12 research outputs found

    Image and Video Coding Techniques for Ultra-low Latency

    Get PDF
    The next generation of wireless networks fosters the adoption of latency-critical applications such as XR, connected industry, or autonomous driving. This survey gathers implementation aspects of different image and video coding schemes and discusses their tradeoffs. Standardized video coding technologies such as HEVC or VVC provide a high compression ratio, but their enormous complexity sets the scene for alternative approaches like still image, mezzanine, or texture compression in scenarios with tight resource or latency constraints. Regardless of the coding scheme, we found inter-device memory transfers and the lack of sub-frame coding as limitations of current full-system and software-programmable implementations.publishedVersionPeer reviewe

    Advanced heterogeneous video transcoding

    Get PDF
    PhDVideo transcoding is an essential tool to promote inter-operability between different video communication systems. This thesis presents two novel video transcoders, both operating on bitstreams of the cur- rent H.264/AVC standard. The first transcoder converts H.264/AVC bitstreams to a Wavelet Scalable Video Codec (W-SVC), while the second targets the emerging High Efficiency Video Coding (HEVC). Scalable Video Coding (SVC) enables low complexity adaptation of compressed video, providing an efficient solution for content delivery through heterogeneous networks. The transcoder proposed here aims at exploiting the advantages offered by SVC technology when dealing with conventional coders and legacy video, efficiently reusing information found in the H.264/AVC bitstream to achieve a high rate-distortion performance at a low complexity cost. Its main features include new mode mapping algorithms that exploit the W-SVC larger macroblock sizes, and a new state-of-the-art motion vector composition algorithm that is able to tackle different coding configurations in the H.264/AVC bitstream, including IPP or IBBP with multiple reference frames. The emerging video coding standard, HEVC, is currently approaching the final stage of development prior to standardization. This thesis proposes and evaluates several transcoding algorithms for the HEVC codec. In particular, a transcoder based on a new method that is capable of complexity scalability, trading off rate-distortion performance for complexity reduction, is proposed. Furthermore, other transcoding solutions are explored, based on a novel content-based modeling approach, in which the transcoder adapts its parameters based on the contents of the sequence being encoded. Finally, the application of this research is not constrained to these transcoders, as many of the techniques developed aim to contribute to advance the research on this field, and have the potential to be incorporated in different video transcoding architectures

    Approximate and timing-speculative hardware design for high-performance and energy-efficient video processing

    Get PDF
    Since the end of transistor scaling in 2-D appeared on the horizon, innovative circuit design paradigms have been on the rise to go beyond the well-established and ultraconservative exact computing. Many compute-intensive applications – such as video processing – exhibit an intrinsic error resilience and do not necessarily require perfect accuracy in their numerical operations. Approximate computing (AxC) is emerging as a design alternative to improve the performance and energy-efficiency requirements for many applications by trading its intrinsic error tolerance with algorithm and circuit efficiency. Exact computing also imposes a worst-case timing to the conventional design of hardware accelerators to ensure reliability, leading to an efficiency loss. Conversely, the timing-speculative (TS) hardware design paradigm allows increasing the frequency or decreasing the voltage beyond the limits determined by static timing analysis (STA), thereby narrowing pessimistic safety margins that conventional design methods implement to prevent hardware timing errors. Timing errors should be evaluated by an accurate gate-level simulation, but a significant gap remains: How these timing errors propagate from the underlying hardware all the way up to the entire algorithm behavior, where they just may degrade the performance and quality of service of the application at stake? This thesis tackles this issue by developing and demonstrating a cross-layer framework capable of performing investigations of both AxC (i.e., from approximate arithmetic operators, approximate synthesis, gate-level pruning) and TS hardware design (i.e., from voltage over-scaling, frequency over-clocking, temperature rising, and device aging). The cross-layer framework can simulate both timing errors and logic errors at the gate-level by crossing them dynamically, linking the hardware result with the algorithm-level, and vice versa during the evolution of the application’s runtime. Existing frameworks perform investigations of AxC and TS techniques at circuit-level (i.e., at the output of the accelerator) agnostic to the ultimate impact at the application level (i.e., where the impact is truly manifested), leading to less optimization. Unlike state of the art, the framework proposed offers a holistic approach to assessing the tradeoff of AxC and TS techniques at the application-level. This framework maximizes energy efficiency and performance by identifying the maximum approximation levels at the application level to fulfill the required good enough quality. This thesis evaluates the framework with an 8-way SAD (Sum of Absolute Differences) hardware accelerator operating into an HEVC encoder as a case study. Application-level results showed that the SAD based on the approximate adders achieve savings of up to 45% of energy/operation with an increase of only 1.9% in BD-BR. On the other hand, VOS (Voltage Over-Scaling) applied to the SAD generates savings of up to 16.5% in energy/operation with around 6% of increase in BD-BR. The framework also reveals that the boost of about 6.96% (at 50°) to 17.41% (at 75° with 10- Y aging) in the maximum clock frequency achieved with TS hardware design is totally lost by the processing overhead from 8.06% to 46.96% when choosing an unreliable algorithm to the blocking match algorithm (BMA). We also show that the overhead can be avoided by adopting a reliable BMA. This thesis also shows approximate DTT (Discrete Tchebichef Transform) hardware proposals by exploring a transform matrix approximation, truncation and pruning. The results show that the approximate DTT hardware proposal increases the maximum frequency up to 64%, minimizes the circuit area in up to 43.6%, and saves up to 65.4% in power dissipation. The DTT proposal mapped for FPGA shows an increase of up to 58.9% on the maximum frequency and savings of about 28.7% and 32.2% on slices and dynamic power, respectively compared with stat

