient Computation

Let us denote the image domain as the rectangle Ω = {(x, y) |0 ≤ x < Lx, 0 ≤ y <

Ly}. Let nx × ny be a mesh of control points with uniform spacing ∆ overlaid on

image Ω, see Figure 4.1. The resolution of the image is defined as Lx

δx
× Ly

δy
where δ

is the uniform space between the pixels, and the resolution of the deformation field

is defined as Lx

∆x
× Ly

∆y
. The dt at any given location x can be defined as:

dc
t (x) =

∑
i∈Id

dt(i)(x)Bd
i (x), (4.10)

where dc is a continuous version of the deformation field, Id is a 2-dimensional array

representing the set of all control points coordinates in the deformation field, and Bd

is a tensor product of linear B-splines at the current resolution of the deformation

field grid, as introduced earlier in Section 2.6.1.3.

In a similar way, we can define Isource as:

Icsource(x, t) =
∑
j∈Is

Isource(j)
(x, t)Bs

j (x), (4.11)

where Icsource is a continuous version of the source image, Is is an N -dimensional

discrete set of all pixel coordinates in the source image, and Bs is a tensor product

of linear B-splines at the current resolution of the deformation field grid.

For the analytical calculation of the gradients the first step is to rewrite Eq.(4.2).

Substituting Eqs. (4.10) and (4.11) into Eq.(4.2) yields:

Iccorr(x, t) =
∑
j∈Is

Isource(j)
(x, t)Bs

j

(
x +

∑
i∈Id

dt(i)B
d
i (x)

)
, (4.12)

where Iccorr is a continuous version of the corrected image Icorr.

The gradient is with respect to the optimisation variables, i.e. the control points of

dt. For reasons of clarity and ease of presentation, let us write dt in terms of its

coordinates (dx,t, dy,t). To compute the gradient we take the derivative of the cost

function Eq.(4.9) with respect to the parameters of dt in the x-direction to get:
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Figure 4.1: Example showing high-resolution pixels that contribute to a low-resolution
pixel. The grid in light font represents the true underling high-resolution image (Isource)
and the grid in bold font is the low-resolution dt. Note the different grid sizes for light
font grid and bold font grid.

∂C
∂dxi,t

= −
∑
x∈Ω

(
Itarget(x, t)− Iccorr(x, t)

) ∂Iccorr(x, t)

∂dxi,t
. (4.13)

The partial derivative of Iccorr can be calculated from Eq.(4.12) as:

∂Iccorr(x, t)

∂dxi,t
=
∑
j∈Is

Isource(j)
(x, t)

∂Bs
j

∂x

(
x + dc

t (x)
)
Bd
i (x)

= Bd
i (x)

∑
j∈Is

Isource(j)
(x, t)

∂Bs
j

∂x

(
x + dc

t (x)
)

= Bd
i (x)

∂

∂x

∑
j∈Is

Isource(j)
(x, t)Bs

j

(
x + dc

t (x)
)
.

(4.14)

Using Eq.(4.12) the above formula leads to:

∂Iccorr(x, t)

∂dxi,t
= Bd

i (x)
∂Iccorr(x, t)

∂x
. (4.15)

The partial derivatives in y-direction are obtained in a similar fashion.
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The gradient in the x-direction for a certain control point, i, is then given by:

∂C
∂dxi,t

= −
∑

x∈loc(i)

(
Itarget(x, t)− Icorr(x, t)

)
Bd
i (x)

∂Iccorr(x, t)

∂x
, (4.16)

where the loc(i) defines the neighborhood around the control point i. Similarly the

gradient in the y-direction for a certain control point, i, is then given by:

∂C
∂dyi,t

= −
∑

x∈loc(i)

(
Itarget(x, t)− Icorr(x, t)

)
Bd
i (x)

∂Iccorr(x, t)

∂y
. (4.17)

Let us define the residual term in the above Eqs. (4.16) and (4.17) as follows:

Res(x, t) = Itarget(x, t)− Icorr(x, t). (4.18)

Substituting Eq.(4.18) into Eqs. (4.16) and (4.17) leads to:

∂C
∂dxi,t

= −
∑

x∈loc(i)

Res(x, t)Bd
i (x)

∂Iccorr(x, t)

∂x
, (4.19)

∂C
∂dyi,t

= −
∑

x∈loc(i)

Res(x, t)Bd
i (x)

∂Iccorr(x, t)

∂y
. (4.20)

4.3.2.3 Precomputation of Gradient

One of the most demanding parts of the algorithm from a computational point of

view is the computation of the gradients of the cost function, Eq.(4.9). However,

due to the compact support of the B-spline functions moving any control point of

the deformation field affects only its neighborhood. This means that the gradient

outside the neighborhood of the certain control point is not affected. Therefore, the

gradient computation deals with a small fraction of the image data only and thus has

to evaluate the transformation only for a small number of pixels at a time, as stated

above in Eqs. (4.16) and (4.17). In addition, the residual term (Eq.(4.18)) does not

depend upon the partial derivatives with respect to x nor y. Having precompute

this term only once we can further used it later in the computation of the gradients
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to avoid redundant calculations. For more details we refer the reader to Appendices

B.2.3 and B.2.4.

4.3.2.4 Precomputation of B-spline Coefficients

Another source of redundant calculations caused is the derivation of the dense de-

formation field. This procedure involves computing the weighted averages of the

control point displacements in a neighborhood area around each pixel. This neigh-

borhood consists of two control points in each dimension. The linear B-splines

transformation that is to be implemented is restated for convenient reference. For

a given control point displacement d, the displacement of a pixel x = (x, y) in 2D

is given by

dlinear(x) =
1∑
l=0

1∑
m=0

Bl(x− xi)Bm(y − yi)di+l,j+m, (4.21)

where (i, j) is the index of control point cell containing x. As Equation (4.21) has

to be evaluated in the whole image domain this cause a source of redundant calcu-

lations that can be avoided in a straightforward implementation. At each resolution

level the registration process is repeated several times. However, at a particular

resolution level the size of the deformation field does not change. As a result, the

B-splines basis functions values Bl(x − xi) and Bm(y − yi) can be precomputed at

first iteration and reused for subsequent iterations. For more detailed information

about the implementation of this step we refer the reader to Appendix B.2.2.

The formula for bilinear interpolation (Eq.(2.53)) introduced in Chapter 2 can also

be written in terms of Icorr and Isource. For an arbitrary point (x, y) we then obtain:

Icorr(x, y) = (1− u)(1− v)Isource(i,j)
+ u(1− v)Isource(i+1,j)

+ (1− u)v Isource(i,j+1)
+ uv Isource(i+1,j+1)

.
(4.22)
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The displacement of an arbitrary point (x, y) on the motion corrected image, Icorr,

is given by:

Icorr(x, y) = Isource(xi, yi) + (x− xi)
∆Isource

∆x
(xi, yi) + (y − yi)

∆Isource

∆y
(xi, yi)

+(x− xi)(y − yi)
∆2Isource

∆x∆y
(xi, yi).

(4.23)

One can prove that the Taylor series expansion in Eq.(4.23) is equivalent to bilinear

interpolation formula as given in Eq.(4.22) by calculating the numerical derivatives

of the source image, Isource with finite difference approximation. The derivation is

fairly straightforward and thus an explicit proof is not presented.

A last source of redundant calculations that can be avoided to reduce the compu-

tational time, is related to the calculation of the numerical derivatives in Eq.(4.23).

The source image, Isource does not change during the registration process and is inde-

pendent of the updated deformation field. Consequently, the numerical derivatives

of the Isource can precomputed only once and can be used for any other point that

has to be calculated in the current square cell, see Figure 4.1.

4.3.2.5 Multiresolution Strategy

In order to improve convergence and to reduce the computational cost, we have im-

plemented a multiresolution approach in which the resolution of the dt is increased

in a coarse-to-fine manner. In our implementation, the image size does not change

at each level. The resolution of the dt defines the number of degrees of freedom, and,

consequently the complexity of the deformation model. The algorithm is initially

performed using a coarse deformation field to capture large-scale registration and

then progressively increased. The resolution is changed by a factor of two between

continuous levels. The default implementation of the algorithm proceeds progress-

ively starting with a deformation field of size 21 × 21 and terminates when 25 × 25

resolution is reached. A deformation field of size 22×22 has 5×5 control points as il-

lustrated in Figure 4.1. At each resolution level, the deformation field obtained from

the previous level is interpolated to initialize the next level, using bilinear interpol-

ation. Fewer iterations are allowed at finer resolution levels where the computation
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is more expensive. The detailed algorithm referred to multiresolution procedure can

be found in Appendix B.1.1.

4.4 Registration of DCE-MRI using Tracer-Kinetic

Model-Driven Registration

4.4.1 Simulated Data

As mentioned in the introduction, the proposed image registration algorithm has

systematically been evaluated in simulated data. A synthetic phantom of the kidneys

was used to generate data (120 dynamics, 1.1s intervals, matrix size 135×135). The

kidney phantom is generated using the equation of an ellipse, given by:

(x− h)2

a2
+

(y − k)2

b2
≤ 1, (4.24)

where a is the radius along the x-axis, b is the radius along the y-axis and h, k are

the x, y coordinates of the ellipse’s center. For each region of the kidney phantom

(see Fig.4.2) the values of a, b and h were varied as shown in Table 4.1.

Region of a b h k
Kidney Phantom

1 15 10 38 64
2 32 20 38 64
3 37 22 38 64
4 41 26 38 64
5 38 21 100 64
6 33 18 100 64
7 16 10 100 64

Table 4.1: Parameter values used in Eq.(4.24) for each region of the synthetic kidney
phantom in Figure 4.2.

A literature based AIF was used [23], prepadded with zeroes to create a 15s baseline.

Contrast enhancement was applied using the 2CFM and literature pharmacokinetic

parameters [62], as summarized in Table 4.2. Gaussian noise and motion were added
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to improve the realism of the data. CNR is defined as the ratio of peak arterial

concentration to the standard deviation (SD) of the noise, i.e. CNR = max(Ca)/SD.

We chose to use CNR because in DCE-MRI this is a better measure of the noise level

than SNR as the analysis is performed on signal changes rather than on absolute

signal values. Two different types of motion were applied to motion-free synthetic

data: sinusoidal vertical shifts (rigid) were added as defined by

d(rigid) = x + A sin(2πt/T )ŷ, (4.25)

where A is the amplitude of motion (A = 12), T is the period of breathing (T = 4)

and ŷ is a unit vector. Non-rigid motion was derived from the inverse deformation

fields from clinical data.

Region of Fp Tp FT TT
Kidney Phantom (ml/min/100ml) (sec) (ml/min/100ml) (sec)

1 26 6.5 3 110
2 70 7.0 6 117
3 50 9.0 6 125
4 10 9.5 1 130
5 26 7.0 3 110
6 70 9.0 6 117
7 26 9.5 3 132

Table 4.2: Ground truth parameter values for each region of the synthetic kidney
phantom in Figure 4.2.

4.4.2 Clinical Data

DCE-MRI was performed using a 3T scanner (Philips Achieva, Best, Netherlands)

and a 2D Saturation-Recovery Turbo-Flash sequence with linear encoding of k-space.

A 2 channel body transmit coil was employed for homogeneous signal transmission

and data were acquired using 18 channel torso coil. Four slices (3 coronal,1 axial)

were acquired at a temporal resolution of 1.1 second. Other imaging parameters

were as follows: acquisition matrix 116 (phase) × 135 (read), number of dynamics

250, echo time 1.63 milliseconds, repetition time 3.6 milliseconds, bandwidth 900

Hz, inversion time 148 milliseconds, flip angle 12◦, slice thickness 7 mm, SENSE
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Figure 4.2: Top row: Simulated data with rigid motion. Bottom row: Simulated data
with non-rigid motion.

factor 2.4, field of view 375 × 440 mm2 with an in-plane resolution of 3.2 × 3.2

mm2.

