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ABSTRACT 

Uses and Challenges of Collecting Lidar Data from A Growing Autonomous Vehicle 

Fleet: Implications for Infrastructure Planning and Inspection Practices 

by 

Md Ashikur Rahman, Master of Science 

Utah State University, 2021

Major Professor: Dr. Michelle Mekker 
Department: Civil and Environmental Engineering 

The uses of geospatial technologies for a wide variety of transportation 

applications have expanded rapidly in recent decades. As Light Detection and Ranging 

(LiDAR) technology has matured, it has brought groundbreaking change in the 

transportation industry for infrastructure management, safety assessment, and other uses 

with greater precision, resource efficiency, and flexibility. With the continued 

advancement of sophisticated sensor technologies and development of autonomous 

vehicles, the potential applications of LiDAR are expected to expand. It is important to 

consider and understand the big data generated from this technology in the context of a 

growing autonomous vehicle fleet for effective field use and data management practices.  

          This study explores the point cloud data size generated from a 16-beam LiDAR 

sensor unit in ASPRS recommended (. las) file format at different operating modes and 

driving speeds with a mobile platform in the highway environment. Two types of roadway 

(collector and arterial) with three different sections (travel lanes, right of way, and total) 
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were considered in this study for data collection. To understand the data size, two different 

vehicle trajectories were considered: one with the actual vehicle trajectory and another one 

considering the vehicle at the center of the road. In total, five different regression models 

were developed to project the data size generated from the sensor. Conservative projections 

show an estimated total data size ranging from close to 1000 megabytes to approximately 

4500 megabytes for 80 vehicle-miles traveled using the selected LiDAR unit. Autonomous 

vehicles will probably use multiple and/or higher resolution units. In order for 

transportation agencies to make appropriate decisions regarding future data management, 

it is imperative to provide proactive estimations of data size. 

(101 Pages)



PUBLIC ABSTRACT 

Uses and Challenges of Collecting Lidar Data from A Growing Autonomous Vehicle 

Fleet: Implications for Infrastructure Planning and Inspection Practices 

Md Ashikur Rahman 

Autonomous vehicles (AVs) that utilize LiDAR (Light Detection and Ranging) and other 

sensing technologies are becoming an inevitable part of transportation industry. 

Concurrently, transportation agencies are increasingly challenged with the management 

and tracking of large-scale highway asset inventory. LiDAR has become popular among 

transportation agencies for highway asset management given its advantage over 

traditional surveying methods. The affordability of LiDAR technology is increasing day 

by day. Given this, there will be substantial challenges and opportunities for the 

utilization of big data resulting from the growth of AVs with LiDAR. A proper 

understanding of the data size generated from this technology will help agencies in 

making decisions regarding storage, management, and transmission of the data. 

         The original raw data generated from the sensor shrinks a lot after filtering and 

processing following the Cache county Road Manual and storing into ASPRS 

recommended (.las) file format. In this pilot study, it is found that while considering the 

road centerline as the vehicle trajectory larger portion of the data fall into the right of way 

section compared to the actual vehicle trajectory in Cache County, UT. And there is a 

positive relation between the data size and vehicle speed in terms of the travel lanes 

section given the nature of the selected highway environment. 
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CHAPTER 1 INTRODUCTION 

The purposes of this research were to understand the large-scale point cloud data 

size generated from a mobile LiDAR (Light Detection and Ranging) platform and to 

outline the associated challenges and previous applications of LiDAR data in the 

transportation industry. The outcome of this research will help transportation agencies to 

make decisions regarding data storage and management and understand the utilization of 

the big data generated from LiDAR in the context of a growing autonomous vehicle fleet.  

1.1 General Background 

The advent of autonomous vehicles (AVs) and connected-autonomous vehicles 

(CAVs) have brought about significant changes in the transportation system in recent 

years. The technology is expected to have an even greater impact as it develops further in 

the coming years. Autonomous vehicle technology has the potential to reduce many 

negative aspects of personal automobile use and is expected to pave the way toward 

certain benefits. According to the National Highway Traffic Safety Administration 

(2016), 94% of the car crashes are attributed to human error, such as driving too fast, 

distraction, or poor judgement. It is widely accepted that AVs have the potential for 

tremendous safety benefits since they can lessen or eliminate the impact of human error. 

With the widespread deployment of automated driving systems, an approximate annual 

social benefit of $800 billion dollars is expected for congestion mitigation, reduced road 

causalities, minimized energy consumption, and increased productivity caused by the 

reallocation of driving time (Montgomery, Mudge et al., 2018). 
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The trend towards vehicle automation is escalating every day. At present, the 

majority of AV manufacturers are considering LiDAR as the fundamental sensing 

component of AVs. Mounted on an AV, LiDAR provides the means to gain a 3D 

representation of the surrounding environment with a 360-degree view. Aside from use 

with AVs, LiDAR has become a mainstream technology for highway data collection. It 

can collect large-scale, dense data in the form of 3D point clouds for various 

transportation applications with greater flexibility, resource efficiency, and 

accuracy.  Unlike traditional sensors, such as cameras, it can collect data in the dark with 

no impact on quality.  

The use of LiDAR technology has been growing in the transportation industry in 

recent decades. This emerging technology is most commonly used via three different 

platforms: mobile, airborne, and stationary. LiDAR measures the distance of the target 

objects from the reflection time of a light pulse. The mobile and airborne LiDAR units 

usually integrate an inertial measurement unit (IMU) and a global navigation satellite 

system (GNSS). The GNSS provides the locational information (x, y, and z) of the point 

clouds in a global frame while the IMU informs the orientation (roll, pitch, and yaw) of 

the platform. One of the major advantages of LiDAR is that, unlike traditional manual 

survey methods, it can produce a high-resolution 3D point cloud of the surveyed area 

within a fraction of the time, causing minimal disruption to the traffic operations. 
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The direct ownership and application of LiDAR sensors has increased 

significantly among transportation agencies and organizations at the local, state, and 

national level. Although the demand for LiDAR is growing, it poses certain challenges 

and drawbacks in terms of applicability. One of the major challenges regarding the use of 

LiDAR technology is the use and management of the big data generated from this sensor 

technology. It sends thousands of laser pulses per second. Having rotating mirrors, these 

3D laser scanners can take millions of measurements over a scene in just a few seconds 

or minutes by Kemeny and Turner (2008). Tupas et al. (2016) indicated that “In LiDAR 

acquisition and processing operations, terabytes to petabytes of disk storage used is the 

norm.” An appropriate method to estimate the large-scale data size generated from the 

LiDAR technology is very crucial for transportation agencies to understand the 

considerable data size and also to consider certain challenges and solutions.  

1.2 Problem Statement and Scope 

Remote sensing technologies for highway asset inventory are undergoing rapid 

development. The possibility of acquiring 3D information over a large area, such as a 

roadway, with survey grade accuracy and decreased survey time is creating new 

opportunities for innovation and unique management of resources. Advanced Driver 

Assistance Systems (ADAS) based on LiDAR sensors is one of the most innovative and 

game-changing technologies for the operation of AVs. The use of mobile LiDAR for 

rapid data collection to make high resolution informative maps has made the decision-

making process for transportation agencies quicker and easier. Extensive research is 

ongoing in the transportation industry to understand the application of LiDAR technology 
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for various purposes. Since the current use of LiDAR technology is increasing rapidly, 

there is a need to evaluate the potential challenges and opportunities associated with the 

application of this sensing technology. 

One of the most considerable disadvantages of the current LiDAR data collection 

process is that a significant amount of time and computing power is required to prepare 

the raw data for possible analysis. Although LiDAR has become more affordable for 

average users, the effective process and extraction of useful information from the raw 

point clouds still poses a technical challenge (Chen, 2007).  

Cao et al. (2015) stated that due to the volume of the data, the computational and 

technical requirements to process, manage, and store the data can be significant. The 

processing and analysis of LiDAR data involves different software platforms, which may 

reduce data quality, be proprietary, and require varying levels of training to utilize. As the 

prevalence of this technology in the context of an autonomous vehicle fleet grows, 

transportation agencies will soon be faced with the challenges of technical complexities 

and high-volume data size. The rapid increase of LiDAR applications has created the 

need for storage and online distribution of collected 3D cloud data (Kulawiak et al., 

2019).  

Very few studies have been conducted to understand the data size generated from 

LiDAR sensors at a large scale. This study was designed to demonstrate the potential data 

sizes of large-scale LiDAR data collection, possible uses of the collected data, and 

outline the related challenges and solutions for transportation agencies interested in 

collecting such data from a growing fleet of AVs. Different scenarios, such as the travel 
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lanes, right of way, and total data, were considered to understand the data size. Linear 

regression models were developed to project the large-scale data size under the selected 

different scenarios. The model used data collected from different roads (arterial and 

collector), at different vehicle speeds, and with different operating modes of the LiDAR 

sensor. The LiDAR operating mode (horizontal resolution and refresh rate), and duration 

of the sensor run time (related to vehicle speed) were considered as the explanatory 

variables to forecast the data size generated from this sensor. This research will help the 

transportation agencies to understand the possible data size they can expect from 

autonomous vehicles using LiDAR and the associated challenges with collecting data. 

Moreover, the outcome of this research will help agencies that are considering 

investments in the collection of LiDAR data to understand the benefits and challenges. 

1.3 Research Objective 

The main goal of this research was to understand the potential uses and challenges 

of large-scale LiDAR data from a growing fleet of AVs by transportation agencies. An 

extensive literature review was conducted to understand the existing applications of 

LiDAR technology in the transportation industry. Then, LiDAR data was collected from 

a real-world highway environment at different vehicle speeds and LiDAR operating 

modes in order to understand the possible data size generated from the sensor.   

