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Abstract

Over the last decades, several technological revolutions have impacted the television industry,
such as the shifts from black & white to color and from standard to high-definition. Neverthe-
less, further considerable improvements can still be achieved to provide a better multimedia
experience, for example with ultra-high-definition, high dynamic range & wide color gamut,
or 3D. These so-called immersive technologies aim at providing better, more realistic, and
emotionally stronger experiences.

To measure quality of experience (QoE), subjective evaluation is the ultimate means since
it relies on a pool of human subjects. However, reliable and meaningful results can only be
obtained if experiments are properly designed and conducted following a strict methodology.
In this thesis, we build a rigorous framework for subjective evaluation of new types of image
and video content. We propose different procedures and analysis tools for measuring QoE in
immersive technologies.

As immersive technologies capture more information than conventional technologies, they
have the ability to provide more details, enhanced depth perception, as well as better color,
contrast, and brightness. To measure the impact of immersive technologies on the viewers’
QoE, we apply the proposed framework for designing experiments and analyzing collected
subjects’ ratings. We also analyze eye movements to study human visual attention during
immersive content playback.

Since immersive content carries more information than conventional content, efficient com-
pression algorithms are needed for storage and transmission using existing infrastructures. To
determine the required bandwidth for high-quality transmission of immersive content, we
use the proposed framework to conduct meticulous evaluations of recent image and video
codecs in the context of immersive technologies.

Subjective evaluation is time consuming, expensive, and is not always feasible. Consequently,
researchers have developed objective metrics to automatically predict quality. To measure the
performance of objective metrics in assessing immersive content quality, we perform several
in-depth benchmarks of state-of-the-art and commonly used objective metrics. For this
aim, we use ground truth quality scores, which are collected under our subjective evaluation
framework.

To improve QoE, we propose different systems for stereoscopic and autostereoscopic 3D
displays in particular. The proposed systems can help reducing the artifacts generated at
the visualization stage, which impact picture quality, depth quality, and visual comfort. To
demonstrate the effectiveness of these systems, we use the proposed framework to measure
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viewers’ preference between these systems and standard 2D & 3D modes.

In summary, this thesis tackles the problems of measuring, predicting, and improving QoE
in immersive technologies. To address these problems, we build a rigorous framework and
we apply it through several in-depth investigations. We put essential concepts of multimedia
QoE under this framework. These concepts not only are of fundamental nature, but also have
shown their impact in very practical applications. In particular, the JPEG, MPEG, and VCEG
standardization bodies have adopted these concepts to select technologies that were proposed
for standardization and to validate the resulting standards in terms of compression efficiency.

Key words: quality of experience, immersive video technology, ultra-high-definition, high
dynamic range, 3D, subjective quality assessment, subjective evaluation, pair comparison,
Thurstone Case V model, visual quality, evaluation protocol, crowdsourcing, eye tracking, vi-
sual attention, objective quality metric, objective quality assessment, performance evaluation,
HEVC, VP9, JPEG, JPEG 2000, JPEG XT, coding efficiency, Bjentegaard model, crosstalk, pseu-
doscopy, vergence-accommodation rivalry, stereoscopic display, multiview autostereoscopic
display
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Résumé

Au cours des dernieres décennies, plusieurs révolutions technologiques ont eu un impact
sur le secteur de la télévision, tels que les passages du noir & blanc a la couleur et a la haute
définition. Néanmoins, d’autres améliorations considérables peuvent encore étre atteintes
pour fournir une meilleure expérience multimédia, par exemple avec la ultra-haute définition,
high dynamic range & wide color gamut ou la 3D. Ces technologies dites immersives visent a
fournir de meilleures expériences, plus réalistes et plus fortes émotionnellement.

Pour mesurer la qualité d’expérience (QoE), les évaluations subjectives sont le moyen ultime
car elles reposent sur un pool de sujets humains. Cependant, des résultats fiables et signifi-
catifs ne peuvent étre obtenus que si les expériences sont correctement congues et réalisées
suivant une méthodologie rigoureuse. Dans cette thése, nous construisons un cadre rigoureux
pour I'évaluation subjective de nouveaux types de contenus image et vidéo. Nous propo-
sons différentes procédures et outils d’analyse pour mesurer la QoE dans les technologies
immersives.

