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Abstract 

Laser scanning is nowadays one of the most important technology in geospatial data col-
lection. The technique has developed together with the other technologies and sciences, 
and the systems can be used with many different platforms on land, in the ocean and in 
the air. Airborne laser scanning (ALS) started right after the invention of the laser in 
1960’s and the usage grew in 1990’s, when the first commercial system was released. The 
development has augmented the ways of surveying and the systems have new features 
and more options to collect as accurate data as possible. Several wavelengths and higher 
frequencies able thousands or even millions of measurements per second. The multispec-
tral systems enable the characterization of the targets from the spectral information which 
helps for example in the data classification. Single photon technique provides higher im-
aging capability with lower costs and is used in the extensive topographic measurements. 
The processing of the point clouds are more important when the densities grow and the 
amount of noise points is higher. The processing usually includes preprocessing, data 
management, classification, segmentation and modeling to enable the analyzing of the 
data. 
 
The goal of the thesis is to compare and analyze the datasets of five different airborne 
laser scanners. The conventional LiDAR datasets are collected from low altitude helicop-
ter with the Riegl’s VUX-1HA and miniVUX-1UAV systems. The state-of-the-art sensors, 
Titan multispectral LiDAR (Teledyne Optech) and SPL100 single photon LiDAR (Leica), 
are used in the data collection from the aircraft. The data is collected from the urban area 
of Espoonlahti, Finland, and the comparison is based on the roof features. Other land 
cover classes are left out from the investigation. From the roof features are investigated 
the differences, accuracies and qualities between the datasets. The urban environment 
was selected because the lack of ALS research done for the built environment, especially 
in Finland. The thesis introduces the background of the airborne laser scanning, theories 
and literature review, materials and methods used in the project. 
 
The laser scanners used in the work produce dense point clouds, where the most dense is 
up to 80 pts/m². Based on the results the accuracies vary mainly between 0 and 10 cm. 
The scanners with infrared wavelengths produce better than 10 cm accuracies for the out-
lines of the roofs, unlike the green wavelength scanners. The differences in the corner 
coordinates are between 1 and 8 cm with a few exceptions. SPL100 system has the best 
height accuracy of 4.2 cm and otherwise the accuracies vary between 5 and 10 cm. The 
largest deviation compared to the roof planes occurs in the miniVUX-1UAV data (over 5 
cm). For the surface areas the infrared frequencies produce differences of 0 to 2 percent 
from the reference data, whereas the differences of the green wavelength are mainly 1 to 
7 percent. For the inclinations no significant differences were observed.        
 
 

Keywords ALS, multispectral, single photon, LiDAR, 3D, point cloud, data comparison 
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Tiivistelmä 

Laserkeilaus on nykyään yksi tärkeimmistä tekniikoista geospatiaalisen tiedon keräämi-
sessä. Tekniikka on kehittynyt yhdessä muiden teknologioiden ja tieteiden kanssa, ja jär-
jestelmiä voidaan käyttää monilla eri alustoilla maassa, meressä ja ilmassa. Ilmalaserkei-
laus (ALS) alkoi heti laserin keksimisen jälkeen 1960-luvulla ja käyttö kasvoi 1990-luvulla 
ensimmäisen kaupallisen järjestelmän julkaisun jälkeen. Kehitys on lisännyt mittausta-
poja ja järjestelmien ominaisuuksien parantuessa on enemmän vaihtoehtoja kerätä tark-
kaa aineistoa. Useilla aallonpituuksilla ja korkeammilla taajuuksilla pystytään tekemään 
tuhansia tai jopa miljoonia mittauksia sekunnissa. Monispektriset järjestelmät mahdol-
listavat kohteiden tunnistamisen spektritietojen (aallonpituuksien jakauman) mukaan, 
jota voidaan hyödyntää esimerkiksi aineistojen luokittelussa. Yksifotoni–tekniikka mah-
dollistaa suuremman mittauskyvyn pienemmällä kustannuksella (energiankulutus) ja 
sitä käytetään laajojen alueiden mittauksissa. Pistepilvien käsittely on entistä tärkeämpää 
kun tiheydet kasvavat ja virhepisteiden määrä on suurempi. Prosessointiin kuuluu 
yleensä esikäsittely, tiedonhallinta, luokittelu, segmentointi ja mallinnus, ennen aineiston 
analysointia. 
 
Tämän opinnäytetyön tavoitteena on vertailla ja analysoida viiden eri ilmalaserkeilaimen 
tuottamia aineistoja. Ns. tavanomaiset LiDAR–aineistot on kerätty matalalla lentävästä 
helikopterista Rieglin VUX-1HA ja miniVUX-1UAV –keilaimilla. Viimeisintä tekniikkaa 
edustavat Titan monispektri LiDAR (Teledyne Optech) ja SPL100 single photon LiDAR 
(Leica) -aineistot on kerätty lentokoneesta. Aineistot on kerätty Espoonlahden alueelta ja 
vertailu perustuu kattojen ominaisuuksiin. Muut maanpinnan kohteet jätetään tarkaste-
lun ulkopuolelle. Pistepilvien perusteella tutkitaan aineistojen välisiä eroja, tarkkuuksia 
ja muita ominaisuuksia. Kaupunkiympäristö valittiin kohteeksi vähäisen rakennetun ym-
päristön ALS–tutkimuksen takia etenkin Suomessa. Opinnäytetyössä esitellään ilmala-
serkeilauksen taustaa, teoriaa ja tehdään kirjallisuuskatsaus aiheeseen liittyen, sekä käy-
dään läpi projektissa käytetyt aineistot ja menetelmät.  
 
Työssä käytetyt keilaimet tuottavat tiheitä pistepilviä, joista tihein on jopa 80 pistettä/m². 
Tulosten perusteella tarkkuudet vaihtelevat pääosin 0 – 10 cm välillä. Kattolinjojen koh-
dalla infrapuna-aallonpituutta käyttävät keilaimet pääsevät alle 10 cm, toisin kuin vihreän 
aallonpituuden keilaimet. Kattojen kulmakoordinaattien erot ovat 1 – 8 cm välillä muu-
tamaa poikkeusta lukuun ottamatta. Korkeuksissa paras tarkkuus on SPL100 laserkei-
laimella 4.2 cm, ja muuten ollaan 5 – 10 cm tarkkuuksissa. Suurimmat hajaumat tasoon 
verrattaessa syntyy miniVUX-1UAV aineistoon (yli 5 cm). Pinta-aloissa infrapunataajuu-
det tuottavat 0 – 2 prosentin eroja vertailuaineistoon, kun taas vihreällä aallonpituudella 
erot ovat pääosin 1 – 7 prosenttia. Kaltevuuskulmissa ei havaittu merkittäviä eroja. 
 

Avainsanat ilmalaserkeilaus, multispektri, yksifotoni, LiDAR, 3D, pistepilvi, aineistojen 

vertailu 
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Symbols 
 

c  Speed of light 

e₁  Observed value 

e₂  Reference value 

F  Size of the covered area 

h  Survey height 

n  Number of samples (data points) 

Pm  Mean point density 

PRF  Pulse repetition frequency 

R  Range 

RMSE  Root mean squared error 

sw  Swath width 

Std  Sample standard deviation 

t  Certain time interval 

tᶠ  Time of flight 

v  Flight speed 

x₁  X –coordinate of a point 1   

x₂  X –coordinate of a point 2 

xi  Measured value 

ẍ  Mean value 

y₁  Y –coordinate of a point 1 

y₂  Y –coordinate of a point 2 

θ  Scan angle 

λ  Wavelength 

ϕ  Phase resolution 

π  Pi 
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Abbreviations 
 

ALS  Aerial Laser Scanning 

BC  Before Christ 

CAD  Computer-aided Design 

CW  Continuous Wave 

DSM  Digital Surface Model 

DTM  Digital Terrain Model 

FGI  Finnish Geospatial Research Institute 

FoV  Field of View 

GIS  Geographical Information System 

GNSS  Global Navigation Satellite System 

GPS  Global Positioning System 

IMU  Inertial Measurement Unit 

LiDAR  Light Detection and Ranging 

MLS  Mobile Laser Scanning 

MMS  Mobile Mapping System 

NASA  National Aeronautics and Space Administration 

NIR  Near-infrared 

NOAA  National Oceanic and Atmospheric Administration 

POS  Position and Orientation System 

PRF  Pulse Repetition Frequency 

PRR  Pulse Repetition Rate 

PS  Phase Shift 

RMS(E)  Root Mean Squared (Error) 

RTK  Real Time Kinematic 

SWIR  Short-wave Infrared 

TLS  Terrestrial Laser Scanning 

ToF  Time of Flight 

UAV  Unmanned Aerial Vehicle 

 

m  Meter 

m²  Square meter 

cm  Centimeter 

mm  Millimeter 

µm  Micrometer 

nm  Nanometer 

ns  Nanosecond 

ppm  Parts per million 
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1 Introduction 
 

1.1 Background 

 

Land surveying and its techniques have developed during the centuries together with the 

other technologies and sciences. The historic records say that the surveying goes back in 

time of the Egyptians in 2700 BC and 1400 BC, when the pyramids were built and lands 

were plotted for the purpose of taxation. Babylon, Greece and Rome are also mentioned as 

places where the surveying have been evolved [1]. Two parts of the surveying process are 

the documentation and analyzing of the data, which are strongly related to the cartography. 

Cartography is called as the art and science of map making. The first artifacts were drawings 

into the rocks or wooden plates, and they didn’t based on measurements but imagined evo-

cation [2, 3].    

 

If we move back to the present time, the development is obvious. There are new highly 

equipped devices, advanced algorithms and knowledge thanks for the history and techno-

logical development. Photogrammetric, terrestrial, aerial and satellite systems can confi-

dently reach centimeter accuracy and soon even millimeters may be standard. Map making 

and analyzing of the datasets are based on accurate measurements with big amount of data, 

which requires some experience with GIS software [4]. Also the planning and analyzing 

have changed from 2D to 3D world. 

 

At the moment one of the most important technology in geospatial data acquisition and in 

cartography is laser scanning. In modern surveying the meaning of the laser scanning corre-

sponds to LiDAR (Light Detection and Ranging) because of the combination of the laser 

light and 3D scanning. The invention of the laser happened in 1960’s and after that it has 

been used in numerous applications [5]. Because of the lack of the proper technologies in 

1960’s, it took some time before the laser systems started to be in universal use in topo-

graphic applications. In the field of surveying, after the period of development and research, 

the laser systems became to commercial use in the mid 1990’s. NASA is mentioned as one 

of the major pioneer in the development of these systems through their actions in the map-

ping of the Arctic areas [5]. Also the NOAA and the University of Stuttgart played the key 

role in the pioneer work of the development [6].  

 

Laser scanning is typically divided into three categories: terrestrial laser scanning (TLS), 

airborne laser scanning (ALS) and mobile laser scanning (MLS). Terrestrial lasers were used 

in the mid 1960’s onwards to measure distances and ranges. Around 1970’s lasers started to 

replace other instruments in distance measuring, even without possibility to measure angles. 

Angles were measured with other devices, for example with theodolites [5]. Nowadays so 

called total stations are combination of the distance measuring laser instrument and the angle 

measuring instrument which were merged together after 1970’s. Later, these devices went 

through a lot of improvements, for example in the features of lasers, quality of distance 

measurement and automation, which lead to the development of the present terrestrial laser 

scanners [5]. First generation of terrestrial laser scanners was in the mid 1990’s, when all 

systems were pulse based, i.e. the distance is determined by the by the laser pulse’s time-of-

flight between the sensor and the target.  
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One reason for the early progress of ALS was the curiosity to test the lasers from the airborne 

platform. Different kind of aerial lasers were tested and developed between 1960’s and 

1990’s. The first airborne platform laser altimeters were flown in 1965 to measure continu-

ous profiles of the terrain, but the features of the applications were very limited. For the 

military use were the GPS and IMU attached to the laser scanner in 1980’s, but after that, in 

the early 1990’s the number of aerial platforms grew. The first commercial ALS system 

(with GPS and IMU) were available in the mid 1990’s [5]. The first UAV platform ALS 

system came in 2010 [7] and the first multispectral airborne system in 2014 [8]. The first 

commercial single photon ALS system was released in 2017 [9]. Nowadays the sensor de-

vices can be attached, not only to steady terrestrial or flying airborne platforms, but also to 

mobile mapping systems (MMS) for example to backpacks, cars or boat-based platforms 

[10]. 

 

1.2 Objective and structure 

 

The previous part of the work was kind of a background for this thesis. The technologies and 

ways of surveying are evolving all the time but maybe the quickest improvements in the next 

few years will happen in laser scanning. New platforms and possibilities to scan and profile 

on the ground, in the air and in the water are even more developed. The systems include 

more options for example in the number of beams or wavelengths, or they co-operate to-

gether with other sensors. In this work is used, among other things, multi-wavelength and 

single photon data, together by now traditional one channel laser scanned data. 

 

The objective of the thesis is to investigate differences of the point clouds and 3D models of 

the airborne laser scanned data collected with four sensors (Riegl VUX-1HA, Riegl 

miniVUX-1UAV, Leica SPL100 and Teledyne Optech Titan). The comparison is performed 

by using the building roof features. The idea is to examine differences between the point 

clouds and to investigate and analyze the quality and accuracy of the datasets. The test site 

is located in Espoonlahti, an urban area in Espoo, Finland, which is one of the permanent 

test sites of the Finnish Geospatial Research Institute (FGI). The lack of airborne laser scan-

ning research done for built environment, which includes also multispectral and single pho-

ton data, was one of the key reasons for selecting the topic of the thesis. Especially in Finland 

are done lot of research for vegetation because of the interest and optimal circumstances. In 

this work, the comparison includes 

 

 point densities, 

 surface areas, 

 outlines (lengths and widths), 

 planimetric (x and y –coordinates) differences of the corner points, 

 heights, 

 inclinations (angles), 

 deviations of the points. 

 

The work is limited not only with the boundaries of the test site or the number of the selected 

buildings, but also in a way that the research is based on the differences concerning the roofs 

of the buildings. Vegetation, roads, walls etc. are left out because is wanted to focus specially 

on the roofs.  
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This chapter described some background and set the objective of the thesis. Chapter two is 

the literature review, which describes the theory behind the airborne systems and the laser 

scanning, describes some mathematical concepts and previous works related close to the 

objective of the thesis. Chapter three presents the materials and methods for the roof feature 

measurements and comparison. Chapter four shows the outcome of the investigation. Chap-

ter five presents the overview of the research, discloses the possible error sources, and takes 

a look to the ideas how the work could be continued. The last chapter concludes the work.   
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2 Theory and literature review 
 

2.1 Airborne laser scanning 

 

Section 2.1.1 clears the idea of the equipment and principles in the airborne laser scanning. 