Free breathing acquisitions were performed. We examined 5 subjects with Gd-

tetraazacyclododecane tetraacetic acid (Gd-DOTA) with a dosage of 0.1ml/kg body

weight. In all DCE-MRI data the AIF is measured in the aorta which is stable in

the axial slice during breathing motion.

4.4.3 Optimisation

To examine the influence of the registration algorithm as a function of its inputs

we varied the settings of the default implementation using simulated and real DCE-

MRI data. These inputs comprise the algorithm’s free parameters which are : 1) the

convergence precision in number of pixels; 2) the maximum number of steps required

for gradient-descent method to reach the minimum; 3) the highest resolution level of

dt; and 4) the number of iterations necessary at each resolution level. The precision

free parameter tested under various values ranges in between 0.1 and 5. We used a

coarse-to-fine approach with the resolution of dt ranging between 21×21 and 25×25

and iterated 5 times each. In the default implementation the input parameters were

as follows: 1) convergence precision was set to 1, 2) maximum number of steps

was set to 300, 3) highest resolution level was set to 25 × 25 and 4) the number of

iterations at each resolution level was set to 5. The appropriate parameter settings
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depend on the individual data set and have to be adjusted by the user. It should

be mentioned that the free parameters may influence the time complexity of the

algorithm.

4.4.4 Evaluation of Registration Algorithm

The assessment of registration accuracy was performed using both synthetic phantom

and real DCE-MRI data. For synthetic phantom the registration accuracy is quantit-

atively assessed by a relative error metric. It is measured between the reconstructed

Pi and corresponding known ground truth parameters P = Fp, Tp, PS, Te:

Ei(P ) =
Pi − P
P

× 100 (4.26)

For real DCE-MRI data, the registration accuracy was evaluated qualitatively by

visual comparison of corrected and uncorrected images. Time-cut images were gen-

erated representing the temporal evolution of a pixel-wide line across all time frames

as well as time-intensity curves of the signal and the model fit based on manually

selected tissue ROI.

The algorithm was implemented in IDL 6.4 (Exelis VIS, Boulder, CO) conducted

on a standard desktop PC with a 3.4GHz Intel Core processor and 32GB memory.

4.4.5 Registration Results

4.4.5.1 Effect of Parameter Setting

To examine the influence of the free parameters on image registration and calculation

time, we varied the settings of the default implementation of the proposed algorithm

in both simulated and clinical data. In study with the simulated data we examined

the case when non-rigid motion was added to the data. In study with clinical data we

chose to examine the data from Subject 3 as it appeared to be the most challenging

case in terms of motion.
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4.4.5.1.1 Effect of Precision Value

Figure 4.3 shows the comparison of the effect of registration at a wide range of

precision values, ranging from 0.1 to 5.0. For each precision value the registration

process was iterated 5 times. The size of the deformation field was fixed and set

to 22 × 22. This figure illustrates the error distribution after motion correction for

the 4-parameters, namely Fp, Tp, PSandTe. The circles indicate the median relative

parameter error for all the pixels in the image, and the error bars correspond to

the 75% range. The result shows an increase of the error with respect to ground

truths at higher precision values. Improved Fp maps representation can be seen

when the precision value was set to 0.1 or 1.0. The effect of computation cost by

alternating the precision value of the algorithm is presented in Table 4.3. Smaller

precision values led to an increase computation cost as more steps are performed in

the optimisation step compared to higher values. Similar observations can be made

from registration results of clinical data in Figure 4.4 and Table 4.4. From Figure 4.4

one should notice that organ boundaries are originally strongly blurred because of

motion, but sharply delineated after motion correction when the precision value was

set to 0.1 or 1.0. The results show an optimal registration in terms of quality and

speed when the precision is 1.0. This value was used in all subsequent simulation

studies.

Precision Value No. of Steps Computational Time (min)
0.1 72 3.50
1.0 53 1.76
2.0 26 0.60
3.0 21 0.48
4.0 20 0.47
5.0 18 0.45

Table 4.3: Comparison of precision values for motion correction using a deformation
field of size 22 × 22. The table shows the total number of steps and the computa-
tional time (in minutes) at each precision value respectively for the simulated data
corrupted with non-rigid motion.
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Figure 4.3: Top row: Error distribution after motion correction for the 4-parameters at
various precision values. The circles indicate the median relative parameter error for all
the pixels in the image, and the error bars represent the 75% range. Subsequent Rows:
Plasma flow (Fp) map of the simulated data before, and, after motion correction for each
precision value.

Precision Value No. of Steps Computational Time (min)
0.1 114 90.1
1.0 64 31.6
2.0 38 15.5
3.0 23 7.40
4.0 21 7.35
5.0 20 7.30

Table 4.4: Comparison of precision values for motion correction using a deformation
field of size 22×22. The table shows the total number of steps and the computational
time (in minutes) at each precision value respectively for Subject 3.
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Figure 4.4: Fp map of the Subject 3 data before, and, after motion correction for each
precision value. Motion correction was performed on the original image size. Images
cropped from 136×136 to 76×76 for visibility.
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4.4.5.1.2 Effect of Resolution Level

Performance of the proposed registration algorithm at a wide range of resolution

levels was also tested. The convergence precision value was set to 1.0 and 5 iterations

performed at each resolution level. Figure 4.5 illustrates the error distribution after

motion correction for the 4-parameters at various resolution levels ranging from

21 × 21 (very coarse) to 25 × 25 (very fine). The figure demonstrates that the

registration accuracy and precision, as measured by the relative error, improves at

finer resolution levels. One can note that both accuracy and precision do not really

improve at last resolution level. The figure shows also the Fp maps before and

after motion correction at each resolution level. Improved Fp maps representation

can be observed at finer resolution levels. Table 4.5 shows the computational time

with respect to each resolution level. The table shows that the computational time

decreases dramatically as the resolution level decreases. Similar to simulated data

the effect of resolution was also tested on clinical data. Qualitative registration

results of Subject 3 are presented in Figure 4.6. The registration results show a

decrease in blurring caused by breathing motion as the resolution level increases.

Similar to simulated data no significant improvement observed in last resolution

level. The effect of computation cost by alternating the resolution levels of the

registration algorithm is presented in Table 4.6. Similarly to simulated data the

total computational time increases as the resolution level increases. The results

show an optimal registration in terms of quality and speed when the resolution level

was 23 × 23. This value was used in all subsequent simulation studies.

Resolution Level Computational Time (min)
21 1.97
22 3.00
23 4.45
24 9.56
25 13.89

Table 4.5: Comparison of resolution levels for motion correction using precision of
1.0. The table shows the total computational time (in minutes) at each resolution
level respectively for the simulated data corrupted with non-rigid motion.
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Figure 4.5: Top row: Error distribution after motion correction for the 4-parameters
at various resolution levels ranging from 21 × 21 (very coarse) to 25 × 25 (very fine).
Subsequent Rows: Plasma flow (Fp) map of the simulated data before, and, after
motion correction for each resolution level.

Resolution Level Computational Time (min)
21 1.7
22 7.5
23 19.9
24 31.6
25 150

Table 4.6: Comparison of resolution levels for motion correction using precision of
1.0. The table shows the total computational time (in minutes) at each resolution
level respectively for Subject 3.
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Figure 4.6: Fp map of the Subject 3 data before, and, after motion correction for each
resolution level. Motion correction was performed on the original image size. Images
cropped from 136×136 to 76×76 for visibility.
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4.4.5.1.3 Effect of Number of Iterations

Finally we tested the performance of the proposed algorithm at different number of

iterations. In this case, the precision value of 1.0 and the resolution level of 23 × 23

was kept fixed. Figure 4.7 illustrates the comparison of the effect of registration

at a wide range of iteration numbers, ranging from 1 to 7. The figure shows that

the accuracy and precision of the algorithm improves with increasing iterations in

all parameters. The greatest gain occurs in the first 2 iterations where after 5

iterations the relative error does not seem to reduce. One should also notice that

Fp parameter maps are not notably improved after the fifth iteration. The effect of

number of iterations was also tested on clinical data. Qualitative registration results

of Subject 3 are presented in Figure 4.8. The registration results show a decrease

in blurring of the Fp maps caused by breathing motion, as the number of iterations

increases. Similar to simulated data, no significant improvement is observed on Fp

parameter maps after the fifth iteration. Thus, this value was used in all subsequent

simulation studies.
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Figure 4.7: Top row: Error distribution after motion correction for the 4-parameters
with respect to number of iterations, alongside with the cost function C. The circles
indicate the median relative parameter error for all the pixels in the image, and the error
bars represent the 75% range. Subsequent Rows: Plasma flow (Fp) map of the simulated
data before, and, after motion correction at each iteration.

Figure 4.8: Fp map of the Subject 3 data before, and, after motion correction at each
iteration. Motion correction was performed on the original image size. Images cropped
from 136×136 to 76×76 for visibility.
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4.4.6 Evaluation of Registration Performance

Figure 4.9 illustrates the results obtained after registration of the simulated data

corrupted with rigid and non-rigid motions. The results show that the algorithm

removes the motion without affecting the signal intensities. Similar observation can

be made in Figure 4.10. This figure shows that we achieved accurate registration

results as demonstrated through the different time frames.

Figure 4.11 shows the relative error of the 4-parameters obtained before motion

correction of the simulated data for a wide range of CNRs starting from 50 (very

low) to 1000 (very high). The relative error is calculated with respect to ground

truths for: no motion, rigid motion and non-rigid motion. The figure shows that the

uncorrected motion strongly reduces the accuracy and precision of all parameters in

all three cases.

Figure 4.12 shows the relative error of the 4-parameters obtained after motion cor-

rection of the simulated data for a wide range of CNRs starting from 50 (very low) to

1000 (very high). The relative error is calculated with respect to ground truths for:

no motion, rigid motion and non-rigid motion. In all three cases, the registration

algorithm leads to a reduction of the motion induced error.

Figures 4.13−4.17 show the effect of registration in 5 renal DCE-MRI datasets.

Time-cut images of the unregistered and registered data demonstrate that misalign-

ments were reduced after registration in all cases. These figures show also the effect

of motion correction on the temporal profiles. Original time-intensity curves of the

tissue ROI show large respiratory signal changes which showed an increased smooth-

ness after motion correction in all subject cases.

Comparison of the performance of the proposed algorithm using the modified-Tofts

model and 2CFM is also presented. Figure 4.18 illustrates the effect of motion

correction at different time-points using the modified-Tofts model and 2CFM on

simulated data. Similarly, Figure 4.19 illustrates the effect of motion correction

at different time-points using the modified-Tofts model and 2CFM on clinical data

of Subject 3. From both figures it can be observed that the modified-Tofts model

appears to be limited compared to 2CFM during the wash in phase. Comparison of

the temporal profiles on both simulated and clinical data using the modified-Tofts

model and 2CFM are presented in Figures 4.20 and 4.21, respectively. Original

time-intensity curves show large respiratory signal changes which notably reduce
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after registration.

Figure 4.9: Illustration of the effect of motion correction at different time-point, compare
with Figure 4.2. Top row: Simulated data corrupted with rigid motion after registration.
Bottom row: Simulated data corrupted with non-rigid motion after registration.