The specific objectives of this thesis are: 

• To present a model developed to estimate the size of LiDAR data sets collected

by an AV.
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• To summarize previous studies of LiDAR in the transportation industry

• To outline the possible challenges and future research scope of using this type of

sensor.

1.4 Justification of the Research 

Transportation infrastructure plays a significant role in economic, health, societal, 

environmental, etc. aspects of life in the US and across the globe. The high spatial 

resolution and mapping accuracy of LiDAR has made it popular for transportation 

planning and infrastructure asset inspection and maintenance. This sensor has also 

become very popular in the AV industry for its affordability and reliability. AVs rely on 

their fundamental sensors to retrieve and process the information about their immediate 

surroundings, which informs their decision-making and actions.   It is necessary for 

transportation agencies to understand the wide range of applications of this emerging 

technology and the corresponding opportunities. A method for estimating the large-scale 

LiDAR data size and related challenges will help transportation agencies make necessary 

decisions and policies. The results of this research will provide a baseline for future data 

management, data policies, and resource management. 
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CHAPTER 2 LIDAR APPLICATIONS IN TRANSPORTATION 

This chapter covers an extensive literature review regarding the applications of 

LiDAR technology in the transportation industry to highlight the potential of the 3D point 

cloud data. Most of transportation agencies that use LiDAR use it for inventory and asset 

management purposes. However, with the emergence of the autonomous vehicle, the 

potential of this sensor technology is extended beyond asset management. The review 

outlines the algorithms used to extract information from the LiDAR data and the relevant 

challenges. 

2.1 Road Sign Detection 

Road signs or traffic signs provide important information to road users.  They are 

mainly erected at the side or above the road. These signs usually use shapes, colors, 

words, or different symbols to deliver certain message to users.  As per state and federal 

regulations, the vast majority of road signs are covered with reflective material to reflect 

light in all directions to be more visible to users and to be readable during nighttime to 

increase traffic safety. A LiDAR sensor can be used to detect the road signs by extracting 

reflection intensity information about the reflective objects. 

Chen, Kohlmeyer et al. (2009) used mobile LiDAR data to automatically detect 

traffic signs. After significant filtering of the data, a threshold value was used to extract 

point clusters with high point density and a random sample consensus (RANSAC) 

algorithm was applied to geometrically fit a plane to each point cluster. The authors 

declared an approximate success of 98% of this method to detect the traffic signs. Yang, 
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Fang et al. (2012) proposed a method by using mobile LiDAR for the automated 

extraction of road markings. In this method, inverse distance weighted (IDW) 

interpolation and discrete discriminant analysis (DDA) were used to develop a 

georeferenced feature image of the point clouds representing the road surface. Later, 

filtering was done based on the intensity and elevation to reduce false candidates, such as 

pedestrians and cars. Finally, the progressive probabilistic hough transform (PPHT) 

operator was applied by using the semantic knowledge (shape, pattern) to extract road 

markings from the segmented points. Landa and Prochazka (2014) used intensity 

information from LiDAR data to extract and detect road signs. A threshold intensity 

value of the raw cloud data was considered to cluster the selected points based on the 

euclidian distance between two points. The cluster was then filtered based on height, 

elevation, and point density. The authors reported that this method is only applicable for a 

single sign extraction with a 93% success rate while attributing the missing road signs to 

low density in point cloud data.  

Wu, Wen et al. (2015) developed a method using the principal component 

analysis (PCA) and intensity filtering for traffic sign detection and visibility evaluation 

from mobile LiDAR data. The 3D point clouds were projected onto corresponding 2D 

images. The vector-based formula was applied by using the geo-referenced relation 

between the points and the image to extract the spatial-related features of the traffic signs 

and image features. Finally, the extracted image and spatial related features were 

combined to evaluate the visibility. It was reported that the average deviation between the 

calculated results and subjective evaluation were under 5%.   Li, Shinohara et al. (2016) 
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proposed an automatic method to detect and recognize road signs utilizing both images 

and 3D point clouds acquired by a mobile mapping system (MMS). An object-based 

image analysis approach was used to classify the road signs from the high-resolution 

raster image acquired by a camera mounted on MMS, where the point cloud was 

projected for matching laser points with pixel. Then, false positive (over detection) 

candidates were filtered out. Later, a template matching method followed by shape 

normalization was used to recognize and cluster the road signs from the false negatives 

(false classification). Field tests of this method showed an estimated accuracy of 98.4% 

to detect and recognize road signs. The authors mentioned the efficacy of this method 

under the challenging conditions, such as discoloration, deformation, and partial 

occlusions.  

Wen, Li et al. (2016) proposed a method using an algorithm based on identifying 

linear structure (traffic sign pole), terrain, and intensity filtering for detecting and 

recognizing traffic sign using LiDAR point clouds and imagery. After filtering the road 

surface and boundary, the traffic sign position and placement inspection were conducted 

by analyzing the geo-spatial relationship between the traffic sign and the road elements. 

An image-based traffic sign recognition (TSR) was implemented to obtain the traffic sign 

type. The authors reported the experimental results of Mobile Laser Scanning (MLS) 

point clouds and images showed a detection precision of 91.63% and 92.61%, 

respectively. The results also showed a precision of 96.32% for traffic sign type 

recognition. Soilán, Riveiro et al. (2016) proposed a method for the automated detection 

and recognition of vertical traffic signs from a combination of 3D point clouds and 
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imagery data integrated by MMS techniques. After preprocessing and filtering, a density-

based cluster method, density-based spatial clustering of applications with noise 

(DBSCAN), was applied to cluster high intensity points, which were further filtered to 

separate traffic signs from poles, facades, and walls. After syncing and projecting the 3D 

point clouds on a 2D RGB image generated by the vehicle camera, a hierarchical 

approach was applied to recognize the meaning of the traffic sign. According to the 

authors, the recall result of this proposed method showed an approximate success rate of 

98% to detect traffic signs. This method was suitable for identifying the geometric and 

semantic properties of traffic signs in urban and highway environments. Gargoum and El-

Basyouny (2017) used DBSCAN on filtered data to separate and cluster traffic signs from 

other high reflective objects, such as license plates. This approach was tested on three 

different highways and the results demonstrated a success rate of 93% to 100%. 

However, the authors reported this algorithm worked better on highways without 

overhead signs. 

2.2 Traffic Monitoring 

Traffic monitoring is the study of traffic conditions on a road network. It is very 

important for transportation planners and engineers to ensure sustainable movement of 

traffic in a road network. LiDAR can easily detect, classify, and track the movement of 

the vehicles. The produced scans of the LiDAR give the upper and side contours of the 

vehicles. The profiles of vehicles can be affected by weather conditions like rain, snow. 

LiDAR surveys help to accurately and cost effectively collect traffic data for ensuring 

traffic safety and operation. 
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Toth et al. (2004) used georeferenced airborne LiDAR data to compute traffic 

flow by extracting vehicle information along with road surface modeling. After extracting 

and smoothing the road boundary, a simple adaptive parallel height thresholding scheme 

was applied to extract and cluster vehicle candidate points. The candidate vehicle clusters 

were further filtered and classified by testing a variety of parameter combinations and, 

based on the average length of the vehicles, the velocity of the vehicles was 

approximated. Finally, the computed vehicle locations, categories, and estimated 

velocities were used to define average vehicle density and velocity as parameters to 

estimate traffic flow. Yao, et al.  (2008) made a comparison among stationary, mobile, 

and airborne LiDAR data applications to derive traffic monitoring information with a 

focus on urban areas. In this study, an airborne laser scanning (ALS) simulator was used 

to address the motion artifact of the moving vehicle in the laser data. It was found the 

ALS data had a greater advantage in terms of extracting 3D objects. After masking out 

vegetation and human-made objects, the remaining points in the dataset were transformed 

to generate a vehicle height model (VHM) following normalized digital surface models 

(nDSM). Nashashibi and Bargeton (2008) presented a detection and tracking of moving 

objects (DATMO) approach for the detection, tracking, and classification of multiple 

vehicles using mobile LiDAR. In this approach, data segmentation was performed by 

using the Ramer algorithm following heuristic rules. A bicycle model was used following 

a Kalman filter to estimate different parameters of the detected surrounding vehicles and 

track them. The authors reported the proposed method was validated over hundreds of 

miles. Patlins, et al. (2010) explored the use of LiDAR technology with trams as a 
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distance measuring sensor from obstacles. A control algorithm was developed where the 

LiDAR provided signal as input to calculate tram braking path. The study recommended 

placing signal receptors on the right of tram’s headlight. It was found that the reflection 

time of the LiDAR beam from an obstacle is negligible compared to the time of tram 

braking.  

2.3 Pavement Condition Assessment 

Pavement condition and performance plays a critical role in the successful 

operation of the highway network. Up-to-date data on pavement condition are collected 

by the local and state agencies as a part of the pavement management system (PMS) for 

decision making and to perform necessary maintenance. The cost of pavement surveying 

largely depends on the applied methods and survey frequency. LiDAR is preferred for 

easy collection of highly accurate 3D geospatial information regarding the pavement 

condition for ensuring flexible, cost-effective, continuous monitoring, and maintenance. 

Hernández and Marcotegui (2009) proposed the use of a quasi-flat zone algorithm 

and a region adjacency graph (RAG) representation to automatically filter artifacts and 

detect pavement from mobile LiDAR data. Later, the pavement segmentation was carried 

out by projecting the range image onto the filtered point clouds. The final output of this 

method was a contour image of the ground foot print. Tsai and Li (2012) attempted to 

evaluate the feasibility of using mobile LiDAR to detect pavement cracks by employing a 

dynamic-optimization-based crack segmentation method under different lighting and 

poor intensity contrast conditions. Ouyang and Xu (2013) used 3D pavement images 

generated from modified 3D camera and mobile LiDAR data to detect and obtain 
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pavement crack measurements. The non-uniform rational B-spline (NURBS) surface 

approximation and haar transform (HT) were applied to a pavement image to locate crack 

regions and orientations for performing fine crack detections. Finally, alligator cracking 

(AC) (interconnected longitudinal and transverse cracks) was identified by analyzing the 

crack densities from longitudinal and transverse crack histograms. The authors reported 

the difference in the total crack length between the multiple runs for both ways were 

smaller than 2% at a given speed. 

