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Abstract

Bayesian discriminant functions provide optimal classification decision boundaries in the 

sense of minimizing the average error rate. An operational assumption is that the 

probability density functions for the individual classes are either known a priori or can be 

estimated from the data through the use of estimating techniques.  The use of Parzen-

windows is a popular and theoretically sound choice for such estimation.  However, 

while the minimal average error rate can be achieved when combining Bayes Rule with 

Parzen-window density estimation, the latter is computationally costly to the point where 

it may lead to unacceptable run-time performance. We present the Multiple Resolution 

Nonparametric (MRN) classifier as a new approach for significantly reducing the 

computational cost of using Parzen-window density estimates without sacrificing the 

virtues of Bayesian discriminant functions. Performance is evaluated against a standard 

Parzen-window classifier on several common datasets. 
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CHAPTER I

INTRODUCTION

Overview of Classification Techniques

The use of computers in pattern recognition and classification is prevalent and has 

become an issue of widespread visibility.  Classification problems vary widely in scope 

and objective.  What is being classified?  How many classes exist?  How quickly must the 

objects be classified?  How accurately must they be classified?  How many samples are 

available?   What kinds of samples are available and how are the objects represented?  No 

single solution will be appropriate for all classification tasks and, because of this, 

numerous classification algorithms exist.

In general there are two broad categories of feature-based classification algorithms: 

probabilistic and non-probabilistic.  However, the delineation between these two is often 

fuzzy.  Many non-probabilistic algorithms are closely tied to probabilistic algorithms and 

vary mainly in the computational approach used to optimize the solution.

A particularly popular non-probabilistic approach is the support vector machine.  Under 

this paradigm, the classification problem is viewed from the perspective of finding a 

boundary that separates or nearly separates all of the samples.  Support vector machines 

allow for the use of nonlinear boundary surfaces through the use of kernels.  Support 

vectors are samples that lie near the decision boundary.  The decision boundary is 

determined by a weighted summation of distance measurements between the sample and 

the support vectors (Cortes and Vapnik, 1995) giving us the following general equation 

for the support vector machine discriminant:
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 f x=∑
i=1

N

y i ai K x , xi    (1)

where y i∈[1,−1] represents the class label, N is the number of support vectors, K is 

the kernel and ai is the weighting factor for support vector i.  Recognizing each support 

vector is fixed at the end of the training phase, for a two-class problem we can rewrite 

this as:

f x=∑
i∈C1

a i f ix −∑
i∈C2

ai f i x                                         (2)

where f ix=K x , xi  and C1 and C2 consist of all support vectors for class one and 

class two respectively.  If the support vector kernel is a valid probability density function 

(such as the popular Gaussian kernel), this is remarkably similar to the general formula 

for the Bayesian discriminant given a fixed sample, two-class Parzen-window probability 

density estimate (Duda et al, 2001).  Similarly, a finite mixture model is represented by 

the same general mathematical formula (Archambeau et al, 2004).

Obviously probabilistic and non-probabilistic approaches share similarities.  The 

differences then lie in the constraints placed upon the weights, functions and samples, the 

selection and number of functions involved and  how the weight optimization is 

performed.  

Probabilistic Approaches To Classification

Probabilistic approaches typically view the object to be classified as a random variable 

that can assume one of several discrete values (the classes).  The behavior of a discrete 

random variable can be described by a probability mass function, P(x).  To be valid a 
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probability mass function must meet the following criteria:

Px ≥0                                                           (3)

and

∑
x∈X

P x=1                                                       (4)

The statistical independence of two variables is then, by definition:

Px , y =P xP  y                                                 (5)

Intuitively, this indicates that prior knowledge of one variable gives no information with 

respect to the occurrence of the second variable.

Conditional probability on the other hand is defined by:

Px∣y =P x , y
P y                                                     (6)

Intuitively, this is the likelihood of x occurring given that y has already occurred. 

Assuming the two variables are not independent, knowledge of y presents useful 

information with respect to x.

The law of total probability states:

P y =∑
x∈X

Px , y                                                   (7)

This indicates the total likelihood of y occurring is equivalent to the sum of the likelihood 

of x and y occurring for all x.
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Typically we discuss variables that assume a finite set of discrete values in terms of 

probability mass functions (as above).  When the random variable is continuous we 

describe it using probability density functions (PDF).  The previous definitions hold for 

PDF's as well by merely replacing the summations with integrals.  We distinguish 

between probability mass functions and probability density function by the use of 

uppercase for the former and lowercase for the latter.  However, for the remainder of the 

paper we will, for simplicity, assume all variables are continuous and can be described by 

a PDF.

An intuitive choice for classification would be to select the most probable class given the 

available information.  Hence, to perform classification of an object, various quantifiable 

features of the object are selected and these features, along with the class, are assumed to 

be random variables associated with a given PDF.  The variable of most interest in a 

classification problem is the class and the goal then becomes to determine the likelihood 

that an object belongs to a certain class given the features of the object. 

Bayes Rule

Training of a classifier then becomes the search for p c∣y where y is a feature of the 

object to be classified and c is the class.  If p(c,y) and p(y) were known, this calculation 

would be straightforward.  Unfortunately, the joint probability p(c,y) is often difficult to 

calculate in practice.  However, by rearranging terms in the law of total probability and 

the definition of conditional probability we can derive Bayes rule:

p c∣y= p  y∣c p c
p  y                                                (8)

This is one of the most crucial theorems when performing probabilistic classification 

since it allows us to calculate the probability of an object's class given its features.  

4



Given a class whose feature PDF is known, we can easily calculate the likelihood that a 

new sample with a given feature value will be a member of that class.  It can be proven 

(Duda et al, 2001) that the minimum error rate for a classification problem is given when 

each object is classified according to its most probable class.  The mathematical equation 

that assigns new samples to their most probable class is the Bayesian discriminant.  