The basic devices are described and the purpose for the use is examined. In the section are 

also listed the general things that have influence to the point cloud determination. Manufac-

turers may have their own components or methods as well, but the idea is to go through the 

fundamentals of the ALS. Section 2.1.2 describes some methods of the calibration and reg-

istration. Section 2.1.3 explains what the multi-wavelength means in the case of the ALS 

and what the benefit is. Last section 2.1.4 presents the idea of single photon technique.   

 

2.1.1 Principles of ALS 

 

The airborne laser scanning can be done from the fixed wing aircraft, from the helicopter or 

with the UAV platform. The same components are used in all the platforms and the working 

mechanism is usually similar. On-board there are two main components which are the laser 

scanner and a POS (GNSS/IMU) system (Fig. 1). The GNSS (Global Navigation Satellite 

System) in the POS system receives the positioning and timing data to define the location. 

The satellites of the European Galileo, American GPS, Russian GLONASS and Chinese 

BeiDou systems provide the global coverage of signals for the GNSS receiver [11], but all 

the satellite systems can be used alone as well to receive position information. Laser scanner 

measures the distance of the points on the scene, and the GNSS together with the IMU (In-

ertial Measurement Unit) handles the information about the exact position and orientation of 

the system [12]. Together with the main components are working the computer and the data 

recording unit (Fig. 1).  

 

 
Figure 1. The main components of an airborne laser scanning system (modified from Fig-

ure 1.13 from the book “Airborne and Terrestrial Laser Scanning” by Vosselman G. and 

Maas H-G., page 22) [12]. 
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 Scanner keeps the laser, optics and mechanics inside and works from the hole on the 

bottom of the aircraft. It can also be mounted outside of the aircraft. The system sends 

continuous pulses to the terrain when the aircraft is flying and calculates the exact 

coordinates for the returned hits. The range measurement systems usually work with 

the time-of-flight (ToF) or phase shift (PS) techniques (Fig. 2A and 2B). In ToF 

method the time of flight of the pulse and speed of light are defined and precise 

timing for the ranging is utilized. PS uses continuous laser illumination why it is also 

called as continuous wave (CW) method. It compares the phase shift of the emitted 

and backscattered laser beams for the range measurement [13, 14]. Laser scanning is 

so called active system and is able to operate without other light sources e.g. sunlight. 

This can be seen as an advantage compared for example to photogrammetry.   

 

  

A)    B) 

 
 

      (1, 2) 

R =
c

2
∗ tᶠ   R =

λ

4π
∗ ϕ  

 

 
Figure 2. The principles and formulas of the A) ToF and B) PS laser ranging [13, 15]. 

 

 

where 

 R is the range between the scanner and the object 

 c is the speed of light 

 tᶠ is the time of flight 

 λ is the wavelength of the ranging signal 

 ϕ is the phase resolution 

 

 

 GNSS antenna (e.g. GPS) is usually placed on top of the aircraft to the spot, where 

the signal to the satellites is most likely undisturbed. System collects the exact posi-

tion data (x, y, z) of the aircraft, or more precisely of the scanner, using the satellite 

information. It reconstructs the flight path (trajectory) together with the IMU system, 

which is recorded to the database [12]. 

 IMU controls the orientation of the system and is located either near the scanner 

system or is fixed directly to the laser scanner. The component collects the rotation 

rates (roll, pitch, and yaw) to determine the orientation of the aircraft. It also collects 

the acceleration data to reconstruct the trajectory paths together with the GNSS sys-

tem [12].  
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Figure 3. Visualized case of the airborne laser scanning. Location, altitude and the angle 

of the light ray need to be known, traveling time of the light ray is measured, and accord-

ing to the observations, the 3D points are calculated (modified from figure of “ALS System 

Schematic” from the GMW website, 2019) [16]. 

 

 

 Data recording unit controls the whole system and stores the data from the scanner 

and POS for the calculations of the 3D points. Unit is responsible of the time syn-

chronization of the sensors, which have to be precise to allow the good quality data. 

Computer is part of the communication between the control unit and the user. It also 

calculates the real time performance of the survey [12].  

 Possible camera system will allow the correctly colored point cloud, which may 

help the object recognition. If the camera is located properly, the IMU data can be 

directly used in the registration of the image data to avoid extra work [12].   

 

 

The densities of the surveyed point clouds vary between flight paths and equipment. The 

target area has also an influence to the point density, because the reflectance differ between 

measured objects. The LiDAR systems allow typically density of 5 – 20 pts/m², but the new 

scanning methods raise the point density even to 50 – 200 pts/m². The density and quality of 

the point cloud affect for example to the classification and object recognition of the terrain. 

Different factors have influence to the point density, for example: 

 

 flying speed 

 survey height 
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 scanner properties (e.g. range measurement method, laser wavelength, swath width, 

pulse repetition frequency, scanning frequency) 

 scan angle and surface angle 

 overlap of flying strips 

 surface material/reflection 

 lighting and weather conditions [12, 16]. 

 

 

Pulse repetition frequency (PRF), also called as Pulse repetition rate (PRR), is an important 

factor in the LiDAR system. The velocity of the aircraft or a helicopter is usually too fast for 

the sensor, to wait only one laser beam to hit the target and receive the backscattered beam, 

to collect the encompassing amount of data. Because of the velocity and altitude, the scanner 

operates with several laser beams at the same time. PRF is the definition for the leaving 

number of laser pulses sent per second. The unit of PRF is Hertz (Hz), where for example 

100 kHz means ~ 100 000 emitted pulses per second. However, effective measurement rate 

depends on the scanning mechanism and optics, and signal processing, e.g. multiple echo 

detection. Generously, it can be said that the higher PRF provides the higher point density 

[12, 17]. The type and wanted end product of the project affect to the planning of the meas-

urement campaign. The flight plan and device are related to the point density, which is pos-

sible to estimate in advance. Rough approximation before the survey and the true point den-

sity after the survey can be calculated with the equations below.  

 

To calculate the mean point density must be first calculated the size of the covered area F 

[12]: 

      (3) 

F = v * t * sw 
 

where 

 v = flying speed 

 t = time interval 

 sw = swath width 

 

 

And then the mean point density Pm [12]:  

 

      (4) 

Pm =
PRF ∗ t

F
 =

PRF

v ∗ sw
=

PRF

2vh tan (θ/2)
 

 

where 

 PRF = number of laser pulses generated during a time interval 

 h = height 

 θ = scan angle 

  

 

When using the scan mechanism, there is an interrelation between scan frequency and field 

of view. Different types of systems use different types of deflecting mirrors, which form 

various types of point patterns on the ground (Fig. 4). Scan frequency (or scan rate) is the 
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definition for the number of scan lines per second. The unit is Hertz as in the pulse frequency, 

but they implicate different things, also LPS (lines per second) is sometimes used as a unit. 

Scan rate relates into line spacing on the ground. If the rate is high the system produces more 

scan lines per second and the distance between individual lines is smaller. This has influence 

also to the point density and affects to the mapping of the objects, for example how well and 

accurately the corners of the roofs are captured. Field of view (FoV) describes the angle that 

the scanner can measure. The orientation and properties of the scanner, the flight altitude 

and speed determine the swath width on the ground, and these factors together with the scan 

speed define the point spacing within a scan line. With the point spacing is meant the distance 

between two points in the scan line. FoV alongside scan frequency has influence to the ac-

curacy of the data [18].    

 

 

 

 
Figure 4. Mirror system has influence to the point pattern [12]. 
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2.1.2 Calibration and registration 

 

The quality of the point cloud depends on the registration and calibration, which are highly 

related to the observations of the scanner, GNSS and IMU systems. Calibration is done to 

avoid errors between LiDAR data and the ground truth, and also to improve the reliability 

of the result. It must be done carefully for each individual sensor, but also between POS 

system and scanner, to perform with maximum accuracy. The spatial relationship between 

the sensors is called the mounting, bias or boresight. The boresight misalignment originates 

from the local reference systems of the components, and is defined by the offset and rotation 

between the systems. The LiDAR points are obtained to the IMU coordinate system by ap-

plying the shift and rotation between the systems. The three rotation angles are around x-, y- 

and z-axes because of the roll, pitch and yaw changes of the airplane. The common methods 

in overall system calibration process are block adjustment and a simple trial and error ap-

proach, where the angles are changed to fit the LiDAR points to the known surface. These 

methods are human-based techniques, where the known surface or points are required. Au-

tomated methods, which don’t need a priori knowledge are also tested. One example uses 

two or more overlapping strips, and the surface differences are considered as observations. 

It can be found from the paper by Toth [19].    

 

Gathering LiDAR data can be called as multi-platform, multi-angular, and multi-temporal 

task. These terms are valid at least in the case, when the different surveying methods (ALS, 

TLS, MLS) are used together, but stands also when only one method is used. The point cloud 

registration means merging several point clouds or setting the cloud to the selected coordi-

nate frame. It can be seen as a “same-platform registration” or “registration between different 

platforms”. In the ALS campaign the platform is usually the same aircraft from the beginning 

to the end of the survey, but the angular and temporal changes are still happening during the 

work. The scanning height and FoV limit the ground width coverage, which results to the 

need of several flight lines. This together with the integrated system (more than one compo-

nent) expose the potential errors. On the other hand, large enough overlapping is a way to 

recognize and fix the error. Several potential error sources may occur on the flight paths, in 

ranging, sensor mounting, POS or orientation. Registration methods are either data-driven 

or sensor system-driven methods, where flight lines are adjusted and errors avoided. The 

difference adjustment is one of the registration methods, where the differences between point 

clouds are simply minimized. Sensor system-driven method uses positioning equation as an 

adjustment model, which is seen more generally than data-driven method. Data-driven 

method uses geometric features to calculate the rotation matrix and translation vector [20].  

 

In addition it must be mentioned the coarse-to-fine registration strategy which is generally 

used for the same-platform registrations. To achieve good initial values, first coarse method 

is used and later the fine method to achieve best possible match between two point clouds. 

More about the registration and calibration of the laser scanning data can be read from papers 

[13, 14, 19, 20, 21], and the basic relations and formulas of the airborne laser scanning can 

be found from paper [22]. 
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2.1.3 Multi-wavelength laser scanning 

 

Laser is the light amplification of stimulated emission of electromagnetic radiation, which 

consist of wide range of wavelengths and frequencies. Wavelengths and frequencies form 

the electromagnetic spectrum for the light source, which is divided into regions (Fig. 5). The 

laser together with the other light sources, e.g. sunlight, sends the pulse, waveform light, 

where the lengths of the wave peaks can be measured. The amount of energy in a photon 

and electromagnetic radiation are connected. For example short wavelengths have higher 

energy than longer waves [23]. Usually LiDAR systems use wavelengths in the range of 0.4 

– 1.6 µm (= 400 – 1600 nm). The regions of electromagnetic spectrum are a bit inconstant, 

but are generally determined as follow (the irrelevant wavelengths of the radiation in ALS 

are left out: Gamma, X-ray and Radio):  

 

 Ultraviolet 10 – 400 nm 

 Visible 400 – 700 nm 

 Infrared 700 nm – 1 mm 

 Microwave 1 mm – 1 m 

 

 

 
Figure 5. Electromagnetic spectrum [24]. 

 

 

The first multispectral airborne LiDAR, called Titan from Teledyne Optech was introduced 

in 2014 (Titan will be presented later in this thesis) [8]. As can be inferred, multispectral 

LiDAR uses two or more channels with different wavelengths. The possibility to acquire a 

more dense point cloud is not the only benefit of using multiple wavelengths, but also the 

possibility to interpret the objects from the spectral information of the independent channels 

(Fig. 6). In many cases the spectral information will simplify the processing of the data be-

cause of the spectral characteristics of each point. For example, from the spectrum can be 

inferred the materials of the roofs, the species of the trees, or if the measured point is re-

flected from the vegetation or soil. The usage of different wavelengths is emphasized in the 

water areas and bathymetric surveying, because of the penetration of the water. Near infrared 

channel (~ 700 – 1400 nm) is mostly absorbed by water, unlike the green channel (~ 495 – 

570 nm) in visible region. The total number of wavelengths is big, but only a few can be 

used in the ALS, which limit the options a little. Wavelengths 355 nm, 532 nm, 905 nm, 

1064 nm, 1550 nm and 2050 nm are used in the long-range systems. The reason is that those 

wavelengths only have lasers, which are at the same time powerful and safe enough to be 

used in the ALS systems [25].    
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Figure 6. Example of the characteristic changes of soil, vegetation and water with different 

wavelengths. Titan multispectral LiDAR [8].  

 

 

 

2.1.4 Single Photon LiDAR 

 

Conventional airborne LiDAR systems, also called as linear mode LiDAR, can capture up 

to 1 – 2 million points per second. As was already mentioned, to be able to get the high point 

density the pulse repetition rate must be increased, which increases also the number of the 

photons (usually the echo can’t be detected with the small number of photons). The higher 

PRF allows higher flying speed and altitude, and the dense point cloud can be measured at 

lower costs. The challenge is the limitations of the PRF because of the energy consumption, 

heating of the device and eye safety. The solution was to change the technology of the system 

to reduce the required energy of each pulse [17, 26]. Sigma Space Corporation developed 

the Single Photon-sensitive LiDAR (SPL), which achieves high pulse rates with lower power 

consumption. The first publication about Sigma’s LiDAR data came in 2015 [27] and the 

first commercial sensor by Leica (will be presented later) in 2017.  

 

SPL system transmits shorter pulses with lower energy because it divides the light beam into 

hundred beamlets, arranged in a 10 x 10 array. The individual beamlets are imaged onto a 

pixel in a matching array detector of the telescope. The sensitivity of the SPL system is based 

on the recording the ToF of each photon of the laser pulse. It requires only one photon to be 
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detected for the range measurement, and the recovery time of the channel (1.6 ns) is much 

shorter than in the other systems (Fig. 7). This increases the surface measurement rate nota-

bly and the point density is higher. The increased point density per each laser pulse allows 

the lower PRF, and the lower PRF allows more imaging capability. The higher flying altitude 

and spatial resolution with a wider swath enable the greater areal coverage. The available 

systems from Sigma Space Corporation and Leica are efficient in extensive topographic 

measurements, but map also well the bathymetric areas because of the visible green wave-

length (532 nm) [28, 29, 30, 31]. However, the sensitivity of the system increases also the 

number of the noise points. In the article by Degnan [29], is written that the possible noise 

of the data originates from the dark counts from the detector, from the solar backscatter or 

from the laser backscatter from the atmosphere. The atmospheric backscatter has to be taken 

into account at least when SPL is operated from the space.   

