research

Understanding Heterogeneous EO Datasets: A Framework for Semantic Representations

Abstract

Earth observation (EO) has become a valuable source of comprehensive, reliable, and persistent information for a wide number of applications. However, dealing with the complexity of land cover is sometimes difficult, as the variety of EO sensors reflects in the multitude of details recorded in several types of image data. Their properties dictate the category and nature of the perceptible land structures. The data heterogeneity hampers proper understanding, preventing the definition of universal procedures for content exploitation. The main shortcomings are due to the different human and sensor perception on objects, as well as to the lack of coincidence between visual elements and similarities obtained by computation. In order to bridge these sensory and semantic gaps, the paper presents a compound framework for EO image information extraction. The proposed approach acts like a common ground between the user's understanding, who is visually shortsighted to the visible domain, and the machines numerical interpretation of a much wider information. A hierarchical data representation is considered. At first, basic elements are automatically computed. Then, users can enforce their judgement on the data processing results until semantic structures are revealed. This procedure completes a user-machine knowledge transfer. The interaction is formalized as a dialogue, where communication is determined by a set of parameters guiding the computational process at each level of representation. The purpose is to maintain the data-driven observable connected to the level of semantics and to human awareness. The proposed concept offers flexibility and interoperability to users, allowing them to generate those results that best fit their application scenario. The experiments performed on different satellite images demonstrate the ability to increase the performances in case of semantic annotation by adjusting a set of parameters to the particularities of the analyzed data

    Similar works