The Bayesian discriminant, given equal priors, is:

g x = pc1∣y − p c2∣y                                               (9)

The decision boundary is defined as the collection of points in feature space at which the 

classes are equally likely.  Hence the decision boundary is given by:

p c1∣y− pc2∣y =0                                                   (10)

Intuitively, the decision boundary is the point at which our classification decision 

changes.  Figure 1 shows the decision boundary for a two-class problem where the feature 

PDFs are known to be Gaussian.  In this example the PDF for each class has a different 

mean and covariance matrix.  Figures 2 and 3 graph the discriminant function in 3-D 

form.  The 3-D graphs more clearly show the difference between the class variances and 

give greater information regarding each class PDF.

Obviously, if we know the exact feature PDF for each class in a classification problem, it 

is simple to calculate Bayes rule and the decision boundary.  Unfortunately, it is often the 

case that the feature PDF for each class is unknown which means the search for a 

probabilistic classification algorithm often leads to the search for a probability density 

estimation algorithm.
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Figure 1 - The Decision Boundary of a Two Class Problem.  Each class is 

determined by a bi-variate Gaussian PDF.  Class 1 (red) is N(μ =(5,1); σ2 = 3). 

Class 2 (blue) is N(μ=(2,6); σ2= 1.5).
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Figure 2 – The Discriminant Function of a Two Class Problem.

Figure 3 – The Discriminant Function of a Two Class problem, View 2.  This 

view clearly shows the difference in PDF between the two classes.
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Overview

This search for effective density estimation has led to the development of many different 

algorithms.  One of the most promising, from a theoretical standpoint, is the Parzen-

window approach.  Unfortunately, Parzen-window classifiers suffer from poor model-

complexity and run-time efficiency.  The Multiple Resolution Nonparametric (MRN) 

classifier we introduce in Chapter III eliminates the issues of model-complexity and run-

time performance while preserving the theoretical and practical advantages of Parzen-

window density estimation and the ensuing Bayesian discriminant.  In Chapter II we 

discuss the background behind density estimation in general and discuss the 

nonparametric estimating techniques that form the basis for MRN classifiers in detail. 

Chapter III demonstrates the mathematical foundations and details the algorithm.  Chapter 

IV compares the results of an MRN classifier with a standard Parzen-window classifier 

on several data sets and Chapter V provides a summary of results and conclusions.
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CHAPTER II

PROBABILITY DENSITY ESTIMATING TECHNIQUES

Parametric Approaches

Probability density estimating techniques can also be grouped into two main categories: 

parametric and non-parametric techniques.  Again, there is some crossover in that, 

typically, non-parametric techniques use a sum of functions to estimate the probability. 

Often these functions are the same probability functions used in parametric techniques. 

The major difference being that in parametric density estimation we assume the entire 

class is governed by a known distribution form.

Parametric techniques assume the general form of the feature PDF is known.  Only the 

specific parameters of the PDF are unknown.  Often these techniques will assume PDFs 

with desirable computational attributes such as Gaussian, Rayleigh or Gamma 

distributions.  

A parametric probabilistic classification algorithm then proceeds by attempting to 

estimate the PDFs governing parameters based on a training set.  The Bayesian 

discriminant is then used to create a decision rule and decision boundary.

Several techniques exist for parameter estimation: Maximum-Likelihood, Bayesian, 

Kalman filter, etc.  However, each of these techniques assumes the PDF form is known a 

priori.  When this assumption is incorrect, the resulting error rates may be much higher 

than expected since the true form of the PDF may vary greatly from the assumed form.  
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Nonparametric Approaches

Because the true form of the PDF is typically unknown, non-parametric techniques are 

frequently used in probabilistic classification algorithms as a means to estimate the true 

PDFs.

Several non-parametric techniques exist for estimating probability densities.  Most of 

these techniques are based upon the observation that the probability that a feature will fall 

within a certain range of values is given by:

Pr=∫
a

b

p xdx                                                    (11)

Here we define Pr as the probability that x will fall in region R where R=(a,b).  If we 

assume the region R is small enough that the probability within R does not vary 

significantly the following estimate can be used for Pr:

Pr≈ p xV                                                       (12)

Here, p(x) is the probability of some point x in R and V is the volume enclosed by R.  It 

can be shown (Duda et al, 2001) that k/n where k is the number of samples falling in R 

and n is the total number of samples is an accurate estimate of Pr  which leads to the 

following estimate for p(x):

pnx≃ k /n
V                                                      (13)

Likewise, it can be proven (Duda et al, 2001) that this estimate will converge to the true 
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probability p(x) in the limit as n∞ if the following conditions hold:

* lim
n∞

V n=0                                                         (14)

* lim
n∞

k n=∞                                                        (15)

* lim
n∞

k n/n=0                                                      (16)

The most common means of ensuring these conditions are by specifying an initial 

volume, V0 which shrinks as some function of n or by specifying the number of samples, 

k0, in the initial volume and increasing k as some function of n.

Parzen-windows

Classical Parzen-windows proceed by using a fixed volume “window function” to 

determine k / n.  Often, Gaussian kernels are used to approximate k / n and, in fact, any 

valid probability density function could be used as the window function (Duda et al, 

2001).  A window size or resolution is used to determine the range of effect each sample 

will have on its neighbors.  Resolution is defined as 1/h where h is the window size. 

Hence, higher resolutions (smaller window sizes) will diminish the effect each sample 

has on it's neighbors.  Likewise, lower resolutions (larger window sizes) increase the 

effect of each sample upon its neighbors.

We note that, to guarantee convergence, Eqn. (14) demands that window size must 

decrease as sample size increases.  This means resolution increases as sample size 

increases.  Hence, in theory the selection of a resolution should be trivial since the 

estimate will converge at some point regardless of how slowly the resolution increases. 