 

 

 
 

Figure 7. The schematic idea of the common ALS systems and the SPL system. SPL system 

has a shorter and lower energy pulse (Tx) and it detects the returned energy more effi-

ciently (Rx) [32].    
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2.2 Computational concepts 

 

Standard deviation is used in statistical analysis to describe the dispersion of the values [10, 

28, 31]. The dispersion of the dataset is relative to its mean, where the square root variance 

between the mean and each data point is calculated. The low standard deviation means that 

the data points are close the mean and less spread. When only sample from the larger group 

of observations is used, the sample standard deviation is applied instead of population stand-

ard deviation (estimates the deviation of the entire population or observations). The expres-

sion of the sample standard deviation is [33]: 

 

(5) 

𝑆𝑡𝑑 =  √
∑(𝑥𝑖− ẍ)²

𝑛− 1
     

 

where 

 xi = measured value 

 ẍ = mean of the data 

 n = number of data points. 

 

 

 

 

The accuracies of the individual data points can be described by the distances between the 

measured points and the reference points. The distance between the points can be thought as 

a line, and to find the line, at least two x and y –coordinates are needed to be known. Z-

coordinate can be included if it is wanted to find the 3D distance. In this work are investi-

gated the planimetric differences of the corner points, and the distance formula is a simple 

geometric calculation [34]: 

 

(6) 

𝐷𝑖𝑠𝑡 =  √((𝑥₂ − 𝑥₁)2 + (𝑦₂ − 𝑦₁)2)     
 

where 

 x₁ = x –coordinate of the point 1 

 x₂ = x –coordinate of the point 2 

 y₁ = y –coordinate of the point 1 

 y₂ = y –coordinate of the point 2. 

   

 

 

 

Root mean squared error (RMSE or RMS) is commonly used for the performance analysis 

of the point cloud data [13, 32, 35, 36, 37]. RMSE presents the differences between the 

reference and the measured values. The statistics about the distribution of the data can be 

calculated by comparing the individual points and the correspondences of the reference. The 

result of the RMS performs the fitting, in other words the accuracy, of the measured data. 

The expression of the equation is shown below [13]: 
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      (7) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑒₁−𝑒₂)2𝑛

𝑖=1

𝑛
     

 

where 

 e₁ = measured value 

 e₂ = reference value 

 n = number of samples. 

 

 

 

 

2.3 ALS studies for urban areas 

2.3.1 Conventional LiDAR 

 

Previous chapters were based on the articles and writings, and introduced the idea and meth-

ods about the data capture with the airborne laser scanning. As this thesis concentrates more 

on the data comparing and analyzing, this chapter discloses some interesting works that have 

been done with the ALS. While the most of the ALS related works focus on the classification 

and segmentation of the land cover data, here LiDAR works that include urban areas and 

building exploration are collected. In many research studies also hybrid systems, where Li-

DAR data has been combined together with the aerial images, are used. Hybrid method for 

example color the point cloud and help the object recognition. It is discovered that commonly 

the hybrid technique improves the accuracy a little, because of the good planimetric accuracy 

of the digital images, and the good height assessment accuracy of the LiDAR. In 2005, the 

study by Kaartinen et.al. [35, 36], the participants were investigating the accuracies of the 

outlines, lengths, heights and inclinations of the 3D building models with the different meth-

ods by using laser scanning data, image data or the combination of the datasets. The building 

outline errors ranged from 20 to 76 cm (mean 44 cm, std. 18.5 cm) with the hybrid methods, 

and from 20 to 150 cm (mean 66 cm, std. 33.2 cm) with the laser scanning based methods. 

The building lengths ranged from 19 to 108 cm (mean 59.4 cm, std. 31.2 cm) with the hybrid 

methods, and from 13 to 292 cm (mean 93 cm, std. 60.9 cm) with the laser scanning methods. 

The building heights ranged from 9 to 34 cm (mean 18 cm, std. 8.5 cm) with the hybrid 

methods and from 4 to 153 cm (mean 32 cm, std. 31.5 cm) with the laser scanning methods. 

The inclinations ranged from 0.6 to 2.3 degrees (mean 1.3°, std. 0.6°) with the hybrid meth-

ods and from 0.3 to 9 degrees (mean 2.7°, std. 4.4°) with the laser scanning methods. In 2018 

Awrangjeb et.al. [38], also used hybrid data in the 3D roof reconstruction and reached couple 

of centimeter accuracies in the planimetric and height -coordinates.  

 

Classification, segmentation and 3D modeling are typical stages in the data processing and 

analyzing. Points belonging to a building can be separated from the other data points with 

classification, and the redundant data is simpler to detect and cut out. The segmentation of 

the building structures and the modeling can be done without exhaustive and huge point 

clouds. The 3D information of the processed data should be analyzed and compared to the 

other datasets or other processing methods to be able to verify the accuracy. Comparison of 

the data are done for example with the other aerial based laser scanned or photogrammetric 
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data, measured field reference points or modifying the degree of automation in the 3D re-

construction [39]. Automated reconstruction processes have progressed significantly and 

more accurate and robust building models can be produced. Xiao et.al. [40] revealed the 

paper in 2014 where the segmentation methods provided 0.6 m planimetric and 0.1 m verti-

cal accuracies. In 2016 Cao et.al. [41] provided roof reconstruction technique with 10 cm 

planimetric and vertical accuracy. In the segmentation of the roof and wall features data-

driven (e.g. clustering) or model-driven (e.g. Hough transform or RANSAC) approaches are 

used. When the building segments are recognized the outlines can be created from the inter-

section of the planar patches [38, 40, 41, 42, 43, 44, 45, 46]. 3D building models are typically 

used in the visualization, urban planning and facility management. Model based applications 

enable even more in environmental studies, for example in the damage detection or solar 

resource assessment [47, 48]. The combinations of multiple detection and extraction meth-

ods in classification and segmentation are seen to improve the accuracies in vertical and 

horizontal directions, which are typically from few centimeters to one meter [42, 43, 44, 45].    

 

 

2.3.2 Multispectral LiDAR      

 

Multispectral ALS, and especially Titan from Teledyne Optech, is used in numerous re-

searches related to the map updating, classification and change detection. In 2015 Bakula 

[25] used the independent channels to create the Digital Terrain Models (DTMs) and Digital 

Surface Models (DSMs). The vertical accuracies of the channels were investigated by com-

paring the models together. Between the channels, the mean values of the DTMs were less 

than 0.03 m with the standard deviations ranging from 0.19 to 0.27 m, and the mean values 

of the DSMs for the NIR and SWIR channels were -0.13 m and -0.10 m with respect to the 

visible band.  

 

The three wavelength technology is seen suitable in the land cover classification, and in the 

building and tree detection. Also in road mapping, the multispectral ALS has achieved good 

results, which are competitive or even better than the results of aerial image data [49]. Re-

searchers [49, 50] have noticed, that automated classification methods produce better results 

with multispectral ALS data than with multispectral photogrammetry data, because of the 

independency of ambient light and shadows. The existence of shadows or occlusions in the 

data may confuse the algorithm in the automated processes [50]. In the studies [51, 52, 53, 

54], the accuracies of the classification are improved for example with the methods of object-

based analysis, clustering, optimization, or with the maximum likelihood classifiers. In many 

papers, the number of land cover classes range from three to nine classes, where the com-

monly used classes are water, grass, trees, roads and buildings. For comparison, in the data 

classification for this project six classes are used: ground, hard surface, low vegetation, me-

dium vegetation, high vegetation and buildings. The gained accuracies of the classification 

methods vary a bit but they show that the results from 90 to 98 % are possible to achieve 

[51, 52, 53, 54, 55].  

 

In urban area the classification has more uncertainties because the objects are mixed. For 

example the vegetated roofs and the materials of the roads causes some unsteadiness in the 

classification. Some articles [37, 55] prove that promising results, even 90 % accuracies, in 

the urban areas can be achieved with the multispectral systems. One method is to use the 

spectral and spatial relationships together, to detect the land cover types. The capability of 
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Titan was extensively tested by Fernandez-Diaz et.al. (2016) [37], where the multispectral 

capabilities of the system in the classification and qualitative observations, bathymetric and 

penetration capabilities, range characterization, and what we are interested in, the precision 

and accuracy assessment, were tested. Fernandez-Diaz et.al., noticed that the height preci-

sion and accuracy decrease, when all the channels are combined and analyzed, despite han-

dling one channel at a time (Table 1). The medium altitude data was collected in 2014 and 

the topographic elevation precision, from the altitude of 800 m with the PRF of 300 kHz, 

was about 5 cm and the accuracy about 6.5 cm. The performance was also tested from dif-

ferent ranges and with different frequencies, but no significant variation was obtained [37]. 

In the literature overview no papers, where the multispectral ALS data would have been used 

in the 3D building reconstruction and accuracy assessment of the models, were found. 

 

 

 
 

Table 1. Vertical precision and accuracy results for the different PRFs and flying altitudes. 

Data collected with the Titan multispectral LiDAR. The results for the separated channels 

and for the combination are presented [37].  

 

 

 

2.3.3 Single Photon LiDAR 

 

SPL has attracted interest in topographic mapping because of the recent features in the laser 

systems. SPL systems especially allow the higher flying altitude and higher data rate. The 

performances and differences of the SPL systems are investigated by comparing the systems 

to the conventional airborne LiDAR systems and/or to field measurements. The SPL is seen 

to strengthen the mapping of tree canopy structures with the wide coverage, the efficient 3D 

structures, and the better capability to penetrate dense canopies [57]. The filtering process 

of the ground points for creating the digital elevation models (DEM) still contains uncer-

tainty. The problem is related to the higher point density captured from the canopy which 

leads some falsity in the ground point classification. The importance of the calibration of the 

system and noise filtering are highlighted to avoid the problem [28, 32].  
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In the large scale mapping the SPL system is seen to be suitable with competitive location 

and resolution accuracies. As an example, in the study by Degnan (2016) [29], the SPL has 

met the highest requirements of the USGS with the point density and the elevation accuracy. 

The USGS is the national program in the United States to collect the high-resolution eleva-

tion data for the public use. In the test experiments were used Sigma’s HAL system and 

HRQLS-1 system, whose characteristics are almost equivalent to Leica’s SPL100. In the 

study by Degnan [29], the elevation accuracy received with the HAL system from the alti-

tude of 7.6 km was 10 cm and the vertical accuracy of the HRQLS-1 was 3 cm from the 

altitude of 2.3 km. In the study in 2016 by Stoker et.al. [56], was received 17 cm vertical 

accuracy from the altitude of 2.3 km with the Sigma’s HRQLS system. Also in bathymetric 

mapping the SPL has proved centimeter accuracy in certain experiments [59].  

 

A case study using the SPL and conventional LiDAR data was executed in the City of Vienna 

[31]. The study investigated land cover classification, but also the point cloud deviations for 

the land cover classes, including buildings (Fig. 8). Based on the research paper, the wave-

form LiDAR provides a bit better accuracy with sharper and concise data, but the strength 

of the SPL system is in the coverage performance and vegetation capability. The point cloud 

dispersion is affected by the roof type, but the SPL100 system seems to be less precise than 

the waveform LiDAR. The local 3D point cloud deviations were calculated for flat and tilted 

roofs, and the deviations of 1.0 cm for flat roofs, and 9.5 cm for tilted roofs were achieved 

with the post processed SPL data. The waveform LiDAR achieves 0.7 cm (flat roofs) and 

3.1 cm (tilted roofs) precision. The point cloud deviation is said to be one to five times 

higher, depending on the surface type, for the SPL data than for the waveform LiDAR. 

 

 

 

 
Figure 8. 3D point clouds of a church. a) SPL point cloud colored by intensity, b) aerial 

image, c) waveform LiDAR point cloud colored by signal amplitude, d) cross section, e) 

longitudinal section, f) diagonal section. Unfiltered SPL data with red points, postpro-

cessed SPL data with green points and waveform LiDAR data with blue points [31].     
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3 Materials and methods 
 

3.1 Study area 

 

The area of Espoonlahti is located in Espoo, Finland, about 15 km west of Helsinki. Espoon-

lahti is used as a regular test site of research of the FGI, where have been made several ALS 

and MLS studies. The area was selected because the proper density, complexity and type of 

the buildings for the purpose of the project and the interest toward the urban environment. 

The size of the study area is about 265 ha and it has quite wide variety of houses with de-

tached houses, row houses, and high-rise buildings (Fig. 9).  

 

 

 
Figure 9. The study area of Espoonlahti [60]. 

 

 

3.2 Survey and equipment 

 

3.2.1 ALS 

 

Airborne laser scanning datasets were collected with helicopter and with fixed-wing aircraft. 

All the datasets included LAS or LAZ –files of the point clouds, the point cloud files of the 

one minute of flight and the trajectory information (TRJ –files) of the SPL100 and Titan 

flights. This section presents the laser scanners and the specifications of the data collection. 

The overview of the laser scanner datasets can be found from Table 2. The laser scanners 

used in the ALS campaigns: 
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VUX-1HA from Riegl was introduced in 2015 and is a high accuracy LiDAR sensor for 

kinematic laser scanning. The scanner uses near infrared wavelength (1550 nm) and is pro-

duced to operate in mobile laser scanning with different platforms. Main applications ac-

cording to the manufacturer are indoor and outdoor mobile mapping, tunnel measurements 

and railway applications, but it is also suitable for the ALS systems. The scanner is light-

weight (3.5 kg) and compact with the high scan speed and measurement rate, where the pulse 

frequency is up to 1000 kHz. It uses rotating mirror -scanning mechanism (Fig. 4), which 

provides regular point pattern with parallel scan lines [61]. The VUX-1HA data was col-

lected from the helicopter in May 16, 2019. Flight altitude was about hundred meters above 

the ground level and the flight speed around 50 km/h. Swath width was between 400 and 

500 meters with the 40 to 50 percent overlap. The point density used in the data processing 

is 71 pts/m² with the total amount of 175 803 560 points. The real number of collected points 

was over 800 million and the used amount was fifth from the total number of the points. 

