1,293 research outputs found

    Automatic 3D Building Detection and Modeling from Airborne LiDAR Point Clouds

    Get PDF
    Urban reconstruction, with an emphasis on man-made structure modeling, is an active research area with broad impact on several potential applications. Urban reconstruction combines photogrammetry, remote sensing, computer vision, and computer graphics. Even though there is a huge volume of work that has been done, many problems still remain unsolved. Automation is one of the key focus areas in this research. In this work, a fast, completely automated method to create 3D watertight building models from airborne LiDAR (Light Detection and Ranging) point clouds is presented. The developed method analyzes the scene content and produces multi-layer rooftops, with complex rigorous boundaries and vertical walls, that connect rooftops to the ground. The graph cuts algorithm is used to separate vegetative elements from the rest of the scene content, which is based on the local analysis about the properties of the local implicit surface patch. The ground terrain and building rooftop footprints are then extracted, utilizing the developed strategy, a two-step hierarchical Euclidean clustering. The method presented here adopts a divide-and-conquer scheme. Once the building footprints are segmented from the terrain and vegetative areas, the whole scene is divided into individual pendent processing units which represent potential points on the rooftop. For each individual building region, significant features on the rooftop are further detected using a specifically designed region-growing algorithm with surface smoothness constraints. The principal orientation of each building rooftop feature is calculated using a minimum bounding box fitting technique, and is used to guide the refinement of shapes and boundaries of the rooftop parts. Boundaries for all of these features are refined for the purpose of producing strict description. Once the description of the rooftops is achieved, polygonal mesh models are generated by creating surface patches with outlines defined by detected vertices to produce triangulated mesh models. These triangulated mesh models are suitable for many applications, such as 3D mapping, urban planning and augmented reality

    The Application of LiDAR to Assessment of Rooftop Solar Photovoltaic Deployment Potential in a Municipal District Unit

    Get PDF
    A methodology is provided for the application of Light Detection and Ranging (LiDAR) to automated solar photovoltaic (PV) deployment analysis on the regional scale. Challenges in urban information extraction and management for solar PV deployment assessment are determined and quantitative solutions are offered. This paper provides the following contributions: (i) a methodology that is consistent with recommendations from existing literature advocating the integration of cross-disciplinary competences in remote sensing (RS), GIS, computer vision and urban environmental studies; (ii) a robust methodology that can work with low-resolution, incomprehensive data and reconstruct vegetation and building separately, but concurrently; (iii) recommendations for future generation of software. A case study is presented as an example of the methodology. Experience from the case study such as the trade-off between time consumption and data quality are discussed to highlight a need for connectivity between demographic information, electrical engineering schemes and GIS and a typical factor of solar useful roofs extracted per method. Finally, conclusions are developed to provide a final methodology to extract the most useful information from the lowest resolution and least comprehensive data to provide solar electric assessments over large areas, which can be adapted anywhere in the world

    Uses and Challenges of Collecting LiDAR Data from a Growing Autonomous Vehicle Fleet: Implications for Infrastructure Planning and Inspection Practices

    Get PDF
    Autonomous vehicles (AVs) that utilize LiDAR (Light Detection and Ranging) and other sensing technologies are becoming an inevitable part of transportation industry. Concurrently, transportation agencies are increasingly challenged with the management and tracking of large-scale highway asset inventory. LiDAR has become popular among transportation agencies for highway asset management given its advantage over traditional surveying methods. The affordability of LiDAR technology is increasing day by day. Given this, there will be substantial challenges and opportunities for the utilization of big data resulting from the growth of AVs with LiDAR. A proper understanding of the data size generated from this technology will help agencies in making decisions regarding storage, management, and transmission of the data. The original raw data generated from the sensor shrinks a lot after filtering and processing following the Cache county Road Manual and storing into ASPRS recommended (.las) file format. In this pilot study, it is found that while considering the road centerline as the vehicle trajectory larger portion of the data fall into the right of way section compared to the actual vehicle trajectory in Cache County, UT. And there is a positive relation between the data size and vehicle speed in terms of the travel lanes section given the nature of the selected highway environment

    Toward knowledge-based automatic 3D spatial topological modeling from LiDAR point clouds for urban areas