However, with finite sample sizes this is not the case and the resolution dramatically 

affects the resulting discriminant function and decision boundary.  
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Figures 4-7 illustrate a progression of resolution from low to high and its effect on 

discriminant functions and decision boundaries derived from Parzen-window density 

estimates.  The plot on the left displays samples from two classes and the Bayesian 

decision boundary.  The plot on the right gives a three-dimensional view of the Bayesian 

discriminant function.

It can be seen that all training samples are correctly classified in figure 7 whereas several 

are incorrectly classified in figure 4.  This observation that, on finite sets, increasing 

resolution tends to increase the number of correctly classified training samples helped 

motivate the Multiple Resolution Nonparametric classifier approach presented here.  The 

details of Parzen-window density estimation and resolution are discussed in more depth 

in Chapter III.

The computational complexity associated with Parzen-window based PDF estimation is 

O(n) for classification where n is the size of the training set.  This is intuitive since the 

estimate is accomplished by calculating the summation of a distance calculation between 

the new sample and every sample in the training set.  The classification time thus 

increases linearly with respect to the size of the training set.   However, as the sample size 

increases the largest number of samples will be located in the areas of least interest (areas 

of high single-class density), not areas of high interest (near classification boundaries). 

Unfortunately this means that, as the sample size increases, the majority of samples do 

not provide useful information with respect to the boundary and, in practice, the model 

complexity quickly overwhelms any benefit to the theoretical computation complexity.  

Several methods have been suggested to reduce the size of the Parzen-window training 

set. One method proposed reducing the Parzen training set while maintaining an overall 

accuracy by minimizing L2 error (Girolami & He, 2003).  However, this does not ensure 

any optimality with respect to classification error rate and may place undue emphasis on 

regions distant to the decision boundary, requiring both greater computation 
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Figure 4 – Parzen-Window Classification with a Resolution of 3.125

Figure 5 – Parzen-Window Classification with a Resolution of 7.41
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Figure 6 – Parzen-Window Classification with a Resolution of 25

Figure 7 – Parzen-Window Classification with a Resolution of 200

14



and less reduction.  Placing samples in bins and using some bins as samples has been 

suggested.  However, as Hall and Wand (1994) point out, the accuracy of these 

algorithms is heavily dependent on bin size and the specific binning strategy.  Mitra, et al. 

(2002) proposed a multiple resolution (or multi-scale) density based condensing 

technique.  This technique clusters samples in variable-sized discs, using the k-nearest 

neighbor to obtain a density estimate.  This technique was not intended to provide an 

optimally reduced set for a classifier, and comparisons to classification based reduction 

methods were specifically excluded from the paper because, as the authors stated, 

“...error in density estimates is not the optimality criterion for such methods.”

Nearest Neighbor

Ideally, we would like to be able to find a reduction technique that provides a reduced set 

with training-set consistency, i.e. the reduced set classifies all training-set samples 

consistent with the original non-reduced set.  In the past such training set consistent 

reduction algorithms have only been applicable to nearest neighbor algorithms.  Nearest 

neighbor classifiers are similar to Parzen-window classifiers in many respects.  The major 

difference being that classical Parzen-window calculations are based on an initial fixed 

volume whereas the nearest neighbor algorithms fix the number of samples to be included 

and allow the volume to vary.  The simplest of the nearest neighbor algorithms is the 1-

nearest neighbor (1-NN).

The 1-NN rule states that a new sample is classified based solely on the class of the 

nearest known training sample.  It is important to note that for some applications, the 

nearest neighbor algorithm works quite well.  If the underlying class PDFs allow for a 

small classification error rate, meaning there is little overlap between densities, the Bayes 

error rate and 1-NN error rate are similar.  In less ideal situations, the 1-NN error rate can 

produce error rates equal to twice the Bayes error rate.  Unfortunately the ratio of 1-NN 

error rate to Bayes error rate  increases as the Bayes error rate increases, indicating that 

for problems with moderately high error rate, the 1-NN classifier may perform quite 

15



poorly.

In an attempt to alleviate this problem k-nearest neighbor (k-NN) algorithms expand the 

volume of feature space to be used for classifying a new sample to include k training 

samples where k ≥ 1.  A voting system is then used to determine the classification of a 

new sample.  Obviously, this shares many similarities to Parzen-window estimates. 

Indeed, if k is equal to the number of samples, and a hypercube function with resolution 

equal to the entire feature space is used for the Parzen-window estimate, both algorithms 

degenerate to the a priori probabilities and are equivalent.

The naive approach to nearest neighbor classifiers is to simply store all training samples 

and when a new sample is encountered, calculate the distance between the new sample 

and all training samples.  The new sample is then classified according to the nearest k 

training sample's classes.  The new sample can then be added to the set of training 

samples.  Since there is no time involved in training the classifier and the classification 

complexity is O(n), these algorithms have several theoretical advantages.  In practice 

though, they suffer from the same problem as Parzen-window classifiers: model 

complexity.  

There have been several attempts to resolve this issue for nearest neighbor classifiers. 

Nearest neighbor algorithms are especially well adapted to parallelization which can 

allow for O(1) time complexity given n processors (Duda, et al, 2002).  One of the first 

approaches to obtaining a reduced set of training-consistent samples was the condensed 

nearest neighbor rule (Hart, 1968).  This condensed nearest neighbor rule helped motivate 

the discovery of  the Multiple Resolution Nonparametric (MRN) described next.
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CHAPTER III

MULTIPLE RESOLUTION NONPARAMETRIC CLASSIFICATION

Mathematical Foundations

While support vector machines, Parzen-window classifiers and nearest neighbor 

classifiers have valuable theoretical properties, their practical application has often been 

marred by computational complexity during training and/or classification.  Some data 

mining and classification problems may have millions of samples available.  However, 

most algorithms do not provide a means of handling massive amounts of data effectively 

in both the training and classification phases.

