2,601 research outputs found

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    FPGA-based High-Performance Collision Detection: An Enabling Technique for Image-Guided Robotic Surgery

    Get PDF
    Collision detection, which refers to the computational problem of finding the relative placement or con-figuration of two or more objects, is an essential component of many applications in computer graphics and robotics. In image-guided robotic surgery, real-time collision detection is critical for preserving healthy anatomical structures during the surgical procedure. However, the computational complexity of the problem usually results in algorithms that operate at low speed. In this paper, we present a fast and accurate algorithm for collision detection between Oriented-Bounding-Boxes (OBBs) that is suitable for real-time implementation. Our proposed Sweep and Prune algorithm can perform a preliminary filtering to reduce the number of objects that need to be tested by the classical Separating Axis Test algorithm, while the OBB pairs of interest are preserved. These OBB pairs are re-checked by the Separating Axis Test algorithm to obtain accurate overlapping status between them. To accelerate the execution, our Sweep and Prune algorithm is tailor-made for the proposed method. Meanwhile, a high performance scalable hardware architecture is proposed by analyzing the intrinsic parallelism of our algorithm, and is implemented on FPGA platform. Results show that our hardware design on the FPGA platform can achieve around 8X higher running speed than the software design on a CPU platform. As a result, the proposed algorithm can achieve a collision frame rate of 1 KHz, and fulfill the requirement for the medical surgery scenario of Robot Assisted Laparoscopy.published_or_final_versio

    Haptic Data Transmission Based on the Prediction and Compression

    Get PDF

    Towards retrieving force feedback in robotic-assisted surgery: a supervised neuro-recurrent-vision approach

    Get PDF
    Robotic-assisted minimally invasive surgeries have gained a lot of popularity over conventional procedures as they offer many benefits to both surgeons and patients. Nonetheless, they still suffer from some limitations that affect their outcome. One of them is the lack of force feedback which restricts the surgeon's sense of touch and might reduce precision during a procedure. To overcome this limitation, we propose a novel force estimation approach that combines a vision based solution with supervised learning to estimate the applied force and provide the surgeon with a suitable representation of it. The proposed solution starts with extracting the geometry of motion of the heart's surface by minimizing an energy functional to recover its 3D deformable structure. A deep network, based on a LSTM-RNN architecture, is then used to learn the relationship between the extracted visual-geometric information and the applied force, and to find accurate mapping between the two. Our proposed force estimation solution avoids the drawbacks usually associated with force sensing devices, such as biocompatibility and integration issues. We evaluate our approach on phantom and realistic tissues in which we report an average root-mean square error of 0.02 N.Peer ReviewedPostprint (author's final draft

    Design of a haptic device for teleoperation and virtual reality systems

    Get PDF
    IEEE International Conference on Systems, Man and Cybernetics, SMC 2009; San Antonio, TX; United States; 11 October 2009 through 14 October 2009Haptics technology has increased the precision and telepresence of the teleoperation and precision of the in-house robotic applications by force and surface information feedback. Force feedback is achieved through sending back the pressure and force information via a haptic device as the information is created or measured at the point of interest. In order to configure such a system, design, analysis and production processes of a haptic device, which is suitable for that specific application, becomes important. Today, haptic devices find use in assistive surgical robotics and most of the teleoperation systems. These devices are also extensively utilized in simulators to train medical and military personnel. The objective of this work is to design a haptic device with a new structure that has the potential to increase the precision of the robotic operation. Thus, literature is reviewed and possible robot manipulator designs are investigated to increase the precision in haptics applications. As a result of the investigations, conceptual designs are developed. Ultimately, final design is selected and produced after it is investigated in computer-aided- design (CAD) environment and its kinematic and structural analyses are carried out

    A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.

    Get PDF
    Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden

    Design of a six degree-of-freedom haptic hybrid platform manipultor

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishxv, 115 leavesThe word Haptic, based on an ancient Greek word called haptios, means related with touch. As an area of robotics, haptics technology provides the sense of touch for robotic applications that involve interaction with human operator and the environment. The sense of touch accompanied with the visual feedback is enough to gather most of the information about a certain environment. It increases the precision of teleoperation and sensation levels of the virtual reality (VR) applications by exerting physical properties of the environment such as forces, motions, textures. Currently, haptic devices find use in many VR and teleoperation applications. The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) haptic desktop device with a new structure that has the potential to increase the precision in the haptics technology. First, previously developed haptic devices and manipulator structures are reviewed. Following this, the conceptual designs are formed and a hybrid structured haptic device is designed manufactured and tested. Developed haptic device.s control algorithm and VR application is developed in Matlab© Simulink. Integration of the mechanism with mechanical, electromechanical and electronic components and the initial tests of the system are executed and the results are presented. According to the results, performance of the developed device is discussed and future works are addressed
    corecore