    Get PDF
    Le traitement d'un très grand nombre de données LiDAR demeure très coûteux et nécessite des approches de modélisation 3D automatisée. De plus, les nuages de points incomplets causés par l'occlusion et la densité ainsi que les incertitudes liées au traitement des données LiDAR compliquent la création automatique de modèles 3D enrichis sémantiquement. Ce travail de recherche vise à développer de nouvelles solutions pour la création automatique de modèles géométriques 3D complets avec des étiquettes sémantiques à partir de nuages de points incomplets. Un cadre intégrant la connaissance des objets à la modélisation 3D est proposé pour améliorer la complétude des modèles géométriques 3D en utilisant un raisonnement qualitatif basé sur les informations sémantiques des objets et de leurs composants, leurs relations géométriques et spatiales. De plus, nous visons à tirer parti de la connaissance qualitative des objets en reconnaissance automatique des objets et à la création de modèles géométriques 3D complets à partir de nuages de points incomplets. Pour atteindre cet objectif, plusieurs solutions sont proposées pour la segmentation automatique, l'identification des relations topologiques entre les composants de l'objet, la reconnaissance des caractéristiques et la création de modèles géométriques 3D complets. (1) Des solutions d'apprentissage automatique ont été proposées pour la segmentation sémantique automatique et la segmentation de type CAO afin de segmenter des objets aux structures complexes. (2) Nous avons proposé un algorithme pour identifier efficacement les relations topologiques entre les composants d'objet extraits des nuages de points afin d'assembler un modèle de Représentation Frontière. (3) L'intégration des connaissances sur les objets et la reconnaissance des caractéristiques a été développée pour inférer automatiquement les étiquettes sémantiques des objets et de leurs composants. Afin de traiter les informations incertitudes, une solution de raisonnement automatique incertain, basée sur des règles représentant la connaissance, a été développée pour reconnaître les composants du bâtiment à partir d'informations incertaines extraites des nuages de points. (4) Une méthode heuristique pour la création de modèles géométriques 3D complets a été conçue en utilisant les connaissances relatives aux bâtiments, les informations géométriques et topologiques des composants du bâtiment et les informations sémantiques obtenues à partir de la reconnaissance des caractéristiques. Enfin, le cadre proposé pour améliorer la modélisation 3D automatique à partir de nuages de points de zones urbaines a été validé par une étude de cas visant à créer un modèle de bâtiment 3D complet. L'expérimentation démontre que l'intégration des connaissances dans les étapes de la modélisation 3D est efficace pour créer un modèle de construction complet à partir de nuages de points incomplets.The processing of a very large set of LiDAR data is very costly and necessitates automatic 3D modeling approaches. In addition, incomplete point clouds caused by occlusion and uneven density and the uncertainties in the processing of LiDAR data make it difficult to automatic creation of semantically enriched 3D models. This research work aims at developing new solutions for the automatic creation of complete 3D geometric models with semantic labels from incomplete point clouds. A framework integrating knowledge about objects in urban scenes into 3D modeling is proposed for improving the completeness of 3D geometric models using qualitative reasoning based on semantic information of objects and their components, their geometric and spatial relations. Moreover, we aim at taking advantage of the qualitative knowledge of objects in automatic feature recognition and further in the creation of complete 3D geometric models from incomplete point clouds. To achieve this goal, several algorithms are proposed for automatic segmentation, the identification of the topological relations between object components, feature recognition and the creation of complete 3D geometric models. (1) Machine learning solutions have been proposed for automatic semantic segmentation and CAD-like segmentation to segment objects with complex structures. (2) We proposed an algorithm to efficiently identify topological relationships between object components extracted from point clouds to assemble a Boundary Representation model. (3) The integration of object knowledge and feature recognition has been developed to automatically obtain semantic labels of objects and their components. In order to deal with uncertain information, a rule-based automatic uncertain reasoning solution was developed to recognize building components from uncertain information extracted from point clouds. (4) A heuristic method for creating complete 3D geometric models was designed using building knowledge, geometric and topological relations of building components, and semantic information obtained from feature recognition. Finally, the proposed framework for improving automatic 3D modeling from point clouds of urban areas has been validated by a case study aimed at creating a complete 3D building model. Experiments demonstrate that the integration of knowledge into the steps of 3D modeling is effective in creating a complete building model from incomplete point clouds