Despite these technological advances, the inverse problem also exists.  Samples may be 

very difficult or costly to obtain and only a small number of samples is available.  To 

compound this problem, feature selection may be difficult which often leads to high-

dimension feature spaces.  As Dasgupta (1999) illustrated, the number of samples 

required for accurate probability density estimation increases exponentially with the 

dimension of the feature space.  Support vector machines (SVM) attempt to alleviate this 

problem by only retaining samples near the boundary and seeking the largest possible 

margin.  

However, it can be shown that the Bayesian discriminant (given the true PDF) guarantees 

the lowest average error rate and is, in this sense, optimal (Duda et al, 2001). 

Unfortunately the computational requirements for typical PDF estimation through non-

parametric techniques are prohibitively expensive for most applications.  
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Here we present a method that trains in O(n2) time, classifies in O(k) where k is the model 

complexity (number of retained samples), and has model complexity similar to support 

vector machines.  The method provides training-set consistent decision boundaries to the 

Parzen-window classifier while also guaranteeing a minimization of mean squared error 

(MSE) given the reduced model complexity.  Due to its reduced model complexity and 

minimization of MSE, this algorithm should improve performance and generalization in 

high-dimension, low-sample problems as well, while providing optimal Bayesian error 

rates as sample sizes increase.  We also note that the Multiple Resolution Nonparametric 

classifier is particularly suitable to parallelization in both the training and classification 

stages since the majority of computation is spent in summing distance calculations 

between samples.

The algorithm follows two basic steps: an estimation step and an approximation step. 

The estimation step computes an estimate of the Bayesian discriminant while the 

approximation step is an iterative approach to optimizing model complexity.  In our 

description of the algorithm we will assume a two class problem although this could 

easily be generalized to any multi-class problem.

First, we examine the theoretical underpinnings of the algorithm.  To begin, we must find 

an estimate of the Bayesian discriminant.  Obviously, we must guarantee that our estimate 

will converge to the true Bayesian discriminant as n approaches infinity since we wish to 

minimize classification error rate.  A Parzen-window approach, using the Gaussian 

distribution as the window function such a guarantee of convergence as well as some 

well-desired computational attributes.  

The multi-variate Gaussian distribution is defined by:

p x= 1
21/d∣1/2∣

e
−

1
2
x−t −1x−

                                   (17)
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where d is the feature space dimension.  We can simplify the computation of each sample 

by making the following assumption:

= 2 I                                                          (18)

where I  is the identity matrix.  It is important to note that the assumption of a scalar 

matrix does not invalidate the convergence of the approach to the true PDF since the 

simplified Gaussian function is still a legitimate density function (Duda et. al, 2001).  For 

notational simplicity, we present derivations here based on a univariate density function. 

The extension to a multivariate density function is straightforward.

The Parzen-window density estimation proceeds by centering a Gaussian window 

function at the new sample and summing the probability across all samples, giving us:

p  x=1
n∑i=1

n 1
2 hn

e
−

1
2

 x− xi
2

h n                                      (19)

Where hn is meant to indicate that the variance, h, will vary as a function of sample size. 

The discriminant is given by:

g x = pc1∣x − p c2∣x                                            (20)

Using Bayes theorem this becomes:

g x = px∣c1 p c1−p x∣c2 p c2                                  (21)

By combining (19) and (21), performing some simple algebra and assuming equal priors 
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we arrive at the following:

g x =∑
i=1

n

i f x , xi                                                (22)

where 

f x , xi=e
−

1
2

 x−xi
2

hn
                                                (23)

and

i=
y i

ni2hn
                                                   (24)

where yi is the class label for the given sample (i.e. -1 or +1) and ni is the number of 

samples in the class.

Multiple Resolution Editing

The classification of a new sample is determined by the resultant sign of Eqn. (22). 

Recognizing this, we can reduce the model complexity by eliminating samples that would 

cause a change in magnitude but not sign.  

There is a plethora of literature discussing such “training-set consistent” optimization 

approaches – reduction techniques that ensure the reduced training set classifies the 

original samples identically to the non-reduced training set.  Interested readers are 

referred to the excellent article by Toussiant (2002).
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The edit technique is a popular approach to eliminating samples that do not contribute to 

correct classification.  Devijver and Kittler (1982) apply this algorithm to nearest 

neighbor or k-NN algorithms.  However, by modifying the editing technique, we can 

apply it to out current approach and achieve a reduced sample set that is training-set 

consistent.

We begin the training of our classifier by classifying all of the samples in our training set 

according to our Bayesian discriminant estimate.  This can be accomplished in O(n2) 

time.  The samples are then labeled as correctly classified or incorrectly classified.  By 

separating the correct and incorrect samples from Eqn. (21)  we arrive at the following:

g x = pc1 pcorrectx∣c1− pc2 pcorrectx∣c2−p c1 p incorrect x∣c1 pc2 pincorrect x∣c2

(25)

where each estimate pcorrect and pincorrect is the summation estimates from Eqn. (22) 

performed on the correctly and incorrectly labeled training samples respectively. 

 We can rewrite this as:

g x = pc1 pcorrectx∣c1− pc2 pcorrectx∣c2E x                           (26)

Here E(x) represents the contribution of all misclassified samples and is equivalent to:

E x=∑
y∈Y

i f x , y                                               (27)

where  Y is the set of incorrectly classified training samples.

Consider the creation of a reduced set consisting only of the correctly classified samples 
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from the original set.  From Eqn. (26) we can see that any sample that was correctly 

classified with the entire sample set will only be misclassified using this reduced set if:

sign[ preduced xE x]≠sign[ preduced x]                              (28)

where 

preduced x = p c1 pcorrectx∣c1− pc2 pcorrectx∣c2                        (29)

and E(x) is as defined previously.