Thinning had to be done to make the data classification possible. The scanner was located 

on the front side of the helicopter to measure forward to the flight direction with the angle 

of 15° from the nadir. VUX-1HA data was used as a reference, because the foreknowledge 

and presumption that the data is accurate, dense and reliable for the purpose of the project. 

The manufacturer reports the accuracy to be 5 mm at the range of 30 m under RIEGLs test 

conditions. In this project the accuracy is about 5 cm in x, y and z –coordinates. In the work 

and in the results the VUX-1HA data is simply called as VUX.          

 

MiniVUX-1UAV from Riegl came in 2016 and is a very lightweight scanner (1.6 kg) de-

signed mainly for unmanned vehicles. It uses near infrared wavelength (905 nm) and the 

main application is the aerial mapping with the multi-rotor, rotary-wing or fixed-wing 

UAVs. The device is suitable in many applications, but the purpose, according to the manu-

facturer, is to measure snowy and icy terrain with the multiple target capability (1-5 echoes 

per laser shot). Scan speed and measurement rate are lower than in the VUX-1HA and the 

PRF of the miniVUX is up to 100 kHz. Scanning mechanism is rotating mirror (Fig. 4) [62]. 

The data was collected from the same helicopter flight with the VUX-1HA, so the flight 

speed and altitude were equal. The scanner was located on the front side of the helicopter 

with the angle of 15° from the nadir. Swath width was between 300 and 400 meters with the 

overlap of 30 to 45 percent. Point density of the dataset is 29 pts/m² with the total amount of 

71 081 901 points. In the work and in the results, the simplified miniVUX means the 

miniVUX-1UAV data.     

 

SPL100 from Leica is the first commercial Single Photon LiDAR system. The system uses 

laser wavelength of 532 nm and divides the beam into 100 outlet beams, to low the cost per 

data point, and to make the data collection more efficient. The device was introduced in 2017 

and is suited for large area terrain mapping. The scanner weights about 84 kg and is typically 

used from the airplane. The scan speed and measurement rate are high because of the number 

of the beamlets. The PRF capability of the laser raises up to 6000 kHz. Scanner uses Palmer 

scan system (Fig. 4), which provides circular point pattern [63]. SPL100 measurements were 

done from an airplane in August 8, 2018. This work includes two SPL datasets, SPL100_65 

and SPL100_120, which were collected from the different altitudes: 1920 and 3600 meters 

above the ground level. Swath widths were 1050 and 1950 meters with the overlap of 20 to 

25 percent. Point densities were 80 pts/m², with the total amount of 197 986 050 points, for 

the lower altitude (SPL100_65) and 39 pts/m², with the total amount of 105 959 120 points, 

for the higher altitude (SPL100_120) flights.          
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Titan from Teledyne Optech is the first commercial multispectral airborne LiDAR sensor, 

which was released in 2014. The system operates from the airplane and the weight of the 

sensor and control unit is more than 100 kg. Titan uses three active beams with independent 

wavelengths (532 nm, 1064 nm and 1550 nm) to collect the spatial and spectral information 

of the target. The main applications are topographic mapping and modeling, land cover and 

vegetation classification, and bathymetric survey. The sampling rate is up to 300 kHz per 

channel and combined sums up to 900 kHz. Scanner uses oscillating mirror system (Fig. 4) 

[8]. The data was collected in May 2, 2016 with the flight altitude of 700 meters and speed 

of 250 km/h. Swath width was over 500 meters with the overlap of 30 percent. The total 

amount of points was 152 041 797, and the point density 56 pts/m².  
 

 

 

  VUX-1HA miniVUX-1UAV SPL100_65 SPL100_120 Titan 

Flight date 16.5.2019 16.5.2019 17.8.2018 17.8.2018 2.5.2016 

Platform Helicopter Helicopter Airplane Airplane Airplane 

Flight altitude (m) 100 100 1920 3600 700 

Flight speed (km/h) 50 50 220 280 250 

Wavelength (nm) 1550 905 532 532 532/1064/1550 

PRF (kHz) 1017 100 5100 5900 300 (x 3) 

Scan frequency (Hz) 200 100 9 (540 RPM) 8 (490 RPM) 40 (x 3) 

FoV (°) 360 360 30 30 40 

Swath width (m) 400-500 300-400 1050 1950 510 

Overlap (%) 40-50 30-45 25 20 30 

Point density (pts/m2) 71 29 80 39 56 

 

Table 2. Specifications of the laser scanner datasets. 

 

 

3.2.2 Field measurements 

 

Beside the ALS campaigns, field measurements were done in June 18 – 20, 2019. The ALS 

data were examined before the field measurements, so that the field measured data would 

include as many clearly visible targets as possible, and would cover the area comprehen-

sively. The measurements were done with the GNSS receiver HiPer HR from Topcon [64] 

with real-time virtual reference system (VRS) service from commercial Trimnet VRS [65], 

and the total number of the measured points was over 600. The measured data was used 

mainly as a visual reference in the investigation of the ALS datasets, because most of the 

points were ground points and weren’t needed in the registration of the datasets. Most of the 

ground points were taken from the paintings on the roads or edges of the sidewalks. Some 

points were taken from the corners of the roofs of the garages, trash shelters or small store-

houses, wherever they were possible to measure with the handheld device. The points from 

the roofs were used in the coordinate comparison. The VRS RTK accuracy of the equipment 

is horizontally 5 mm + 0.5 ppm and vertically 10 mm + 0.8 ppm [64]. 
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3.3 Data processing 

 

3.3.1 Software 

 

SPL100 and Titan point cloud datasets used in the thesis were ordered from third party com-

panies (Aerodata AG and TerraTec Oy), who executed the data capture and handled the 

preprocessing. The trajectory and point cloud processing for the SPL100 datasets were done 

with the company’s own software. For the Titan data the supplier used Optech’s and Ter-

raSolid’s software in trajectory and point cloud processing. The VUX and miniVUX datasets 

were already used in an other intention, why the charge for the preprocessing wasn’t the 

author’s, even if it is an important part in the data processing and quality ensuring. Cleaning, 

registration and georeferencing were done with the Terrasolid software. 

 

Most of the work in this thesis is done with the TerraScan software from Terrasolid Ltd. The 

software is generally used in the laser scanning point cloud processing and managing. The 

application can be used for example in the city, forest and powerline modeling or road sur-

veying. It provides tools for the point cloud classification, data organizing, trajectory man-

aging and point cloud visualizing, in a 3D view. TerraScan supports several import and ex-

port formats and the automatic routines can be combined with manual editing. TerraScan 

works as an integration with MicroStation, which is a design modeling software from Bent-

ley Systems. MicroStation provides tools for CAD environment [66, 67]. In this thesis the 

software is used to organize the data, in the point cloud classification and in the 3D modeling 

of the buildings. The CAD tools are used as a help in the calculation.   

 

The other software used in the point cloud analyzing is the open source and free software 

CloudCompare, which started in 2003 as a project of PhD of Daniel Girardeau-Montaut. The 

software is a processing platform for the 3D point clouds. It was originally designed for 

comparing the point clouds and meshes, but nowadays includes also more processing algo-

rithms, for example for the registration, resampling, color handling and segmentation [68]. 

In this work the software is used in the investigation of the point deviations by calculating 

the cloud-to-mesh distances.         

  

 

3.3.2 Processing 

 

In the thesis the aim of the processing was to separate the roof data out of the other data 

points to allow the investigation to concern only the roofs. The processing started by dividing 

the area into four, more or less equally sized, blocks and by classifying all the datasets using 

TerraScan macros. The datasets were divided into four blocks to ease the calculation and 

processing. The huge amount of points has impact to the speed of the automatic process by 

extensive training, which may lead into the problems, when the software can’t handle the 

amount of the data. The speed of the automatic data processing is also related to the power 

of the computer, what is affecting at least to the number of the points processed at a time. 

The user can add and edit macro steps to automate the processing which includes classifica-
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tion, modifying, deleting, transforming and outputting of points, updating views and execut-

ing commands. Macros can be adjusted individually to each dataset to take into account the 

characteristics of the dataset.  

 

In this work own macros were created for each dataset to find the best possible automatic 

classification in every case. Each macro set included definitions for ground, vegetation and 

buildings, and they were run in this order. Ground classification was started by searching 

low points where the user defines the routines to search the points lower than the surround-

ings. Low points may also be error points, and therefore filtering must be done before ground 

point classification. Setting the parameters to the ground option include the building size, 

iteration angle and distance adjustment. The ground routine uses triangulated surface model 

to determine the ground data. Model keypoints were also created from the ground points to 

ensure the possibility to create the surface models. Keypoints are usually a thinned ground 

data with smaller set of points, which the user has classified by defining the tolerance of the 

elevation and the point density of the data. Hard surface routine detects surfaces, which are 

not belonging to vegetation, and are typically roads and buildings. The method is suggested 

to be used, instead of ground routine, for mobile laser datasets and not for airborne datasets. 

Typically, in airborne datasets the majority of the data is belonging to the natural terrain. 

However, in our case the Espoonlahti test site has quantitatively many hard surfaces, why 

the routine was used to detect points from the roads and roofs. Hard surface routine works 

almost similarly with the ground routine, but is not sensitive to low points. It creates trian-

gulated surface model iteratively and is interested in the points that form a local plane to add 

the points to this class. Low points are not necessary to find with this classification method.  

 

Vegetation is defined based on the height from the ground and were categorized in low, 

medium and high vegetation classes. When defining the higher point classes, the first step 

was to set all but the hard surface data above 2.5 meters from the ground, to the high vege-

tation class. Roofs of the buildings can be searched by setting the rules, minimum size and 

height tolerance of the planar surface. In this case the surfaces were searched from the high 

vegetation and hard surface classes. The routine starts the building classification from the 

holes on the ground, and finds possible planar surfaces above the holes, before moving for-

ward [69]. Figure 10 shows the classified roof points from the example building of the kin-

dergarten, which surface area is about 716 m².  
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Figure 10. The example results of the roof classification and the visual differences between 

the point clouds. The points belonging only to building -class are visible. The size of the 

roof is about 716 m².     

 

 

 

For the project different roof types were selected to see if the type has any impact to the 

results or differences in the data. Four of the roof types were common or basic types and one 

group included the other and more complex structures. They were selected by searching the 

building types from the area and by examining the point clouds. Roof types were classified 

into five groups: flat, oblique, gabled, conical and other types. Selection of the roofs was 

planned so that every block would include three buildings from each class and from the 

opposite locations on the block. At the end the number of examined buildings was 57. From 

the classified point clouds of the blocks, the smaller samples with selected buildings were 

separated. In addition to automatic classification, some manual work was done to improve 

especially the roof classification. Without the classification of the ground, building and other 

higher objects, the vectorization tool of the 3D models is not able to work. The requirements 

must be fulfilled before the user can define the settings to construct the buildings. All the 

sample areas were stored individually to fast binary –files, which were used to create the 3D 

models of the buildings (Fig. 11). The roof points were also stored as a LAS 1.4 –format, 

which can be loaded and used in the CloudCompare.  

 

TerraScan has a tool for automatic 3D vector modeling which result can be modified by 

manual editing. The vectorization works when the user is able to show the classified building 

roof and ground points. Also building footprints can be used in the vectorization to determine 

the locations of the walls or roof edges, but it was not used in this project. The vectorization 

is based on the ground and roof points, so the quality of the modeling is determined by the 

result of the classification and the laser data itself. The density of the laser data usually af-

fects to the quality, and also the TerraScan user’s guide tells that more than 10 pts/m² would 
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allow accurate and detailed models with the roof structures in LoD2 (Level of Detail). This 

can be also seen as a possible drawback of the vectorization, because it is totally dependable 

of the quality of the source data, when the missing or bad quality data can lead to the confu-

sion. Examples were, when some of the sights had occlusions due to trees or other buildings 

and the construction of the buildings were incorrect. These kind of problems were tried to 

fix by manual editing, but the true location of the building edges could not be determined. 

One of the notable advantages in TerraScan is that the automatic building vectorization 

works in a short time for large areas with many buildings and allows also complex roof 

modeling [69].     

 

 

 

 
Figure 11. 3D building model with constructed roof lines from the VUX-1HA data. Gabled 

roof. LoD2.  

 

 

 

From the 3D models the roof lines were constructed and used in the data analyzing (Fig. 11). 

Construction is simple and the roof lines follow the edges of the model. The line colors are 

determined by the edge types in red (outer edge), blue (intersection of planes) and yellow 

(elevation jumps) [69]. TerraScan provides an automatic tool to create the line elements from 

the models, which was used in the project, but also the possibility to construct the roof pol-

ygons from the roof lines. The roof lines determine the outlines, from where the polygon 

tool tries to create the 3D roof polygons, which can be used to reconstruct the 3D building 

models. Either point or vector data can be used to reconstruct the building models, which 

shows some flexibility of the software. In this thesis all the data was laser data in the classi-

fication and in the modeling, and no vector or image data were used besides, and as was 

mentioned, the level of automation was quite high which speeds up and eases the processing.  
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3.3.3 Comparison methods 

 

The topic of the thesis is to compute and compare the different features of the roof data (were 

listed in the objective 1.2). Notable are that some of the computations are done automatically 

with the TerraScan and CloudCompare software, and it is thought that the basic calculations 

of the surface, height, length, width, point density and inclination are not necessary to ex-

plain in detail. 

 

In this paper most of the results are expressed as an average and standard deviation values. 

The idea is to show the amount of variance in the data. The selected roofs used in the data 

comparison, are not covering all the buildings, why sample standard deviation is used, in-

stead of population standard deviation. Standard deviations are used in the sections 4.2 – 4.7 

to describe the distributions of the datasets. The expression of the formula is found from the 

chapter 2.2 (Equation 5).  

 

The distances between the points are calculated in the section 4.4, when the planimetric cor-

ner coordinates are investigated. The equation needs at least two x and y –coordinates, which 

in this case are the reference coordinates from the VUX data and the corresponding point 

from the other ALS datasets. The calculations are done separately for the corner points 

(4.4.1), and for the corners of the roof outlines (4.4.2). The calculations are done for each 

corner, but the figures (Fig. 15 and 16) show only the average differences of the correspond-

ences of each dataset. The used formula is found from the chapter 2.2 (Equation 6). 

 

The root mean squared error (RMSE or RMS) is used in the section 4.7 to describe the de-

viation of the points on the roof plane. RMS computes differences between the measured 

values and the reference plane. The idea is to calculate the differences between individual 

points and the correspondence on the reference plane, and to show the statistics about the 

data distribution. The reference is the VUX data. The final RMS –value performs the fitting 

of the points on the roof plane, thus estimating the accuracy. The expression of the equation 

is found from the chapter 2.2 (Equation 7). 