102



Chapter 4. Model-based Motion Correction in DCE-MRI

Figure 4.10: Illustration of the effect of motion correction at different time-point. Top
row: Original data of Subject 3 with frame indices. Bottom row: Subject 3 data after
motion correction.
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Figure 4.11: Error distribution before motion correction for the simulated data at CNR
from 50 (very low) to 1000 (very high). The columns show the 4 parameters and the rows
show different motion types: no motion (top row), rigid motion (middle row), non-rigid
motion (bottom row). The circles indicate the median relative parameter error for all the
pixels in the image, and the error bars represent the 75% range.
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Figure 4.12: Error distribution with motion correction for the simulated data at CNR
from 50 (very low) to 1000 (very high). The figure is organized in exactly the same way
as Figure 4.11 to allow a direct evaluation of the effect of motion correction (compare
corresponding panels in Figures 4.11 and 4.12).
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Figure 4.13: Effect of registration in Subject 1 renal DCE-MRI time series, (a)-(c) coronal
view for anatomical reference, a dashed line indicates the location of the time-cuts for
unregistered and registered data. Arrows indicate the location of the ROI. Time-intensity
curves of the signal (dashed line) and the model fit (full line) for unregistered (left) and
registered (right) data.
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Figure 4.14: Effect of registration in Subject 2 renal DCE-MRI time series, (a)-(c) coronal
view for anatomical reference, a dashed line indicates the location of the time-cuts for
unregistered and registered data. Arrows indicate the location of the ROI. Time-intensity
curves of the signal (dashed line) and the model fit (full line) for unregistered (left) and
registered (right) data.
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Figure 4.15: Effect of registration in Subject 3 renal DCE-MRI time series, (a)-(c) coronal
view for anatomical reference, a dashed line indicates the location of the time-cuts for
unregistered and registered data. Arrows indicate the location of the ROI. Time-intensity
curves of the signal (dashed line) and the model fit (full line) for unregistered (left) and
registered (right) data.
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Figure 4.16: Effect of registration in Subject 4 renal DCE-MRI time series, (a)-(c) coronal
view for anatomical reference, a dashed line indicates the location of the time-cuts for
unregistered and registered data. Arrows indicate the location of the ROI. Time-intensity
curves of the signal (dashed line) and the model fit (full line) for unregistered (left) and
registered (right) data.
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Figure 4.17: Effect of registration in Subject 5 renal DCE-MRI time series, (a)-(c) coronal
view for anatomical reference, a dashed line indicates the location of the time-cuts for
unregistered and registered data. Arrows indicate the location of the ROI. Time-intensity
curves of the signal (dashed line) and the model fit (full line) for unregistered (left) and
registered (right) data.
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Figure 4.18: Illustration of the effect of motion correction at different time-points using
the modified-Tofts model (top row) and the 2CFM (bottom row) for simulated data.

Figure 4.19: Illustration of the effect of motion correction at different time-points using
the modified-Tofts model (top row) and the 2CFM (bottom row) for Subject 3 data.
Motion correction was performed on the original image size. Images cropped from 136×136
to 76×76 for visibility.
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Figure 4.20: time-intensity curves of the signal (dashed line) and the model fit (full line)
for the tissue ROI marked with green for simulated data. Top row: Unregistered data
(left) and registered data (right) fitted with the modified-Tofts model. Bottom row:
Unregistered data (left) and registered data (right) fitted with the 2CFM.
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Figure 4.21: time-intensity curves of the signal (dashed line) and the model fit (full line)
for the tissue ROI marked with green for Subject 3 data. Top row: Unregistered data
(left) and registered data (right) fitted with the modified-Tofts model. Bottom row:
Unregistered data (left) and registered data (right) fitted with the 2CFM.
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4.5 Discussion

In this chapter, we have developed a fully automated tracer-kinetic model-driven

registration method to remove the motion in DCE-MRI time-series. The method

relies on registration of the source motion-corrupted images with reference to syn-

thetic target images resulting from tracer-kinetic model fits. This method allows

time-point by time-point registration and gives more control on the computation of

the deformation field opposed to existing pairwise registration methods that choose

a single target image.

In order to evaluate aspects of the proposed algorithm, we varied the settings of the

default implementation. The effect of settings on registration algorithm are demon-

strated experimentally using simulated and clinical data. The experiments indicate

that the results were as expected in all cases: the relative error decreases with in-

creasing iterations, the finer the resolution level used the smaller the error and the

smaller the precision value the smaller the error. In addition to this, the results con-

firmed our expectations in terms of computational cost of the registration algorithm

when we varied the convergence precision value and the resolution level. Smaller

convergence precision and finer resolution led to an increase in computational cost.

As previously mentioned, the proposed registration method incorporates the use of

a tracer-kinetic model to account for the signal intensity changes due to passage of

the contrast agent. To the best of our knowledge, existing model-based registration

methods used the modified-Tofts model. However, this model is unsuitable for renal

DCE-MRI data where the 2CFM is the model of preference. For this reason, we

have also evaluated the performance of the model-based registration method using

the two different tracer-kinetic models. Qualitative registration results when using

the two models are presented in Figures 4.18 and 4.19. Registration when using

the modified-Tofts model tends to incorrectly deform enhancing features during the

wash in phase in both simulated and clinical data. This might be explained by

the rapid temporal changes in the beginning where the modified-Tofts model does

not allow to model. The results suggest that the proposed algorithm when using

the 2CFM gives superior registration as it showed a greater robustness to contrast

changes. The general improvement of the two model fits after registration can be

seen in Figures 4.20 and 4.21 where one can notice that the modified-Tofts model

does not fit the data very well in the vascular phase.
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Quantitative assessment of the accuracy of the registration algorithm is also presen-

ted in Figure 4.12. The validation using simulated data with ground truth at a wide

range of noise levels and two types of motion (rigid and non-rigid) demonstrates

good quality registration. The algorithm reduces the motion induced parameter

error, improving the accuracy and precision of the parameters at all noise levels

(Figure 4.12). One should note that the motion correction algorithm decreases the

parameter error in motion-free data (Top rows of Figures 4.11 and 4.12). This can be

explained by the fact that the proposed algorithm has a smoothing effect that leads

to noise reduction and therefore improves the parameter accuracy and precision.

In addition, the proposed registration algorithm was applied to 5 renal DCE-MRI

datasets. Evaluation of image registration on clinical data is usually a hard task

because no ground truth is available. To assess the impact and performance of

non-rigid registration we compared the results before and after motion correction.

The results indicate that the motion correction method preserves good consistency

in the presence of intensity and contrast variations (see Figure 4.10). Inspecting

Figures 4.13−4.17, the registration method corrected in all cases the time-intensity

curves compared to corresponding intensity curves before motion correction and also

compared to known shapes from literature [87]. Time-cut images showed that our

data have more motion compared to [87] and therefore, the motion correction was

more challenging. After motion correction time-cut images were almost perfectly

corrected where in some cases the time-cut images in [87] showed some residuals due

to uncorrected motion. One should note that, in one case the proposed algorithm

does not produce very accurate motion correction in few time-points during the

wash in phase. This can be seen from time-cut images in Figure 4.15(a) where there

are some residuals of uncorrected motion at the early time points. This might be

explained by the long delay of the arrival of contrast agent between the artery and

the kidney. As mentioned in Chapter 3, it is a limitation of the method that a delay

parameter was not included in the 2CFM. The performance of the tracer-kinetic

model-driven registration method is difficult to compare to that of Hamy et al. [87]

since different kind of data have been used. An explicit comparison with the said

method on same data would be of interest but has not been explored in this study.

Interestingly, even though a renal cortical model is used (2CFM), the registration

algorithm appears to work equally well in liver, spleen and renal medulla, Figure 4.6.

The algorithm is also proved robust with respect to default optimisation parameter

selection.
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The work presented in this chapter also addressed the problem of high computational

cost. The inclusion of the precomputation steps described in Section 4.3.2 allowed

for a major improvement in the total computational time. In fact, most of the

processing time is spent in the gradient computation step, and the precomputation

of the gradients can accelerate the convergence of the optimisation algorithm. The

precomputation of B-spline coefficients accelerated the FFD registration step since

the coefficients only changed when the resolution of the deformation field changed.

Using the default implementation precomputation steps reduced the computational

times in clinical data (matrix 135×135, 249 dynamics) from 5 hours to less than 20

min and in simulated data (matrix 128×128, 120 dynamics) from 14 min to 3 min.

As mentioned earlier in Section 4.3.1, the linearised 2CFM (Eq.(4.1)) fitted time-

point by time-point to Ccorr (Eq.(4.4)) to determine estimates for α(x), β(x), γ(x)

and Fp(x). In order to create Itarget, first the Cfit is calculated using Eq.(4.6). At

this point, it is essential to note that the integrals involved in Eq.(4.6) connect all

the time-points. Thus, Cfit at a given time-point involves Ccorr at a particular time-

point plus all the earlier time points. Consequently, the assumption we made that

dt can be updated using time-point by time-point co-registration is not truly valid.

This is because the cost function, C, in Eq.(4.8) depends on Ccorr and therefore, dt

at a particular time-point plus also all earlier time-points. On the other hand this

issue does not appear when a NLLS fit is applied since the model fit in Eq.(3.14)

involves only the kinetic parameters of the model. However, as pointed previously

the standard NLLS method requires considerable computation time and it is there-

fore, impractical for use in the registration process since requires the application of

the 2CFM on a pixel-by-pixel basis. In order to take advantage of fast linearised

model, similar to [53, 88, 89] we have used a heuristic approach where we treated

Eq.(4.6) as if it is a single time point.

4.6 Conclusion

In summary, we have developed a novel fully automated tracer-kinetic model-based

registration method in DCE-MRI time-series. It has been applied to multiple renal

DCE-MRI datasets affected by free breathing motion. The proposed algorithm ef-

fectively removed between-frame breathing motion. We have also explored the val-

idation of this method using simulated data. The simulation results have provided
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evidence for successful motion correction with improved accuracy and precision of

the parameters. By using the precomputation steps we avoided redundant calcula-

tions and we reduced execution times by a factor of 15.
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Chapter 5

Application of Tracer-Kinetic

Model-Driven Registration to

Renal DCE-MRI Data

The tracer-kinetic model driven motion correction algorithm developed in Chapter

4 is now extended to 3D DCE-MRI data. The algorithm is applied to renal DCE-

MRI datasets acquired under free breathing. The translation to 3D has brought

additional challenges due to exponential increase in computational complexity and

ghosting artefacts caused by within-frame breathing motion. The performance of

the motion correction is analysed by visual assessment and by concentration-time

curves. The work in this chapter is also aimed to investigate the potential benefit

of adding motion correction to the analysis of DCE-MRI in the context of clinical

routine.

5.1 Introduction

Atherosclerotic renovascular disease (ARVD) is a progressive condition that affects

the renal function because of the inadequate blood supply and downstream damage

caused by cytokines and hypertension [62, 90]. ARVD is the most common disease of

the renal arteries and is a cause of both chronic kidney disease (CKD) and end stage

renal failure (ESRF) [91]. ARVD accounts for 90% of renal artery stenosis (RAS)
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in the Western population and is very commonly seen in the aging population [92].

Management of ARVD can be done either by blood pressure control with medical

treatment or by renal revascularization with angioplasty and stenting in order to

prevent further renal impairment [93].

As mentioned in Chapter 1, GFR is considered to be the most useful index of kid-

ney function. Measurements of the GFR are important for the assessment of renal

diseases and their treatment [94]. GFR is traditionally measured by renal scinti-

graphy using radiolabeled tracers such as Tc99-diethylenetriamine pentaacetic acid

(99Tc-DTPA) or 99Tc-dimercaptosuccinic acid (99Tc-DMSA) [95]. However, these

type of methods involve ionising radiation exposure and require licensed nuclear

medicine facilities. A potential alternative to radioisotope measurement techniques

is DCE-MRI which enables measurements of single-kidney glomerular filtration rate

(SK-GFR) as well as tissue perfusion and vascularity [96, 97, 98].