At this point the importance of the Gaussian window function becomes apparent since we 

can allow each sample's variance to decrease towards zero.  As the variance approaches 

zero the Gaussian begins to approximate a delta function where its influence is infinite at 

its center and zero at all other points.  Hence, we arrive at the following:

lim
hi0

preduced xiE xi                                            (30)

lim
hi0

sign[ preduced xi]= y i                                         (31)

where y i=1∀ xi∈c1 and y i=−1∀ x i∈c2 . 

This proves we can create a reduced set that eliminates misclassified samples and adjust 

the variance of individual samples in the reduced set to ensure all samples are classified 

with training-set consistency. 

The resolution of a sample is defined as the inverse of its variance.  As the variance 

decreases, the resolution increases and the effect of neighboring samples decreases. 

Likewise as the variance increases, the resolution decreases and the effect of neighboring 
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samples increases.  This represents a sort of smoothing effect at low resolutions, 

intuitively similar to the smoothing of an image when going from a high resolution to a 

low resolution.  The term resolution is thus used to imply this visual effect of smoothing 

an image at low resolution, versus increasing granularity at higher resolution.

Incorporating multiple resolutions into (23) and (24) and performing some simple algebra 

leads to the following:

f x , xi=e
−

Hi
2

2
 x−xi

2                                                (32)

and

i= y i

H i

n i2
                                                   (33)

where Hi , the resolution for sample xi , is equivalent to 1/hi where hi  is the variance 

for sample xi .

In practice only a few samples require different resolutions, however without the addition 

of these few separate resolutions, the algorithm would fall apart and we would be 

relegated to approximating the nearest neighbor algorithm with its increased error rates.

To further improve our reduced estimate of the Bayesian discriminant, we can observe 

from Eqn. (22) that a simple minimization of mean square error (MSE) can be 

accomplished by adjusting each αi through a pseudo-inverse or gradient descent approach. 

It has been shown that by setting a consistent margin (i.e. all samples are equidistant from 

the decision boundary), minimizing MSE approximates the Bayesian discriminant (Duda 

et al, 2001).  This MSE approximation to the Bayesian discriminant's accuracy is bounded 

by the ability of the underlying function to approximate the discriminant.  In our case, as 

is shown above, we have a guarantee that a training-set consistent approximation is 
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achievable.

Minimizing mean square error allows for an extra degree of freedom in the multiple 

resolution nonparametric classifier algorithm.  While we can achieve a training set 

consistent subset without minimizing MSE, minimization allows us to more closely 

approximate the discriminant and reduces the number of samples retained.  In the future, 

we will refer to the number of retained samples after reduction as model complexity, 

since it determines the computational complexity and is directly related to how the 

algorithm represents the final decision boundary.

To this point we have proved we can develop a theoretically sound estimate of the 

Bayesian discriminant and maintain a training-set consistent approximation to that 

estimate by removing misclassified samples from the original training set while adjusting 

the resolution of the remaining samples and minimizing MSE.

Multiple Resolution Condensing

We can extend this approach and further minimize the final reduced set by removing all 

samples not necessary to correct classification of the original training set, not just those 

that are originally misclassified.  Through the use of a technique somewhat similar to the 

condensing technique described by Devijver and Kittler (1982) we can thereby drastically 

reduce the model complexity.  The training algorithm for the Multiple Resolution 

Nonparametric classifier then becomes:

1. Classify all training samples according to the Bayesian discriminant using 

Parzen-window density estimates.
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2. Remove any samples that are incorrectly classified and call the set of all  

remaining samples TRAIN

3. Sort all samples in TRAIN according to discriminant function magnitude

4. Set the initial resolution Hi  for each sample

5. Add the first sample in TRAIN to an otherwise empty set.  Call this set TEST

6. Set K=1

7. Set all  α1 =1

8. Set N equal to the number of samples in TRAIN

9.    DO

10. Set Current_Sample = TRAIN(K % N)

11.   IF  Current_Sample is misclassified THEN

12. IF Current_Sample already exists in TEST THEN

13. Increase the resolution Hi  for Current_Sample

14. ELSE

15. Add Current_Sample to TEST

16. END IF

17. Calculate new αi's that minimize MSE

18.   END IF

19.   Set K=K+1

20.  UNTIL all samples in TRAIN are correctly classified. 

21.  End of algorithm

In Step 3, we note that when classifying the samples in Step 1, the distance to the decision 

boundary is related to the magnitude (regardless of sign) of the output of the discriminant 

function.  Hence, sorting the samples by the absolute value of the discriminant function 

provides an intuitive measure of the sample's proximity to the decision boundary – which 

allows us to avoid explicitly calculating the distance between each sample and the 

decision boundary.
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We note that classification is performed in Step 11 using the TEST set according to the 

following:

class=sign[ ∑
x i∈TRAIN

i f x , xi]                                         (34)

where αi and f(x,xi) are as defined in (32) and (33).

It is important to note that in Step 17 we are minimizing MSE through a pseudo-inverse 

approach.  For strict adherence to the O(n2) complexity claim, a Widrow-Hoff or Ho-

Kashyap gradient descent approach could be used with some limiting number of 

iterations.  However, in our experience, since the algorithm begins with an empty matrix 

and this matrix never exceeds the final size of the reduced set and the reduced training 

sets are so small, the computational complexity and numerical issues of a pseudo-inverse 

approach are negligible.  This is in contrast to most algorithms where the inverse is done 

on the entire training set and hence the computational impact of matrix inverses can be 

exorbitant.  If the underlying PDF and sample size demanded it, any of the 

aforementioned gradient descent approaches could be used.