Křemen et al. (2014) evaluated the use of static 3D terrestrial laser scanning point 

clouds (total station) to assess the pavement roughness by comparing it with test field 

checking points. A digital terrain model (DTM) was created from the laser scanning 

points and compared with the elevation of the test field checking points. The paper 

concluded that the accuracy of 3D laser scanning point clouds is sufficient for situations 

where standard deviation in elevation must be 5 mm or less. Guan et al. (2015) used 

mobile laser scanning data to propose an automated pavement crack detection method. 

This method used iterative tensor volting (ITV), inverse distance weighted (IDW) 

interpolation, and morphological thinning to extract pavement cracks from the noisy 

geographic reference file (GRF) images. This method was basically focused on extracting 

the type and location of pavement cracks, not the width. The authors reported that the 

proposed method is applicable for pavement cracks with low contrast, low signal-to-noise 

ratio, and bad continuity. Kumar and Angelats (2017) proposed an automated algorithm 

to detect road roughness from mobile LiDAR point clouds. This process involved 

extensive filtering, point thinning processing, and interpolation to generate an intensity 
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raster surface. Morphological and multi-level ostu thresholding operations were applied 

to detect road roughness within candidate regions. Finally, the candidate regions were 

clustered based on spatial density and standard deviation of elevation to remove the 

outliers belonging to normal road surfaces or nearby vehicles for detecting roughness 

along the road surface.  

2.4 Geometric Data Extraction and Assessment 

The geometric design of roads mainly deals with the dimensions and layout of the 

physical elements of the roadway, following different standards and constraints. The 

geometric data of a highway is mainly composed of three parts: horizontal alignment, 

vertical alignment, and cross section. 3D point clouds can be used for the geometric 

assessment of the highway due to its high data accuracy and density. 

Cremean and Murray (2006) developed a clothoid model to construct and 

recursively estimate the planar road geometry on extracted road features from single-axis 

LiDAR range measurements in off-highway environments. Tsai, et al. (2013) proposed a 

method for cross slope measurement using mobile LiDAR technology. After processing 

the raw point cloud data, a region of interest (ROI) process was performed on the data to 

extract the rectangular regions within a single lane between the pavement markings. The 

width of the ROI was defined by the distance between the pavement markings and the 

length was determined by the interval of ROI. After performing linear regression on the 

extracted point clouds from each ROI, the slope of the regression was used to measure 

the cross-slope. Dawkins (2014) used an augmented state kalman filter (ASKF) to 

estimate the off-road terrain profile as unknown inputs to the 7-degree of freedom (DOF) 
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full suspension model. Later, mobile LiDAR was used to collect off-road terrain profiles 

and validate the model. The paper reported that the method is more effective for 

capturing low frequency content of the terrain profile. Ai and Tsai (2016) proposed a 

method for automated sidewalk and curb ramp assessment using 3D mobile LiDAR and 

image processing. The sidewalk points were extracted from the raw point clouds using 

the lateral and elevation offset. The author suggested to use a threshold of 7.3 m (24 ft) 

for lateral offset and 0.6 m (2 ft) for elevation offset for a good balance between 

reliability and efficiency. Cross section segmentation, k-nearest neighbor (k-NN), and a 

B-spline algorithm were introduced to smoothly connect different segmentation points to

detect the sidewalks. A deformable part model (DPM) was applied to detect and extract 

all curb ramp candidates from the data using video log images. Later, an interactive tool 

was employed to further filter the data and detect the curb ramps. Gargoum, et al. (2018) 

recommended the use of LiDAR data to automatically asses the vertical clearance on the 

highway. After doing extensive filtering, the k-Nearest Neighbor (k-NN) search 

algorithm and DBSCAN clustering algorithm, were used to divide point clouds into 

bridge and non-bridge groups using histogram analysis. This method demonstrated a 

satisfactory performance for network-level assessment of vertical clearance. Mekker, et 

al. (2018) explored the integration of connected vehicle data and LiDAR technology for 

identifying and diagnosing geometry-related capacity problems in recurring work zones 

considering safety and time efficiency. The connected vehicle data, reported as space 

mean speed every minute for segments that were an average 0.88 miles in length, were 

used to identify recurring bottleneck locations. Then, by connecting the speed data with 
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the geospatial LiDAR data collected in the selected work zone, it was found that the lane 

width and/or taper length of selected sites did not follow the recommended design, 

resulting in recurring traffic congestion.   

2.5 Embankment Stability Monitoring 

Embankment stability is an important element of highway maintenance for 

ensuring safety.  It is considered under the design process from the beginning until the 

implementation of the project. It is mainly influenced by the imposed load, loading 

pattern, and the condition of the slope. The detailed and accurate information acquired 

from a LiDAR sensor can be used to assess, characterize, and map the condition of an 

embankment.   

Lato, et al. (2009) examined the integral use of multiple LiDAR sensors (static, 

mobile, terrestrial, and airborne) to monitor the geotechnical hazard for linear transport 

corridors. The authors concluded that the fusion of data from multiple LIDAR sensors 

can be used to detect small rock block release (sub 15 cm). The paper recommended 

using LiDAR data for geomechanical structural feature identification and kinematic 

analysis, rock fall path identification, and differential monitoring of rock movement or 

failure over time. However, it was found that the mobile terrestrial LiDAR can be more 

efficient compared to static terrestrial LiDAR in terms of coverage, rate of acquisition, 

dynamic collection, and integration with corridor operation. Đapo, et al. (2011) used a 

terrestrial laser 3D scanner to understand the load inefficiency in the rehabilitation project 

of a railway bridge, "Sava Jakuševac," in Croatia. After filtering the raw point cloud data, 

the required elements, including columns and load bearing parts of the structure, were 
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taken from the scanned data. It was found that the irregularity of the track on the bridge 

was caused by an uneven subsidence of column S6.  

2.6 Lane Marking and Road Edge Extraction 

Lane marking and road edge detection are very important for safe driving. The 

road edge is the boundary between the road surface and the non-road surface. The lane 

marking conveys messages to road users regarding the purpose of different parts of the 

road and where they can legally operate their vehicle. Road edge and lane detection are 

also necessary for the safe operation of autonomous vehicles. Conventional digital maps 

with road-level resolution are not sufficient for autonomous vehicles to understand their 

surroundings. To resolve this issue, LiDAR-based road edge and lane marking detection 

systems, mainly based on elevation and reflectivity are becoming popular among 

transportation agencies and vehicle manufacturers for its higher accuracy and detailed 

information.  

Hu, et al. (2004) used high resolution optical imagery and airborne LiDAR data to 

extract a grid-structured urban road network. An iterative hough transform algorithm and 

morphological operation were employed on the segmented point clouds to extract 

candidate road markings and parking areas. The segmented road marking and parking 

area candidates were verified from shape analysis and vehicle clue detection of the 

LiDAR data and high-resolution imagery.  Finally, the topology analysis was used to 

form the road network from the verified roads and parking areas. Ogawa and Takagi 

(2006) used mobile LiDAR data to detect the lane. After filtering raw point clouds, a 

Kalman filter and auto correlation function were applied considering four lane parameters 
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(width, offset, yaw angle, and curvature) to recognize the lane markings from the 

candidates. The paper mentioned this method was more suitable for roads with highly 

reflective lane markings. Jaakkola, et al. (2008) applied an image processing algorithm to 

intensity and height images to automatically filter road markings and curbstone points, 

modelling the road surface as a triangulated irregular network (TIN) from mobile 

mapping. The clustering of the road markings and curbstones was done by segmentation 

using thresholding and applying morphological operations on the raster image of 

intensity and elevation. Field tests of this method showed an overall accuracy of 80.6%, 

92.3% and 79.7%, respectively, for classifying lines, crosswalks, and curbstones. Chen, 

et al. (2009) used mobile LiDAR to detect the 3D lane markings from point clouds. First, 

the road surface was detected by height filtering. HT Clustering and RANSAC fitting 

were then employed to extract the 3D lane markings from the candidate points. However, 

the authors did not report the success rate of this method to detect lane markings. Zhu and 

Mordohai (2009) used height and intensity information from LiDAR data to extract the 

road network. Region segmentation following a normalized cut algorithm (Ncut) and 

edge detection were performed to generate hypothesis-based road boundaries and interior 

features. A minimum cover algorithm was employed to find the salient regions that best 

suited the 2D map and automatically selected the road widths. Finally, the road regions 

were transformed back to 3D points and roads were extracted. Zhang (2010) proposed a 

method to identify road regions and road edges using LiDAR point clouds. After 

elevation filtering, the false alarm mitigation module was performed following a 

minimum threshold road width to further filter and validate potential road region 
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candidates. Finally, the identified 3D road edge points were further projected and 

validated on a 2D ground plane to detect the curb. The author stated in the experimental 

study the proposed algorithm detected most road points, road curb points, and road edge 

points correctly with a false alarm rate of 0.83% and a missing rate of 0.55% per scan. 

Kumar, et al. (2010) used a gradient vector flow (GVF) snake model for the automated 

extraction of road edges from mobile LiDAR and vehicle trajectory data. The snake 

model derived its energy from the LiDAR point clouds before the snake contour was 

developed using the trajectory data. The computation process of these energy terms used 

surface slope, LiDAR intensity, and the qualitative measurement of the elasticity and 

rigidity terms. The authors reported that the tested result of this method was satisfactory 

in terms of detecting the difference between the slope values of curbs and planar road 

surface. Wang, et al. (2012) proposed an automatic algorithm to extract the road surface 

and boundary based on trajectory information from mobile LiDAR data. The road 

boundary and surface were determined by applying a hypothesis testing method based on 

the local altitude variance of a particular segment. A mean height threshold filter value 

was used to exclude altitude abnormal points (cars, pedestrians) from the road surface 

and boundary.  Kang, et al. (2012) proposed a method using the probabilistic interacting 

multiple model (IMM) to detect road boundaries from LiDAR point cloud measurements. 