 

  



33 

 

4 Results 
 

 

The results of the data comparison which cover previously mentioned point densities, sur-

face areas and outlines, planimetric differences of the corner points, heights, inclinations and 

point deviations are presented in this chapter. Some results are compared to the measured 

VRS RTK-points, but the most to the VUX-1HA data. The results are based on the roof data, 

except the point densities. The point cloud classification is done twice and partly manually 

to increase the reliability. This chapter presents the results for the roof feature comparison.  

 

4.1 Point densities 

 

The densities of the point clouds, and how they are distributed between the four blocks, are 

presented in Table 3. Point densities are calculated with the TerranScan’s measuring tool, 

which measures the average number of points per square meter. As was mentioned, VUX 

data is a fifth from the original total amount of points to make the data processing practicable. 

The lower point density of miniVUX is notable. The VUX and miniVUX sets don’t cover 

the entire blocks two and four, and the SPL100_65 don’t cover the entire block four, from 

the southern side of the test area. Both VUX and miniVUX data miss about 13 ha on the 

block two and 16 ha on the block four, and the SPL100_65 about 22 ha. VUX data is missing 

approximately five million points, miniVUX a bit over two million points and the 

SPL100_65 a bit more than 17 million points. The western side of the test area is partly water 

and the water points are missing from the VUX and miniVUX datasets which low the num-

ber of points compared to the SPL100 and Titan datasets. The three Titan channels are also 

separated. 

 

 

 

  Block1 Block2 Block3 Block4 Overall pts pts/m² 

VUX 58 348 910 27 912 227 59 120 754 30 421 669 175 803 560 71,85 

miniVUX 23 473 609 11 150 728 23 783 685 12 673 879 71 081 901 29,72 

SPL-100_65 51 271 396 49 327 887 58 258 192 39 128 575 197 986 050 80,45 

SPL-100_120 28 969 490 21 247 210 20 742 587 34 999 833 105 959 120 39,73 

Titan 38 418 137 38 137 229 34 642 752 40 843 679 152 041 797 56,80 

Titan Ch1 12 689 323 12 661 934 11 233 295 13 533 525 50 118 077 18,82 

Titan Ch2 14 154 011 14 332 871 13 007 709 15 399 241 56 893 832 21,31 

Titan Ch3 11 574 803 11 142 424 10 401 748 11 910 913 45 029 888 16,85 

 

Table 3. The number of points and densities of the datasets. 
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4.2 Surface areas 

 

Surface areas of the roofs are calculated in TerraScan from the 3D building models. Few 

buildings were left out because of the fuzzy models of complex structures, but the rest were 

grouped for small (under 150 m²), middle (150 – 400 m²) and large sized buildings (over 

400 m²). Small roofs were trash and car shelters. Middle category has detached houses and 

shelters. Large roofs were row houses, high-rise buildings and markets. The difference for 

each surface was calculated by subtracting the data value from the VUX value, and for the 

groups the mean differences and standard deviations were calculated. They were used in the 

investigation to explain and support the results, but the figures shown here are based on the 

surface coverage compared to the VUX data. The sizes of the surfaces were calculated, and 

they were summed to see the total coverage of the buildings, and for the total surfaces the 

percentage calculation was used to describe the results reasonably. The differences of the 

roof sizes were large as the smallest roof is 34 m² and some of the largest roofs are almost 

4000 m², so the sizes of the roofs had big impact to the mean and standard deviations.   

 

The mean differences are small in the miniVUX data and in the Titan channels 1 and 2, 

where the surfaces differ 0 - 5 m² despite the sizes of the roofs. Similar behavior can be seen 

from the Figure 12 where the area difference for every group is under two percentage. The 

SPL100_65 and the Titan channel 3 have the biggest differences compared to the VUX data. 

From the calculations it could be seen that all the roof sizes differ occasionally several or 

even hundreds of square meters, and as a mentioned the mean difference of the large sized 

roofs for the SPL100_65 was -40 m² and for the Titan channel 3 -60 m². The coverage cal-

culations (Fig. 12) also show clearly the largest differences of the SPL100_65 and the Titan 

channel 3. The surface differences in the large sized group were partly very huge, but when 

the percentages are investigated, the results show that the largest roofs have the smallest 

differences in each of the datasets. The proportional values were used, because otherwise the 

errors in the larger buildings were huge compared to the smaller buildings, and the results 

would have been misleading. 

 

One explanation for the larger differences in the SPL100 and Titan datasets, can be related 

to the impact of the laser beam divergence when hitting the target, but alone it doesn’t ex-

plain the errors of hundreds of square meters. The datasheets of the scanners show that the 

beam divergence of the visible wavelength is about 0.2 – 0.4 mrad larger than in the infrared 

channels [8, 58, 59, 60], which might be tens of centimeters on the ground or at the target 

plane. Flat high-rise buildings seem to differ quite much in the SPL100 and Titan datasets. 

Similar behavior can be seen for the lower altitude SPL100 data and for the Titan channel 3, 

in the case of the gabled roofs. The semi-automatic building model vectorization used in the 

project might increase the chance for the errors in the models. The variety of the automatic 

and manual reconstruction may bring some unsteadiness to the data. The accuracies of the 

corner points of the roofs are revealed later, but they may also lead to few square meter 

differences in the surface areas. Notable is that the surface areas vary irregular when they 

are calculated from the miniVUX and first two channels of the Titan. In contrast to that, the 

SPL100 and Titan channel 3 construct the buildings constantly larger than the VUX data, 

which are seen from the results on the Figure 12. In the all building groups (small, middle 

and large) the largest differences can be found from the Titan channel 3, where the maximum 

values are 20.0 m² in the small sized buildings, 53.1 m² in the middle sized buildings and 

199.2 m² in the large sized buildings. Minimum and maximum surface differences for each 

dataset can be found from the Appendix 1.  
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In each dataset, when the percentages are investigated, the smaller roofs seem to have a bit 

more variance than the larger buildings. The smaller size range of the small and middle sized 

roofs (than in the large sized roofs) may explain the effect. Some point clouds of the smaller 

buildings are also a bit sparser than the larger buildings and that’s why they are more sensi-

tive for errors. The smaller roofs are mostly shallow trash and car shelters and the sparsity 

is caused by the trees next to the buildings. Shelters are also more exposed to occlusions 

from the higher buildings and trees.   

 

 

 
Figure 12. Percentage differences of the surfaces compared to the VUX data. Colors pre-

sent the groups based on the sizes of the roofs. 

 

 

Sample standard deviations were calculated for each dataset and for each building group 

(Equation 5). The Appendix 1 shows clearly the effect of the large sized roofs, where the 

deviations are remarkable. The used grouping for the roof sizes also highlights the differ-

ences of the large surfaces versus the small or middle roofs, where the areas are sometimes 

even ten times bigger than in the small and middle sized buildings. That’s the reason, why 

the percentage calculation was also used for the standard deviations of the datasets. In overall 

seems that the miniVUX and Titan channels 1 and 2 have a bit smaller deviations than the 

other datasets (Fig. 13). The SPL100_65 and the Titan channel 3 have larger deviations in 

the small and middle sized roofs. The deviations of the large sized roofs seem to be sufficient 

in all the datasets. Based on the surface coverage and standard deviation calculations, the 

conclusion is that in the surface area investigation would be worth to use the miniVUX in-

stead of the SPL100. From the Titan data the channel 3 should be separated to get more 

accurate information.    
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Figure 13. Percentage differences of the standard deviations compared to the VUX data. 

Colors present the groups based on the sizes of the roofs. 

 

 

 

4.3 Roof outlines 

 

The lengths and widths of the buildings were investigated separately, even if the surface 

comparison is quite much related to the outlines. However, in this section it is practicable to 

describe the mean differences of the outlines (Fig. 14) in meters, instead of percentages, 

because the relations of the sizes of the roofs don’t affect similarly to the results as previ-

ously. The lengths and widths were investigated separately and combined, and were based 

on the created roof lines of the 3D building models. Buildings were divided into two groups 

based on the total lengths of the outlines (length + width): outlines under 40 m (Mean_S) 

and outlines more than 40 m (Mean_L). The VUX data stood as a reference. The smallest 

differences were in the miniVUX data, 0.4 cm (Mean_S) and 1.5 cm (Mean_L), and the 

largest differences were in the Titan channel 3, -49.3 cm (Mean_S) and -53.9 cm (Mean_L). 

Notable detail was that the miniVUX seem to map the building lengths a bit shorter and the 

widths a bit wider than the VUX data, which could originate from the scanning directions. 

The behavior can be seen from the outline figures in the Appendix 2. Otherwise, the sepa-

rated length and width values (from the Appendix 2) follow the shapes of the combination 

of the outlines on the Figure 14. Similarly to the surfaces, the Titan channel 3 seems to be 

the error source and causes the largest differences to the lengths and widths of the roofs. The 

datasets of the SPL100 and Titan channel 3 map the outlines larger, which are in this case 

identified from the negative sided columns. The averages of the standard deviations are 33 

cm for the building outlines under 40 m, and 46 cm for the building outlines more than 40 

m. 
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Figure 14. Outline (length + width) differences of the roofs compared to the VUX data. 

Means_S = outlines under 40 m, Mean_L = outlines more than 40 m. 

 

 

 

Based on the results, the data used in the area computation and in the outline investigation 

are suggested to be the miniVUX data instead of the SPL100, but also the Titan channels 1 

and 2 provides competitive accuracy. The behavior of the visible wavelength in the SPL100 

and the performance of the third channel in Titan are remarkable compared to the miniVUX 

and the Titan channels 1 and 2, which should be noticed. To be able to confirm the typical 

error, caused by the visible wavelength for the hard surfaces, more investigation is needed, 

but according to this research the laser of 532 nm is more imprecise to map the roof surfaces. 

The results show that the visible wavelength 532 nm in Titan causes the error and grows the 

difference to the ground truth. The usage of the visible wavelength constantly widens the 

roof planes than the infrared wavelengths, and the assumption is that the reason is the beam 

divergence of the laser. It was unexpected that the higher altitude SPL100 data provides 

better accuracy than the lower altitude SPL100, at least in the case of the surfaces. In average, 

the larger roofs don’t affect to the outline differences similarly than in the lower SPL100 

dataset.  
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4.4 Planimetric coordinate differences 

 

4.4.1 Corner points 

 

The corner coordinates of the roofs were searched for each building from the five roof type 

groups. The coordinates of the points were compared to the corresponding point from the 

VUX data by subtracting the values. For each group of roof types (flat, oblique, gabled, 

conical and others) the mean differences and standard deviations were calculated. The pla-

nimetric distances were computed from the mean values of the x and y –coordinates, which 

showed the average differences between the true corner coordinates, with the assumption 

that the VUX data was the true value, and the measured corner coordinates (Equation 6). 

From the point cloud data and from the coordinate comparison, the systematic error in both 

of the SPL100 datasets was noticed. To remove the systematic error from the coordinates, 

the field measured roof points were used as a reference, 67 points for the SPL100_65 and 65 

points for the SPL100_120. In the SPL100_65 data the error was: x = 0.527 m, y = 0.591 m. 

In the SPL100_120 data the error was: x = 0.465 m, y = 0.717 m. Figure 15 shows the 

planimetric accuracies, technically the distances between measured points and the reference 

points, of each dataset and each group of roof type, compared with the VUX data. Black line 

shows the average differences of all roof types combined. The smallest and largest planimet-

ric differences are both in the Titan channel 2: flat roofs 0.003 m and other roofs 0.132 m.  

 

For the miniVUX, the gabled roof data (green) seem to reach the accuracy of 1.5 cm. All the 

roof types differ 1.4 – 11.9 cm from the VUX data and the overall distance difference was 

4.3 cm (x = 4.1 cm and y = -1.4 cm). The miniVUX data is also most sparse point cloud and 

achieves similar accuracy than the denser clouds, even if the usual assumption is, that the 

sparser point clouds provide lower accuracy. Standard deviation was 26 cm (x = 29 cm and 

y = 23 cm).  

 

The averages of the SPL100 coordinates are in a range of 1.4 – 8.1 cm after the correction 

of the systematic error. The Leica’s datasheet reports the horizontal accuracy to be under 15 

cm at the altitude of 4000 meters with the flight speed of 360 km/h. Based on the calcula-

tions, the results of the both SPL100 datasets seem to be in the reported accuracy. The dis-

tance difference of the SPL100_65 was 3.8 cm (x = -3.4 cm and y = -1.7 cm) and the 

SPL100_120 was 4.3 cm (x = -2.9 cm and y = -3.2 cm). The lower altitude and lower flight 

speed (than in Leica’s test experiment) are affecting positively to the data. Also the dense 

point clouds have an impact to the accuracy of the corner coordinates. Standard deviations 

were 33 cm (x = 33 cm and y = 32 cm) for the SPL100_65, and 25 cm (x = 24 cm and y = 

26 cm) for the SPL100_120. 

 

Teledyne Optech reports the horizontal accuracy to be calculated from the equation: 1 / 7500 

* altitude. In this flight campaign the altitude was 700 m, so the accuracy should be around 

9.5 cm. The average distance difference was 3.8 cm of all the roof types combined and the 

reported accuracy seem to be reached reliably. The mean difference of the x-coordinate is 

0.6 cm and the y-coordinate 3.7 cm. The peak in the group “others”, which lead to the chan-

nel 2, can be explained by the low number of the points collected from these roofs. There 

were only two buildings involved in the calculation and can be assumed that using the larger 

sample size it would compensate the distribution of the coordinates. Standard deviation of 

the Titan data was 31 cm (x = 32 cm and y = 30 cm).    
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Figure 15. Planimetric (x, y) accuracies of the corner points of the roofs, compared to the 

VUX data. Bars present the roof types: flat, oblique, gabled, conical and others. Black line 

is the average of all roofs. 

     

 

Titan’s three wavelengths were examined separately. Almost all the average coordinate dif-

ferences of the roof types are under 6 cm. The peak in the channel 2 may be the result of the 

low number of the points as previously mentioned, where the complexity of the roofs also 

affects. Surprising was that the mean difference of the channel 3 is that small, when the 

influence to the previously investigated surfaces and outlines were notable. The average dis-

tance differences of the points were, 1.5 cm (x = -1.2 and y = 0.9 cm) for the channel 1, 3.2 

cm (x = -2.7 cm and y = 1.7 cm) for the channel 2, and 1.4 cm (x = -1.3 and y = 0.5 cm) for 

the channel 3. The standard deviations were 18 cm (x = 18 cm and y = 19 cm), 24 cm (x = 

22 cm and y = 26 cm) and 35 cm (x = 35 cm and y = 36 cm) in the same order.   