Additionally, average case complexity for the training algorithm, excluding the original 

Parzen-window classification appears to grow linearly.  This is discussed more 

thoroughly in the results section, however, it is somewhat intuitive since the final number 

of samples in TEST is most closely related to the underlying densities, not the number of 

samples in TRAIN.  For applications where the O(n2) Parzen-classification step is 

prohibitive, a smaller, representative subset could be used in lieu of the entire set while 

the entire data set could be used throughout the rest of the algorithm.  This would allow 

the algorithm to be tailored to the computational demands of the situation while still 

making use of all available data in later steps.  However, such a discussion is beyond the 

scope of this paper and should be considered an area for future research.
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It can be shown that when minimizing mean square error using a consistent margin, the 

result is an approximation to the Bayesian discriminant (Duda, et al, 2001).  This 

approximation is only limited by the underlying function's ability to approximate the form 

of the discriminant.  In our case, the underlying function can perfectly approximate our 

discriminant, given the entire training set, since the discriminant was derived from the 

training set originally.

Figures 8-16 show the MRN classifier at different stages of the algorithm.  The dots and 

crosses represent samples from different classes.  Samples displayed in black are samples 

that were removed in Step 2.  Samples retained in TEST are circled in green.  The solid 

cyan line is the current MRN decision boundary, the dashed magenta line is the Parzen-

window decision boundary.  The discriminant function is also shown to the right of the 

decision boundary plot.  

Figure 8 shows the MRN output with three samples in TEST and each sequential figure 

illustrates the inclusion of an additional sample in the TEST set.  The training set 

consisted of 200 randomly selected samples from the Ripley data set.

It can be seen in the discriminant function plot of figure 9 that the sign of the αi  value for 

the sample at -.25, .25 is not representative of the blue class.  Indeed, it is possible for 

MSE to be minimized when the sign of αi for some samples do not correspond to those 

samples' class.  This may also lead to some intermediate decision boundaries that seem 

counterintuitive such as in Figure 10.  Minimization of MSE gives us a 'best' 

approximation to the Bayesian discriminant given the current test set.  However, as Duda, 

et. al. state: “...the discriminant function that 'best' approximates the Bayes discriminant 

does not necessarily minimize the probability of error.” (Duda, et al, 2001).  Typically 

this is a serious disadvantage to using MSE as a criterion function for classification 

algorithms.  However, this problem is eliminated in MRN classifiers through the use of 

multiple resolutions.
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Figure 8 – MRN Output with 3 Samples

Figure 9 – MRN Output with 4 Samples
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Figure 10 – MRN Output with 5 Samples

Figure 11 – MRN Output with 6 Samples
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Figure 12 – MRN Output with 7 Samples

Figure 13 – MRN Output with 8 Samples
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Figure 14 – MRN Output with 9 Samples

Figure 15 – MRN Output with 10 Samples
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Figure 16 – MRN Final Output with 10 Samples
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In Figure 11 we see that the region at -.55, .7 has increased in magnitude whereas the 

region at .25, .6 has decreased in magnitude.  This illustrates the fact that the probability 

regions at each step can either grow or diminish.  This can also lead to some apparent 

“outliers” being selected.  This can occur when, at step i, a sample is  classified 

incorrectly and hence added to the test set.  At step i+c  it may be classified correctly due 

to the aforementioned diminution or growth of some other sample's influence.  Since the 

sample was added at step i and samples cannot be removed once added, it may appear to 

be an unnecessary sample, or even an “outlier”, at stage i+c.  It is important to point out 

there is no guarantee of an optimally small subset of samples inherent to this algorithm. 

However, in general, optimal subset problems are NP-hard or NP-complete and the 

current approach gives excellent experimental results.

Figures 13 and 14 show the beneficial effects of multiple resolutions.  In Figure 13, the 

only misclassified sample is located at -.25, .25 and has an αi  whose sign is not 

representative of the sample's true class.  Without multiple resolutions we could not 

proceed at this point since there are no other misclassified samples to be added to our test 

set.  In figure 14 we see that, per the algorithm, the resolution at this sample was 

increased.  As the resolution increases, it's effect on its neighbors decreases and MSE is 

minimized when it's αi  value is representative of its true class.  However, this change in 

resolution and sign affects the decision boundary and causes other samples to be 

misclassified.  This can be seen in Figure 14.

With the addition of more samples in figures 15 and 16, we see that the algorithm 

terminates with a viable estimate to the discriminant function and a training-set consistent 

decision boundary.

Figure 17 shows a schematic diagram of the final result.  The size of the green circles 

represent the resolution at each retained sample and the numeric values in black are the αi 

values for the corresponding sample.
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Figure 17 – Schematic Showing Resolutions and Alpha Values
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The results of this approach share striking similarities to support vector machines (SVM). 

The postulation that the samples nearest to the boundary (support vectors) are the most 

“important” leads to a large reduction in model complexity.  The final result in the MRN 

approach maintains training-set consistency while the SVM approach maximizes the 

margin.  The SVM approach is based on the paradigm of a linear classifier in some high 

dimensional space.  The inner-product of different bases in this space is the kernel, which 

must remain consistent.  An oft overlooked disadvantage to SVM classifiers is training 

complexity, particularly with respect to memory requirements.  Recent research has 

indicated the number of support vectors for non-separable problems may increase linearly 

with respect to the number of training samples (Steinwart, 2004).  Memory requirements 

then scale exponential to both sample size and the number of support vectors (Bakir, et. 

al, 2004).  The MRN approach has the added benefits of better training complexity, 

Bayesian decision boundaries, excellent applicability to parallelization and the added 

flexibility of multiple resolutions.  

While the final result bears similarities to SVM classifiers, the foundations of the 

approach are based on Parzen-window density estimates.  Thus, we are assured our 

approach is based in theoretically sound, probabilistic approaches that guarantee optimal 

error rate as sample sizes increase towards infinity.
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CHAPTER IV

RESULTS

Two Dimensional Examples

The accuracy of the MRN algorithm is, predictably, similar to the Parzen-window 

estimation accuracy.  Due to some additional generality introduced by the reduction 

algorithm one would expect to see some minor variation in error rates.  Our results affirm 

that MRN error rates show minor deviations from Parzen-window estimates; however, 

the differences tend to be statistically insignificant.  