    Attention Driven Solutions for Robust Digital Watermarking Within Media

    Get PDF
    As digital technologies have dramatically expanded within the last decade, content recognition now plays a major role within the control of media. Of the current recent systems available, digital watermarking provides a robust maintainable solution to enhance media security. The two main properties of digital watermarking, imperceptibility and robustness, are complimentary to each other but by employing visual attention based mechanisms within the watermarking framework, highly robust watermarking solutions are obtainable while also maintaining high media quality. This thesis firstly provides suitable bottom-up saliency models for raw image and video. The image and video saliency algorithms are estimated directly from within the wavelet domain for enhanced compatibility with the watermarking framework. By combining colour, orientation and intensity contrasts for the image model and globally compensated object motion in the video model, novel wavelet-based visual saliency algorithms are provided. The work extends these saliency models into a unique visual attention-based watermarking scheme by increasing the watermark weighting parameter within visually uninteresting regions. An increased watermark robustness, up to 40%, against various filtering attacks, JPEG2000 and H.264/AVC compression is obtained while maintaining the media quality, verified by various objective and subjective evaluation tools. As most video sequences are stored in an encoded format, this thesis studies watermarking schemes within the compressed domain. Firstly, the work provides a compressed domain saliency model formulated directly within the HEVC codec, utilizing various coding decisions such as block partition size, residual magnitude, intra frame angular prediction mode and motion vector difference magnitude. Large computational savings, of 50% or greater, are obtained compared with existing methodologies, as the saliency maps are generated from partially decoded bitstreams. Finally, the saliency maps formulated within the compressed HEVC domain are studied within the watermarking framework. A joint encoder and a frame domain watermarking scheme are both proposed by embedding data into the quantised transform residual data or wavelet coefficients, respectively, which exhibit low visual salience

    Efficient algorithms for scalable video coding

    Get PDF
    A scalable video bitstream specifically designed for the needs of various client terminals, network conditions, and user demands is much desired in current and future video transmission and storage systems. The scalable extension of the H.264/AVC standard (SVC) has been developed to satisfy the new challenges posed by heterogeneous environments, as it permits a single video stream to be decoded fully or partially with variable quality, resolution, and frame rate in order to adapt to a specific application. This thesis presents novel improved algorithms for SVC, including: 1) a fast inter-frame and inter-layer coding mode selection algorithm based on motion activity; 2) a hierarchical fast mode selection algorithm; 3) a two-part Rate Distortion (RD) model targeting the properties of different prediction modes for the SVC rate control scheme; and 4) an optimised Mean Absolute Difference (MAD) prediction model. The proposed fast inter-frame and inter-layer mode selection algorithm is based on the empirical observation that a macroblock (MB) with slow movement is more likely to be best matched by one in the same resolution layer. However, for a macroblock with fast movement, motion estimation between layers is required. Simulation results show that the algorithm can reduce the encoding time by up to 40%, with negligible degradation in RD performance. The proposed hierarchical fast mode selection scheme comprises four levels and makes full use of inter-layer, temporal and spatial correlation aswell as the texture information of each macroblock. Overall, the new technique demonstrates the same coding performance in terms of picture quality and compression ratio as that of the SVC standard, yet produces a saving in encoding time of up to 84%. Compared with state-of-the-art SVC fast mode selection algorithms, the proposed algorithm achieves a superior computational time reduction under very similar RD performance conditions. The existing SVC rate distortion model cannot accurately represent the RD properties of the prediction modes, because it is influenced by the use of inter-layer prediction. A separate RD model for inter-layer prediction coding in the enhancement layer(s) is therefore introduced. Overall, the proposed algorithms improve the average PSNR by up to 0.34dB or produce an average saving in bit rate of up to 7.78%. Furthermore, the control accuracy is maintained to within 0.07% on average. As aMADprediction error always exists and cannot be avoided, an optimisedMADprediction model for the spatial enhancement layers is proposed that considers the MAD from previous temporal frames and previous spatial frames together, to achieve a more accurateMADprediction. Simulation results indicate that the proposedMADprediction model reduces the MAD prediction error by up to 79% compared with the JVT-W043 implementation