This approach involved multiple Kalman filters to track the intersection points between a 

LiDAR scanned surface and a curb. Experimental results were promising for curb 

detection and the authors reported the performance of this method increased when the 

GPS measurement is unreliable. Hata and Wolf (2014) used mobile LiDAR data to 
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develop a road marking detector system following the Otsu thresholding method. After 

detecting the road curbs with a given threshold following a ring compression method, a 

deterministic calibration was performed on the LiDAR intensity information to ensure 

similar intensity values for asphalt and road markings within the road. The Otsu 

thresholding method was applied on this calibrated intensity information to develop a 

bimodal intensity histogram with one mode grouping asphalt intensities and another 

grouping road marking intensity. The authors reported that by adding road markings onto 

the curb maps the error level of lateral localization was reduced by 53.56% with an 

average lateral error of 0.3119. The study stated that the proposed method was capable of 

detecting different types of road markings, including crosswalks, continuous lines, and 

dashed lines. Liu and Lim (2014) developed a method for extracting roads from airborne 

LiDAR point clouds and associative vector data. After separating and refining the 

candidate road points, a fitting was used to transform road points into polylines. The 

paper stated that the experimental results of this method demonstrated satisfactory 

performance for road extraction from airborne LiDAR data for both structured and 

unstructured lanes. Guan, et al. (2015) proposed a method for rapid and accurate road 

marking inventory using mobile LiDAR data. After filtering the road surface, a modified 

inverse distance weight (IDW) interpolation method was used to interpolate the road 

surface into a 2-D georeferenced feature (GRF) images. After dividing the GRF image 

into sub-images, a weighted neighboring difference histogram (WNDH)-based dynamic 

thresholding and multiscale tensor voting (MSTV) were used to segment and extract road 

markings from the noisy, corrupted images. The author concluded that the proposed 
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method to detect and extract road markings was more suitable for a subtropical, urban 

environment.  

Liu and Lim (2016) proposed a method to extract roads from fused airborne 

LiDAR data and aerial imagery. An edge-clustering algorithm and k-nearest-neighbors 

(KNN) clustering were applied to filter candidate road points. After filtering the cluster, 

local IDW interpolation and curve fitting was applied to the road segments in order to 

obtain road centerlines. The authors reported that the quantified completeness and 

correctness of five test results of this method to extract roads were 82.6% and 87.4%, 

89.2% and 91.2%, 80.7% and 87.6%, 84.2% and 90.4%, and 79.5% and 89.5%, 

respectively. This paper stated that the application of this method to extract roads was 

hindered for dense vegetation areas, curved roads, and traffic islands. Li, et al. (2016) 

proposed an automated road centerline extraction method using LiDAR data. After 

filtering ground points, the adaptive mean shift cluster algorithm was applied to cluster 

the road center points into linear points. The principal component analysis, least squares 

multiple lines fitting, and a hierarchical grouping method were employed to connect 

primitives of road centerlines into continuous road lines to develop a road network. The 

authors reported that the experimental result of the proposed method demonstrated the 

same level of performance in less time compared to other methods like the mean shift 

algorithm, Tensor voting, and Hough transform.  Ghallabi, et al. (2018) proposed a lane 

marking detection method for localization within an HD map using a multilayer LiDAR 

system. After filtering the road points and projecting them on a 2D intensity image, a 

hough transform algorithm was employed on the resulting image to detect the lane 
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markings from the high reflectivity road points. After one more filter, the proposed 

method was validated by localizing the vehicle in a map with lane-level information and 

absolute accuracy of 2 cm. The authors reported this method was capable of providing a 

lane-level localization with 22-cm cross-track accuracy.  

2.7 Roadside Objects Detection 

The detection of roadside objects is important for the operation of autonomous 

vehicle systems to ensure obstacle avoidance and for safety audit purposes. The 

improvement of the traffic safety and efficiency requires detailed level information about 

objects located with the road and along the roadside. LiDAR technology can be used to 

address this issue as it can provide real-time, high-resolution 3D point cloud data 

containing information about the location and shape of the objects. 

Shamayleh and Khattak (2003) conducted an experiment to examine the accuracy 

of LiDAR data for the collection of roadway inventory information by comparing with 

the ground truth information. The LiDAR data was transformed into a triangulated 

irregular network (TIN) by incorporating the height information and overlaid with the 

corresponding aerial image. Later, related analyses were performed in the ArcGIS 

environment to obtain the values of selected elements of roadway inventory. To validate 

the accuracy of this data, a set of ground points were selected for field survey based on an 

empirical method. After conducting a comparison with the ground data, very minor 

differences were found between the LiDAR and field data. Lam, et al. (2010) developed a 

method to extract 3D road data from mobile, ground-based LiDAR point clouds. This 

approach modeled the road as a dynamic system of connected planes by plane fitting 
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local 3D point data and using Kalman filtering to globally extract these planes. 

Afterwards, bounding boxes were projected from each extracted road patch to localize 

objects, such as lamp posts, power line posts, and road signs. These localized urban 

scenes were filtered from vegetation by using RANSAC followed by least squares fitting. 

Kwan & Ransberger (2010) explored the use and analysis of LiDAR data to 

detect obstructions in the transportation network during emergency response in New 

Orleans, LA, before and after Hurricane Katrina. First, DEM was developed for all the 

pre- and post-storm LiDAR data along the network links. The change in elevation 

between the pre- and post-storm LiDAR data were used to identify the obstructions. Lin 

and Hyyppä (2010) developed a method for the automated detection of culverts in mobile 

laser scanning point clouds. A digital terrain model (DTM) was developed from the point 

clouds to remove the shadow influence. Then, the possible locations of the culverts were 

coarsely located after searching the blank zones. Later, topological plot segmentation and 

an intensity filter were employed to detect real culverts. The geometric parameters of the 

culverts were calculated from the selected schematic components.  The authors reported 

that the proposed method was tested to detect two pedestrian culverts and the results 

showed an estimated error of lengths and widths compared to the real ones of less than 

9% and 16%, respectively. This paper recommended the consideration of water 

reflectance for future culvert detection. Pu, et al. (2011) used mobile laser scanning 

(MLS) point cloud data to develop a knowledge-based feature recognition theory. The 

on-ground points were extracted via filtering and a hybrid model was applied to 

recognize the features. Later, based on certain geometric characteristics of the features 
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and topological relationships with other features, on-ground objects were clustered into 

more detailed groups like traffic signs, trees, poles, building walls, and barriers. The 

authors reported an overall accuracy of 86% to recognize poles using this method.   

Jeong and Lee (2016) proposed a method to classify different road objects from 

mobile LiDAR point clouds. This method involved the development of a training data set 

from the raw point clouds. Later, the geometric features of the data were extracted using 

a Fast Point Feature Histogram (FPFH). Finally, geometric features were used to develop 

a classification model by employing support vector machines (SVM). The authors 

reported an overall accuracy of 98% to classify the objects and a prediction accuracy of 

91%.  

Yang, et al. (2016) proposed a method to extract multiple types of road features 

from mobile LiDAR data to produce High Accuracy Driving Maps (HADMs) in a 

highway environment. The Hernández and Marcotegui method were applied to group the 

points into ground and non-ground points. After detecting and extracting the road surface 

from the ground points, the non-ground points were classified into individual object 

candidates by pointwise classification, multi-rule segmentation, and adjacent segments 

merging. Finally, the support vector machine (SVM) approach was implemented with 

one versus one classification to classify the features into different classes, such as trees, 

street lamps, traffic signs, buildings, etc. Quantitative evaluations of this method 

demonstrated good performance in extracting road features with an average precision and 

recall of 90.6% and 91.2%, respectively. However, the results also showed that the 
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proposed method’s precision and recall vary largely with point densities, positional 

accuracies, and signal-to-noise ratios of the point cloud data. 

Ordóñez, et al. (2017) developed a method to detect and classify pole-like objects 

from mobile laser scanning point clouds by employing a heuristic segmentation 

algorithm, linear discriminant analysis (LDA), and SVM. Experimental tests of this 

method showed an overall success rate of 90% to detect different types of pole-like 

objects in an urban environment. Zheng, et al. (2017) proposed a method for automatic 

recognition and extraction of street lighting poles from mobile LiDAR data. After 

filtering out the ground points, the remaining points were grouped into ground and non-

ground objects. Graph cut-based segmentation and a Gaussian-mixture model (GMM) 

based method were used to model the clusters of the non-ground objects and the street 

lighting poles were recognized through matching the clusters with a database of sample 

street lighting pole models. Experimental results showed that this method achieved an 

overall performance of 90% in terms of true positive rate. 

Hůlková, et al. (2018) employed a raster image processing technique to make 

rough classifications of the highway environment using mobile laser scanning. The 

proposed method required the prior knowledge of the terrain of the study area. In this 

approach, the raw point clouds were divided into voxels and matrix using point 

information, such as class, height, and intensity. These were then projected onto a 

horizontal plane to create a raster image. An image processing technique that included 

segmentation, filtering, and object-oriented classification was applied repeatedly on the 

raster image to classify it according to ten pre-selected classes of highway environment. 
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The outcome of this method was compared with a semi-automatic classification method 

using the Terra Scan software, where the classification was inspected by a human expert 

and later improved manually if needed. This paper reported an overall classification 

accuracy of 94.5% of the presented method. However, the authors mentioned that the 

proposed method misclassified tree trunks to the poles class and long vehicles to the 

crash barriers class.   

