118 research outputs found

    Model-based contextual policy search for data-efficient generalization of robot skills

    Get PDF
    In robotics, lower-level controllers are typically used to make the robot solve a specific task in a fixed context. For example, the lower-level controller can encode a hitting movement while the context defines the target coordinates to hit. However, in many learning problems the context may change between task executions. To adapt the policy to a new context, we utilize a hierarchical approach by learning an upper-level policy that generalizes the lower-level controllers to new contexts. A common approach to learn such upper-level policies is to use policy search. However, the majority of current contextual policy search approaches are model-free and require a high number of interactions with the robot and its environment. Model-based approaches are known to significantly reduce the amount of robot experiments, however, current model-based techniques cannot be applied straightforwardly to the problem of learning contextual upper-level policies. They rely on specific parametrizations of the policy and the reward function, which are often unrealistic in the contextual policy search formulation. In this paper, we propose a novel model-based contextual policy search algorithm that is able to generalize lower-level controllers, and is data-efficient. Our approach is based on learned probabilistic forward models and information theoretic policy search. Unlike current algorithms, our method does not require any assumption on the parametrization of the policy or the reward function. We show on complex simulated robotic tasks and in a real robot experiment that the proposed learning framework speeds up the learning process by up to two orders of magnitude in comparison to existing methods, while learning high quality policies

    BIPED LOCOMOTION: STABILITY, ANALYSIS AND CONTROL

    Get PDF

    CAM/CAD Point Cloud Part Segmentation via Few-Shot Learning

    Full text link
    3D part segmentation is an essential step in advanced CAM/CAD workflow. Precise 3D segmentation contributes to lower defective rate of work-pieces produced by the manufacturing equipment (such as computer controlled CNCs), thereby improving work efficiency and attaining the attendant economic benefits. A large class of existing works on 3D model segmentation are mostly based on fully-supervised learning, which trains the AI models with large, annotated datasets. However, the disadvantage is that the resulting models from the fully-supervised learning methodology are highly reliant on the completeness of the available dataset, and its generalization ability is relatively poor to new unknown segmentation types (i.e. further additional novel classes). In this work, we propose and develop a noteworthy few-shot learning-based approach for effective part segmentation in CAM/CAD; and this is designed to significantly enhance its generalization ability and flexibly adapt to new segmentation tasks by using only relatively rather few samples. As a result, it not only reduces the requirements for the usually unattainable and exhaustive completeness of supervision datasets, but also improves the flexibility for real-world applications. As further improvement and innovation, we additionally adopt the transform net and the center loss block in the network. These characteristics serve to improve the comprehension for 3D features of the various possible instances of the whole work-piece and ensure the close distribution of the same class in feature space.Comment: 7 pages, 5 figure

    FPGA-based High-Performance Collision Detection: An Enabling Technique for Image-Guided Robotic Surgery

    Get PDF
    Collision detection, which refers to the computational problem of finding the relative placement or con-figuration of two or more objects, is an essential component of many applications in computer graphics and robotics. In image-guided robotic surgery, real-time collision detection is critical for preserving healthy anatomical structures during the surgical procedure. However, the computational complexity of the problem usually results in algorithms that operate at low speed. In this paper, we present a fast and accurate algorithm for collision detection between Oriented-Bounding-Boxes (OBBs) that is suitable for real-time implementation. Our proposed Sweep and Prune algorithm can perform a preliminary filtering to reduce the number of objects that need to be tested by the classical Separating Axis Test algorithm, while the OBB pairs of interest are preserved. These OBB pairs are re-checked by the Separating Axis Test algorithm to obtain accurate overlapping status between them. To accelerate the execution, our Sweep and Prune algorithm is tailor-made for the proposed method. Meanwhile, a high performance scalable hardware architecture is proposed by analyzing the intrinsic parallelism of our algorithm, and is implemented on FPGA platform. Results show that our hardware design on the FPGA platform can achieve around 8X higher running speed than the software design on a CPU platform. As a result, the proposed algorithm can achieve a collision frame rate of 1 KHz, and fulfill the requirement for the medical surgery scenario of Robot Assisted Laparoscopy.published_or_final_versio

    Advances in Robotics: FIRA RoboWorld Congress 2009 Incheon, Korea, August 16-20, 2009 Proceedings - Preface

    No full text
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)5744 LNCS

    Improved particle filter in sensor fusion for tracking randomly moving object

    No full text
    10.1109/TIM.2006.881569IEEE Transactions on Instrumentation and Measurement5551823-1832IEIM
    corecore