All error rates are the result of tenfold cross validation.  Experimental error rates were 

obtained by randomizing the original data set and splitting it into ten equal subsets. 

Training was performed on 90% of the data and classification testing was then performed 

on the remaining 10%.  Ten runs were performed where a different subset was kept out to 

be used as the test set in each run.

To allow for visualization of the resulting decision boundaries and set reduction, five runs 

were completed using increasingly larger sets and the results were plotted.  Parzen-

window classifier decision boundaries were then calculated and superimposed on the 

MRN classifier output.

Ripley's Data Set

The MRN algorithm was run five times on a random subset of Ripley's data.  After each 

run, 200 new random samples were added to the training set.  Figures 18-22 illustrate the 

results of these runs.  Each figure uses the same notation as Figures 8-16.  
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Figure 18 – MRN Output on 200 Samples of Ripley's Data Set
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Figure 19 – MRN Output on 400 Samples of Ripley's Data Set
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Figure 20 – MRN Output on 600 Samples of Ripley's Data Set
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Figure 21 – MRN Output on 800 Samples of Ripley's Data Set
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Figure 22 – MRN Output on 1000 Samples of Ripley's Data Set

41



It is important to note that in the MRN algorithm a training-set consistent reduced set is 

one which correctly classifies all of the samples that were correctly classified under the 

initial training set.  Using the reduced set, some samples may be correctly classified that 

were incorrectly classified under the original training set since these samples are 

essentially discarded in the editing step.  This is most evident in Figure 18 where the 

black cross (indicating a misclassification by the Parzen-window classifier) near the first 

inflection point of the decision boundary lies on the correct side of the MRN decision 

boundary. 

Figures 18-22 demonstrate how closely the final reduced set decision boundary 

approximates the Bayesian decision boundary of the Parzen-window estimates as sample 

sizes increase.  The reduced set decision boundary deviates most from the Parzen-window 

boundary in areas of extremely low probability (the tails of the distributions).  Fortunately 

these are the areas where samples are most unlikely to fall, and hence tend to have 

negligible affects on error rates.  This is a common issue with virtually all probabilistic 

approaches.

The average error rate of the MRN classifier for the tenfold cross-validation tests on the 

Ripley data set, using a random training subset of 900 samples and a testing subset of 100 

samples was identical to the error rates for the Parzen-window classifier.  This was 

achieved while reducing the training set by 97.6%. 

As was previously alluded to, an important advantage to the MRN classifier is that the 

reduction in training set size is not as much a function of the original training set size as it 

is the form of the underlying distribution.  To illustrate this we ran tenfold cross-

validation runs on the MRN and Parzen-window classifiers with a smaller subset  of 405 

samples and compared the average reduced set size.  The smaller sample size created an 

average of 16.4 training samples versus the larger training set's 21.3 average retained 

samples.  The larger training set consists of more than twice as many samples whereas the 
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reduced (MRN) set consists of only 1.3 times as many samples as the reduced MRN set 

from the smaller sample problem set.  This tends to indicate the reduction ratio will 

increase as the sample size increases since the number of samples required for a given 

degree of accuracy is largely determined by the shape of the underlying class densities.

Training time, excluding the Parzen-window classification performed in step 1, averaged 

.1953 seconds for the 405-sample set versus .6811 seconds for the 900-sample set. 

Hence, a training set 2.22 times the original size requires only 3.49 times more 

computation time.  It should be remembered these times were achieved using the 

simplistic, and computationally expensive pseudo-inverse approach.  This strengthens the 

assertion that, minus the Parzen-window classification step, average complexity is 

substantially lower than O(n2).  As was alluded to previously, this fact could be used to 

tailor the computational complexity of the algorithm to the available processing power.

Banana Data Set

The MRN algorithm was run five times on a random subset of the banana data set.  After 

each run 200 new, random samples were added to the training set.  Figures 23-27 

illustrate the results of these runs.  Each figure uses the same notation as the output plots 

in Figures 8-16.    

The MRN classifier results in a reduced set consisting of an average of 37.5 samples, 

giving a 95.8% reduction in model complexity and classification computation time. 

Again we see that error rates are nearly identical (12.31% for MRN versus 11.91% for 

Parzen).  The underlying distributions are obviously more complex and hence we see the 

increase in retained samples in the reduced sets for the banana data.  Average training 

time, excluding Step 1, was 1.15 seconds for 900 samples.  The increase in training time 

can be directly attributed to the increased complexity of the underlying PDFs and hence 

the increase in the number of retained samples.  
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Figure 23 – MRN Output on 200 Samples of the Banana Data Set
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Figure 24 – MRN Output on 400 Samples of the Banana Data Set
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Figure 25 – MRN Output on 600 Samples of the Banana Data Set
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Figure 26 – MRN Output on 800 Samples of the Banana Data Set
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Figure 27 – MRN Output on 1000 Samples of the Banana Data Set
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High Dimensional Examples

Performance on high-dimensional classification problems was evaluated by testing on the 

Pima Indians data set and the Ionosphere data set, both available from the UCI Machine 

Learning Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html).  

The Pima Indians data set consists of 692 samples where each sample has 8 features. 

When run on the Pima Indians data set the MRN classifier creates a reduced set 

consisting of an average of 47.2  samples, giving a 93% reduction in model complexity 

and classification computation time.  The ten-fold cross-validation error rate was 24.97% 

versus 24.58% for the Parzen classifier.  

The Ionosphere data set consists of 316 samples where each sample has 34 featuress.  The 

MRN classifier creates a  reduced set consisting of an average of 72.7 samples, giving a 

77% reduction in model complexity and classification computation time.  The ten-fold 

cross-validation error rate was 10.87% versus 11.71% for the Parzen classifier.  The 

extremely small sample size (especially with respect to feature space dimension) is 

sufficient to explain the lower reduction rate.  As was shown earlier, the ratio of reduced 

set samples to original training-set samples is more dependent upon the underlying PDFs 

and feature space than the size of the original training-set.  While the reduction rate in 

this example is substantially lower than any of the other examples it is our belief that, 

given a larger original training set, the reduction ratio would improve.