2.8 Sight Distance Assessment 

Sight distance is one of the fundamental components of highway design. It is the 

length of road surface that driver can see at a point along a roadway. Provided sight 

distance is important to ensure adequate stopping distance at a specified driving speed. If 

the available sight distance is less than what is required for a driver action, then the risk 

of a crash is significantly increased. There are four types of sight distance considered in 

roadway design: intersection sight distance, stopping sight distance, passing sight 

distance, and decision sight distance. The traditional methods applied for sight distance 

assessment are often time consuming, cost- and labor-intensive, and require interference 

with traffic operations to ensure worker safety. Nowadays, many transportation agencies 

use LiDAR technology for sight distance analysis considering its efficiency over 

conventional methods.  

De Santos Berbel, et al. (2008) developed ArcGIS add-in software to calculate the 

available sight distance on roads using LiDAR data. As input, DSM was preferred over 

DEM and the trajectories followed by a vehicle along the road in each direction were 

considered. The authors recommended combining the sight distance information with 
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traffic flow data, speed maps, crash data, and alignment consistency information to 

conduct traffic safety studies. Castro, et al. (2011) applied geographic information system 

(GIS) tools to estimate the available sight distance from vehicle trajectory and LiDAR 

data. This method involved the development of a digital terrain model (DTM) and 

viewshed analysis using ArcMap tools to find all visible points from the position of the 

observer (driver). All the visible points were transformed into a raster polygon and 

intersected with the vehicle trajectory obtained from GPS data. The available distance 

between the observer and the closest intersection was considered as the available sight 

distance. de Santos-Berbel, et al. (2014) used mobile and airborne LiDAR data to 

estimate the difference between sight distance derived from a digital surface model (aka 

triangulated irregular network) and a digital terrain model (bare surface). Probabilistic 

tests (Kolmogorov Smirnov and Mann Whitney Wilcoxon) were used to measure any 

differences in sight distance outputs using the two surface models. The paper 

recommended the use of a DSM model derived from mobile LiDAR data to estimate 

available sight distance because of its denser point clouds leading to a high-resolution 

model. El-Basyouny and Sabbagh (2017) in their study proposed to use LIDAR for 

estimating sight distance by simulating observer and the target points along a virtual 

highway. Then ArcGIS platform was used to detect the points blocking the sightlines in 

between. The sightlines distance was computed using a VBA algorithm and later 

compared with the road design guideline of the Alberta highway. After making 

comparison, it was found both the stopping and passing sight distance requirement were 

not met by the existing highway. 
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CHAPTER 3 METHODOLOGY 

3.1 Introduction 

This chapter summarizes the equipment’s used in this study, the point cloud data 

collection, and data processing. The data collection section covers the basic information 

related to the software used to collect the data and information about the selected road 

segments for this study. The data processing section outlines the process of storing and 

converting the point cloud data from the rosbag file to American Society for 

Photogrammetry and Remote Sensing (ASPRS) recommended las file format. 

3.2 Equipment Used 

The point cloud data were collected with an Ouster LiDAR (OS1-16) unit, which 

has 16 channels or beams. The LiDAR unit has a range of 105 m (344.488 ft) with 80% 

reflectivity and a sampling rate of 327,680 points/sec. There are 5 available operating 

modes for this LiDAR unit that were used in this study: 512x10, 512x20, 1024x10, 

1024x20, and 2048x10. The first value in the operating mode refers to the horizontal 

resolution, which is the number of times per rotation that each of the 16 beams is emitted. 

The second value in the operating mode is the rotation rate in hertz. The size of the data 

per second of recording depends on the mode because the first number determines how 

many vertical columns there are in one rotation’s point cloud, and the second number 

determines how many times per second the LiDAR completes a full rotation. For each 

mode, the maximum number of points per second recorded in the initial data file is the 

horizontal resolution times, the rotation rate times 64 for Ouster units. Since a 16-beam 
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Ouster sensor was used for this study, at maximum only 16 of the 64 points in a column 

in the data file were valid (i.e. x, y, and z values were non-zero). For example, the 

operating mode of 512x10 for the 16-beam unit would generate a maximum of 327,680 

points per second, with 81,920 non-zero points at max. For 1024x20, the maximum 

number of points is 327,680 non-zero points per second, which is four times more than 

the 512x10 mode.  

Ouster LiDAR operates in an 850 nm band and, unlike other sensors, this system 

returns only one measurement for every emitted pulse. The IMU and GNSS data were 

collected using an Inertial Sense μINS sensor kit. The purpose of using the IMU was to 

obtain the trajectory of the vehicle at locations with no GPS connection and at a higher 

frequent rate compared to GPS. The update rate of the three sensors (INS, GPS, and 

LiDAR) used for data collections were 4 milliseconds, 200 milliseconds, and 10 

milliseconds. To process the collected data, an onboard AI computing device (NVIDIA 

Jetson TX2) was used. A 2019 Subaru Outback model vehicle was used as the mobile 

platform to collect the data (Figure 3.1). 

3.3 Data Collection Procedure 

In this study, to understand the point cloud data size generated from the mobile 

LiDAR, three different road segments were selected. Data was collected from the 

selected segments at different vehicle speeds and available operating modes of the 

selected LiDAR unit. On the survey days, the weather was sunny with a temperature of 
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Figure 3.1. Mobile LiDAR unit setup used for data collection 

85-90°F. The selected segments were operating under normal traffic conditions

with no restrictions on vehicular traffic. During the data collection period, because of 

active traffic, a small change in duration(s) took place to cover the same distance at a 

constant speed with different LiDAR modes, which may have caused a minor effect on 

the data size. Additionally, scattered sunlight noise may have had a possible impact on 

the data collection process by interrupting the signals returning to the sensor. Intense 

sunlight mainly causes errors by making it difficult to differentiate between the LiDAR 

pulse and the photon of the sun. 

The GPS, INS, and the LiDAR data were collected in the form of ROS (Robot 

Operating System) messages and then stored in the rosbag file format. The coordinates of 

the point clouds and the INS unit were stored in the local coordinate system, East, North, 
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and UP (ENU), while the coordinates of the GPS were stored in the word geographic 

coordinate system (WGS-1984). An external hard drive was used to store the data due to 

storage capacity limitations of the NVIDIA Jetson TX2. Table 3.1 lists the roadway 

segments (in Logan, UT), vehicle speeds, and LiDAR operating modes used for data 

collection in this study. 

To understand the data sizes for the travel lanes only and the right of way only, a 

buffer was made following the Cache County, UT, standards for arterial and collector 

roads. Right of way (ROW) represents the area of land along and around a roadway that 

is owned, operated, and maintained by the owner of the road. Most assets within this 

boundary fall under the jurisdiction of the owner which is often a local or state 

transportation agency. The travel lanes the areas of the roadway where motorized 

vehicles operate, not including parking lanes, bike lanes, shoulders, etc. Figure 3.3 

represents a generic roadway cross-section, including the right of way and travel lanes. 

The dimensions in this figure are not the same as those used in this study. 

In this study, the width of a travel lane and the right of way for arterial roads are 

12 ft and 100ft, respectively. The values are 11ft and 80ft, respectively, for collector 

roads. The buffer was made based on the vehicle trajectory developed by the INS. 

However, due to the technical movement of the vehicle on the road, an equal buffer zone 

for the both sides of the road were not possible to make. That’s why the buffer zone may 

have covered more area for one side of the road than the other side for the original 

vehicle trajectory. 
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Table 3.1 
Data Collection Road Segments, Speeds, and Operational Settings 

*Includes a 12-ft two-way left-turn lane.

Road Segment Starting 
Point 

Ending 
Point 

Total 
Lanes 

Length 
(miles) 

Vehicle Speed 
(MPH)  

Operating Mode 

N 1200 E E 850 N E 1400 N 2 0.71 

25 

512x10 
512x20 
1024x10 
1024x20 
2048x10 

30 

512x10 
512x20 
1024x10 
1024x20 
2048x10 

35 

512x10 
512x20 
1024x10 
1024x20 
2048x10 

E 1400 N N 1200 E N 800 E 2* 0.48 40 

512x10 
512x20 
1024x10 
1024x20 
2048x10 

UT-165 E 1200 S E 1700 S 4* 0.5 

45 

512x10 
512x20 
1024x10 
1024x20 
2048x10 

55 

512x10 
512x20 
1024x10 
1024x20 
2048x10 
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Figure 3.2. Data collection map 
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Figure 3.3. Cross section design of a highway [NUMAN Design, Consultancy and 

Construction Company Pvt. Ltd (2020)] 

In order to generate an equal buffer zone for the both sides of the road, the 

centerline of the road was considered as the vehicle trajectory and relevant data for the 

selected segments was estimated. The LAStools platform was used to convert the shape 

file into the las file format, which is a binary file recommended by the ASPRS to store 

LiDAR data. The LAS version 1.4 was used to save the point cloud data. At the initial 

collection stage, there were many attributes recorded for each point, but only 4 attributes 

were included (x, y, z, and the intensity) in the final las file. Finally, to comprehend the 

data size for the selected segments, the relevant individual las files for each roadway 

segment and each LiDAR mode were combined into one single file. 

For an example of the raw data, Figure 3.4 shows a sample snapshot of the 

LiDAR unit’s view as the vehicle traverses a grocery store parking lot. It is a simple 

depiction of the point cloud in one instant during a drive. This may be what an 
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autonomous vehicle “sees” as the passenger travels to the store. Figure 3.5 depicts a 

compiled point cloud map from a drive around a parking lot lasting approximately 5 

minutes. For mobile LiDAR platforms, this represents the most common first step in data 

processing. Table 3.2 provides an example of the raw point cloud data directly generated 

from the sensor unit. 