    Receiver-Driven Video Adaptation

    Get PDF
    In the span of a single generation, video technology has made an incredible impact on daily life. Modern use cases for video are wildly diverse, including teleconferencing, live streaming, virtual reality, home entertainment, social networking, surveillance, body cameras, cloud gaming, and autonomous driving. As these applications continue to grow more sophisticated and heterogeneous, a single representation of video data can no longer satisfy all receivers. Instead, the initial encoding must be adapted to each receiver's unique needs. Existing adaptation strategies are fundamentally flawed, however, because they discard the video's initial representation and force the content to be re-encoded from scratch. This process is computationally expensive, does not scale well with the number of videos produced, and throws away important information embedded in the initial encoding. Therefore, a compelling need exists for the development of new strategies that can adapt video content without fully re-encoding it. To better support the unique needs of smart receivers, diverse displays, and advanced applications, general-use video systems should produce and offer receivers a more flexible compressed representation that supports top-down adaptation strategies from an original, compressed-domain ground truth. This dissertation proposes an alternate model for video adaptation that addresses these challenges. The key idea is to treat the initial compressed representation of a video as the ground truth, and allow receivers to drive adaptation by dynamically selecting which subsets of the captured data to receive. In support of this model, three strategies for top-down, receiver-driven adaptation are proposed. First, a novel, content-agnostic entropy coding technique is implemented in which symbols are selectively dropped from an input abstract symbol stream based on their estimated probability distributions to hit a target bit rate. Receivers are able to guide the symbol dropping process by supplying the encoder with an appropriate rate controller algorithm that fits their application needs and available bandwidths. Next, a domain-specific adaptation strategy is implemented for H.265/HEVC coded video in which the prediction data from the original source is reused directly in the adapted stream, but the residual data is recomputed as directed by the receiver. By tracking the changes made to the residual, the encoder can compensate for decoder drift to achieve near-optimal rate-distortion performance. Finally, a fully receiver-driven strategy is proposed in which the syntax elements of a pre-coded video are cataloged and exposed directly to clients through an HTTP API. Instead of requesting the entire stream at once, clients identify the exact syntax elements they wish to receive using a carefully designed query language. Although an implementation of this concept is not provided, an initial analysis shows that such a system could save bandwidth and computation when used by certain targeted applications.Doctor of Philosoph

    Prioritizing Content of Interest in Multimedia Data Compression

    Get PDF
    Image and video compression techniques make data transmission and storage in digital multimedia systems more efficient and feasible for the system's limited storage and bandwidth. Many generic image and video compression techniques such as JPEG and H.264/AVC have been standardized and are now widely adopted. Despite their great success, we observe that these standard compression techniques are not the best solution for data compression in special types of multimedia systems such as microscopy videos and low-power wireless broadcast systems. In these application-specific systems where the content of interest in the multimedia data is known and well-defined, we should re-think the design of a data compression pipeline. We hypothesize that by identifying and prioritizing multimedia data's content of interest, new compression methods can be invented that are far more effective than standard techniques. In this dissertation, a set of new data compression methods based on the idea of prioritizing the content of interest has been proposed for three different kinds of multimedia systems. I will show that the key to designing efficient compression techniques in these three cases is to prioritize the content of interest in the data. The definition of the content of interest of multimedia data depends on the application. First, I show that for microscopy videos, the content of interest is defined as the spatial regions in the video frame with pixels that don't only contain noise. Keeping data in those regions with high quality and throwing out other information yields to a novel microscopy video compression technique. Second, I show that for a Bluetooth low energy beacon based system, practical multimedia data storage and transmission is possible by prioritizing content of interest. I designed custom image compression techniques that preserve edges in a binary image, or foreground regions of a color image of indoor or outdoor objects. Last, I present a new indoor Bluetooth low energy beacon based augmented reality system that integrates a 3D moving object compression method that prioritizes the content of interest.Doctor of Philosoph