 

 

4.4.2 Outline corners 

 

The coordinate differences were also calculated for the roof outlines of the 3D building mod-

els. Similarly the mean, standard deviation and planimetric distance were calculated for the 

all roof types and compared to the VUX data. The systematic error in the SPL datasets were 

controlled similarly with the same correction values. Again the smallest and largest plani-

metric differences were found from the Titan channel 2, where the smallest was 0.013 m for 

the gabled roofs and the largest was 0.224 m for the other roofs. Figure 16 shows the plani-

metric accuracies based on the corner coordinates of the building outlines.  

 

With miniVUX, the estimated 5 cm accuracy of the survey is achieved by the gabled roofs 

(green). The roof types differ in a range of 3.7 – 12.4 cm and the distance difference of all 

roof types combined with the mean of the x and y –coordinates was 3.4 cm (x = 3.4 cm and 
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y = -0.5 cm ). The standard deviation was 26 cm (x = 30 cm and y = 23 cm). Compared to 

the coordinates of the corner points of the roofs, the outline corners provide a bit better mean 

accuracy. The changes are small, but the oblique roofs seem to be a bit more accurate, which 

affect also to the total average.  

 

All the roof types of the SPL100 datasets differ in a range of 1.6 – 14.9 cm and distance 

differences are 5.8 cm (x = -4.6 cm and y = -3.5 cm) for the SPL100_65 and 3.5 cm (x = -

2.1 cm and y = -2.8 cm) for the SPL100_120. Standard deviation of the SPL100_65 was 32 

cm (x = 33 cm and y = 31 cm), and for the SPL100_120 the deviation was 26 cm (x = 26 cm 

and y = 25 cm). Previously the lower altitude SPL100 dataset provided a bit better accuracy, 

even if the deviation was larger, but when the outline corners were investigated it is seen 

that the higher altitude SPL100 provides better accuracy and smaller deviation. The flat roofs 

increase the error in both of the datasets and they are notably larger than previously. The 

reconstructed models of the flat roofs seem to have a couple of centimeters inaccuracy, but 

still the datasets are in the reported 15 cm accuracy. 

 

Titan’s roof types differ in a range of 2.0 – 17.6 cm and the distance difference is 6.3 cm (x 

= 0.9 cm and y = 6.2 cm). The standard deviation was 34 cm (x = 34 cm and y = 34 cm). 

The corner points based on the outlines of the building are more inaccurate than the manually 

collected corner points. The conical and other roof types seem to grow the error notably, 

which can be assumed to come from the 3D model vectorization. The tilted and more com-

plex roofs seem to affect quite much to the building models and to the accuracies of the 

outline corners of the roofs. The effect and accuracy of the channel 3 is again a bit question-

able, when remembering the impact to the surface areas and outlines.   

 

 

 

 
Figure 16. Planimetric (x, y) accuracies of the corner outlines of the roofs, compared to 

the VUX data. Bars present the roof types: flat, oblique, gabled, conical and others. Black 

line is the average of all roofs. 
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The separated Titan channels 1 and 2 have inaccuracies with the buildings “others”, where 

the largest mean is more than 20 cm. Somehow in the channel 3 the outlines are accurately 

constructed. Channel 1 has also notable errors with the conical surfaces. The distance differ-

ence of the channel 1 was 6.4 cm (x = -3.6 cm and y = 5.3 cm), channel 2, 5.5 cm (x = -3.4 

cm and y = 4.3 cm) and channel 3, 1.6 cm (x = -1.4 cm and y = -0.8 cm). The standard 

deviations were 30 cm (x = 31 cm and y = 29 cm), 25 cm (x = 23 cm and y = 28 cm) and 35 

cm (x = 35 cm y = 34 cm), respectively. 

 

 

 

4.5 Building heights 

 

Heights of the buildings are examined from the point clouds in TerraScan by subtracting the 

height of the closest ground point from the corner point of the roof. The height differences 

are calculated similarly than previously by subtracting the value from the reference data (Fig. 

17). Some reference heights are measured with the Topcon GNSS receiver, but the most are 

from the VUX-1HA ALS data. The height measurements were done for 35 buildings with 

two opposite corner points of each building. There were found two outliers from the data, 

which were removed from the calculations, therefore the overall number of points was 68 in 

each dataset.  

 

Usually the assumption is that the higher point density provides not only better planimetric 

accuracy but also height accuracy. In advance it was interesting to find out, if similar behav-

ior is involved and differences discovered in the case, where even the lowest density is more 

than 16 pts/m². From the line on the graph (Fig. 17) can be assumed that the individual Titan 

channels can almost provide as accurate height information than the higher point density 

miniVUX and SPL100 datasets. Couple of centimeter increase can be seen in the individual 

Titan channels. The higher altitude SPL100 data has the best height accuracy based on the 

results by providing 4.2 cm (std. = 14.4 cm) average difference to the reference data. The 

largest difference 8.4 cm (std. = 14.4 cm) is in the Titan channel 2. The height determination 

of all the datasets ranged from one millimeter to 55 cm. Even if the datasets were dense, the 

most inaccuracies were caused by the occlusions from the trees or from the other buildings. 

Complexity of some of the roof structures were also affecting to the precision. The ground 

shape in the area was partly rugged and hilly which augmented some small changes on the 

ground and especially near the buildings. Some occlusions in the data was also caused by 

the blocking shape of the ground or the middle height vegetation. These issues caused the 

situation, where there weren’t points right below the corner of the roof, and the small dis-

tance outside from the building caused the difference and inaccuracy in the height determi-

nation. Although there were just a couple of these situations, the effect of the issue was 

approximated to be 1 - 10 cm in height.     

 

The red bars in the Figure 17 show the standard deviations of the datasets which range quite 

similarly. The smallest deviations of 14.0 cm are in the miniVUX and in the Titan channel 

1. The largest deviation of 16.8 cm is in the Titan channel 3.       
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Figure 17. Standard deviations and average differences of the roof heights compared to 

the VUX data. 

 

 

 

4.6 Roof inclinations 

 

Inclinations for the roof types of oblique, gabled, conical and others (just two roofs) were 

calculated in TerraScan. Flat roofs were ignored after the first calculation of a small sample, 

because of the assumption that the rest of the differences are also so small and close to 90 

degrees, that the investigation is pointless. Finally, the total number of samples for inclina-

tion comparison was 32. From the gabled roofs the angle between the roof planes was cal-

culated. From the oblique, conical and other roofs the tilts of the roofs compared to the ver-

tical walls were calculated. The differences to the VUX data were calculated for all the an-

gels of the roofs. The mean and standard deviations were calculated for each dataset. The 

maximum differences of the samples were picked and removed from the calculus to see the 

effect of the outliers. Below on the Table 4 are shown the mean values and standard devia-

tions with and without the maximum differences in the data.     
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Inclination differences ° Inclination differences ° 

   (max values removed) 

     

  Mean Std Max Mean Std 

miniVUX -0,159 0,638 2,4 -0,079 0,479 

SPL-100_65 -0,097 0,638 1,4 -0,052 0,553 

SPL-100_120 -0,094 0,711 2,6 -0,010 0,547 

Titan -0,203 1,122 4,8 -0,045 0,723 

Titan Ch1 0,013 0,247 0,8 -0,014 0,201 

Titan Ch2 -0,086 0,759 2,7 0,007 0,579 

Titan Ch3 -0,485 1,794 7,8 -0,204 1,060 

 

Table 4. Mean, standard deviation and max differences of each dataset compared to the 

VUX data. Values are in degrees. 

 

 

 

When so called outliers, if for example the maximum value of the Titan channel 1 can be 

called as an outlier, are removed, the most of the mean differences decrease quite much, 

and also the most of the standard deviations change in a positive way. This shows that in 

most of the datasets the maximum differences were individual angles with larger error. The 

graph showing visually the effect, when the maximum values are removed from the da-

tasets, is shown in Figure 18. The standard deviations ranged from 0.25° to 1.79° when the 

maximum values were from 0.8 to 7.8 degrees. After the removal, the standard deviations 

ranged from 0.20° to 1.06° and the maximum values were from 0.5 to 2.1 degrees. In over-

all the inclination differences were quite small between the datasets and most of the differ-

ences came from the small sized roofs including the trash and car shelters. It seems that the 

smaller surfaces are more error sensitive than the larger surfaces, but more buildings 

should be included to the research to confirm the behavior. Also, the lower amount of 

points hitting the surface, the occlusion caused by the trees or from the larger buildings 

might affect to the inclinations and angles. Also in this investigation it was seen the worst 

accuracy in the Titan channel 3, where the mean and maximum differences together with 

the standard deviation were the largest before and after the outlier removal.   

 

 



44 

 

 
Figure 18. Inclination differences of the roofs compared to the VUX data. Blue line in-

cludes all the data and the max differences are removed from the data of the red line. 

 

 

 

4.7 Plane deviations 

 

The point deviations on the roof planes were investigated from the datasets. The roof point 

data was exported from TerraScan as LAS1.4 –files, which were used in CloudCompare. 

Flat and oblique roofs were used to investigate the dispersions on the whole surfaces of the 

roofs. Later the smaller samples were segmented, because the large deviations were noticed 

on the surfaces, which weren’t caused by the scanner. For the conical roofs the roof planes 

were investigated separately. They were used to see if the flight direction, the location of the 

trajectory or the orientation and tilt of the roof plane cause any differences to the point dis-

persions. With the CloudCompare’s fitting tool the planes can be created based on the point 

cloud. The tool works automatically when launched and creates a triangular mesh plane. In 

this work the dispersions of the roof planes are based on the cloud to mesh distances between 

the created roof planes and the point clouds. CloudCompare provides tools to examine vis-

ually the deviation to the plane (Fig. 19). When the plane is fitted to the point data, the 

software computes the root mean square –values to see some statistics of the disparity. Other 

information are normal vectors of the plane, dip and its direction, and the transformation 

matrix of 4x4 to make the plane horizontal, but these information weren’t that important for 

the analysis. Because the software provides the RMS –values automatically they are used in 

this chapter to show the statistics together with the standard deviations. From the roofs in-

cluding two or more sides or levels, as many planes as needed were created. For example, 
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for the conical roofs four planes were created based on the orientations of the roof surfaces. 

In this section the VUX data is not working as a reference, but is dealt individually together 

with the other datasets. From the VUX data the points of one minute of flight was separated 

beside the whole dataset, to see the possible differences of one scan (one flight line) and the 

combination of several scans (multiple flight lines). However, the one minute of flight data 

was used only for the sample investigation.  

 

 

 

 
Figure 19. Computed and colored cloud-to-mesh distances. The planes concern the whole 

surface of the roof.   

 

 

 

CloudCompare’s cloud-to-mesh distance tool needs a point cloud and one or two meshes to 

get launched. In this case one mesh per point cloud is used as a reference. First the software 

calculates the approximate distances between the point cloud and the reference cloud. The 

plane mesh contains the hidden reference cloud. The approximate distances are displayed if 

the user wants to operate with the parameters, which is not usually necessary. The main 

parameters for the computation are octree level and maximum distance. The signed distance, 

flip normals and so called multi-threaded are the check box selections for the computation. 

The computation is performed in the subdivisions of octrees, where inside each cell the dis-

tance for each point is computed. The idea is that the octree level specifies the size of the 

cells to do as little computation as possible, and due to that the computation time will be 

lower. CloudCompare sets the number of the cells and cell size parameters automatically, 

which are recommended to use. The maximum distance determines how far the points are 

searched. With larger datasets than single roof points the distances between entities can be 

large and the search of their nearest neighbors can be slow. Signed distances determines, 

whether the distance should be signed with the triangle normal or not, and if it is signed, the 

flip normal inverts the sign. The multi-threaded selection decides if all available CPU cores 

of the computer are used for the processing [70].  
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4.7.1 Flat and oblique roofs 

 

The mean RMS –values of each dataset for the total surfaces of the roofs were calculated 

from the individual planes. Notable were the size of the deviations and the much larger mean 

values of the flat roofs. With the attributes and accuracies of the equipment used in the data 

collection, the deviations were too large. The maximum disparities of the datasets varied 

between 24 and 76 cm for the flat roofs and between 14 and 20 cm for the oblique roofs. The 

largest objects on the roofs were cut out but the point clouds still had some smaller details, 

for example air conditioning units etc., which increased a bit the rate of the point deviation. 

The biggest problem with the flat roof category was, that at least the largest roofs, which 

were about 75 % of the investigated buildings, weren’t totally flat. As is known also the flat 

roofs usually have some kind of inclination to guide and remove water, which were clearly 

seen, when the buildings were examined more precisely. This lead to the fact that a single 

planes didn’t follow the exact shapes of the roofing materials. The largest roofs might also 

have some smaller varying on the face of the roof that affect to the point disparity. From the 

Figure 19 can be seen for example, that the edges of the roofs are a bit higher than the sur-

faces, the roofs of the balconies are a bit lower than the rest of the roof plane, and some 

details on the roof. From this building the pipes from the middle of the point cloud are re-

moved.        

 

Because the total surfaces had unsteadiness and didn’t really explain the performance of the 

scanner, the smaller pieces were cut out from the roofs. The visual examples of the roof 

samples are in the Figure 20, where the samples are collected from the oblique roof of the 

car shelter. The size of the sample is about 40 m². Even if the range of the colored distances 

is the same (from -0.20 to 0.20 m) as previously in the Figure 19, the difference is that the 

average disparities are much smaller than with the larger surfaces. The mean values of the 

datasets are mostly under one centimeter and the RMS –values a couple of centimeters. From 

the point clouds it can be seen that the roof has elevated edges (at least the side on the top), 

where the distances to the plane are more than 15 cm. Besides the thinned VUX data in 

Figure 20, a sample with all the VUX points on the roof is shown (small image). This shows 

that the VUX data of one minute of flight is not as dense as the complete VUX dataset. 

Mentionable is that the shelter has wavy profile to remove the water and the VUX_1min 

data was the only dataset, where the profile of the roof was visible and the user was able to 

detect the single gutters of the roof. If the image (VUX_1min in the Fig. 20) is viewed care-

fully, the stripes in the point cloud can be seen. Some datasets have more points than the 

VUX_1min, but the detailed profile of the roof couldn’t be recognized.    
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Figure 20. Computed and colored cloud-to-mesh distances. The planes concern the sam-

ples of the roof.   