Figure 3.4. Stream LiDAR view at a grocery store parking lot. From top 

to bottom: ambient, intensity, range, and point cloud view 
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Figure 3.5. Sample point cloud map generated at a parking lot 
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Table 3.2 
Point cloud data sample 
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CHAPTER 4 LARGE SCALE LIDAR DATA ESTIMATION 

4.1 Introduction 

The increased availability of 3D point cloud data has created new challenges in 

the transportation industry regarding the analysis and incorporation of this informative 

big data into different decision-making processes rather than using it only for 

visualization purposes. Resulting product of LiDAR is a suite of highly accurate 

georeferenced 3D point clouds containing different informative attributes. The full 

potential of the 3D rich data generated from the LiDAR is difficult to assess due to its 

size and processing to extract related information. The use of big data resulting from 

LiDAR technology is gaining popularity as the development of AVs continues. LiDAR 

sends millions of pulses per second to survey the objects within its range.  

Guan et al. (2013) stated that LiDAR data usually contains tens or hundreds of 

points per square meter. Therefore, the processing of LiDAR data is highly computational 

and data intensive even for a small area. Tomljenovic and Rousell (2014) stated that an 

area of 0.2 square miles can generate a point cloud from 500 GB to 3 TB depending on 

the selected point cloud density. The point cloud density depends on the scanning 

capacity of the sensor. Vehicle speed, scanning speed, and system measurement rate all 

influence the resolution of the collected data according to Guan et al. (2016). While 

collecting point cloud data over large areas is very useful, the subsequent process 

including the storage, processing, and computation of the LiDAR data for a large-scale 

area poses a significant challenge. 
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4.2 Regression Model Development 

In this study, the collected data detailed in the previous chapter were extrapolated 

for large-scale estimation and consideration by public agencies. A linear regression 

model was developed for the purpose of extrapolation. In the model, the data size was 

considered as the dependent variable. The duration of the data collection period (X, in 

seconds), the duration of the LiDAR to complete a single rotation (Z, in seconds), and the 

number of columns in the point cloud data (Y) are considered as the explanatory 

variables.  

The following equations estimate the data size for the different sections (travel 

lanes, right-of-way, and total) as discussed in Section 3.4 and shown in Figure 3.3. Table 

3 shows the input data used for estimating the linear regression models. 

Travel Lanes 

Travel Lanes (MB) with actual trajectory=- -23.24+ 0.344* X+ 0.061* Y +1.714* Z 

The R squared value for this model is 0.825. 

Travel Lanes (MB) with centerline trajectory=- -55.46+ 0.936* X+ 0.052* Y +1.9883* Z 

The R squared value for this model is 0.57 

Right of Way 

Right of Way (MB) with actual trajectory=-119.021+ 1.899* X+ 0.1 * Y +3.853 * Z  

The R squared value for this model is 0.691 

Right of Way (MB) with centerline trajectory=-302.634+ 4.611* X+ 0.141* Y +6.39* Z 

The R squared value for this model is 0.671 
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Total  

Total Data (MB)=-380.913+ 5.774* X+ 0.179* Y + 8.192* Z 

The R squared value for this model is 0.663 

4.3 Graphical Analysis 

Figure 4.1 represents the projected data sizes in megabytes based on the measured 

data sizes for five different scenarios: right-of-way with the actual vehicle trajectory 

(Figure 4.1a), travel lanes with the actual vehicle trajectory (Figure 4.1b), total (Figure 

4.1c), right-of-way with the centerline (Figure 4.1d), and travel lanes with the centerline 

(Figure 4.1e). The markers represent measured data sizes from the data collection runs 

detailed in Chapter 3. The lines represent projections of data size for other speeds using 

exponential functions.  

Exponential functions were used instead of other trendline types with higher R-

squared values because the data size per mile cannot be negative. Also, as speeds 

approach zero, the data size per mile will theoretically approach infinity. The data sizes 

by speed are normalized for distance traveled. As can be expected, data sizes at low 

speeds are much higher than at higher speeds. Agencies can expect that for a single 

vehicle, total data sizes collected for low-speed roads will be larger and have greater 

point density than for high-speed roads. The forecasted line of the data for 2048X10 

mode does not match with the lines generated for the other modes. This anomaly can be a 

reason of the computing function of the excel platform. 
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Table 3.3 
Regression model data input 

Total 
(MB) 

Right of 
way (MB) 

with 
actual 

trajectory 

Travel 
lanes 
(MB) 
with 

actual 
trajectory 

Right of 
way (MB) 

with 
centerline 
trajectory 

Travel 
lanes 
(MB) 
with 

centerline 
trajectory 

Time(S) Number 
of 

columns 

Refresh 
rate 

264 115 54 213.7868852 64.653 122 512 10 

480 205 98.264 381.0983606 117.649 111 1024 20 

508 215 103.584 399.6885245 124.018 117 512 10 

875 372 178.86 691.5540982 214.145 101 1024 20 

842 357 175.39 663.6688523 210 97 2048 10 

183.82 80 37.626 148.7213114 45.048 85 512 10 

384 161 77.926 299.3016393 93.299 88 1024 20 

367.65 156 75.25 290.0065573 90.095 85 512 10 

761.253 323 155.853 600.4622949 186.6 88 1024 20 

718 305 147 567 176 83 2048 10 

90 70.3 19.67 71.96813562 22.909 78 512 10 

163 128 35 131.0372882 40.764 71 1024 20 

155.346 122.317 32.78 125.2194373 38.179 68 512 10 

338.107 266.22 70 272.5370849 81.529 74 1024 20 

374.66 295 76.5 302 89.1 82 2048 10 

106.3 70.6 33.5 80.39999998 40.4 51.2 512 10 

174 115.276 56 131.2774844 67.534 41.8 1024 20 

184.364 122.446 59.28 139.4427535 71.489 44.4 512 10 

254.123 169 162 192.4589235 94.45 30.6 1024 20 

365 242.5 234 276.161473 135 43.9 2048 10 

48.07 39.6 30.48 37.20182091 26.055 40.1 512 10 

88 72.49 55.8 68.1 47.7 36.7 1024 20 

84.35 79 61.188 72.392 54 40 512 10 

155.24 137.5 103 126 90.2 36.8 1024 20 

171.272 152 114 139.28 99.75 40.6 2048 10 

39.64 31.71 21 30.254 18.48 32.9 512 10 

81.94 66 46 63 40.48 34 1024 20 

76.3 63.2 48.9 60.3 42.6 31.5 512 10 

175.369 145.3 105 134.6941605 79.1595 36.2 1024 20 

164.07 137 102 127 76.9 37.9 2048 10 
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(a) Unfiltered Total

(b) Total



43 

(c) Right-of-way with buffer based on actual vehicle trajectory

(d) Travel lanes with buffer based on actual vehicle trajectory
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(e) Right-of-way with buffer based on centerline

(f) Travel lanes with buffer based on centerline

Figure 4.1. Measured and projected data size by speed and LiDAR mode 
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The 4.1 (a) figure differs from than the remaining figures of this section as it 

resembles the raw data size generated directly from the sensor with no filtering or file 

format conversion. If we observe the figure 4.1 (a) and 4.1(b), we can see that the range 

of the data size changes a lot in before and after the filtering and file formatting. The 

upper bound and lower bound of the data size before processing are 4GB to above 14GB, 

while after process it is from 1000MB to a little more than 4000MB. For the travel lanes 

scenario, at 80 MPH with the lowest operating mode (512x10) of the selected LiDAR, 

close to 125 MB/mile of data is expected for centerline trajectory while for actual 

trajectory approximately 75 MB/mile of data can be expected. With the highest operating 

mode, a little more than 300 MB/mile can be expected for the centerline trajectory and 

around 360 MB/mile for the actual trajectory.  

As for the total scenario, at 80 MPH with the lowest LiDAR operating mode 

(512x10), close to 800 MB/mile can be expected while with the highest operating mode 

(2048x10) more than 4300 MB/mile can be expected. The range of the LiDAR data size 

that can be expected for the right-of-way scenario with actual vehicle trajectory is from 

300 MB/mile to 900+ MB/mile for a vehicle travelling at 80 MPH.  However, in terms of 

the centerline trajectory, the range of the data is from 750 MB/mile to about 3500 

MB/mile. Graphs such as these can provide transportation agencies with a range of 

conservative to liberal outlooks regarding data size expectations.  

However, it is important to note that these estimations are based on limited runs in 

a variable environment.  The R-squared value in these graphs are not consistent because 

of the dynamic environment of the study area. This issue is particularly apparent with the 
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travel lanes data extrapolation, since only a small slice of the data is considered, which 

also happens to have the most variation due to the presence (or lack thereof) of other 

vehicles. In order to get more accurate and reliable data size estimations multiple run in 

different environment can help a lot. However, given the limitations of this study single 

run for each LiDAR mode for any particular road segment was conducted. 

The projected total data sizes depicted in Figure 4.2 were developed considering 

vehicle-miles traveled (VMT) at 45 MPH.  The blue line represents the data size that can 

be expected for the lowest operating LiDAR mode while the red line depicts the data size 

for the highest operating mode of the selected LiDAR sensor.  

(a) Total
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(b) Right-of-way with buffer based on actual vehicle trajectory

(c) Travel lanes with buffer based on actual vehicle trajectory
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(d) Right-of-way with buffer based on centerline

(e) Travel lanes with buffer based on centerline

  Figure 4.2. Projected data size by vehicle-miles traveled 
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In the case of data generated from the selected LiDAR unit, the total dataset 

produced with 10000 VMT is expected to range from approximately 1000 MB (512x10 

mode) to more than 3200 MB (2048x10 mode). For 10000 VMT within the right-of-way 

along the centerline trajectory, the data size ranges from approximately 500 MB to 2750 

MB. It is notable that for the right-of-way the data generated from the original trajectory 

is more than the data size considering the road centerline for a vehicle travelling at 45 

MPH. 