Several studies of measuring the kidney function using DCE-MRI have been de-

scribed in the literature. Early work by Hackstein et al. [95] demonstrated a good

correlation (Pearson’s correlation coefficient R = 0.86) between MRI derived SK-

GFR and the SK-GFR measured by iopromide. In this study the authors employed

a Rutland-Patlak plot to estimate kidney function in 28 patients. A subsequent

study performed in rabbits by Annet et al. [47] suggested that better results could

be obtained using a cortical-compartment model which can be thought of as equi-

valent to 2CFM. A substantial correlation (R = 0.821) was observed between the

GFR measured with MR and the gold standard radioisotope technique. Buckley et

al. [99] used both Rutland-Patlak plot and modified Tofts model to estimate GFR

in individual kidneys in 36 patients with ARVD using DCE-MRI. To further test

whether DCE-MRI has the potential to be a one-stop diagnostic and prognostic

tool, the authors assessed the SK-GFR derived from DCE-MRI using a radioisotope

measurement as reference measures. The results from this study suggested that es-

timates of SK-GFR using both techniques correlated well with radioisotope-assessed

SK-GFR (Rutland-Patlak: Spearman’s ρ = 0.81 and compartmental model: ρ =

0.71). Lee et al. [100] used a three-compartment, six-parameter model for MR

renography analysis. The authors compared the SK-GFR measurements from MR

renography with the reference measurements from 99Tc-DTPA clearance and scin-

tigraphy. The results showed that SK-GFR from MR renography agreed well with

the reference measurements (r= 0.84). Bland-Altman analysis showed an average

difference of 11.9 ml/min between the two methods. Another work to assess the
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GFR measurement with MR renography has been done by Vivier et al. [101] in

20 patients with liver cirrhosis. All patients here underwent routine MR imaging,

with urinary clearance of 99Tc-DTPA to obtain a reference GFR measurements.

Comparisons to results produced by the reference standard technique yield accur-

ate and precise measurements of GFR with MR renography (R2 = 0.87). In work

by Lim et al [62] a good correlation was also found between SK-GFR values from

DCE-MRI and radioisotopes with correlation coefficient R = 0.91. Bland-Altman

analysis showed an average difference of 1.5 mL/min between the two methods. It

has been also pointed out that the correlation can improve further by adding motion

correction to the analysis. Further work on measurement of SK-GFR using DCE-

MRI was made by Bokacheva et al. [102]. The authors compared different methods

for calculating the SK-GFR from T1-weighted MR renography against reference ra-

dionuclide measurements. Correlations with reference GFRs ranged from R = 0.74

to R = 0.85. In a recent study Eikefjord et al. [103] investigated the accuracy

and precision of MRI derived SK-GFR using the 2CFM compared to iohexol-GFR.

Twenty healthy volunteers were undertaken two DCE-MRI examinations. With ref-

erence to iohexol-GFR Pearson correlations and also the test-retest measurements

were r = 0.57 and r = 0.29. Compared to the other studies the correlations in

[103] were substantially weaker. However, their results were in good agreement with

Hackstein et al. [104] examining healthy participants, reporting Pearson correlation

r = 0.36. An overview of the results obtained from previous studies stated above

are summarised in Table 5.1.

The aims of this study were to extend the previously developed tracer-kinetic model

driven motion correction algorithm to 3D data and to test whether DCE-MRI meas-

urement of SK-GFR was improved by adding motion correction to the analysis. For

the latter, we wish to investigate the accuracy and precision of motion corrected

DCE-MRI measurement of SK-GFR compared to SK-GFR derived from DCE-MRI

without motion correction. Radioisotope measurements of SK-GFR were used as

gold standards.
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5.2 Tracer-Kinetic Model Driven Registration Modi-

fications

The application of tracer-kinetic model driven registration algorithm to 3D dynamic

renal images is slightly different from the initial application to 2D DCE-MRI data

presented in Chapter 4. Thus, an adjustment is required. In particular, as the

difference lies in the image data geometries, the transformation function must be

changed. This can be done by generalising the deformation field of the already

existing 2D algorithm, given in Eq.(4.21). Using the notation introduced in the

previous chapter, for a given control point the displacement of a voxel x = (x, y, z)

in 3D is defined as:

dlinear(x) =
1∑
l=0

1∑
m=0

1∑
n=0

Bl(x− xi)Bm(y − yj)Bn(z − zk)di+l,j+m,k+n, (5.1)

where (i, j, k) is the index of control point cell containing x and B is a weighting

function based on linear B-splines determining the contribution of the control point

displacement di,j,k of an image voxel x.

Another difference between the two applications lies in the interpolation method.

The obvious extension of bilinear interpolation to 3D is the so called trilinear inter-

polation. For an arbitrary point (x, y, z) the motion corrected image, Icorr, can be

obtained from:

Icorr(x, y, z) = Isource(xi, yi, zi) + (x− xi)
∆Isource

∆x
(xi, yi, zi) + (y − yi)

∆Isource

∆y
(xi, yi, zi)

+(z − zi)
∆Isource

∆z
(xi, yi, zi) + (x− xi)(y − yi)

∆2Isource

∆x∆y
(xi, yi, zi)

+(x− xi)(z − zi)
∆2Isource

∆x∆z
(xi, yi, zi) + (y − yi)(z − zi)

∆2Isource

∆y∆z
(xi, yi, zi)

+(x− xi)(y − yi)(z − zi)
∆3Isource

∆x∆y∆z
(xi, yi, zi).

(5.2)

The numerical derivatives of the Isource have been calculated with finite difference
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approximations. No further modifications of the motion correction algorithm or

additional tuning was required for the application to 3D data.

5.3 Materials and Methods

5.3.1 Clinical Data

A local research ethics committee approved the retrospective use of anonymised

patient data. For prospective data, all patients provided written informed consent

as part of a protocol agreed by the local research ethics committee.

Participants were amassed from the Renal Department of Salford Royal Hospital.

The 8 patients were collected between 2007 and January 2010 from a previously re-

ported research study [62]. All patients who participated had ARVD with significant

RAS and were treated by percutaneous transluminal renal angioplasty with stenting.

The inclusion criterion was >60% RAS based on MR angiography and one or more

of the following: advanced renal dysfunction, deteriorating renal function, or flash

pulmonary edema. The patients received both DCE-MRI and radioisotope SK-GFR

measurement at baseline and 4 months after the procedure. Inclusion criteria were

based on reported results from previous study [62] comparing the difference between

SK-GFR values derived from DCE-MRI and the gold standard radioisotope method.

We selected 6 cases that showed large difference between the DCE-MRI estimated

SK-GFR and the radioisotope measurement, 1 case showed moderate difference and

1 case showed not significant difference.

5.3.2 Radioisotope Measurement

Radioisotope SK-GFR (Iso SK-GFR) measurements were performed with stand-

ard nuclear medicine techniques [105, 96]. The global GFR was calculated using
51Cr-ethylenediaminetetraacetic acid (51Cr-EDTA) clearance and differential kidney

isotope uptake was measured using 99Tc-DMSA scintigraphy. The individual kid-

ney function was then assessed by dividing the global GFR according to percentage
99Tc-DMSA uptake.
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5.3.3 DCE-MR Imaging

DCE-MRI measurements were performed using a 3T whole body scanner (Philips

Achieva, Philips Medical Systems) with a phased-array body coil for signal recep-

tion. Subjects were imaged using 3D spoiled gradient echo sequence. The following

parameters were used for the acquisition: repetition time = 5.0 ms, echo time = 0.9

ms, field of view = 400 × 400 × 100 mm, flip angle = 17◦, parallel acquisition using

a sensitivity encoding (SENSE) factor = 2, approximate acquisition matrix = 128

× 84 × 10, and reconstructed matrix after zero-filling = 128 × 128 × 20. This res-

ulted in a temporal resolution of 2.1 s/volume. Subjects were given a quarter dose

of 0.025 mmol/kg Gd-DOTA (Dotarem, Guerbet, France) at a rate of 3 ml/s. In all

cases the acquisition and contrast agent injection were initiated simultaneously.

5.3.4 DCE-MRI Postprocessing

5.3.4.1 Without Motion Correction

Postprocessing was performed offline using PMI 0.4 software (Platform for Research

in Medical Imaging) written in IDL 6.3 [11, 106]. Digital Imaging and Communica-

tions in Medicine (DICOM) images were imported into the software and the analysis

was performed by one operator, who was blinded to the patient information and the

treatment status of the kidney (stented or not).

Rectangular ROIs were firstly drawn on different coronal slices of dynamic series

between the renal and iliac bifurcations of the aorta in order to avoid smaller arteries

and to minimise inflow effects [107]. The bifurcations themselves were avoided as the

blood flow there is turbulent. The highest 5% signal intensity of selected voxels was

selected to generate a volume of distribution map. Doing this semi-automatically an

AIF was extracted. Pixel-by-pixel deconvolution analysis was performed to generate

maps of blood flow and volume of distribution [108]. A whole kidney parenchymal

ROI was segmented semi-automatically by setting a threshold on the volume of

distribution map by adjusting ceiling and floor contrast, where extrarenal pixels

were manually excluded. Assuming a linear relationship between signal intensity and

the constrast agent concentration, the concentration-time curves for each individual

kidney and the aorta were estimated by subtracting the precontrast signal from the

dynamic signal, i.e. C(t) = S(t)−S0 where S(t) is the signal at time t and S0 is the
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baseline signal. The concentration-time curves of the selected ROIs were then fitted

non-linearly to the 2CFM [11]. A DCE-MRI measurement of SK-GFR was defined

as the product of the selected kidney parenchymal ROI volume, E and Fp [11].

5.3.4.2 With Motion Correction

DICOM images were imported into the PMI 0.4 software and then exported in

DAT files. The DAT files were imported in IDL 6.4 (Exelis VIS, Boulder, CO)

and were then motion corrected using the tracer-kinetic model-driven registration

algorithm as described in Section 5.2. The default algorithm parameters were used

as stated previously in Section 4.4.3 with the only exception being the maximum

resolution level which was set to 24. In the motion correction process a fixed AIF

has been used which was extracted from the uncorrected data as described above.

Motion corrected data including all time frames were then imported into the PMI

0.4 software and then analysed by one operator. At this point it should be noted

that the operator of motion corrected data was different from the one who have

performed the analysis on data before motion correction. The postprocessing is

the same as described above for the uncorrected data. It is essential to mention

that for the final parameter fitting a new AIF has been extracted from the motion

corrected data in a similar fashion. The SK-GFR in motion corrected data have

been measured in two different ways: (1) from DCE-MRI motion corrected data

using a measured AIF as described above and (2) from DCE-MRI motion corrected

data using the input function measured in data before motion correction, referred

to as “Orig AIF”. The reason for this will be further clarified later.