    Automated 3D object modeling from aerial video imagery

    Get PDF
    Research in physically accurate 3D modeling of a scene is gaining momentum because of its far reaching applications in civilian and defense sectors. The modeled 3D scene must conform both geometrically and spectrally to the real world for all the applications. Geometric modeling of a scene can be achieved in many ways of which the two most popular methods are - a) using multiple 2D passive images of the scene also called as stereo vision and b) using 3D point clouds like Lidar (Light detection and ranging) data. In this research work, we derive the 3D models of objects in a scene using passive aerial video imagery. At present, this geometric modeling requires a lot of manual intervention due to a variety of factors like sensor noise, low contrast conditions during image capture, etc. Hence long time periods, in the order of weeks and months, are required to model even a small scene. This thesis focuses on automating the process of geometric modeling of objects in a scene from passive aerial video imagery. The aerial video frames are stitched into stereo mosaics. These stereo mosaics not only provide the elevation information of a scene but also act as good 3D visualization tools. The 3D information obtained from the stereo mosaics is used to identify the various 3D objects, especially man-made buildings using probabilistic inference provided by Bayesian Networks. The initial 3D building models are further optimized by projecting them on to the individual video frames. The limitations of the state-of-art technology in attaining these goals are presented along with the techniques to overcome them. The improvement that can be achieved in the accuracy of the 3D models when Lidar data is fused with aerial video during the object identification process is also examined

    Reconstrucción digital de estructuras de tejados históricos: desarrollo de un flujo de trabajo de análisis altamente automatizado