  

 

 

Figure 21 shows the mean RMS-values of the samples taken from the roof data. In overall 

the mean RMS-values have decreased a lot and the differences between the flat and oblique 

roofs are leveled. The earlier problem with the roof details and falls are not anymore in-

volved, and can be assumed that now the results are more truthful concerning only the point 

deviations on a constant planar roofs. From the results it can be seen that in average the point 

deviation of the miniVUX data is the largest, which includes both of the roof types. The data 

of the lower altitude SPL100 seem to be a bit better than the higher altitude data. From the 

Titan data are seen that the channel 1 is the most precise and the channel 3 again the most 

imprecise. The VUX data of one minute of flight seems to be more accurate than the VUX 

data including several scans. This behavior was beforehand expected. However the differ-

ences between datasets are not dramatic. The maximum deviations varied between 6 and 10 

cm for the flat roofs and between 5 and 15 cm for the oblique roofs. The Titan channel 3 had 

the max deviation of the flat roofs, 9.8 cm. For the oblique roofs the biggest deviation was 

in the miniVUX data, 14.5 cm.  
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Figure 21. Mean RMS -values of the cloud-to-mesh distances. Planes concerned the sam-

ples from the roofs. Bars present the flat (blue) and oblique (red) roofs. 

 

 

 

4.7.2 Conical roofs 

 

Last thing of the point deviations was to investigate the conical roofs (Fig. 22). The idea was 

to see do the flight direction, the location of the trajectory, the orientation and tilt of the roof 

plane or the mechanism of the scanner cause any differences to the point deviations. To find 

out the effects, point cloud data of the different flight lines which consist the conical roofs 

were extracted: from the VUX data the point cloud data of one minute of flight, from the 

SPL100_120 data flight line 4, and from the Titan data the data of the flight lines 11 and 12. 

All the conical buildings had four differently oriented roof planes, which were handled in-

dividually, and whom were created the reference planes. From the outcome it could be seen 

that the miniVUX was the most diffuse data, where almost all of the RMS –values were 

close to 10 cm. Otherwise the deviations of the datasets were alternately between 2 and 10 

cm. From the datasets, 15 outliers were found, and four of them were in the miniVUX data. 

The miniVUX and the SPL100_65 data had some roofs with noise below or on top of the 

plane. For the other datasets the outliers were in the individual roof planes and mostly with 

the low amount of points. From the Appendix 3 can be found an example data of the detached 

house, which were used in the investigation. The number of the points per each plane of the 

building and the distribution of the points are demonstrated. The planes are named with the 

compass directions. The vertical axis shows the number of the points and the horizontal axis 

the distance to the plane. The fitting curves of the normal (Gaussian) distribution are figured. 

The mean values and standard deviations of the datasets are also discovered from the figures.   
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Figure 22. Building model with the conical roof. Outlines, ground and roof points are visi-

ble. 

 

 

 

In overall the mean values, the standard deviations and the RMS –values of the roof planes 

are small in the VUX data, where most of the mean values are from -2 mm to 2 mm. In the 

example (Appendix 3), there are more points in the northern and southern roof planes, which 

come from the obvious reason that the surfaces are larger than the eastern and western planes. 

In the investigation was noticed that the number of the points decrease quite quickly together 

with the distance from the trajectory line. This was clearly seen at least from the data of one 

minute of flight. After 100 meters away from the scanning line the point density is much 

lower and the orientation of the roof plane starts to affect to the number of the hits. But again, 

it should be noted that the used VUX data was only a fifth from the whole dataset. From the 

point deviations it could be noticed that the sides, where the laser beam hits first and whose 

normals are towards the scanner, have the smaller dispersion than the further side, where the 

plane normals are pointing to the opposite direction. The RMS and standard deviations are 

couple of centimeters (mean RMS 6.8 cm). When the trajectory goes right above the build-

ing, the orientations of the planes don’t affect to the point dispersion. Otherwise the location 

of the flight line has influence to the point deviations on the roof planes. It was expected that 

the VUX data of one minute of flight has smaller RMS (mean 3.5 cm) and standard deviation 

than the full VUX data, and from the example values it can be seen that the assumption was 

correct. Mentionable is that the VUX_1min data have more points than the thinned VUX 

data. When the target is further from the trajectory, the orientation of the plane (is it towards 

or against the scanner) has bigger influence to the number of the points, and in the investi-

gated roofs the differences were even thousands or more points. However, the point devia-

tions seem to be similar with high and low amount of points. The point deviations in respect 

to the tilt of the planes were investigated with a couple of buildings. The conical roofs had 

the inclinations between 102 and 110 degrees. No impact of the inclination change to the 

deviation values was found. 
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The number of the points in the miniVUX data was the lowest and it has the largest standard 

deviations and RMS –values from all the datasets. From the example figures in the Appendix 

3, and from the other buildings too, two peaks formed to the graphs can be seen. Because 

the miniVUX data wasn’t divided to the one minute of flight datasets, the presumption is 

that the shapes are coming from the different flight lines, which were done from the different 

directions (north-south and east-west directions). From the shapes and the values of the fig-

ures, it can be assumed that the north-south directed scans form the plane either a bit lower 

or higher, than the east-west directed scans. The second thing noticed from the data was that 

the orientations of the planes with respect to the flight direction affect more than in the VUX 

data. The planes pointing away from the scanner have less points than the planes toward the 

scanner. The RMS –values range between 3 and 12 (mean 9.8 cm) centimeters and the num-

ber of the points differ from 2 to 8 points/m². It is unknown how much the scanning direction 

against the flight direction have influence to the effect of the point layout. The last thing 

noticed was that the more inclined roof planes are more sensitive to the errors and changes 

than in the VUX data. When the tilt of the target grows, the laser footprint grows and the 

point cloud will be sparser, which seem to affect to the deviation.  

 

The figures of the SPL100_65 data show that the point distributions are quite sharp and there 

are many points with the same distance from the roof plane. In the example the southern 

plane has more than thousand points with the same distance, which is much more than in the 

planes of the other datasets. In average the deviations are a bit smaller than in the VUX data, 

but there are single points, which have a longer distance to the roof plane (noise). The mean 

of the RMS is 5.4 cm. Notable was, that when the tilt of the plane is perpendicularly away 

from the trajectory there are systematically lower number of the points and larger disparity, 

as in the plane toward the scanner. The number of the points differ about 100 – 200 points 

per roof plane which is about 4 – 6 pts/m². The deviation differences of these planes were a 

couple of centimeters more than in the other planes. The roofs parallel to the flight direction 

don’t have this kind of behavior either in the number of the points or in the point deviation. 

The flight line and the formed point pattern of the scanner seem to cause the differences to 

the roof planes. The SPL100_65 data was handled as one, because the buildings were cap-

tured reasonably enough only from the one flight line. The data from the other flight lines 

were too sparse or included holes.  

 

The SPL100_120 data differs from the lower altitude SPL100 and Titan flights in a way, that 

it has one flight line crossing the study area from south to north. The effect of the crossed 

line is clearly seen in the number of the points, where the planes inside the swath and toward 

the cross section of the flight lines have much more points than the other roof planes of the 

same building. The difference between the roof towards the cross section and the opposite 

side can be even more than 500 points which is from 10 to 15 points/m². The cross section 

affects also to the other two roofs (on the sides along the trajectory), but the difference is not 

that obvious, and like in the example, the number of points can be quite nicely even. In 

average, the planes with the north-south directed normals have smaller point deviation, and 

at least on the plane, which is closer to the flight line. This behavior seems to be systematic, 

but the differences are not significant. In the east-west direction similar systematics can’t be 

found. The mean of the RMS is 4.9 cm. From the SPL100_120 data the flight line four, 

which included almost all the investigated conical buildings, was separated. The amount of 

the point data is about half or one third from the whole SPL100_120 data. The distribution 

graphs are quite similar as with the total dataset, where the orientation of the roof planes 
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affects to the number of the points and the planes toward the flight line have more points. 

The mean of the RMS is 5.2 cm, and it seems that there is no systematic behavior in the point 

deviation.   

 

Titan data was handled as one and the channels weren’t separated. In overall it has small 

mean values, standard deviations and RMS –values. Almost all the data is from the flight 

line 11, which is flown from west to east. Seems that the flight direction and the location of 

the trajectory don’t affect to the point deviation, but to the number of the points. The mean 

of the RMS is 4.1 cm, for the flight line 11 the RMS is the same 4.1 cm, and for the flight 

line 12, 3.6 cm. For the roof planes parallel or closer to the trajectory the number of the 

points is bigger. In the example, the difference is a couple of hundred points and similar 

behavior are seen from the other buildings and flight lines too. The differences are from 100 

to 200 points on a plane which is about 1 – 5 points/m². One observed effect of the tilt to the 

point deviation, was with the inclination angle of 110 degrees, where the two planes, with 

normals pointing to the opposite direction from the scanner, have larger point deviations of 

a couple of centimeters. More buildings and wider coverage of inclinations should be inves-

tigated to be able to confirm the effect of the tilt to the point deviation.   
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5 Discussion 
 

5.1 ALS data comparisons 

 

This chapter summarized the results from the previous studies and the result of this project. 

In overall, the accuracies in this project are similar or a bit better than accuracies mentioned 

in the other studies. The horizontal accuracies of the conventional LiDAR works are mostly 

varying from 5 cm to one meter. In 2005 Kaartinen et.al. [35, 36] had the mean of the build-

ing outlines of 66 cm and the mean of the length accuracy of 93 cm for the laser scanner 

data. In 2015 Xiao et.al. [40] had the planimetric accuracy of 60 cm with the segmentation 

method, and in 2017 Cao et.al. [41], 10 cm with the roof reconstruction method. In this 

project were got better accuracies than the previous studies. The accuracies of the outlines 

for the conventional LiDAR (miniVUX) were clearly better than 10 cm and the mean dif-

ference of the corner points was 3.4 cm. Fernandez-Diaz et.al. [37] got the 5 cm accuracy 

with the multispectral Titan, and made the observation that the accuracy decreases, when all 

the channels are combined and the channels are recommended to be used separately. Similar 

issues were recognized in this project. The corner coordinates of the Titan reached the 5 cm 

accuracy and the outline corners were almost the same. When the roof outlines were inves-

tigated, it was found that the channel 3 (532 nm) causes the most of the error. Channels 1 

and 2 reach the 10 cm accuracy, but the channel 3 extends the outlines. Based on this study 

the horizontal accuracy of 5 cm can be reached, but the behavior of the channel 3 is unrelia-

ble. Degnan [29] reported the accuracy of 10 cm with the SPL systems, and in this project 

the investigation of the corner points and corner outlines reached that easily. However, the 

differences of the surfaces of the SPL100 are quite large, so there seem to be some unrelia-

bility with the green wavelength.     

 

Kaartinen et.al. [35, 36] were investigating the building heights for the conventional LiDAR 

data and the mean of 32 cm was reported. Xiao et.al. [40] and Cao et.al. [41] reached the 10 

cm vertical accuracy for the building roofs. In this work, the miniVUX reached the height 

difference of 5.9 cm to the reference, which is better than in the other researches. With the 

Titan was reached 6.5 cm accuracy by Fernandez-Diaz et.al. [37]. In this project, the mean 

heights of the Titan were between 6.3 and 8.4 cm, which are close the previous studies. 

Degnan [29] got 3 cm vertical accuracy with the SPL data and Stoker et.al. [58] 17 cm ac-

curacy. The vertical accuracy of 3 cm wasn’t reached with the SPL100 data, but quite close, 

when the mean differences were 5.9 and 4.2 cm to the reference. Kaartinen et.al. [35, 36] 

also investigated the inclinations and the mean of 2.7° was reported. In this project the dif-

ferences were small and the mean values of all the datasets were less than 0.5°. Plane devi-

ations of 0.7 – 3.1 cm for the conventional LiDAR data and 1.0 – 9.5 cm for the SPL data 

were reported by Mandlburger et.al. [31]. In overall the deviations of the VUX (4.4 cm) and 

miniVUX (5.7 cm) datasets were a bit more than the conventional LiDAR results in the 

paper by Mandlburger, and the point deviations of the SPL100 datasets were close 

(SPL100_65: 3.2 cm, SPL100_120: 3.8 cm). 

 

Table 5 is the overview of the outcome, which includes the most and least accurate results 

for each comparison. The datasets and outcome are implicated. “Surface areas” shows the 

mean differences in percentages compared to the VUX data, and they are divided by the size 

of the buildings. Roof outlines had two classes: the outlines less than 40 m and more than 
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40 m. Planimetric coordinate differences were investigated from the corner points and cor-

ners of the outlines as were presented in the paper. Roof inclinations had also datasets when 

the outliers (max differences) were removed. Investigation for plane deviations were done 

for the flat and oblique roofs separately.    