Figure 4.3 and 4.4 represents the distribution of the collected data size in 

megabytes from the selected highway segments for each particular speed for the actual 

vehicle trajectory and for the centerline trajectory. The centerline trajectory of the vehicle 

is created by using the ArcGIS platform. The blue segment represents the data portion 

which is outside of the right-of-way. The orange segment represents the data portion 

outside of the travel lanes but within the right-of-way (using a buffer of 100 ft for the 

arterial and 80 ft for the collectors). The gray segment represents the data portion within 

the travel lanes (using a buffer of 60 ft for the arterials (45 and 55 miles/hr), 36 ft for the 

40 miles/hr collector road, and 24 ft for the other collector road (25, 30, and 35 miles/hr).  

The proportionate distribution of the data size is calculated by subtracting the right of 

way from the total segment and then subtracting the travel lanes from the right of way 

segment. The data size for the travel lanes section for certain speeds is higher compared 

to the rest due to the more number of travel lanes. 

. 
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(a) 25 miles/hr

(b) 30 miles/hr
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(c) 35 miles/hr

(d) 40 miles/hr
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(e) 45 miles/hr

(f) 55 miles/hr

Figure 4.3. Data size distribution at different speeds and operating modes 

with buffers based on actual vehicle trajectory 
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(a) 25 miles/hr

(b) 30 miles/hr
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(c) 35 miles/hr

(d) 40 miles/hr
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(e) 45 miles/hr

(f) 55 miles/hr

Figure 4.4. Data size distribution at different speeds and operating modes 
with buffers based on centerline 
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As expected, the distribution of data points within the travel lanes and right-of-

way are fairly consistent regardless of speed and operating mode except the 40 miles/hr 

(actual trajectory).  The data size for the right-of-way is higher in 35 miles/hr compared 

to all the speeds for both the actual and the centerline trajectory. The proportion within 

the right-of-way on the collector roads had more variation due to the higher frequency of 

objects along the selected roads. The collector roads had greater variety and frequency of 

landscaping, signage, and on-street parking compared to the arterial.  

The number of points per mile measured in individual test runs (Figure 4.5) varied 

with the frequency of reflective objects within the range of the LiDAR unit. The sensor 

used for this study has certain configuration to produce a particular number of correct 

points (points with X, Y, and Z) for each rotation depending on the surrounding features 

within the range of the LiDAR. As expected, the number of points increased based on the 

operating mode of the LiDAR unit.  

However, the point density still varied within each LiDAR mode because of the 

dynamics of the mobile platform’s speed and the environment from which the data were 

collected. The highest number of points were produced in the 2048X10 mode at 25 

miles/hr while the lowest number of points were produced in the 512X10 mode at 55 

miles/hr. In general, it can be expected that the number of points in a point cloud data set 

mainly depends on the speed of the platform, the environment and the scanning capacity 

and speed of the sensor.  
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(a) Total

(b) Right-of-way buffer based on actual vehicle trajectory
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(c) Travel lanes buffer based on actual vehicle trajectory

(d) Right-of-way buffer based on centerline
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(e) Travel lanes buffer based on centerline

 Figure 4.5. Number of points per mile 
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CHAPTER 5 DISCUSSION 

5.1 Introduction 

Diverse applications of LiDAR data have changed the transportation field in 

recent decades. These applications are expected to continue to grow with the 

development of the technology and autonomous vehicles. The implication of the size of 

the data collected during this study is discussed in this chapter to provide an 

understanding about the possible data size that one can expect from a mobile platform 

from a similar study environment. Apart from this, it also provides a broader overview on 

the existing challenges for LiDAR data application in the transportation industry.  

5.2 Mobile LiDAR Data Uses in Transportation 

 In this study, mobile LiDAR refers to the collection of 3D point data from a 

mobile platform. Mobile LiDAR combines multiple sensors that are synchronized on a 

mobile platform to generate detail oriented georeferenced 3D point cloud data. In recent 

years, it has become a common and effective method for infrastructure mapping and 

monitoring among transportation agencies because of its affordability and efficiency.  

Mobile LiDAR is a primary data collection tool in the geospatial development 

industry. This technology can produce high resolution images of features at a standard 

speed with survey grade accuracy without disrupting the normal traffic flow on the 

highway.  This advantage of mobile LiDAR significantly reduces the cost and time 

associated with data collection compared to other conventional methods. Mobile LIDAR 

systems provide a dense, geospatial dataset as a 3D virtual world that can be explored 
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from a variety of viewpoints across a transportation agency. Although MLS reduces the 

duration of the data collection phase, it requires significant time and resources to extract 

meaningful information and even more time for developing 3D models (Sairam, et. al. 

2016). A review report by NCHRP stated that there is a lack of knowledge in terms of 

extracting information from LiDAR (Olsen et al. 2013). 

Mobile LiDAR has increased safety benefits given that all data collection tasks 

are performed inside the vehicle. It also mitigates impacts to traffic flow given that it 

does not require roadway closures. With proper processing, mobile LiDAR data can be 

used for various purposes such as traffic monitoring or crash analysis (Figure 5.1). 

Traffic monitoring is an effective way to assess and enhance traffic performance on a 

road network. Considerably few studies have been conducted on this issue with LiDAR. 

Most previous studies focused on highway asset management, object detection, and 

object classification. 

 LiDAR has also gained popularity in terms of structural monitoring of assets 

such as culverts or embankments. For feature extraction from LiDAR data, identification 

of reflective objects (i.e. signs) has naturally received more attention than identification 

of non-reflective (and often non-standardized) objects. There has also been a lack of 

research in the area of mobile LiDAR assessment of highway design elements such as 

cross section, vertical and horizontal alignment, and clearance. The end result of the 

mobile LiDAR is multifaceted and the collection and usage of this valuable data has 

turned into a gold standard for various applications in the transportation industry.  
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Figure 5.1. Applications of mobile LiDAR in transportation [ Olsen et al. (2013)]. 
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   Figure 5.2. On road features 
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5.3 Challenges of Using LiDAR 

Being the eye for an autonomous vehicle, LiDAR technology is an essential 

component of ADAS. However, there are some core challenges associated with the usage 

of this technology. High-performance spatial indexing is needed for quick data access 

while working with LiDAR since it is common to have projected data sizes of 1 TB or 

more (Liu et al. 2016). Olsen et al. (2013) stated that the complexity of LiDAR data and 

lacking availability of processing software presents challenges to the end users of the 

data. Often, studies use only a limited portion of the data as the end product. 

 Zhang et al. (2017) determined that the volume of the data and the computational 

and technical requirements to process, manage, and store the point cloud can pose a great 

challenge. According to Nashashibi and Bargeton (2008), point cloud processing usually 

requires working between multiple software packages where information can be lost 

during import and export stages of the process. The technicality to operate and collect 

data with LiDAR is complex compared to traditional survey methods, as it often needs to 

be integrated and synchronized with other sensors like GPS and IMU.  

A mobile LiDAR platform has to move at a certain speed in an active highway 

environment while collecting data simultaneously. However, because of this speed, 

potential target objects are missed and the resulting measurements are not collected. 

Lovas et al. (2004) stated that with airborne LiDAR, the ability to detect small features is 

affected by the altitude, orientation, and quality of the unit. For any platform, target 

objects may be obscured by other objects in the foreground. Spoof signals can cause 

trouble to the users by producing incorrect information, which may produce nonexistent 
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objects in the LiDAR data processing algorithm. In the case of use by an autonomous 

vehicle, this error could cause a crash. 

The perception and range of LiDAR is limited, which also poses a significant 

challenge to work in a dynamic environment. In addition, the atmospheric scattering and 

attenuation caused by weather phenomena, such as sun reflection, dust, rain, snow, fog, 

and clouds, affect the quality of data collected by the LiDAR sensor. Weather like fog, 

snow, or rain can degrade the performance of the LiDAR sensor by 25% (Asvadi et al. 

2018). Shamayleh and Khattak (2003) stated that rain droplets may reduce the signal 

intensity reflected from a target, and back-scatter from the rain may cause a false positive 

detection. Emitted laser beams may provide echoes that do not correspond to real 

obstacles by illuminating snowflakes (Yang et al. 2012).  

Also, it is often unreasonable or infeasible to shut down traffic operations on a 

section of a highway while collecting data. Moving or impermanent objects, such as 

vehicles or pedestrians, affect the data by introducing what may be unwanted noise for 

many users. Since slower driving speeds result in denser point clouds, it's challenging to 

use a mobile platform on higher-speed roadways while balancing operator safety and data 

density. As the technology continues to grow, it is expected that some of these challenges 

will be mitigated by increased reliability and robustness of the sensors, decreased cost of 

those sensors, and increased usability of processing software and hardware. 
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5.4 Data Size Implications 

            This study shows the data sizes that one can expect from a single-beam LiDAR 

unit on a mobile platform in the highway environment. For the selected roads, the 

collector road segments have two lanes while the arterial road segments have four lanes. 

The raw data size generated from the sensor ranged from a little over 0.5 GB to 

approximately 5.6 GB. The data size mainly increases with the mode of the LiDAR unit 

and the duration of data collection. After processing the raw data and transforming into 

LAS file format, the size of the data shrinks a lot. This represents an excellent 

demonstration about the LiDAR data management for the transport agencies. The 

regression models developed to estimate large-scale data provide a great scope for 

transportation agencies or policymakers to consider when addressing the unique 

challenges and uses associated with the upcoming autonomous vehicle fleet data 

management. This model is important for transportation agencies since it will help to 

understand the data generated from the sensor and will give a baseline to comprehend 

probable data size.   

