895 research outputs found

    Multiple Resolution Nonparametric Classifiers

    Get PDF
    Bayesian discriminant functions provide optimal classification decision boundaries in the sense of minimizing the average error rate. An operational assumption is that the probability density functions for the individual classes are either known a priori or can be estimated from the data through the use of estimating techniques. The use of Parzen- windows is a popular and theoretically sound choice for such estimation. However, while the minimal average error rate can be achieved when combining Bayes Rule with Parzen-window density estimation, the latter is computationally costly to the point where it may lead to unacceptable run-time performance. We present the Multiple Resolution Nonparametric (MRN) classifier as a new approach for significantly reducing the computational cost of using Parzen-window density estimates without sacrificing the virtues of Bayesian discriminant functions. Performance is evaluated against a standard Parzen-window classifier on several common datasets

    Extensions to rank-based prototype selection in k-Nearest Neighbour classification

    Get PDF
    The k-nearest neighbour rule is commonly considered for classification tasks given its straightforward implementation and good performance in many applications. However, its efficiency represents an obstacle in real-case scenarios because the classification requires computing a distance to every single prototype of the training set. Prototype Selection (PS) is a typical approach to alleviate this problem, which focuses on reducing the size of the training set by selecting the most interesting prototypes. In this context, rank methods have been postulated as a good solution: following some heuristics, these methods perform an ordering of the prototypes according to their relevance in the classification task, which is then used to select the most relevant ones. This work presents a significant improvement of existing rank methods by proposing two extensions: (i) a greater robustness against noise at label level by considering the parameter ‘k’ of the classification in the selection process; and (ii) a new parameter-free rule to select the prototypes once they have been ordered. The experiments performed in different scenarios and datasets demonstrate the goodness of these extensions. Also, it is empirically proved that the new full approach is competitive with respect to existing PS algorithms.This work is supported by the Spanish Ministry HISPAMUS project TIN2017-86576-R, partially funded by the EU

    Graph-based security and privacy analytics via collective classification

    Get PDF
    Graphs are a powerful tool to represent complex interactions between various entities. A particular family of graph-based machine learning techniques called collective classification has been applied to various security and privacy problems, e.g., malware detection, Sybil detection in social networks, fake review detection, malicious website detection, auction fraud detection, APT infection detection, attribute inference attacks, etc.. Moreover, some collective classification methods have been deployed in industry, e.g., Symantec deployed collective classification to detect malware; Tuenti, the largest social network in Spain, deployed collective classification to detect Sybils. In this dissertation, we aim to systematically study graph-based security and privacy problems that are modeled via collective classification. In particular, we focus on collective classification methods that leverage random walk (RW) or loopy belief propagation (LBP). First, we propose a local rule-based framework to unify existing RW-based and LBP-based methods. Under our framework, existing methods can be viewed as iteratively applying a different local rule to every node in the graph. know about the node. Second, we design a novel local rule for undirected graphs. Based on our local rule, we propose a collective classification method that can maintain the advantages and overcome the disadvantages of state-of-the-art undirected graph-based collective classification methods for Sybil detection. Third, many security and privacy problems are modeled using directed graphs. Directed graph- based security and privacy problems have their unique characteristics. Existing undirected graph- based collective classification methods (e.g., LBP-based methods) cannot be applied to directed graphs and existing directed graph-based methods (e.g., RW-based methods) cannot make full use of the labeled training set. To address the issue, we develop a novel local rule for directed graph-based Sybil detection and propose a collective classification method that captures unique characteristics of directed graph-based Sybil detection. Finally, one key issue of all collective classification methods is that they either assign small weights to a large number of edges whose two corresponding nodes have the same label or/and assign large weights to a large number of edges whose two corresponding nodes have different labels. Although collective classification has been studied and applied for security and privacy problems for more than a decade, it is still challenging to assign edge weights such that an edge has a large weight if the two corresponding nodes have the same label, and a small weight otherwise. We develop a novel collective classification framework to address this long-standing challenge. Specifically, we first formulate learning edge weights as an optimization problem, which, however, is computationally challenging to solve. Then, we relax the optimization problem and design an efficient joint weight learning and propagation algorithm to solve this approximate optimization problem

    Understanding Heterogeneous EO Datasets: A Framework for Semantic Representations

    Get PDF
    Earth observation (EO) has become a valuable source of comprehensive, reliable, and persistent information for a wide number of applications. However, dealing with the complexity of land cover is sometimes difficult, as the variety of EO sensors reflects in the multitude of details recorded in several types of image data. Their properties dictate the category and nature of the perceptible land structures. The data heterogeneity hampers proper understanding, preventing the definition of universal procedures for content exploitation. The main shortcomings are due to the different human and sensor perception on objects, as well as to the lack of coincidence between visual elements and similarities obtained by computation. In order to bridge these sensory and semantic gaps, the paper presents a compound framework for EO image information extraction. The proposed approach acts like a common ground between the user's understanding, who is visually shortsighted to the visible domain, and the machines numerical interpretation of a much wider information. A hierarchical data representation is considered. At first, basic elements are automatically computed. Then, users can enforce their judgement on the data processing results until semantic structures are revealed. This procedure completes a user-machine knowledge transfer. The interaction is formalized as a dialogue, where communication is determined by a set of parameters guiding the computational process at each level of representation. The purpose is to maintain the data-driven observable connected to the level of semantics and to human awareness. The proposed concept offers flexibility and interoperability to users, allowing them to generate those results that best fit their application scenario. The experiments performed on different satellite images demonstrate the ability to increase the performances in case of semantic annotation by adjusting a set of parameters to the particularities of the analyzed data

    Investigating Randomised Sphere Covers in Supervised Learning

    Get PDF
    c©This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any information derived therefrom, may be published without the author’s prior, written consent. In this thesis, we thoroughly investigate a simple Instance Based Learning (IBL) classifier known as Sphere Cover. We propose a simple Randomized Sphere Cover Classifier (αRSC) and use several datasets in order to evaluate the classification performance of the αRSC classifier. In addition, we analyse the generalization error of the proposed classifier using bias/variance decomposition. A Sphere Cover Classifier may be described from the compression scheme which stipulates data compression as the reason for high generalization performance. We investigate the compression capacity of αRSC using a sample compression bound. The Compression Scheme prompted us to search new compressibility methods for αRSC. As such, we used a Gaussian kernel to investigate further data compression

    Distributed Classification of Localization Attacks in Sensor Networks Using Exchange-Based Feature Extraction and Classifier

    Get PDF
    Secure localization under different forms of attack has become an essential task in wireless sensor networks. Despite the significant research efforts in detecting the malicious nodes, the problem of localization attack type recognition has not yet been well addressed. Motivated by this concern, we propose a novel exchange-based attack classification algorithm. This is achieved by a distributed expectation maximization extractor integrated with the PECPR-MKSVM classifier. First, the mixed distribution features based on the probabilistic modeling are extracted using a distributed expectation maximization algorithm. After feature extraction, by introducing the theory from support vector machine, an extensive contractive Peaceman-Rachford splitting method is derived to build the distributed classifier that diffuses the iteration calculation among neighbor sensors. To verify the efficiency of the distributed recognition scheme, four groups of experiments were carried out under various conditions. The average success rate of the proposed classification algorithm obtained in the presented experiments for external attacks is excellent and has achieved about 93.9% in some cases. These testing results demonstrate that the proposed algorithm can produce much greater recognition rate, and it can be also more robust and efficient even in the presence of excessive malicious scenario
    • …
    corecore