    Quality of Experience in Immersive Video Technologies

    Get PDF
    Over the last decades, several technological revolutions have impacted the television industry, such as the shifts from black & white to color and from standard to high-definition. Nevertheless, further considerable improvements can still be achieved to provide a better multimedia experience, for example with ultra-high-definition, high dynamic range & wide color gamut, or 3D. These so-called immersive technologies aim at providing better, more realistic, and emotionally stronger experiences. To measure quality of experience (QoE), subjective evaluation is the ultimate means since it relies on a pool of human subjects. However, reliable and meaningful results can only be obtained if experiments are properly designed and conducted following a strict methodology. In this thesis, we build a rigorous framework for subjective evaluation of new types of image and video content. We propose different procedures and analysis tools for measuring QoE in immersive technologies. As immersive technologies capture more information than conventional technologies, they have the ability to provide more details, enhanced depth perception, as well as better color, contrast, and brightness. To measure the impact of immersive technologies on the viewersâ QoE, we apply the proposed framework for designing experiments and analyzing collected subjectsâ ratings. We also analyze eye movements to study human visual attention during immersive content playback. Since immersive content carries more information than conventional content, efficient compression algorithms are needed for storage and transmission using existing infrastructures. To determine the required bandwidth for high-quality transmission of immersive content, we use the proposed framework to conduct meticulous evaluations of recent image and video codecs in the context of immersive technologies. Subjective evaluation is time consuming, expensive, and is not always feasible. Consequently, researchers have developed objective metrics to automatically predict quality. To measure the performance of objective metrics in assessing immersive content quality, we perform several in-depth benchmarks of state-of-the-art and commonly used objective metrics. For this aim, we use ground truth quality scores, which are collected under our subjective evaluation framework. To improve QoE, we propose different systems for stereoscopic and autostereoscopic 3D displays in particular. The proposed systems can help reducing the artifacts generated at the visualization stage, which impact picture quality, depth quality, and visual comfort. To demonstrate the effectiveness of these systems, we use the proposed framework to measure viewersâ preference between these systems and standard 2D & 3D modes. In summary, this thesis tackles the problems of measuring, predicting, and improving QoE in immersive technologies. To address these problems, we build a rigorous framework and we apply it through several in-depth investigations. We put essential concepts of multimedia QoE under this framework. These concepts not only are of fundamental nature, but also have shown their impact in very practical applications. In particular, the JPEG, MPEG, and VCEG standardization bodies have adopted these concepts to select technologies that were proposed for standardization and to validate the resulting standards in terms of compression efficiency

    Understanding and advancing PDE-based image compression

    Get PDF
    This thesis is dedicated to image compression with partial differential equations (PDEs). PDE-based codecs store only a small amount of image points and propagate their information into the unknown image areas during the decompression step. For certain classes of images, PDE-based compression can already outperform the current quasi-standard, JPEG2000. However, the reasons for this success are not yet fully understood, and PDE-based compression is still in a proof-of-concept stage. With a probabilistic justification for anisotropic diffusion, we contribute to a deeper insight into design principles for PDE-based codecs. Moreover, by analysing the interaction between efficient storage methods and image reconstruction with diffusion, we can rank PDEs according to their practical value in compression. Based on these observations, we advance PDE-based compression towards practical viability: First, we present a new hybrid codec that combines PDE- and patch-based interpolation to deal with highly textured images. Furthermore, a new video player demonstrates the real-time capacities of PDE-based image interpolation and a new region of interest coding algorithm represents important image areas with high accuracy. Finally, we propose a new framework for diffusion-based image colourisation that we use to build an efficient codec for colour images. Experiments on real world image databases show that our new method is qualitatively competitive to current state-of-the-art codecs.Diese Dissertation ist der Bildkompression mit partiellen Differentialgleichungen (PDEs, partial differential equations) gewidmet. PDE-Codecs speichern nur einen geringen Anteil aller Bildpunkte und transportieren deren Information in fehlende Bildregionen. In einigen Fällen kann PDE-basierte Kompression den aktuellen Quasi-Standard, JPEG2000, bereits schlagen. Allerdings sind die Gründe für diesen Erfolg noch nicht vollständig erforscht, und PDE-basierte Kompression befindet sich derzeit noch im Anfangsstadium. Wir tragen durch eine probabilistische Rechtfertigung anisotroper Diffusion zu einem tieferen Verständnis PDE-basierten Codec-Designs bei. Eine Analyse der Interaktion zwischen effizienten Speicherverfahren und Bildrekonstruktion erlaubt es uns, PDEs nach ihrem Nutzen für die Kompression zu beurteilen. Anhand dieser Einsichten entwickeln wir PDE-basierte Kompression hinsichtlich ihrer praktischen Nutzbarkeit weiter: Wir stellen einen Hybrid-Codec für hochtexturierte Bilder vor, der umgebungsbasierte Interpolation mit PDEs kombiniert. Ein neuer Video-Dekodierer demonstriert die Echtzeitfähigkeit PDE-basierter Interpolation und eine Region-of-Interest-Methode erlaubt es, wichtige Bildbereiche mit hoher Genauigkeit zu speichern. Schlussendlich stellen wir ein neues diffusionsbasiertes Kolorierungsverfahren vor, welches uns effiziente Kompression von Farbbildern ermöglicht. Experimente auf Realwelt-Bilddatenbanken zeigen die Konkurrenzfähigkeit dieses Verfahrens auf
    corecore