5.3.5 Statistical Analysis

To avoid any possible confusion, the gold-standard SK-GFR value derived from the

radioisotope measurement is referred to as “Iso SK-GFR” and the SK-GFR value

derived from DCE-MRI measurement as “SK-GFR”. Linear regression analysis was

performed to compare sixteen recorded SK-GFR values to gold-standard Iso SK-

GFR values using Excel (Excel 2010, Microsoft). The correlations between recorded

DCE-MRI SK-GFR and Iso SK-GFR were assessed using Spearman’s rank correla-

tion coefficient (ρ). To test whether motion correction reduces the systematic error.,

Wilcoxon Signed-Rank test was performed to compare the mean differences in recor-
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ded SK-GFR values derived from DCE-MRI data to gold-standard Iso SK-GFR. For

testing agreement between measurement of SK-GFR obtained with DCE-MRI and

with radionuclide techniques, we also performed Bland-Altman analysis. Wilcoxon

Signed-Rank test was also performed in R (version 3.3.1, 2016) and used to com-

pare the differences in renal parameters for two groups: (1) before and after motion

correction, and (2) before and after motion correction using Orig AIF. Numerical

results are presented as mean +− standard deviation. Significance level was set at

5%.

5.4 Results

5.4.1 Evaluation of motion correction performance

Figures 5.1 - 5.6 show the effect of motion correction on the measured images in 6

out of 8 patient data, respectively. Accurate motion correction results have been

achieved as demonstrated through the different time frames in all cases. One can

notice that despite the significant within-frame artefacts, the between-frame motion

is effectively removed without affecting the signal intensities or image contrast as

demonstrated through the different time frames.

Figures 5.7 - 5.12 show the effect of motion correction on temporal profiles from

representative kidney ROIs of 6 out of 8 patient data, respectively. Original time-

intensity curves of kidney ROI showed large respiratory signal changes which are

are notably reduced after motion correction, resulting in an improved fit to the data

in all cases. The figures also show the effect of motion correction in AIF. Original

AIF has higher signal intensity than AIF obtained after motion correction. Finally

these figures show the effect of motion correction on the Fp parametric maps. The

Fp maps before motion correction show strong blurring and artefacts, which are

mostly removed after motion correction leading to much clearer organ boundaries

and internal structures such as cortex and medulla.

Figures 5.13 and 5.14 show the effect of motion correction in clinical data in both

superior-inferior direction and anterior-posterior direction, respectively. Time-cut

images of the unregistered and registered data demonstrate that misalignments were

reduced after registration in all cases.
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Regarding the calculation times, in the original implementation the registration

algorithm did not converge within 5 days. However, the precomputation steps de-

scribed previously in Section 4.3.2 reduced calculation times to 12-13 hrs, where

only one case took about 26 hrs.

Figure 5.1: Illustration of the effect of motion correction at different time points in
Patient 1 data. From top to bottom: Original time-series with frame indices; correspond-
ing time-series after motion correction.
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Figure 5.2: Illustration of the effect of motion correction at different time points in
Patient 2 data. From top to bottom: Original time-series with frame indices; correspond-
ing time-series after motion correction.

Figure 5.3: Illustration of the effect of motion correction at different time points in
Patient 3 data. From top to bottom: Original time-series with frame indices; correspond-
ing time-series after motion correction.
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Figure 5.4: Illustration of the effect of motion correction at different time points in
Patient 4 data. From top to bottom: Original time-series with frame indices; correspond-
ing time-series after motion correction.

Figure 5.5: Illustration of the effect of motion correction at different time points in
Patient 5 data. From top to bottom: Original time-series with frame indices; correspond-
ing time-series after motion correction.
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Figure 5.6: Illustration of the effect of motion correction at different time points in
Patient 6 data. From top to bottom: Original time-series with frame indices; correspond-
ing time-series after motion correction.
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Figure 5.7: Effects of motion correction in Patient 1 data. The first two rows show the
plots of the concentration-time curves (blue dots) and the two-compartment filtration
model fit (red line) before and after motion correction for each kidney ROI. The third row
shows the signal intensity curves of the AIF before and after motion correction. Bottom
row shows the plasma flow (Fp) maps before and after motion correction.
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Figure 5.8: Effects of motion correction in Patient 2 data. The first two rows show the
plots of the concentration-time curves (blue dots) and the two-compartment filtration
model fit (red line) before and after motion correction for each kidney ROI. The third row
shows the signal intensity curves of the AIF before and after motion correction. Bottom
row shows the plasma flow (Fp) maps before and after motion correction.
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Figure 5.9: Effects of motion correction in Patient 3 data. The first two rows show the
plots of the concentration-time curves (blue dots) and the two-compartment filtration
model fit (red line) before and after motion correction for each kidney ROI. The third row
shows the signal intensity curves of the AIF before and after motion correction. Bottom
row shows the plasma flow (Fp) maps before and after motion correction.
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Figure 5.10: Effects of motion correction in Patient 4 data. The first two rows show
the plots of the concentration-time curves (blue dots) and the two-compartment filtration
model fit (red line) before and after motion correction for each kidney ROI. The third row
shows the signal intensity curves of the AIF before and after motion correction. Bottom
row shows the plasma flow (Fp) maps before and after motion correction.
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Figure 5.11: Effects of motion correction in Patient 5 data. The first two rows show
the plots of the concentration-time curves (blue dots) and the two-compartment filtration
model fit (red line) before and after motion correction for each kidney ROI. The third row
shows the signal intensity curves of the AIF before and after motion correction. Bottom
row shows the plasma flow (Fp) maps before and after motion correction.
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Figure 5.12: Effects of motion correction in Patient 6 data. The first two rows show
the plots of the concentration-time curves (blue dots) and the two-compartment filtration
model fit (red line) before and after motion correction for each kidney ROI. The third row
shows the signal intensity curves of the AIF before and after motion correction. Bottom
row shows the plasma flow (Fp) maps before and after motion correction.
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Figure 5.13: Effect of registration in superior-inferior direction in all patients. Coronal
view for anatomical reference, a dashed line indicates the location of the time-cuts for
unregistered and registered data.
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Figure 5.14: Effect of registration in anterior-posterior direction in all patients. Sagittal
view for anatomical reference, a dashed line indicates the location of the time-cuts for
unregistered and registered data.
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5.4.2 Validation

DCE-MRI analysis of data before and after motion correction was compared to

the gold-standard Iso SK-GFR values (Figure 5.15). Figure 5.15a shows the gold-

standard Iso SK-GFR values compared with the SK-GFR values derived from DCE-

MRI data before motion correction. Figure 5.15b shows the gold-standard Iso SK-

GFR values compared with the SK-GFR values derived from DCE-MRI data after

motion correction. Figure 5.15c shows the gold-standard Iso SK-GFR values com-

pared with the SK-GFR values derived from DCE-MRI data after motion correction

using AIF measured in data before motion correction. The results showed that mo-

tion correction reduces the systematic error and is most notably in Figure 5.15b.

Similar observations can be made from Table 5.2. The results after motion cor-

rection showed no evidence of systematic error (after motion correction: P-value

= 0.3259 and after motion correction using Orig AIF: P-value=0.0703), whereas

results showed significant evidence of systematic error on SK-GFR measurements

before motion correction (P-value=0.0262).

Figure 5.16 visualises the accuracy in terms of agreement between Iso SK-GFR and

SK-GFR before motion correction (Figure 5.16a), after motion correction (Figure

5.16b) and after motion correction using Orig AIF (Figure 5.16c). Bland-Altman

analysis showed a mean difference of 4.6 ml/min with 95% confidence interval of (-10

and +19 ml/min) between Iso SK-GFR and SK-GFR before motion correction, a

mean difference of 1.1 ml/min with 95% confidence interval of (-14 and +16 ml/min)

after motion correction and a mean difference of 3.3 ml/min with 95% confidence

interval of (-10 and +16 ml/min) after motion correction using Orig AIF.

Linear regression analysis gave a slope of 0.96 with an intercept of -3.7 before motion

correction, a slope of 1.03 with an intercept of -1.97 after motion correction and a

slope of 0.99 with an intercept of -2.96 after motion correction using Orig AIF.

Spearman’s rank correlation with Iso SK-GFR were comparable for SK-GFR before

motion correction (ρ = 0.89), after motion correction (ρ = 0.91) and after motion

correction using Orig AIF (ρ = 0.90).

DCE-MRI analysis of four haemodynamic parameters (Fp, vp, E, TT ) after motion

correction was compared to the corresponding DCE-MRI parameters before motion

correction. Figure 5.17 shows a graphic comparison of the haemodynamic paramet-

ers before and after motion correction.
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Table 5.3 shows the gold-standard Iso SK-GFR values for each kidney compared with

the SK-GFR values derived from DCE-MRI data before and after motion correction.

Table 5.4 shows the four haemodynamic parameters derived from DCE-MRI be-

fore and after motion correction. The parameters derived after motion correction

compared with parameters before motion correction. There was no evidence of a

significant difference across the Fp, vp and E parameters after motion correction us-

ing Wilcoxon Signed-Rank test (P-value = 0.8, 0.2 and 0.1). However, significant

difference showed between TT parameter values (P-value = 0.027). Significant dif-

ference was also demonstrated between Fp, vp, TT and E parameter values before and

after motion correction using Orig AIF (P-value = 0.002, 0.002, 0.004 and 0.002).

Figure 5.15: (a) Scatter plot shows the gold-standard Iso SK-GFR values compared with
the SK-GFR values derived from DCE-MRI data before motion correction. (b) Scatter plot
shows the gold-standard Iso SK-GFR values compared with the SK-GFR values derived
from DCE-MRI data after motion correction. (c) Scatter plot shows the gold-standard
Iso SK-GFR values compared with the SK-GFR values derived from DCE-MRI data after
motion correction using AIF measured in DCE-MRI data before motion correction. (d)
Scatter plot shows the gold-standard Iso SK-GFR values compared with the SK-GFR
values derived from DCE-MRI data as described in (a), (b) and (c) cases.
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Figure 5.16: Bland-Altman plot comparing single-kidney glomerular filtration rate (SK-
GFR) values derived from DCE-MRI and the gold-standard radioisotope method. DCE-
MRI values derived (a) before motion correction, (b) after motion correction, (c) after
motion correction using AIF measured in DCE-MRI data before motion correction. The
y-axis shows the difference of MRI minus radioisotope. Dashed lines indicate the mean
difference and 95% confidence intervals.
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ρ Mean Difference 95% CI of P-value
mean difference

Before MC−Isotope 0.89 4.6 ml/min -10 and +19 ml/min 0.0262∗

MC−Isotope 0.90 1.1 ml/min -14 and +16 ml/min 0.3259

MC Orig AIF−Isotope 0.91 3.3 ml/min -10 and +16 ml/min 0.0703

Table 5.2: Spearman correlations (ρ), Mean difference with 95% Confidence Interval
(CI) of SK-GFR measurements derived before motion correction (MC), after MC
and after MC using Orig AIF. Mean Difference was considered to be statistically
significant at a P-value of less than 0.05.

SK-GFR (ml/min)
Patient Kidney DCE-MRI DCE-MRI DCE-MRI Isotope

Before MC After MC After MC Orig AIF
1 Left 21.04 19.45 17.4 15.63

Right 0.26 3.09 3.80 1.87
2 Left 32.12 37.48 34.61 47.10

Right 1.71 2.04 1.90 1.97
3 Left 36.20 27.30 35.28 40.96

Right 4.38 1.08 3.92 4.02
4 Left 12.66 23.10 15.71 24.49

Right 4.97 8.88 6.30 16.33
5 Left 16.19 22.56 15.54 23.14

Right 9.17 15.00 10.30 19.64
6 Left 60.00 69.02 63.00 49.32

Right 6.32 8.70 9.13 13.86
7 Left 23.88 31.00 24.90 25.10

Right 22.04 31.47 29.20 30.70
8 Left 34.86 38.50 35.40 34.08

Right 23.22 27.00 24.80 35.46

Table 5.3: Motion correction performance assessment: DCE-MRI SK-GFR values
before and after motion correction and gold standard isotope SK-GFR values of left
and right kidney in six clinical data sets.
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Figure 5.17: Each plot shows: the median (bold line), the 25th and 75th percentile (box),
and the full data extent (dashed line). In plot (d) outliers were excluded from the graphical
representation of the data for reasons of clarity. Significant difference compared to the
before motion correction case is indicated by ‘*’. Symbol (◦) indicates an outlier.
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Parameters Before MC After MC After MC Orig AIF

Fp, ml· min−1·100ml−1 206 +− 78 213 +− 81 171 +− 69*
vp, ml/100 ml 33+− 13 35 +− 12 29+−12*
Extraction fraction, % 9 +− 5 12 +− 7 13 +− 6*
Tubular MTT, min 3.6 +− 2 2.5 +− 1* 2.6 +− 1*

Table 5.4: Values are means ± SD for the parameters before and after motion cor-
rection. In tubular MTT outliers were excluded from the analysis. *Statistically
significant mean difference compared with parameter values before motion correc-
tion.