 

 

 Best result Worst result 

    
Point densities (pts/m²)     

  SPL100_65 Titan Ch3 

  80,5 16,9 

Surface areas (%)     

Buildings < 150 m² miniVUX/Titan Ch1 Titan Ch3 

  -1,4 7,2 

Buildings 150 - 400 m² Titan Ch2 Titan Ch3 

  -0,4 6,2 

Buildings > 400 m² Titan Ch1 Titan Ch3 

  0,0 3,6 

Roof outlines (cm)     

Outlines < 40 m miniVUX Titan Ch3 

  0,4 -49,3 

Outlines > 40 m miniVUX Titan Ch3 

  1,5 -53,9 

Planimetric coordinate differences 
(cm)     

Corner points Titan Ch3 miniVUX/SPL100_120 

  1,4 4,3 

Outline corners Titan Ch3 Titan Ch1 

  1,6 6,4 

Building heights (cm)     

  SPL100_120 Titan Ch2 

  4,2 8,4 

Roof inclinations (°)     

All data Titan Ch1 Titan Ch3 

  0,01 -0,49 

Max values removed 
Titan Ch1/Titan 
Ch2/SPL100_120 Titan Ch3 

  0,01 -0,20 

Plane deviations (cm)     

Flat roofs SPL100_65 miniVUX/Titan 

  2,8 4,5 

Oblique roofs Titan Ch1 miniVUX 

  1,9 6,8 

 

Table 5. The overview of the most and the least accurate results of each comparison. 
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5.2 Limitations and recommendations 

 

As was seen, the features of the laser scanners differ, which have influence to the quality 

and attributes of the data. The capabilities and limits of the scanners are somehow known, 

but this type of accuracy investigation and data comparison including the new mechanisms 

of multispectral or single photon LiDARs, were found just few or none at all. Different al-

gorithms and papers for point cloud classifications were found, but the number of the accu-

racy investigation of the point clouds or 3D models was small. This can be seen kind of a 

limit also for the project, that the knowledge of the capabilities of the data, including example 

situations and analysis, were so small. On the other hand, or actually, that was the idea of 

the thesis to investigate the new technologies and compare those to the more traditional and 

high accurate ALS laser scanners. One quite big limitation in the work was concerning the 

VUX-1HA data, technically the number of used points. For the more fluent processing the 

amount of the data had to be reduced. Finally, the VUX data was just fifth from the total 

amount of the dataset. The amount of the data could have been a bit more to make the pro-

cessing still practicable, but however the processing took time, and it was decided to reduce 

the data quite much to make the processing adaptive. It can be assumed that this may affect 

to the accuracy and precision of the data, but the average difference between the measured 

points and VUX data was 2 cm in x-coordinate and 6 cm in y-coordinate. ALS campaigns 

and RTK –measurements also have some uncertainties and errors in the navigation and po-

sitioning, but the impact was thought to be max 5 cm. Preprocessing of the data and point 

cloud adjustment may also include some error. In this thesis, they cannot be analyzed, as 

they were done by the third party companies, who were responsible for the ALS campaigns 

and the selection of the preprocessing methods. The accuracies of the scanners and the da-

tasets were presented in the text, and here are disclosed some possible error sources and 

other observations, which were found or might be involved in the data processing and cal-

culations of the project. The systematic errors in the SPL100 datasets were taken into account 

only, when the coordinates of the corner points of the roofs were calculated, because it 

shouldn’t affect to the other investigated problems. The question is that were the number of 

the points enough to remove the error reliably and was it smart to use only the roof points to 

remove the error. If more points including ground points would have been used and the re-

moval of the systematic errors had been done for the complete datasets, how much the ac-

curacy and reliability would have improved. One thought was to investigate the ground 

points before the roofs, but it was left out because the time set the limit for the project and 

the object detection based on the intensity, without the aerial images, was challenging.  

 

The classifications of the point clouds were one way to increase the reliability of the results 

in the project. To make the point cloud classification trustworthy, the TerraScan macros were 

tested step by step for each dataset, and the automatic classification was done twice. The 

roof points of the sample areas were inspected, and manually edited when needed to ensure 

that all roof points were in the sample datasets. The reliability of the 3D models was a bit 

unsure, because many of them needed editing after the vectorization. The simple flat, oblique 

and gabled buildings were reconstructed correctly, but for the large sized buildings and com-

plex structures it was difficult to find correct parameters for the vectorization. Also the 

smaller details on the roofs confused the construction. For these buildings manual editing 

was executed, following the point clouds as good as possible, but still there might be small 

differences between the models. However, it must be remembered that the point clouds also 

differ from each other, which might bring some variance to the reconstruction. Some of the 

buildings needed to be left out because the TerraScan’s building reconstruction wasn’t able 
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to create the complex building models. The number of the details seem to be one reason for 

the problems in the vectorization. For the more detailed models, another software could be 

tested to create the higher LoD models, where the smaller details can be created. As was 

seen the surfaces, outlines and roof inclinations were based on the 3D models, and the accu-

racies of the reconstructions were crucial. If the work and comparison of the datasets would 

continue, the next step could be to use the modeling method for the higher level of details.  

 

It was already mentioned that some of the research projects used the hybrid method, where 

the laser scanner data is used together with the images [35, 36, 38]. Most of them reported 

that the hybrid methods provide higher accuracy and affect positively to the 3D reconstruc-

tion, than using only the laser scanner data. The hybrid of singe photon or multispectral 

LiDAR data together with the images, is one method which no-one has published yet. The 

hybrid method might help in the data processing and it is assumed, that the hybrid with the 

single photon or multispectral data, works similarly, as with the conventional LiDAR data, 

and increases the accuracy. Again, if the work would continue this can be step to try and it 

probably will affect to the results. The data used in this project included also features or 

information, which weren’t taken into account, but might be useful at least in the point cloud 

classification. The waveform and echo information of each point can be handled and used 

also in TerraScan [69]. The waveform data can be linked to the laser points and trajectories, 

and used in the classification. The echoes can be extracted (first, last, all echoes) from the 

data and the properties of the length, normality and position, can be compared between the 

points to ease and clear the data processing. The waveform profile shows for each point the 

number of the photons returned to the scanner and the location of the selected point. When 

comparing the waveform data of the point to the typical graphs of the land cover classes, the 

target detection might be more reliable. With the echo extraction, points to the missing re-

turns can be created, where the generated points are not optimal. The method is used for 

example, when there are missing returns from the objects or to create the ground points in a 

densely vegetated areas by using the order of the echoes. Titan’s multispectral data provides 

the possibility to detect the ground classes and objects from the spectrum of all the three 

wavelengths. In this case, only the roofs, where the number of the samples were quite small 

were investigated, and the manual work was practicable. This work didn’t need the spectral 

information to find the points belonging to the roof features. With the larger amount of build-

ings, or if more than roof data is studied, the automatic classification and object recognition 

might get better results, if the echo or spectral data is involved in the processing.   

 

When building investigation is done, the next thing is to include also the wall information to 

the comparison. Depending on the scanning geometry, the high density ALS point clouds 

may have quite many points returned from the walls as well, and the research could be ex-

tended to cover the entire buildings. With these datasets, the wall investigation would be 

possible, even if the higher altitude flights SPL100 and Titan have some missing surfaces 

and a bit lower point density on the walls. The lower altitude and wide field-of-view VUX 

and miniVUX datasets have scanned the walls excellently. The similar research as for the 

roof data can be done. It can be hypothesized that the differences are even larger between 

the datasets when the vertical walls are investigated. As an assumption, when the footprints 

of the laser beams are larger, the point densities of the datasets and the distributions between 

the walls are more varied. If more roof data is wanted to be studied, the details can be added 

to the investigation. It was thought to include the detail detection to this work, but eventually 

it was left out. The roof objects can be used to investigate the effect of the dataset to the 
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dimensions and to the 3D reconstruction. It would be helpful for the future research to ex-

amine the accuracies, and to get some knowledge about the processing of the smaller details 

from the ALS data. Also the amount of the buildings could be increased, and, what was 

obtained less emphasis in this work, to search the different shapes of the roofs for the surface 

and dispersion investigation. Round shapes, for example domes, were tried to find from the 

roofs of the area, but none was found.   
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6 Conclusion 
 

This thesis presented the airborne laser scanning data comparison based on building roof 

features in an urban area. In the data collection the state-of-the-art technologies were used, 

multispectral and single photon LiDARs, together with the conventional LiDARs. The lack 

of accuracy investigations and data comparisons were the main reasons for initiation of the 

project. Another motivation was the notably low number of publications on urban area fea-

tures. The work presented the background and the principles of laser scanning, technologies 

and new methods for the data capturing. Also comparison of the equipment can be found 

from the study. The preprocessing wasn’t part of the project, but otherwise the relevant data 

processing methods and software were explained.  

 

The high density point clouds allow more detailed data and as such ease the object recogni-

tion. The datasets used in the project were dense, the most sparse point density was 16 pts/m². 

However, all the benefits of the very dense point clouds can’t always be used. In this case 

the total dataset of the very high density VUX-1HA couldn’t be used in the processing be-

cause the lack of computing power. The VUX-1HA data was used as a reference, and the 

point cloud was reduced to one fifth from the original dataset. The assumption was that the 

reduction affects the accuracy about a couple of centimeters. In overall the scanners investi-

gated in this project reach a few centimeters accuracy.  

 

In the surface area investigation the smaller surfaces have more uncertainties than larger 

ones because the sparser point clouds and possible occluded areas in the roof data. The 

miniVUX and Titan channels 1 and 2 seem to be the most accurate, where the differences 

were less than two percent from the reference. The SPL100 and Titan channel 3 use the 

visible (green) wavelength, which seem to widen the roof planes because of the larger laser 

beam divergence compared to the others. A bit surprising was that the higher altitude SPL 

data (3600 m) provided better accuracy than the lower altitude SPL data (1920 m). The 

seemingly greater amount of noise points in the lower altitude scan would explain the phe-

nomenon.  

 

For the roof outline investigation the results were more or less identical with the surface 

calculations. The miniVUX and the two infrared channels of Titan are the most accurate (< 

10 cm), and the larger laser beam divergence of the green wavelength affects clearly to the 

lengths and widths of the buildings, where the mean differences were from 30 to 60 cm to 

the reference. 

 

The planimetric corner coordinate differences were mostly between 2 and 10 cm. The dif-

ferences between the datasets are not dramatic, and as expected the small variance is in-

volved when either coordinate points or the coordinates of the outlines of the 3D models was 

used. Titan channel 3 seems to be one of the most accurate data when the coordinates of the 

corner points were investigated. This is a bit contradictory in reflection to the results for roof 

outlines and surfaces. The building heights differed between 4 and 8 cm, and the higher 

altitude SPL100 data was the most accurate based on the calculations. On average the roof 

inclination angles didn’t show large variance. The most differences to the inclinations were 

observed in the Titan channel 3, but the mean differences were still less than one degree. 

 

When the plane deviations are investigated the smaller samples of roof planes should be used 

instead of the total surfaces. Then the problems with the roof details and non-planar shapes 
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of the roofing material are largely eliminated. The deviations were mostly between 2 and 5 

cm. The miniVUX-1UAV data had the largest disparity on a plane (4 – 7 cm), where the 

point density might have an effect. The VUX-1HA data of one minute of flight provides the 

possibility to detect the shapes of the roof material. The wavy profiles of the roof plates and 

tiles were detectable from the VUX-1HA data, but not with the other datasets. The flight 

trajectory as well as tilt and position of the roof affect the resulting point cloud properties 

from different scanners.     

 

The results obtained in this study show that a few centimeter accuracy of the large area ALS 

is achievable. More accuracy and comparison research is needed for the state-of-the-art scan-

ning systems and this study was one of the opening investigations for the urban areas. Based 

on the results the low altitude miniVUX-1UAV provides competitive accuracy compared to 

the denser SPL100 and Titan datasets. Overall, the higher altitude SPL100 seems to provide 

better results than the lower flight, but more investigation is needed to better understand the 

behavior of the instrument. With Titan, the three channels are recommended to be handled 

not only together, but also separately. Channel 1 of Titan (1550 nm) seems to provide the 

best results from the three channels. The visible (green) wavelength of the SPL100 and Ti-

tan’s channel 3 have larger laser beam divergences, which might affect to the accuracies. 

Finally, different scenes, targets and volumes should be investigated to acquire more infor-

mation about the performance of the new technology scanners in the perspective of topo-

graphic mapping, and to provide more knowledge for the future sensor and methodological 

development.             
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Appendix 1. Mean, minimum and maximum differences, 
and standard deviations in surface calculation  
 
Buildings under 150 m²    

     

MiniVUX Mean 1,56 Min 0,25 

  Std 3,23 Max 6,36 

SPL-100_65 Mean -7,36 Min 1,50 

  Std 5,44 Max 19,15 

SPL-100_120 Mean -5,72 Min 0,70 

  Std 4,40 Max 12,25 

Titan Mean -7,34 Min 0,99 

  Std 6,30 Max 15,93 

Titan Ch1 Mean 1,57 Min 0,20 

  Std 2,98 Max 5,57 

Titan Ch2 Mean -2,21 Min 0,10 

  Std 3,83 Max 7,11 

Titan Ch3 Mean -9,09 Min 2,81 

  Std 6,01 Max 19,98 

     

     

     
Buildings between 150 - 400 m2    

     

MiniVUX Mean -0,76 Min 1,23 

  Std 9,40 Max 20,30 

SPL-100_65 Mean -12,29 Min 1,07 

  Std 9,78 Max 25,98 

SPL-100_120 Mean -8,76 Min 0,41 

  Std 10,53 Max 35,60 

Titan Mean -11,00 Min 1,59 

  Std 10,35 Max 32,24 

Titan Ch1 Mean 3,27 Min 0,55 

  Std 6,44 Max 10,12 

Titan Ch2 Mean 0,29 Min 0,48 

  Std 6,66 Max 11,03 

Titan Ch3 Mean -17,70 Min 0,75 

  Std 15,31 Max 53,12 

     

     

     
Buildings over 400 m²    

     

MiniVUX Mean -5,25 Min 0,83 

  Std 42,02 Max 135,23 
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SPL-100_65 Mean -40,42 Min 8,91 

  Std 67,43 Max 170,56 

SPL-100_120 Mean -11,37 Min 1,15 

  Std 55,53 Max 175,08 

Titan Mean -27,44 Min 9,05 

  Std 53,56 Max 168,00 

Titan Ch1 Mean -0,78 Min 3,09 

  Std 55,88 Max 180,66 

Titan Ch2 Mean 2,29 Min 0,16 

  Std 54,33 Max 149,37 

Titan Ch3 Mean -59,84 Min 1,41 

  Std 64,58 Max 199,15 
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Appendix 2. Outline figures of the lengths and widths of 
the buildings 
 

 
Length averages and standard deviations of the buildings. Blue color = building outlines 

under 40 m. Red color = building outlines more than 40 m.  
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Width averages and standard deviations of the buildings. Blue color = building outlines 

under 40 m. Red color = building outlines more than 40 m.  
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Appendix 3. Data deviations of the conical roof of the 
detached house from the block 4  
 
VUX 

Number of points of the planes (North, South, West, East): 5369, 5119, 2471, 2504 

 

 
 
VUX_1min 

Number of points (N, S, W, E): 9851, 9979, 4991, 4115 

 

 
MiniVUX 
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Number of points (N, S, W, E): 2352, 2944, 1250, 1150 

 

 
 

 

SPL100_65 

Number of points (N, S, W, E): 2759, 3232, 1334, 1352 

 

 
 

 

 

SPL100_120 (all flight lines) 
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Number of points (N, S, W, E): 1648, 1105, 644, 624 

 

 

 
 

 

SPL100_120 (flight line 4) 

Number of points (N, S, W, E): 444, 585, 255, 195 

 

 

 
 

 

 

Titan (all flight lines) 
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Number of points (N, S, W, E): 1241, 1562, 670, 575 

 

 
 

 

Titan (flight line 12) 

Number of points (N, S, W, E): 1241, 1553, 684, 567 

 

 

 