    Get PDF
    [EN] Planning on adaptive reuse, maintenance and restoration of historic timber structuresrequiresextensive architectural and structural analysis of the actual condition. Current methods for a modellingof roof constructions consist of several manual steps including the time-consuming dimensional modelling. The continuous development of terrestrial laser scanners increases the accuracy, comfort and speed of the surveying work inroof constructions. Resultingpoint clouds enabledetailed visualisation of theconstructionsrepresented by single points or polygonal meshes, but in fact donot containinformation about the structural system and the beam elements. The developed workflow containsseveral processing steps on the point cloud dataset. The most important among them arethenormal vector computation, the segmentation of points to extract planarfaces, a classification of planarsegmentsto detect the beam side facesand finally theparametric modelling of the beams on the basis of classified segments. Thisenablesa highly automated transitionfrom raw point cloud data to a geometric model containing beams of the structural system. The geometric model,as well as additional information about the structural properties of involved wooden beams and their joints,is necessaryinput for a furtherstructural modellingof timber constructions. The results of the workflow confirm that the proposed methods work well for beams with a rectangularcross-section and minor deformations. Scan shadows and occlusionof beamsby additional installationsor interlockingbeamsdecreases the modelling performance, but in generala high level ofaccuracy and completeness isachieved ata high degree of automation.[ES] Las estructuras históricas de madera requieren un análisis arquitectónico y estructural exhaustivo de su condición real en aras de planificar la reutilización flexible, el mantenimiento y la restauración. Los métodos actuales que modelan las construcciones de cubiertas pasan por aplicar varias etapas en modo manual, que incluye el lento modelado dimensional. El desarrollo continuo de escáneres láser terrestres aumenta la exactitud, la comodidad y la velocidad del trabajo topográfico en construcciones de tejados. Las nubes de puntos resultantes permiten la visualización detallada de las construcciones representadas por puntos o mallas poligonales, pero de hecho no contienen información sobre el sistema estructural y los elementos del travesaño. El flujo de trabajo desarrollado contiene varias etapas de procesamiento en el conjunto de datos de la nube de puntos. Los más importantes son el cálculo del vector normal, la segmentación de puntos que extraen caras planas, la clasificación de segmentos planos que detectan las caras laterales del travesaño y, finalmente, el modelado paramétrico de los travesaños en función de los segmentos clasificados. Esto permite una transición altamente automatizada de los datos de la nube de puntos brutos a un modelo geométrico que contiene los travesaños del sistema estructural. El modelo geométrico, así como la información adicional sobre las propiedades estructurales de las vigas de madera involucradas y de sus juntas, es información necesaria de entrada para el modelado estructural eventual de las construcciones de madera. Los resultados del flujo de trabajo confirman que los métodos propuestos funcionan bien en travesaños que presentan secciones transversales rectangulares y deformaciones menores. Las sombras en los escaneados y las oclusiones de los travesaños a partir de instalaciones adicionales o vigas entrelazados disminuye el rendimiento del modelado, pero en general se logra un nivel de exactitud e integridad elevado con un alto grado de automatización.Pöchtrager, M.; Styhler-Aydın, G.; Döring-Williams, M.; Pfeifer, N. (2018). Digital reconstruction of historic roof structures: developing a workflow for a highly automated analysis. Virtual Archaeology Review. 9(19):21-33. doi:10.4995/var.2018.8855SWORD2133919Attene, M., & Spagnuolo, M. (2000). Automatic surface reconstruction from point sets in space. Computer Graphics Forum, 19(3), 457-465. doi:10.1111/1467-8659.00438Baik, A., Yaagoubi, R., & Boehm, J. (2015). Integration of Jeddah historical BIM and 3D GIS for documentation and restoration of historical monument. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W7, 29-34. doi:10.5194/isprsarchives-XL-5-W7-29-2015Bassier, M., Hadjidemetriou, G., Vergauwen, M., Van Roy, N., & Verstrynge, E. (2016). Implementation of Scan-to-BIM and FEM for the Documentation and Analysis of Heritage Timber Roof Structures. In M. Ioannides, E. Fink, A. Moropoulou, M. Hagedorn-Saupe, A. Fresa, G. Liestøl, . . . P. Grussenmeyer (Ed.), Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection. EuroMed 2016 (pp. 79-90). Springer, Cham. doi:10.1007/978-3-319-48496-9_7Besl, P., & McKay, N. (1992). A method for registration of 3D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-254. doi:10.1109/34.121791Chida, A., & Masuda, H. (2016). Reconstruction of polygonal prisms from point-clouds of engineering facilities. Journal of Computational Design and Engineering, 3(4), 322-329. doi:10.1016/j.jcde.2016.05.003Dore, C., & Murphy, M. (2017). Current state of the art historic building information modelling. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 185-192. doi:10.5194/isprsarchives-XLII-2-W5-185-2017Dorninger, P., Nothegger, C., & Rasztovits, S. (2013). Efficient 3-D documentation of Neptune fountain in the park of Schönbrunn palace at millimeter scale. Proceedings XXIV International CIPA Symposium, ISPRS Annals, II, 5/W1, 103-108. doi:10.5194/isprsannals-II-5-W1-103-2013Eßer, G., Styhler-Aydın, G., & Hochreiner, G. (2016a). Construction history and structural assessment of historic roofs - An interdisciplinary approach. In K. Van Balen, & E. Verstrynge (Eds.), Structural analysis of historical constructions. Anamnesis, diagnosis, therapy, controls (pp. 790-795). London, GB.Eßer, G., Styhler-Aydın, G., & Hochreiner, G. (2016b). The historic roof structures of the Vienna Hofburg: An innovative interdisciplinary approach in architectural sciences laying ground for structural modeling. In J. Eberhardsteiner, W. Winter, A. Fadai, & M. Pöll (Eds.), WCTE 2016. World conference on timber engineering (pp. 3039-3047). Wien, Austria.Fischler, M., & Bolles, R. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395. doi:10.1145/358669.358692Glira, P., Pfeifer, N., Briese, C., & Ressl, C. (2015). A Correspondence Framework for ALS Strip Adjustments based on Variants of the ICP Algorithm. Photogrammetrie, Fernerkundung, Geoinformation, 4, 275-289. doi:10.1127/pfg/2015/0270Hochreiner, G., Eßer, G., & Styhler-Aydın, G. (2016). Modern timber engineering methods in the context of historical timber structures. In J. Eberhardsteiner, W. Winter, A. Fadai, & M. Pöll (Eds.), WCTE 2016. World conference on timber engineering (pp. 4830-4838). Wien, Austria.Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., & Stuetzle, W. (1992). Surface reconstruction from unorganized points. SIGGRAPH '92 Proceedings of the 19th annual conference on Computer graphics and interactive techniques. ACM SIGGRAPH Computer Graphics, 26(2), 71-78. doi:10.1145/142920.134011International Organization for Standardization. (2016). Industrial automation systems and integration -- Product data representation and exchange -- Part 21: Implementation methods: Clear text encoding of the exchange Structure. ISO/DIS Standard No. 10303-21. Retrieved from https://www.iso.org/standard/63141.html.Jung, J., Hong, S., Jeong, S., Kim, S., Cho, H., Hong, S., & Heo, J. (2014). Productive modeling for development of asbuilt BIM of existing indoor structures. Automation in Construction, 42, 68-77. doi:10.1016/j.autcon.2014.02.021Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. Symposium on Geometry Processing (pp. 61-70). The Eurographics Association. doi:10.2312/SGP/SGP06/061-070Lee, J., Son, H., Kim, C., & Kim, C. (2013). Skeleton-based 3-D reconstruction of as-built pipelines from laser-scan data. Automation in Reconstruction, 35, 199-207. doi:10.1061/9780784412343.0031Li, W., Goodchild, M., & Church, R. (2013). An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. International Journal of Geographical Information Science, 1227-1250. doi:10.1080/13658816.2012.752093Nothegger, C., & Dorninger, P. (2009). 3D filtering of high-resolution terrestrial laser scanner point clouds for cultural heritage documentation. Photogrammetrie, Fernerkundung, Geoinformation, 1, 53-63. doi:10.1127/0935-1221/2009/0006Pfeifer, N., & Winterhalder, D. (2004). Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(8/W2), 76-81.Pfeifer, N., Mandlburger, G., Otepka, J., & Karel, W. (2014). OPALS - A framework for Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems, 45, 125-136. doi:10.1016/j.compenvurbsys.2013.11.002Pöchtrager, M., Styhler-Aydın, G., Döring-Williams, M., & Pfeifer, N. (2017). Automated Reconstruction of Historic Roof Structures from Point Clouds - Development and Examples. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2-W2, 195-202. doi:10.5194/isprs-annals-IV-2-W2-195-2017Rabbani, T., Dijkman, S., Van den Heuvel, F., & Vosselman, G. (2007). An integrated approach for modelling and global registration of point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 61(6), 355-370. doi:10.1016/j.isprsjprs.2006.09.006Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H., Vastaranta, M., . . . Lewis, P. (2013). Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing, 5(2), 491-520. doi:10.3390/rs5020491Stylianidis, E., & Remondino, F. (2016). 3D Recording, Documentation and Management of Cultural Heritage. Caithness, UK: Whittles Publishing.Thies, M., Pfeifer, N., Winterhalder, D., & Gorte, B. (2004). Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scandinavian Journal of Forest Research, 19(6), 571-581. doi:10.1080/02827580410019562Thomson, C., & Boehm, J. (2015). Automatic geometry generation from point clouds for BIM. Remote Sensing, 7(9), 11753-11775. doi:10.3390/rs70911753Vosselman, G., & Maas, H.-G. (2010). Airborne and Terrestrial Laser Scanning. Caithness, UK: Whittles Publishing.Wang, D., Hollaus, M., Puttonen, E., & Pfeifer, N. (2016). Automatic and self-adaptive stem reconstruction in landslide-affected forests. Remote Sensing, 8(12), p. 974. doi:10.3390/rs8120974Wang, D., Kankare, V., Puttonen, E., Hollaus, M., & Pfeifer, N. (2016). Reconstructing stem cross section shapes from terrestrial laser scanning. IEEE Geoscience and Remote Sensing Letters, 14(2), 272-276. doi:10.1109/LGRS.2016.2638738Xiong, X., Adan, A., Akinci, B., & Huber, D. (2013). Automatic creation of semantically rich 3D building models from laser scanner data. Automation in Construction, 31, S. 325-337. doi:10.1016/j.autcon.2012.10.006Yang, X., Koehl, M., & Grussenmeyer, P. (2017). Parametric modelling of as-built beam framed structure in BIM environment. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 651-657. doi:10.5194/isprs-archives-XLII-2-W3-651-2017Zhang, R., & Zakhor, A. (2014). Automatic identification of window regions on indoor point clouds using LiDAR and cameras. Applications of Computer Vision (WACV), 2014 IEEE Winter Conference, 107-114. doi:10.1109/WACV.2014.683611