5.5 Discussion

5.5.1 Evaluation of motion correction performance

The work presented in this chapter addresses the problem of motion correction

in 3D DCE-MRI time series. The present algorithm is a generalisation to 3D of

the previous 2D tracer-kinetic model-driven registration algorithm introduced in

Chapter 4.

In this study, the performance of the registration algorithm was tested on 8 ARVD

patient data measured under free breathing. As depicted in Figures 5.1 - 5.6, the

data suffered from significant ghosting artefacts as the acquisition time is similar in

duration to the breathing cycle. The newly proposed algorithm is surprisingly in-

sensitive to significant structured noise caused by within-frame breathing artefacts,

as demonstrated through the different time frames. The algorithm generated visu-

ally appealing results as the between-frame motion is effectively removed without

affecting the signal intensities. The effect of motion correction is also notably in

Figures 5.7 - 5.12. Concentration-time curves show an increased smoothness after

motion correction. More importantly, there is a visible difference in the result-

ing maps of plasma flow (Fp). Different organs such as kidneys, liver and spleen

are originally strongly blurred because of structural error and actual motion. The

parametric maps after motion correction show a decrease of motion artefacts and

more notably at the edges of the kidneys, spleen and liver (see the arrows shown on

the relevant figures). Furthermore, our results show that the proposed registration

algorithm correct the motion in all three dimensions (see Figures 5.13 and 5.14).

Precomputation steps reduce the calculation times to 12 hrs. As the calculation
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is easily parallelizable, this implies that convergence within minutes is feasible on

multi-core workstations.

5.5.2 Validation

Interestingly, one should note that the motion correction has an effect on the signal

intensities of the AIF (see Figures 5.7 - 5.12). This could be explained by the fact

that the image registration has been performed on a very low resolution deformation

field. The low resolution pixels especially those at the center of the deformation field,

most likely contain part of the kidney structure and part of the aorta. Although the

aorta is static there is movement in the kidney that needs to be corrected. When

an FFD is applied on a low resolution grid, a deformation field can be obtained

correcting the motion where it exists. However, at the same time the motion cor-

rection affects static structures such as the aorta due to the interpolation that is

performed in order to obtain a high resolution deformation field. Given the fact

that the aorta is static, its exclusion from the motion correction process could be

applied as a potential solution. Another possible solution could be to use a high

resolution deformation field in which the interpolation will affect much less the static

structures. However, this will lead to significant increase in calculation times. The

enhancement of signal due to Gd-based contrast agents is partly dependent on AIF.

Therefore, AIF measurement has been found to have an influence on the spread

of variability of DCE-MRI data analysis and a major impact on clinical outcomes

[109, 110]. To this end, after motion correction SK-GFR values from DCE-MRI

data have been derived in two different ways, as discussed in Section 5.3.4.2.

This study aimed to evaluate accuracy and precision in DCE-MRI derived SK-GFR

measurements. We wished to test whether DCE-MRI measurements of SK-GFR

were improved in the context of clinical routine by adding motion correction to the

analysis. Our results showed good correlation between SK-GFR values derived from

MRI and isotopes in all three cases that have been examined, we refer the reader to

Table 5.2.

Compared to previous studies [99, 100, 101, 62] using radioisotope SK-GFR reference

to determine accuracy in MR-derived SK-GFR, our results are in good agreement

in terms of the mean difference, see Table 5.1. Our results suggest that there is

no significant evidence of systematic error on SK-GFR measurements between MR-
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derived measurements after motion correction and Iso SK-GFR. However, evidence

of systematic error show on SK-GFR measurements derived from MR before motion

correction compared to Iso SK-GFR.

Quantitative assessment showed that tracer-kinetic model-driven registration al-

gorithm removes the residual bias in SK-GFR measurements (Figure 5.15). This

is consistent with the fact that breathing motion causes a net displacement of the

time curves because expiration has a longer duration than inspiration. With refer-

ence to Iso SK-GFR our findings of precision before motion correction are in good

accordance with previous DCE-MRI studies of patients with ARVD [99, 62], report-

ing moderate precision. Compared to a previous study [103] in which DCE-MRI

volumes were motion corrected before measurements of SK-GFR, our observations

are broadly similar in terms of precision. That is, results suggest that precision has

not been improved further after motion correction.

The above observations lead to the conclusion that the limiting factor to clinical

utility is currently the lack of precision in SK-GFR rather than accuracy. Although

data were motion corrected in the postprocessing phase our findings suggest that

correction of between-frame motion does not resolve this problem. This leads to

the conclusion that within-frame artefacts are probably the main driver for poor

precision. A second potential source for poor precision is the use of simple baseline

subtraction to estimate concentrations, although this approach has been previously

used in similar studies [62, 103].

Compared to previous DCE-MRI study of patients with ARVD [62], our findings

are in good accordance in terms of mean difference of the postprocesure parameters

as illustrated in Table 5.4. The observed trend in tubular transit time gives rise

to the hypothesis that this parameter is affected by motion error more than other

parameters such as plasma flow, plasma volume and extraction fraction, see Figure

5.17. Thus, a potential source of overestimation in the mean transit time parameter

is the motion error. The results suggest that there is a significant mean difference

in this parameter before and after motion correction (Table 5.4).
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5.5.3 Study Limitations

The number of kidneys studied was relatively low. The significance levels were weak,

and some effects that appear systematic error on a visual inspection did not reach

statistical significance (e.g. Figure 5.15(c)). It is therefore necessary to perform the

study on a larger sample size. Another potential limitation of our work is related

to the assumption of a linear relationship between signal intensity and contrast

agent concentration. The kinetic parameters in the concentration time curves were

calculated by subtracting pre-contrast (baseline) signal from post-contrast signal, as

discussed in Section 5.3.4.1. However, it is well-known that this relation is nonlinear

in MR especially at higher concentrations. In this study a quarter of a standard dose

of contrast agent is injected so that the effect is relatively smaller than in typical

DCE-MRI studies.

5.6 Conclusion

In conclusion, the motion correction method allows improved registration of multiple

free breathing renal DCE-MRI time series. The tracer-kinetic model driven registra-

tion algorithm effectively removes between-frame breathing motion. With reference

to Iso SK-GFR, SK-GFR derived from DCE-MRI for both before and after motion

correction achieved low bias, but only had a moderate precision. Although DCE-

MRI appears to be a promising one-stop tool for the determination of SK-GFR,

clinical translation will require removal of within-frame artefacts which can only be

achieved by integrating motion correction in the image reconstruction process.
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General Conclusions and Future

Work

The overall aim of this work in thesis was to develop and evaluate an image regis-

tration algorithm which incorporates a 4-parameter 2-compartment tracer-kinetic

model to motion correction process to account for signal intensity changes due to

the passage of contrast agent. In the work presented in the different chapters a num-

ber of challenges were addressed: linearisation of two-compartment models, motion

correction, computational complexity of non-rigid registration algorithms, and as-

sessment of SK-GFR after motion correction in patients with ARVD in the context

of clinical routine.

6.1 Conclusions

After a preliminary introduction and theoretical background in Chapter 1 and 2,

Chapter 3 developed a new LLS fit for the 2CXM and 2CFM. This chapter also

presented a LLS method of simpler models such as the Tofts model and modified

Tofts model. The results suggested that the LLS method for the Tofts model and

modified Tofts model is more efficient than the NLLS method and has comparable

accuracy. The LLS method for solving the 2CXM or 2CFM reduces the computation

times by two orders of magnitude, and is at least as accurate and precise as the

NLLS method at low noise levels. However, at higher noise levels the LLS became
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exceedingly inaccurate compared to the NLLS. The results suggested that this may

be improved though by using a suitable weighting strategy. A large amount of this

work was published in [44].

Chapter 4 introduced a novel image registration technique for correction of mis-

alignments induced by inter frame motion on 2D DCE-MRI data. The proposed

method, named tracer-kinetic model-driven registration is inspired by the work of

other research groups and combined advantageous approaches into one method.

The registration algorithm was initially tested on a contrast enhancement simu-

lated phantom incorporating a rigid and nonrigid motion. Quantitative evaluation

against ground truth demonstrated that the algorithm removed the motion induced

error. The proposed motion correction method has been tested on 2D renal DCE-

MRI data. The results illustrated that the motion correction algorithm allowed

significant improvement of tissue time-intensity curves compared to corresponding

ones before motion correction. The successful motion correction of multiple data-

sets using the same algorithm settings suggest the method is robust. This chapter

also investigated the inclusion of some computational performance benefits into the

tracer-kinetic model-driven registration algorithm. The computational complexity

of non-rigid registration algorithms has been addressed by precomputing the gradi-

ents of the cost function as well as the coefficients of B-splines to remove redundant

calculations. The computational performance of the proposed algorithm has been

significantly improved, and in particular it was found that the precomputation steps

reduced the calculation times for one slice from 5 hrs to 20 min.

Chapter 5 presented an extension to 3D renal DCE-MRI data in the presence of

free breathing of the tracer-kinetic model-driven registration algorithm described

in Chapter 4. The translation to 3D has brought an additional challenge due to

ghosting artefacts caused by within-frame breathing motion. Visual inspection of

plasma flow maps and visual comparison of corrected and uncorrected time frames

were used as a method of evaluation. The results suggested that the motion correc-

tion algorithm has effectively removed between-frame breathing motion despite the

significant within-frame artefacts. In addition, the computational cost has increased

to 12-13 hrs. Although the exponential increase in computational complexity was

inevitable there is significant room for improvement. Chapter 5 also examined the

effect of motion correction on clinical utility. Quantitative evaluation of SK-GFR

derived from DCE-MRI against reference measurements showed a reduction of the

bias, but precision is limited by within-frame artefacts. This suggests that the clin-

150



Chapter 6. General Conclusions and Future Work

ical translation will require removal of within-frame artefacts, which can only be

achieved by integrating motion correction in the reconstruction process. The selec-

tion of AIF has been noted to have an influence on the DCE-MRI measures and

a more extensive investigation is thus required. Although promising results were

obtained with the proposed heuristic method, a complete validation is necessary to

fully assess the potential benefit of such a semi-automated technique.

From a general point of view, this thesis aimed at improving the accuracy and reli-

ability of image analysis in quantitative DCE-MRI. The 4-paremeter tracer-kinetic

model-driven registration algorithm has been proposed, designed specifically for

the motion correction of contrast enhanced data. The inclusion of computational

performance benefits have been demonstrated. The proposed algorithm has been

demonstrated on clinical data and simulated phantoms with contrast variations. The

work undertaken leads to the observation that the said image registration algorithm

effectively removes between-frame breathing motion.