In general, probabilistic methods have been viewed as suboptimal for high-dimension, 

low-sample problems.  However, it is important to keep in mind that, when performing 

ten-fold cross-validation on such small sample sizes, the failure to correctly classify one 

sample can make an extremely large difference.  
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For example, in the paper by Gregor and Liu (2006), a Bayesian framework for SVM 

parameter estimation and the best published error rates for SVM classification on both the 

Pima Indians and Ionosphere data sets are presented.  These error rates are 22% and 5.5% 

respectively.

While the Pima Indians error rates are similar to probabilistic error rates, the Ionosphere 

error rates appear substantially lower.  However, using ten-fold cross-validation on the 

Ionosphere data set generates 10 training sets of 316 samples and 10 testing sets of 35 

samples.  The difference in error rate between the MRN classifier (10.87%) and the SVM 

classifier (5.5%) equates to the misclassification of 1.88 samples.  In addition 3 of the 10 

runs on the MRN classifier achieve an error rate of 5.6%.  With such small sample sizes it 

is difficult to meaningfully compare error rates between approaches.  

Table 1 lists the results of each of the ten runs of the Pima Indians data set and compares 

them to the Parzen classifier.  Table 2 lists the results of each of the ten runs of the 

Ionosphere data set and compares them to the Parzen classifier.

Summary of Results

The MRN classifier gives results equivalent to classical Parzen-window classifiers with 

substantially reduced (up to 97.6%) model complexity.  Likewise, these results are 

achieved while maintaining a worst-case training complexity of O(n2) while classification 

is O(k) where k is the cardinality of the reduced set and is no more than and typically 

much less than n.  The results of the various ten-fold cross-validation tests are 

summarized in Table 3.

When compared to non-probabilistic techniques such as support vector machines, MRN 
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Table 1 – Comparison of Results Between the MRN and Parzen Classifiers on the Pima 

Indians Data Set

Run MRN Set Size MRN Error  
Rate

Parzen Error 
Rate

1 49 27.63% 27.63%
2 49 23.38% 22.08%
3 45 31.17% 28.57%
4 49 20.78% 23.38%
5 49 25.97% 25.97%
6 44 32.47% 29.87%
7 49 20.78% 22.08%
8 41 22.08% 19.48%
9 45 22.08% 23.38%
10 52 23.38% 23.38%
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Table 2 – Comparison of Results Between the MRN and Parzen Classifiers on the 

Ionosphere Data Set

Run MRN Set Size MRN Error  
Rate

Parzen Error 
Rate

1 74 11.43% 14.29%
2 63 5.56% 11.11%
3 70 5.56% 8.33%
4 60 11.11% 8.33%
5 90 13.89% 11.11%
6 77 11.11% 11.11%
7 73 11.11% 8.33%
8 72 22.22% 19.44%
9 77 5.6% 13.89%
10 71 11.11% 11.11%
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Table 3 – Summary of Results

Data Set MRN 
Best 

Error

Parzen 
Best  

Error

MRN 
Worst  
Error

Parzen 
Worst  
Error

MRN 
Average 

Error

Parzen 
Average 

Error

MRN
Ave. 

Model 
Size  

(Samples)

Parzen
Ave. 

Model  
Size 

(Samples)
Ripley .050 .040 .110 .109 .081 .081 21.3 900
Banana .060 .030 .220 .210 .123 .119 37.5 900
Ionosphere .056 .083 .222 .194 .109 .117 72.7 316
Pima 
Indians

.208 .195 .325 .299 .250 .246 47.2 692
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classifiers provide comparable results in all but the most sparse applications.  However, 

results from such small-sample applications should be tempered by the very fact that such 

small samples may not be a reliable measure of accuracy.
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CHAPTER V

CONCLUSION

Multiple Resolution Nonparametric classifiers offer excellent training complexity, high 

applicability to parallelization, Bayesian error rates and significant model complexity 

reduction.

In our implementation, the optimal initial resolution at the given sample size was found 

through exhaustive search.  This may not be the most elegant approach to identifying an 

optimal window resolution for the initial Bayesian discriminant; however, in theory, as 

the sample size increases, the specific resolution used for the PDF estimation becomes 

less important.  In our implementation we decided to leave the most pertinent aspects of 

the algorithm unencumbered by extraneous, peripheral approaches to initial resolution 

optimization, gradient descent optimization or code optimization.

In many modern applications massive amounts of data are available for training but, in 

the past, there has been no practical means of training classifiers using a theoretically 

sound estimation of the Bayesian discriminant on such large data sets.  Due to its ease of 

parallelization, significant model-complexity reduction and improved computational 

complexity in training, MRN classifiers allow for the more widespread use of 

probabilistic methods on such data sets.  This development may be especially applicable 

to data mining applications where large amounts of data are often available but training 

and/or classification computational complexity proscribes the use of current algorithms.

Future research may focus on minimizing the complexity of the Parzen-window 

classification step through the use of a smaller representative training set for density 

estimation while the entire data set could be used as the TRAIN set.  This would allow 
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computational cost to be tailored to the available computational resources.  Experimental 

results would indicate the amount of error introduced by such a technique.  

Other research could include the use of criteria other than mean square error in step 7. 

The algorithm could also be modified to allow for the removal of samples in intermediate 

steps as well as for the reduction of sample resolutions.  These techniques might improve 

reduction but would require careful consideration to ensure the algorithm remains 

provably correct.  Some form of relaxation with respect to outliers, and a maximization of 

margin, similar to support vector machines may provide enhanced accuracy on high 

dimension, low sample problems.  
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