    3D Classification of Power Line Scene Using Airborne Lidar Data

    Get PDF
    Failure to adequately maintain vegetation within a power line corridor has been identified as a main cause of the August 14, 2003 electric power blackout. Such that, timely and accurate corridor mapping and monitoring are indispensible to mitigate such disaster. Moreover, airborne LiDAR (Light Detection And Ranging) has been recently introduced and widely utilized in industries and academies thanks to its potential to automate the data processing for scene analysis including power line corridor mapping. However, today’s corridor mapping practice using LiDAR in industries still remains an expensive manual process that is not suitable for the large-scale, rapid commercial compilation of corridor maps. Additionally, in academies only few studies have developed algorithms capable of recognizing corridor objects in the power line scene, which are mostly based on 2-dimensional classification. Thus, the objective of this dissertation is to develop a 3-dimensional classification system which is able to automatically identify key objects in the power line corridor from large-scale LiDAR data. This dissertation introduces new features for power structures, especially for the electric pylon, and existing features which are derived through diverse piecewise (i.e., point, line and plane) feature extraction, and then constructs a classification model pool by building individual models according to the piecewise feature sets and diverse voltage training samples using Random Forests. Finally, this dissertation proposes a Multiple Classifier System (MCS) which provides an optimal committee of models from the model pool for classification of new incoming power line scene. The proposed MCS has been tested on a power line corridor where medium voltage transmission lines (115 kV and 230 kV) pass. The classification results based on the MCS applied by optimally selecting the pre-built classification models according to the voltage type of the test corridor demonstrate a good accuracy (89.07%) and computationally effective time cost (approximately 4 hours/km) without additional training fees