6.2 Future Work

A number of possible extensions and future directions might be considered. The use

of tracer-kinetic model driven registration is not limited to the application presented

in this thesis and can be extended to other application such as liver, spleen or

heart. There are no fundamental differences other than those relating to selecting

an appropriate tracer-kinetic model for the alternative application.

The 2CFM presented in Chapter 3 does not include a delay parameter. Future work

could take into account the delay of the arrival of contrast agent between the artery

and the tissue. It is a limitation of the method as discussed in Chapter 3 that a delay

parameter was not included in the model. As seen in Figure 4.15(a), the proposed

motion correction algorithm does not produce very accurate motion correction in

Subject 3 due to the long delay between the artery and the kidney. The inclusion

of a delay parameter in 2CFM could possibly also fix this disturbance.

A few refinements of the motion correction algorithm could also be of interest in

future work. The time frames are independent of each other and therefore the

algorithm is easily parallelizable. Consequently, each time frame can be thought

of as an individual registration. The parallel formation of the proposed algorithm

151



Chapter 6. General Conclusions and Future Work

by running each registration on a graphical processing unit (GPU) will make the

algorithm converge faster. This implies that convergence of the algorithm within

minutes is feasible on a multi-core workstation.

The work in this thesis assumed a linear relation between the signal intensities and

the contrast agent concentration. MR signal intensity has been converted to contrast

agent concentration using the relation given in Eq.(4.3), as introduced in Chapter 4.

However, this is a good approximation only when the concentrations are not too big.

For higher concentrations this assumption is not very accurate. A more accurate

way to obtain the concentrations is to use Eq.(2.7) which requires an estimate of

the precontrast T1 (i.e. T1,0). Recently, Dickie et al. [111] proposed that the joint

estimation of T1 mapping and dynamic data improves the accuracy and precision

of tracer-kinetic parameters. In the spirit of the paper by Dickie et al. it may be

beneficial to further develop a joint temporal model to account for dynamic data

as well as precontrast data. Thus, a natural extension of the work outlined in this

thesis is the motion correction of the dynamic data as well as the precontrast data

(T1 mapping). The hypothesis underlying this future work is that the joint motion

correction would improve the accuracy and precision of the estimated tracer kinetic

parameters, and consequently the assessment of SK-GFR. This would be a good

extension of the work presented here and there are no direct theoretical problems

other than those relating to joint temporal model which describes both the dynamic

and precontrast data.
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Numerical Evaluation of the

Convolution

The NLLS implementation in this study uses an efficient and accurate iterative

algorithm for the evaluation of a convolutions with an exponential factor:

f(t) = a(t)⊗ e−t/T

T
≡ 1

T

∫ t

0

dτ a(τ) e−(t−τ)/T . (A.1)

The algorithm applies to situations where the function a(t) is measured and thus

only available at discrete times t0 = 0, t1, t2, . . . , tn−1 (not necessarily uniformly

spaced).

With T = 0 the result is f(t) = a(t). With T 6= 0 the integral is evaluated by

interpolating linearly between the values ai = a(ti), leading to an iterative formula

with starting value f(t0) = 0:

f(ti+1) = e−xif(ti) + aiE0(xi) + a′i TE1(xi), i ≥ 0, (A.2)

where

E0(x) =

∫ x

0

e−(x−u)du = 1− e−x, (A.3)

E1(x) =

∫ x

0

ue−(x−u)du = x− E0(x) (A.4)
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and

xi ≡
ti+1 − ti

T
, a′i ≡

ai+1 − ai
ti+1 − ti

. (A.5)

Compared to standard numerical convolution, Eq. (A.2) is more accurate because

the exponential factor is not approximated. It is also more efficient computationally

due to its iterative nature.

To prove the results, consider first the case T = 0:

lim
T→0

e−t/T

T
∗ a(t) = δ(t) ∗ a(t) = a(t) (A.6)

For any other T , note that the initial value is f(t0) = 0 since t0 = 0. Now given f(ti),

the value f(ti+1) can be determined by splitting up the integral and substituting

u = (τ − ti)/T :

1

T

∫ ti+1

0

dτ a(τ) e−(ti+1−τ)/T

=
1

T

∫ ti

0

dτ a(τ) e−(ti+1−τ)/T

+
1

T

∫ ti+1

ti

dτ a(τ) e−(ti+1−τ)/T

=
1

T

∫ ti

0

dτ a(τ) e−xi−(ti−τ)/T

+

∫ xi

0

du a(ti + Tu) e−(xi−u)

≈ e−xif(ti) +

∫ xi

0

du (ai + a′iTu) e−(xi−u)

Eq. (A.2) then follows directly from the definitions (A.3) and (A.4). The linear

interpolation between data points is made in the second term of the last line, and

is the only approximation made.
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Tracer-Kinetic Model-Driven

Registration Algorithm Source

Code

B.1 Algorithm Architecture

B.1.1 Multiresolution Procedure

This function performs a multiresolution strategy for image registration.

The default implementation proceeds progressively from coarse -to -fine

resolution as described in Section 4.3.2.5.

--------------------------------------------------------------------------

FUNCTION pkreg_mres , Time , Ca, Source , Baseline

Nt = n_elements(Source [0,0,*])

step = 1.0 ;precision value see the Optimisation Section 4.4.3

nd = [2L, 4L, 8L, 16L, 32L] ;resolution levels of the deformation field

itmax =[5L, 5L, 5L, 4L, 4L] ;max number of iter at each resolution level

it = 0L

d = fltarr(2,nd[it],nd[it],Nt) ;initialise deformation field

;Perform registration at lowest resolution level

pkreg , Time , Ca, Source , Baseline , d=d, itmax =4., step=step

;Perform registration at contiguous resolution levels

FOR it=1L,n_elements(nd)-1 DO BEGIN ;looping over resolution levels

d = ffd_interpol(d, [nd[it],nd[it]])

pkreg , Time , Ca, Source , Baseline , d=d, itmax=itmax[it], step=step
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ENDFOR

;Return Corrected image

RETURN , ffd_dynamic(Source , d)

END

B.1.2 Tracer-Kinetic Model-Driven Registration

This function performs time point by time point registration. Each measured

source image (I_source) is registered using FFD to its corresponding target

image (I_target ). The deformation field is then applied to source images

creating the corrected images , (I_corr ).

-----------------------------------------------------------------------------

PRO pkreg , Time , Ca , Source , Baseline , d=d, itmax=itmax , step=step

;max number of iter at each resolution level

if n_elements(itmax) eq 0 then itmax =5

Nt = n_elements(Source [0,0,*])

;Initialise the Corrected image

Corr = ffd_dynamic(Source , d)

;Register

FOR it=1L,itmax DO BEGIN

;Create Target images

Target = pkfit(Time , Ca, Deformed , Baseline) ;fit the 2CFM pixel -by -pixel

FOR t=0L, Nt -1 DO BEGIN

ffd_precompute , REFORM(Source[*,*,t]), size(REFORM(d[0,*,*,0]), $

/dimensions)

d[*,*,*,t] = ffd_reg(REFORM(Source[*,*,t]), REFORM(Target[*,*,t]), $

REFORM(d[*,*,*,t]), step=step)

Corr[*,*,t] = ffd(REFORM(Source[*,*,t]), REFORM(d[*,*,*,t]))

ENDFOR

ENDFOR

END

B.1.3 FFD Image Registration

This function performs FFD image registration. After image registration

is done the function returns the deformation field that is to apply later

on I_corr.

--------------------------------------------------------------------------

FUNCTION ffd_reg , Source , Target , d, step=step , itmax=itmax
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;See Optimisation Section 4.4.3

if n_elements(itmax) eq 0 then itmax = 300. ;max iter

if n_elements(step) eq 0 then step = 1.0 ;precision value

dreg = d

ffd_precompute ,Source ,size(REFORM(d[0,*,*]), /dimensions)

ffd_grad_precompute , size(REFORM(d[0,*,*]), /dimensions)

FOR it=1L, itmax DO BEGIN

G = ffd_grad(Source , Target , dreg) ;calculate gradients

;perform line search

Breg = ffd_lsearch(Source , Target , dreg , G, conv=converged , step=step)

if converged then return , dreg

ENDFOR

RETURN , dreg

END

B.2 Precomputation Steps

B.2.1 FFD

This function calculates the displacement of an arbitrary point (x,y) of

the I_corr using the Taylor expansion series as illustrated in Eq .(4.23)

in Chapter 4. It gives as output the I_corr at the given deformation field

(d) using the I_source.

----------------------------------------------------------------------------

FUNCTION ffd , Source , d, Corr_x , Corr_y

;load precompute matrices

COMMON ffd_const , pi, qi, ri, si, p, q, r, s, xs, ys, S_x , S_y , S_xy

dx = REFORM(d[0,*,*])

dy = REFORM(d[1,*,*])

;For a Source image with (Nx , Ny) pixels , the xs and ys are (Nx , Ny)

;arrays with x and y locations of pixels centers assuming x=0 and y=0

;in the corner of the lower left pixel.

;xs and ys correspond to x- and y-pixel locations in the Source

;pi is the index of the lower left corner of the unit square

;p is the weight correspond to pi

;See Fig .4.1 where xs , ys are the locations of the high resol grid

;and pi ,qi ,ri ,si are the indices of the nodes of the lower resol grid

x = xs + p*dx[pi] + q*dx[qi] + r*dx[ri] + s*dx[si] ;Eq .(2.54)

y = ys + p*dy[pi] + q*dy[qi] + r*dy[ri] + s*dy[si]
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ns = size(Source , /dimensions)

Corr = fltarr(ns)

;Identify the locations inside the bounds of the image domain

interior = where ((x GE -0.5E) AND (x LE ns[0] -0.5E) AND (y GE -0.5E) $

AND (y LE ns[1] -0.5E), cnt)

if cnt eq 0 then begin

if arg_present(Corr_x) then Corr_x = fltarr(ns)

if arg_present(Corr_y) then Corr_y = fltarr(ns)

return , Corr

endif

xi = x[interior]

yi = y[interior]

i = long(xi)

j = long(yi)

u = xi - i ;the horizontal distance of the def. field cell ,see Fig 2.18

v = yi - j ;the vertical distance of the def. field cell

;The following formula is equivalent to Eq .(4.23)

Corr[interior] = Source[i,j] + u*S_x[i,j] + v*S_y[i,j] + u*v*S_xy[i,j]

if arg_present(Corr_x) then begin

Corr_x = fltarr(ns)

Corr_y = fltarr(ns)

Corr_x[interior] = S_x[i,j] + v*S_xy[i,j]

Corr_y[interior] = S_y[i,j] + u*S_xy[i,j]

endif

RETURN , Corr

END

B.2.2 Precomputation of B-spline Coefficients

This function precomputes the B-spline coefficients of Eq .(2.54) and calculates

the numerical derivatives of the source image so can be use later in FFD

procedure. Look at Figure 4.1 for direct comparisons.

