29 research outputs found

    Two-Dimensional Gel Electrophoresis Image Registration Using Block-Matching Techniques and Deformation Models

    Get PDF
    [Abstract] Block-matching techniques have been widely used in the task of estimating displacement in medical images, and they represent the best approach in scenes with deformable structures such as tissues, fluids, and gels. In this article, a new iterative block-matching technique—based on successive deformation, search, fitting, filtering, and interpolation stages—is proposed to measure elastic displacements in two-dimensional polyacrylamide gel electrophoresis (2D–PAGE) images. The proposed technique uses different deformation models in the task of correlating proteins in real 2D electrophoresis gel images, obtaining an accuracy of 96.6% and improving the results obtained with other techniques. This technique represents a general solution, being easy to adapt to different 2D deformable cases and providing an experimental reference for block-matching algorithms.Galicia. Consellería de Economía e Industria; 10MDS014CTGalicia. Consellería de Economía e Industria; 10SIN105004PRInstituto de Salud Carlos III; PI13/0028

    Expanded Parts Model for Semantic Description of Humans in Still Images

    Get PDF
    We introduce an Expanded Parts Model (EPM) for recognizing human attributes (e.g. young, short hair, wearing suit) and actions (e.g. running, jumping) in still images. An EPM is a collection of part templates which are learnt discriminatively to explain specific scale-space regions in the images (in human centric coordinates). This is in contrast to current models which consist of a relatively few (i.e. a mixture of) 'average' templates. EPM uses only a subset of the parts to score an image and scores the image sparsely in space, i.e. it ignores redundant and random background in an image. To learn our model, we propose an algorithm which automatically mines parts and learns corresponding discriminative templates together with their respective locations from a large number of candidate parts. We validate our method on three recent challenging datasets of human attributes and actions. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.Comment: Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Realtime stereo reconstruction in robotically assisted minimally invasive surgery

    Get PDF
    Abstract. The recovery of 3D tissue structure and morphology during robotic assisted surgery is an important step towards accurate deployment of surgical guidance and control techniques in minimally invasive therapies. In this article, we present a novel stereo reconstruction algorithm that propagates disparity information around a set of candidate feature matches. This has the advantage of avoiding problems with specular highlights, occlusions from instruments and view dependent illumination bias. Furthermore, the algorithm can be used with any feature matching strategy allowing the propagation of depth in very disparate views. Validation is provided for a phantom model with known geometry and this data is available online in order to establish a structured validation scheme in the field. The practical value of the proposed method is further demonstrated by reconstructions on various in vivo images of robotic assisted procedures, which are also available to the community

    Using dispersion measures for determining block-size in motion estimation

    Get PDF
    Video compression techniques remove temporal redundancy among frames and enable high compression efficiency in coding systems. Reduction of temporal redundancy is achieved by motion compensation. In turn, motion compensation requires motion estimation. Block matching is perhaps the most reliable and robust technique for motion estimation in video coding. However, block matching is computational expensive. Different approaches have been proposed in order to improve block matching motion estimation accuracy and efficiency. In this paper a block-matching strategy for motion estimation is introduced. In the proposed approach the size of matching block is adapted according to the variability of the matching areas. That is, the block-size is constrained by variations of the image intensity. The variability is assessed using two variability measures: the variance and the mean absolute deviation. Results of computer experiments aimed at validating the performance of the proposed approach are also reported

    DENSE CORRESPONDING PIXEL MATCHING USING A FIXED WINDOW WITH RGB INDEPENDENT INFORMATION

    Get PDF

    Dynamic Integration of Generalized Cues for Person Tracking

    Get PDF

    Disparity Map Generation from Illumination Variant Stereo Images Using Efficient Hierarchical Dynamic Programming

    Get PDF
    A novel hierarchical stereo matching algorithm is presented which gives disparity map as output from illumination variant stereo pair. Illumination difference between two stereo images can lead to undesirable output. Stereo image pair often experience illumination variations due to many factors like real and practical situation, spatially and temporally separated camera positions, environmental illumination fluctuation, and the change in the strength or position of the light sources. Window matching and dynamic programming techniques are employed for disparity map estimation. Good quality disparity map is obtained with the optimized path. Homomorphic filtering is used as a preprocessing step to lessen illumination variation between the stereo images. Anisotropic diffusion is used to refine disparity map to give high quality disparity map as a final output. The robust performance of the proposed approach is suitable for real life circumstances where there will be always illumination variation between the images. The matching is carried out in a sequence of images representing the same scene, however in different resolutions. The hierarchical approach adopted decreases the computation time of the stereo matching problem. This algorithm can be helpful in applications like robot navigation, extraction of information from aerial surveys, 3D scene reconstruction, and military and security applications. Similarity measure SAD is often sensitive to illumination variation. It produces unacceptable disparity map results for illumination variant left and right images. Experimental results show that our proposed algorithm produces quality disparity maps for both wide range of illumination variant and invariant stereo image pair

    Wide-baseline object interpolation using shape prior regularization of epipolar plane images

    Get PDF
    This paper considers the synthesis of intermediate views of an object captured by two calibrated and widely spaced cameras. Based only on those two very different views, our paper proposes to reconstruct the object Epipolar Plane Image Volume [1] (EPIV), which describes the object transformation when continuously moving the viewpoint of the synthetic view in-between the two reference cameras. This problem is clearly ill-posed since the occlusions and the foreshortening effect make the reference views significantly different when the cameras are far apart. Our main contribution consists in disambiguating this ill-posed problem by constraining the interpolated views to be consistent with an object shape prior. This prior is learnt based on images captured by the two reference views, and consists in a nonlinear shape manifold representing the plausible silhouettes of the object described by Elliptic Fourier Descriptors. Experiments on both synthetic and natural images show that the proposed method preserves the topological structure of objects during the intermediate view synthesis, while dealing effectively with the self-occluded regions and with the severe foreshortening effect associated to wide-baseline camera configurations

    3D RECONSTRUCTION FROM STEREO/RANGE IMAGES

    Get PDF
    3D reconstruction from stereo/range image is one of the most fundamental and extensively researched topics in computer vision. Stereo research has recently experienced somewhat of a new era, as a result of publically available performance testing such as the Middlebury data set, which has allowed researchers to compare their algorithms against all the state-of-the-art algorithms. This thesis investigates into the general stereo problems in both the two-view stereo and multi-view stereo scopes. In the two-view stereo scope, we formulate an algorithm for the stereo matching problem with careful handling of disparity, discontinuity and occlusion. The algorithm works with a global matching stereo model based on an energy minimization framework. The experimental results are evaluated on the Middlebury data set, showing that our algorithm is the top performer. A GPU approach of the Hierarchical BP algorithm is then proposed, which provides similar stereo quality to CPU Hierarchical BP while running at real-time speed. A fast-converging BP is also proposed to solve the slow convergence problem of general BP algorithms. Besides two-view stereo, ecient multi-view stereo for large scale urban reconstruction is carefully studied in this thesis. A novel approach for computing depth maps given urban imagery where often large parts of surfaces are weakly textured is presented. Finally, a new post-processing step to enhance the range images in both the both the spatial resolution and depth precision is proposed
    corecore