    Ilmalaserkeilausaineistojen vertailu perustuen kattojen ominaisuuksiin

    Get PDF
    Laser scanning is nowadays one of the most important technology in geospatial data collection. The technique has developed together with the other technologies and sciences, and the systems can be used with many different platforms on land, in the ocean and in the air. Airborne laser scanning (ALS) started right after the invention of the laser in 1960’s and the usage grew in 1990’s, when the first commercial system was released. The development has augmented the ways of surveying and the systems have new features and more options to collect as accurate data as possible. Several wavelengths and higher frequencies able thousands or even millions of measurements per second. The multispectral systems enable the characterization of the targets from the spectral information which helps for example in the data classification. Single photon technique provides higher imaging capability with lower costs and is used in the extensive topographic measurements. The processing of the point clouds are more important when the densities grow and the amount of noise points is higher. The processing usually includes preprocessing, data management, classification, segmentation and modeling to enable the analyzing of the data. The goal of the thesis is to compare and analyze the datasets of five different airborne laser scanners. The conventional LiDAR datasets are collected from low altitude helicopter with the Riegl’s VUX-1HA and miniVUX-1UAV systems. The state-of-the-art sensors, Titan multispectral LiDAR (Teledyne Optech) and SPL100 single photon LiDAR (Leica), are used in the data collection from the aircraft. The data is collected from the urban area of Espoonlahti, Finland, and the comparison is based on the roof features. Other land cover classes are left out from the investigation. From the roof features are investigated the differences, accuracies and qualities between the datasets. The urban environment was selected because the lack of ALS research done for the built environment, especially in Finland. The thesis introduces the background of the airborne laser scanning, theories and literature review, materials and methods used in the project. The laser scanners used in the work produce dense point clouds, where the most dense is up to 80 pts/m2. Based on the results the accuracies vary mainly between 0 and 10 cm. The scanners with infrared wavelengths produce better than 10 cm accuracies for the outlines of the roofs, unlike the green wavelength scanners. The differences in the corner coordinates are between 1 and 8 cm with a few exceptions. SPL100 system has the best height accuracy of 4.2 cm and otherwise the accuracies vary between 5 and 10 cm. The largest deviation compared to the roof planes occurs in the miniVUX-1UAV data (over 5 cm). For the surface areas the infrared frequencies produce differences of 0 to 2 percent from the reference data, whereas the differences of the green wavelength are mainly 1 to 7 percent. For the inclinations no significant differences were observed.Laserkeilaus on nykyään yksi tärkeimmistä tekniikoista geospatiaalisen tiedon keräämisessä. Tekniikka on kehittynyt yhdessä muiden teknologioiden ja tieteiden kanssa, ja järjestelmiä voidaan käyttää monilla eri alustoilla maassa, meressä ja ilmassa. Ilmalaserkeilaus (ALS) alkoi heti laserin keksimisen jälkeen 1960-luvulla ja käyttö kasvoi 1990-luvulla ensimmäisen kaupallisen järjestelmän julkaisun jälkeen. Kehitys on lisännyt mittaustapoja ja järjestelmien ominaisuuksien parantuessa on enemmän vaihtoehtoja kerätä tarkkaa aineistoa. Useilla aallonpituuksilla ja korkeammilla taajuuksilla pystytään tekemään tuhansia tai jopa miljoonia mittauksia sekunnissa. Monispektriset järjestelmät mahdollista-vat kohteiden tunnistamisen spektritietojen (aallonpituuksien jakauman) mukaan, jota voidaan hyödyntää esimerkiksi aineistojen luokittelussa. Yksifotoni–tekniikka mahdollistaa suuremman mittauskyvyn pienemmällä kustannuksella (energiankulutus) ja sitä käytetään laajojen alueiden mittauksissa. Pistepilvien käsittely on entistä tärkeämpää kun tiheydet kasvavat ja virhepisteiden määrä on suurempi. Prosessointiin kuuluu yleensä esikäsittely, tiedonhallinta, luokittelu, segmentointi ja mallinnus, ennen aineiston analysointia. Tämän opinnäytetyön tavoitteena on vertailla ja analysoida viiden eri ilmalaserkeilaimen tuottamia aineistoja. Ns. tavanomaiset LiDAR–aineistot on kerätty matalalla lentävästä helikopterista Rieglin VUX-1HA ja miniVUX-1UAV –keilaimilla. Viimeisintä tekniikkaa edustavat Titan monispektri LiDAR (Teledyne Optech) ja SPL100 single photon LiDAR (Leica) -aineistot on kerätty lentokoneesta. Aineistot on kerätty Espoonlahden alueelta ja vertailu perustuu kattojen ominaisuuksiin. Muut maanpinnan kohteet jätetään tarkastelun ulkopuolelle. Pistepilvien perusteella tutkitaan aineistojen välisiä eroja, tarkkuuksia ja muita ominaisuuksia. Kaupunkiympäristö valittiin kohteeksi vähäisen rakennetun ympäristön ALS–tutkimuksen takia etenkin Suomessa. Opinnäytetyössä esitellään ilmalaserkeilauksen taustaa, teoriaa ja tehdään kirjallisuuskatsaus aiheeseen liittyen, sekä käydään läpi projektissa käytetyt aineistot ja menetelmät. Työssä käytetyt keilaimet tuottavat tiheitä pistepilviä, joista tihein on jopa 80 pistettä/m2. Tulosten perusteella tarkkuudet vaihtelevat pääosin 0 – 10 cm välillä. Kattolinjojen kohdalla infrapuna-aallonpituutta käyttävät keilaimet pääsevät alle 10 cm, toisin kuin vihreän aallonpituuden keilaimet. Kattojen kulmakoordinaattien erot ovat 1 – 8 cm välillä muutamaa poikkeusta lukuun ottamatta. Korkeuksissa paras tarkkuus on SPL100 laserkeilaimella 4.2 cm, ja muuten ollaan 5 – 10 cm tarkkuuksissa. Suurimmat hajaumat tasoon verrattaessa syntyy miniVUX-1UAV aineistoon (yli 5 cm). Pinta-aloissa infrapunataajuudet tuottavat 0 – 2 prosentin eroja vertailuaineistoon, kun taas vihreällä aallonpituudella erot ovat pääosin 1 – 7 prosenttia. Kaltevuuskulmissa ei havaittu merkittäviä eroja
    • …
    corecore