        Among the selected vehicle speeds, the 25, 30, 35, and 40 MPH data were collected 

from collector road segments. The 45 and 55 MPH data were collected from the arterial 

segment.  The buffer zone widths of the arterial roads for the right-of-way and travel 

lanes were larger compared to the collector road, per Cache County (2013) design 

standards. The buffer zone has a relative impact over the point cloud data size collected 

under different speeds since the objects of each side of the buffer zone varied. In terms of 

the data distribution, it was found that the right-of-way section of the roadway contained 
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approximately 75-86% of the collected data for the collector and arterial roadways with 

centerline trajectory. When considering the buffers from the centerline trajectory, it can 

be noted that as the speed of the vehicle increased, the data size within the right-of-way 

area decreased slightly. For the 35 miles/hr, data size remained consistent for all the 

LiDAR modes. The data size in the travel lanes area increased with the vehicle speed for 

the centerline trajectory. Data sizes within the travel lanes section for all the modes in the 

25 and 30 miles/hr runs were consistent. One possible reason for this may be that the 

highway environment might have remained the same while collecting data for these two 

different speeds. While considering the actual trajectory, out of the total data size 

approximately 40-94% of the total data size had fallen in the right of the way section. 

This greater level of variation might be a result of the asymmetric distribution of the 

objects falling within the both sides of the LiDAR. For the travel lanes, the opposite 

scenario occurs, with the data size mostly increasing with the vehicle speed. One reason 

may be that the higher speed roads have more travel lanes compared to the lower speed 

roads. One can expect a data size of 20-65% from the travel lanes with actual trajectory. 

        However, for the actual trajectory, the data sizes for the 25 and 30 miles/hr in terms 

of the right of way are nearly the same. Yet there was a significant increase from 30 to 35 

miles/hr in this case. There is an asymmetry in the data size for the 40 miles/hr in terms 

of the 1024X20 and the 2048X10 mode. The highest data size can be observed for the 35 

miles/hr. The data for the right of way always increased with the speed except for the 40 

miles. One reason can be because of the number of features available within the right of 

way section during that particular run. One possible option to verify the data size for the 
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selected vehicle speed and the LiDAR unit would be to run multiple times and also to 

compare the data size with different LiDAR units. This may help to understand and 

verify the data size generated from this study.  

(a) Total

(b) Right-of-way with buffer based on actual vehicle trajectory
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(c) Travel lanes with buffer based on actual vehicle trajectory

(d) Right-of-way with buffer based on centerline
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\ 

(e) Travel lanes with buffer based on centerline

Figure 5.3. Point cloud data collection sample from an active highway 
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CHAPTER 6 CONCLUSION AND FUTURE RESEARCH 

6.1 Overview 

This demonstrated the possible data size that transportation agencies can expect from a 

mobile LiDAR platform in an active highway environment. To make conservative 

projections about LiDAR data size certain variables like LiDAR mode, vehicle speed, 

duration of the data collection period was considered in this study. Apart from this, the 

remaining objectives of this work were to summarize the existing applications of this 

technology in the transportation field, different challenges, and possible future research to 

explore. 

The first chapter of this study provided a basic introduction on how LiDAR works 

along with other sensors including INS and GPS. It also covered the scope of this project 

and expected outcome with proper justification. Chapter 2 introduced the uses of LiDAR 

data for different transportation applications while highlighting the algorithms used to 

extract information. Chapter 2 also covered the common limitations of the existing tools 

and techniques used for related applications. Chapter 3 provided a technical overview of 

the equipment and methodology used for data collection, including data processing and 

storage in the selected file format. 

Chapter 4 discussed the development of the regression model to understand the 

large-scale data size for selected scenarios. Chapter 5 discussed the mobile LiDAR uses 

in transportation in a broader term along with the challenges associated with the data 
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collection, processing, and storage. Implications of the projected data size for the 

transportation industry were also discussed.  

6.2 Key Findings 

Overall, it can be said that the size of the LiDAR data mainly depends on the 

duration of the runtime and the selected mode to collect the data. The following are the 

key findings of this thesis work:  

• The size of the data decreases significantly compared to the raw data after

saving it in the ASPRS recommended (.las) file format. Processing,

filtering, and conversion to (.las) file format shrunk the data size from over

a gigabyte down to a few megabytes.

• The weather has a possible impact on the data size. Weather like rain,

snow, and sunlight affect the laser beam reflected from the LiDAR sensor

while the beam returns to the sensor after heating the target object. This is

due to the reflective property of the light.

• In an active highway environment, the data size will vary, particularly

within the right of ways and the travel lanes.

• For the selected roadway types (arterial and collector), the right-of-way

and the travel lanes sections contain approximately 75-86% and 25-65%,

respectively, of the collected data for the centerline trajectory.
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• For actual vehicle trajectory, there was greater variability in the data size

right of the way section.  This is most likely due to asymmetric overlap of

buffer zone with the roadway.

• In general, as vehicle speed increases, the data density, or data size per

mile, will decrease. However, due to the limited data size within the travel

lanes, the relationship between vehicle speed and data size per mile is not

statistically significant in this study.

6.3 Future Research 

LiDAR technology has been in continuous development for the past few decades. 

Constant technological progress combined with substantial reductions in data acquisition 

cost has made it possible to apply this technology more frequently and at a larger scale. 

Although several studies have explored the use of LiDAR for transportation applications, 

there are still opportunities for further research. 

LiDAR can be used for surveillance and monitoring because of its high accuracy, 

resolution, and dense scanning capacity. However, in order to avoid occlusion in a dense 

traffic environment, multiple runs are necessary in potential future studies in this area.  

Currently, highway asset inventory with LiDAR depends on the reflectivity and 

shape of the target objects.  Future research may consider the detection, identification, 

and evaluation of damaged, old, or non-standard assets. Similarly, Gargoum and El 

Basyouny (2019) stated that there is a lack of research in the extraction of cross-sectional 

road elements and their attributes, such as vertical and lateral clearances. There is also an 

opportunity to explore the performance of LiDAR to detect objects in areas covered with 
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vegetation. Previous studies on lane marking, curb, or pavement edge detection mainly 

focused on short and straight segments. Future research should explore its implication for 

network-level data collection. This technology could also be used as a part of the quality 

control process and as-built assessment for construction. 

Automated extraction of features from LiDAR data to minimize the analysis time 

should be emphasized, since object detection is important for the development of a smart 

transportation system. Algorithm standardization could improve the differentiation 

between ground and non-ground objects in raw point clouds. In addition, standardization 

and availability of non-proprietary processing methods would ease the usability of the 

point cloud data. A potential study could compare the data quality and processing times 

of proprietary vs. freely available data processing platforms. Improvements in work zone 

layout, management, and quality control can be made by using 3D point cloud data given 

the amount of information that can be driven from this 3D data.  

An important aspect for future research is to compare the performance of LiDAR 

with other sensing technologies. At present, there are various LiDAR sensors with a large 

variety of specifications and price points. A potential study could assess the capabilities 

of these sensors in terms of detecting distanced objects from a mobile platform. 

Additionally, comparisons should be made between solid state and spinning mirror 

LiDAR sensors. Considering the nature of the data acquired by this technology, there is 

potential for it to be used to create models for structures. The impact of different 

environmental conditions, such as lighting, precipitation, air quality, etc. on LiDAR data 

accuracy should also be assessed to understand the performance of this sensing 
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technology under non-ideal conditions, particularly in the context of autonomous vehicle 

performance. 

To reduce the severity and frequency of crashes, there is ongoing research and 

development of the use of LiDAR and other sensing technologies in AVs and CAVs. 

Unfortunately, much of this research is theoretical or proprietary.  LiDAR has the 

potential to expedite traffic incident management and safety analysis if the technology 

can be simplified for use by individuals with limited training and if processing times can 

be reduced. With the 3D scanning capacity of the sensor, it is possible to detect moving 

objects. Therefore, it is possible to explore the detection of pedestrians, bicyclists, and 

other vehicles. LiDAR sensors could be integrated with other vehicle telematics 

technology to better understand traffic flow and safety implications of advanced vehicle 

technologies. For example, if upstream congestion could be detected and communicated, 

vehicle and/or driver responses and performance may be assessed in greater detail than 

ever. 

6.4  Limitations and Challenges of this Study 

One of the major limitations of this study was that only one run was performed to 

estimate the data size from each of the selected roads, speeds, and LiDAR modes. Since 

the data were collected from the mobile platform, it is highly likely that the data size 

would vary from run to run for the same road segment. Additionally, the commercial 

GPS used for this study was not very precise, leading to some positional distortion in the 

features surrounding the vehicle in the point cloud. It was challenging to calibrate and 

sync the timestamp of all the sensors correctly to extract the features surrounding the 
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LiDAR with respect to the actual vehicle location. In particular, while collecting data 

during the winter, snowfall further impacted the accuracy of the GPS. It is expected that 

many features that were actively present in the study area might not have been captured 

by the sensor due to its configuration and the speed of the vehicle. Another challenge 

involved with collecting and storing real time LiDAR data was the configuration and 

storage capacity of the computer used for the study. Given the scope of this study, it was 

not possible to compare the data size generated from the selected LiDAR unit with other 

units. 

        This study used only one single beam LiDAR sensor unit and the lowest speed while 

collecting data was 25 miles/hr. Even at this speed, it was quite difficult to capture the 

features in a detailed manner. As the speed of the vehicle increased, the data density 

greatly decreased, which increased the difficulty of recognizing objects in the point 

cloud. However, cost limitations inhibited the ability of the researchers to utilize more 

and high-quality LiDAR units that would be expected to be used on AVs. Another major 

challenge and limitation of this study was the maintenance of a constant speed during the 

data collection period since it was an active highway. Constant speed was necessary for 

ease in data processing and analysis but is not representative of real-word vehicle/driver 

performance. In some runs, there was some data distortion for inconsistent vehicle speed. 
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