15,877 research outputs found

    Fast multi-image matching via density-based clustering

    Full text link
    We consider the problem of finding consistent matches across multiple images. Previous state-of-the-art solutions use constraints on cycles of matches together with convex optimization, leading to computationally intensive iterative algorithms. In this paper, we propose a clustering-based formulation. We first rigorously show its equivalence with the previous one, and then propose QuickMatch, a novel algorithm that identifies multi-image matches from a density function in feature space. We use the density to order the points in a tree, and then extract the matches by breaking this tree using feature distances and measures of distinctiveness. Our algorithm outperforms previous state-of-the-art methods (such as MatchALS) in accuracy, and it is significantly faster (up to 62 times faster on some bechmarks), and can scale to large datasets (with more than twenty thousands features).Accepted manuscriptSupporting documentatio

    Batch kernel SOM and related Laplacian methods for social network analysis

    Get PDF
    Large graphs are natural mathematical models for describing the structure of the data in a wide variety of fields, such as web mining, social networks, information retrieval, biological networks, etc. For all these applications, automatic tools are required to get a synthetic view of the graph and to reach a good understanding of the underlying problem. In particular, discovering groups of tightly connected vertices and understanding the relations between those groups is very important in practice. This paper shows how a kernel version of the batch Self Organizing Map can be used to achieve these goals via kernels derived from the Laplacian matrix of the graph, especially when it is used in conjunction with more classical methods based on the spectral analysis of the graph. The proposed method is used to explore the structure of a medieval social network modeled through a weighted graph that has been directly built from a large corpus of agrarian contracts

    Deep Divergence-Based Approach to Clustering

    Get PDF
    A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps
    corecore