--------------------------------------------------------------------------------

PRO ffd_precompute , Source , nd

COMMON ffd_const , pi, qi, ri, si, p, q, r, s, xs, ys, S_x , S_y , S_xy

ns = size(Source , /dimensions)

nx = ns[0]

ny = ns[1]

xind = findgen(nx)

yind = findgen(ny)

ds = (nd -1E)/ns ;(x,y)-distance between pixels (Deformation field pixelsize =1)

x = ds[0]/2 + ds[0]* xind ;x-coord of image pixels
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y = ds[1]/2 + ds[1]* yind ;y-coord of image pixels

x = rebin(x, nx , ny)

y = rebin(transpose(y), nx , ny)

;round off x- and y-coord to get the closest lower left corner of

;the unit square

i = long(x)

j = long(y)

u = x - i

v = y - j

pi = i + j*nd[0] ;index of lower left corner of a unit square

qi = pi + 1 ; lower right corner

ri = pi + nd[0] ;upper left corner

si = pi + nd[0] + 1 ;upper right corner

;See example of bilinear interpolation in Section 2.6.1.4

p = (1-u)*(1-v) ;weight correspond to pi

q = u*(1-v) ;weight correspond to qi

r = (1-u)*v ;weight correspond to ri

s = u*v ;weight correspond to si

xs = rebin(xind , nx, ny) ;x-coord of image pixels (image pixelsize =1)

ys = rebin(transpose(yind), nx, ny) ;y-coord of image pixels

;Calculate the numerical derivatives of the I_source

S_x = Source[xind [1:nx -1] ,*] - Source[xind [0:nx -2] ,*]

S_y = Source[*,yind [1:ny -1]] - Source[*,yind [0:ny -2]]

S_xy = S_x[*,yind [1:ny -1]] - S_x[*,yind [0:ny -2]]

END

B.2.3 Gradient Computation

This function calculates the analytical gradient at the nonzero locations of

the image which were precomputed and stored in the function called

ffd_grad_precompute.

----------------------------------------------------------------------------

FUNCTION ffd_grad , Source , Target , d

dx = REFORM(d[0,*,*])

dy = REFORM(d[1,*,*])

n = size(Bx , /dimensions)

n = n[0]*n[1]

if n_elements(Gx) eq 0 then Gx = fltarr(n)

if n_elements(Gy) eq 0 then Gy = fltarr(n)

Res = Target - ffd(Source , d, Corr_x , Corr_y) ;Calculate the residual

;Weight is an array with weighted averages of the control point
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;displacements in a neighborhood area around each pixel

;Calculate the gradient at nonzero locations (loc) of the image

;Load precomputing matrices

;Weight_cnt is an array which stores the locations with nonzero weights

;Weight_loc is an array which is 1 at a certain location and 0 elsewhere

COMMON ffd_grad_const , Weight , Weight_cnt , Weight_loc

i0=0L

FOR i=0L,n-1 DO BEGIN

Bi_cnt = Weight_cnt[i]

Bi_loc = Weight_loc[i0:i0+Bi_cnt -1]

Bi = Weight[i0:i0+Bi_cnt -1]

i0 = i0+Bi_cnt

Bi = Bi*Res[Bi_loc] ;Compute Residual before hand

Gx[i] = - total(Bi*Corr_x[Bi_loc ]) ;gradient at x-direction Eq .(4.19)

Gy[i] = - total(Bi*Corr_y[Bi_loc ]) ;gradient at y-direction Eq .(4.20)

ENDFOR

;Normalised Gradients

Gnorm = max(sqrt(Gx^2+Gy^2))

Gx = Gx/Gnorm

Gy = Gy/Gnorm

G = d

G[0,*,*] = Gx

G[1,*,*] = Gy

RETURN , G

END

B.2.4 Precomputation of Gradient

The Weights here correspond to the linear B-spline functions (B). We create

a dummy deformation field (d_dummy) which is 1 at one particular location and

0 elsewhere.The nonzero locations are stored in an array called Bi_loc so that

can be used later in the gradient computation.

-------------------------------------------------------------------------------

PRO ffd_grad_precompute , nd

;define precomputing matrices

COMMON ffd_grad_const , Weight , Weight_cnt , Weight_loc

COMMON ffd_const , pi, qi, ri, si, p, q, r, s

n = nd[0]*nd[1]

ns = n_elements(p)

Weight_cnt = lonarr(n)

Weight_loc = lonarr (4*ns)

Weight = fltarr (4*ns)

d_dummy = fltarr(n)
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i0=0L

FOR i=0L,n-1 DO BEGIN

d_dummy[i] = 1 ;dummy deformation field set to 1 at particular location

;We get the weighting function (Bi)

Bi = p*d_dummy[pi] + q*d_dummy[qi] + r*d_dummy[ri] + s*d_dummy[si]

d_dummy[i] = 0

;We find the locations where the Bi is nonzero

Bi_loc = where(Bi ne 0, Bi_cnt)

Weight_cnt[i] = Bi_cnt

;We store the nonzero locations

Weight_loc[i0:i0+Bi_cnt -1] = Bi_loc

Weight[i0:i0+Bi_cnt -1] = Bi[Bi_loc]

i0 = i0+Bi_cnt

ENDFOR

END

B.3 Supplementary Functions

B.3.1 Initialise FFD Registration

This function apply an FFD to all Source images and returns the motion

corrected images.

-----------------------------------------------------------------------

FUNCTION ffd_dynamic , Source , d

Nt = n_elements(Source [0,0,*])

;Initialise

Corr = Source

;Apply the FFD at all time points

FOR t=0L, Nt -1 DO BEGIN

ffd_precompute , REFORM(Source[*,*,t]), size(REFORM(d[0,*,*,0]), $

/dimensions)

Corr[*,*,t] = ffd(REFORM(Source[*,*,t]), REFORM(d[*,*,*,t]))

ENDFOR

RETURN , Corr

END
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B.3.2 2CFM Fit

This function computes the 2CFM fit via a linear least -squares method. For

details see Flouri et al MRM (2016).

---------------------------------------------------------------------------

FUNCTION pkfit , Time , Ca, St, n0, params=params

;St: signal intensity of measured data

;n0: number of baseline time points

;params : 4-element floating point array with the values [FP , TP , PS , TE]

n = size(St, /dimensions)

S0 = total(St[*,*,0:n0 -1] ,3)/n0 ;estimate baseline

S0 = rebin(S0,n[0],n[1],n[2])

Ct = St - S0 ;conversion from signal to concentration (Eq .(4.3))

Fit = S0

params = fltarr(n[0],n[1] ,4)

FOR i=0L, n[0]-1 DO BEGIN

FOR j=0L, n[1]-1 DO BEGIN

params [i,j,*] = LLS_2CFM(Time , REFORM(Ct[i,j,*]),Fit=Cfit_ij ,ca)

Fit[i,j,*] += Cfit_ij

ENDFOR

ENDFOR

RETURN , Fit

END

B.3.3 Linear Least-Squares Method

This function calculates the 4-parameters of the 2CFM via a linear least -

squares method as introduced in Chapter 3.

--------------------------------------------------------------------------

FUNCTION LLS_2CFM , t, ct, ca, FIT=fit , WEIGHTS=w

;WEIGHTS: weigthing function which performs weighthed LLS method

;if set to 1, then the linear least squares method will be performed

IF ARG_PRESENT(fit) THEN fit = fltarr(n_elements(ct))

IF norm(ct) EQ 0. THEN BEGIN

;fit = 0.*ct

RETURN , [0. ,0. ,0. ,0.]

ENDIF

IF n_elements(w) EQ 0 THEN w=1+0* ct

ct1 = INT_TRAP(t, ct)

ct2 = INT_TRAP(t, ct1)

ca1 = INT_TRAP(t, ca)

ca2 = INT_TRAP(t, ca1)
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X = LINFIT_SVD(ct*w, -ct2*w, -ct1*w, ca1*w, ca2*w)

if (X[2] EQ 0) OR (X[0] EQ 0) then return , [0,0,0,0.] ;Case Fp=0

;Extract physical parameters

FP = X[2]

TT = X[3]/(X[0]*X[2]) ;TOTAL TRANSIT TIME

prod = X[0]

sum = X[1]

det = sum^2 - 4*prod

IF det LE 0 THEN root=0 ELSE root = sqrt(det)

TP = (sum -root )/(2* prod)

TE = (sum+root )/(2* prod)

if (TE EQ 0) then return , [0,0,0,0.]

PS = FP*(TT-TP)/TE

params = [FP, TP, PS, TE]

IF ARG_PRESENT(fit) THEN fit = - X[0]* ct2 - X[1]* ct1 + X[2]* ca1 + X[3]* ca2

RETURN , params

END

B.3.4 Singular Value Decomposition (SVD)

This function calculates the values [a,b,c, d] for the coefficients in

Eq .(4.1).

-----------------------------------------------------------------------------

FUNCTION LINFIT_SVD , v, x, y, z, t

;v system of equations to be solved

;x, y, z, t: n-element arrays

;v=ax+by+cz+dt

A= TRANSPOSE ([[x],[y],[z],[t]])

;A: matrix to decompose

;Wsvd: n-element vector containing singular values

;Usvd , Vsvd: orthogonal arrays used in the decomposition of A

SVDC , A, Wsvd , Usvd , Vsvd ;computes the SVDC of matrix A

Xlls = TRANSPOSE(Usvd) ## TRANSPOSE ([v])

for K=0, n_elements(Wsvd)-1 DO IF Wsvd[K] GT 0 then Xlls[k] = Xlls[k]/Wsvd[k]

RETURN , Vsvd ## Xlls
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END

B.3.5 SSD

This function computes similarity measure of SSD between target image and

motion corrected image.

-------------------------------------------------------------------------

FUNCTION ffd_chisq , Source , Target , d

ffd_precompute , Source , size(REFORM(d[0,*,*]), /dimensions)

Corrected = ffd(Source , d)

RETURN , 100* total((Target -Corrected )^2.)/ total(Target ^2.)

END

B.3.6 Backtracking Line Search

This function performs the backtracking subroutine ,

The subroutine requires the following input:

alpha_init = the initial step size ,

d = the current position ,

G = the direction of search ,

ChiSq_init = the current function value.

---------------------------------------------------------------------

FUNCTION ffd_lsearch , Source , Target , d, G, conv=converged , step=step

if n_elements(step) eq 0 then step = 1.0 ;precision in pixel -sizes

converged = 0

alpha_init = 10.0 ;initial step size in number of pixels

Gnorm = G/sqrt(total(G^2))

ChiSq_init = ffd_chisq(Source , Target , d)

;backtrack until smaller chisq

alpha_try = alpha_init

d_try = d - alpha_try*Gnorm

ChiSq_try = ffd_chisq(Source , Target , d_try)

while ChiSq_try GE ChiSq_init do BEGIN

converged = alpha_try LT step

if converged then return , d

alpha_try = alpha_try /10E

d_try = d - alpha_try*Gnorm
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ChiSq_try = ffd_chisq(Source , Target , d_try)

ENDWHILE

;forward until increase in chisq

ChiSq_curr = ChiSq_try

d_curr = d_try

alpha_try += step

d_try = d - alpha_try*Gnorm

ChiSq_try = ffd_chisq(Source , Target , d_try)

while ChiSq_try LT ChiSq_curr do BEGIN

ChiSq_curr = ChiSq_try

d_curr = d_try

alpha_try += step

d_try = d - alpha_try*Gnorm

ChiSq_try = ffd_chisq(Source , Target , d_try)

if alpha_try GT 1E+2 then break

ENDWHILE

return , d_curr

END

B.3.7 Interpolation of the Deformation Field

This function interpolates the current low resolution deformation

field (d) so that it has the same dimensions as the I_corr. Bilinear

interpolation is performed using the IDL function INTERPOLATE ().

---------------------------------------------------------------------

FUNCTION ffd_interpol , d, nint

n = size(d, /dimensions)

n = n[1:*]

X = (n[0] -1)* findgen(nint [0])/( nint [0]-1E)

Y = (n[1] -1)* findgen(nint [1])/( nint [1]-1E)

dint = fltarr(3,nint[0],nint[1],nint [2] ,125)

dint[0,*,*,*] = INTERPOLATE(reform(d[0,*,*,*]), X, Y, /GRID)

dint[1,*,*,*] = INTERPOLATE(reform(d[1,*,*,*]), X, Y, /GRID)

return , dint

END
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