Comme les technologies immersives capturent plus d’'informations que les technologies
conventionnelles, elles ont la capacité de fournir plus de détails, une amélioration de la
perception de la profondeur, ainsi qu'un meilleur affichage des couleurs, du contraste et
de la luminosité. Pour mesurer I'impact de ces technologies sur la QoE des téléspectateurs,
nous appliquons le cadre proposé pour concevoir des expériences et pour analyser les scores
recueillis aupres des sujets. Nous analysons également les mouvements oculaires afin d’étudier
I'attention visuelle lors du visionnement de contenus immersifs.

Puisque les contenus immersifs capturent plus d’informations que les contenus conven-
tionnels, des algorithmes de compression efficaces sont nécessaires pour le stockage et la
transmission en utilisant les infrastructures existantes. Pour déterminer la bande passante
requise pour la transmission de contenus immersifs de haute qualité, nous utilisons le cadre
proposé pour effectuer des évaluations minutieuses de codecs image et vidéo récents dans le
contexte des technologies immersives.

Les évaluations subjectives demandent beaucoup de temps, sont coliteuses et ne sont pas tou-
jours réalisables. Par conséquent, les chercheurs ont développé des métriques objectives afin
de prédire automatiquement la qualité. Pour mesurer la performance des métriques objectives
a évaluer la qualité de contenus immersifs, nous effectuons plusieurs benchmarks détaillés
de métriques objectives de pointe et couramment utilisées. Dans ce but, nous utilisons des
scores de qualité de vérité terrain, recueillis a 'aide du cadre proposé pour les évaluations
subjectives.



Acknowledgements

Afin d’améliorer la QoE, nous proposons différents systémes pour les écrans 3D stéréosco-
piques et autostéréoscopiques en particulier. Les systémes proposés peuvent aider a réduire
les artefacts générés lors de la visualisation, ce qui impacte la qualité d'image, la qualité de la
profondeur et le confort visuel. Pour démontrer 'efficacité de ces systémes, nous utilisons le
cadre proposé pour mesurer la préférence des téléspectateurs entre ces systemes et les modes
2D et 3D standards.

En résumé, cette these aborde les problemes de la mesure, de la prédiction et de I'amélioration
de la QoE dans les technologies immersives. Pour résoudre ces problémes, nous construisons
un cadre rigoureux et nous I'appliquons a travers plusieurs études approfondies. Nous avons
mis des concepts essentiels de la QoE dans le multimédia sous ce cadre. Ces concepts ne
sont pas seulement de nature fondamentale, mais ont aussi montré leur impact dans des
applications tres pratiques. En particulier, les organismes de normalisation JPEG, MPEG
et VCEG ont adopté ces concepts pour sélectionner les technologies qui ont été proposées
pour la normalisation et pour valider les normes qui en résultent, en termes d’efficacité de
compression.

Mots clefs : qualité d’expérience, technologie vidéo immersive, ultra-haute définition, high
dynamic range, 3D, assessment subjectif de la qualité, évaluation subjective, comparaison
par paire, modele de Thurstone, qualité visuelle, protocole d’évaluation, crowdsourcing, ocu-
lométrie, attention visuelle, métrique de qualité objective, assessment objectif de la qualité,
évaluation de la performance, HEVC, VP9, JPEG, JPEG 2000, JPEG XT, efficacité de codage,
modele de Bjontegaard, crosstalk, pseudoscopie, rivalité convergence-accommodation, écran
stéréoscopique, écran autostéréoscopique multi-vues
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|} Introduction

According to Sandvine Global Internet Phenomena Reportsl, real-time entertainment (audio
and video) accounts for more than 45% and 70% of all downstream traffic during peak hours
on fixed access networks in Europe and North America, respectively. In North American,
video streaming has increased at a rapid pace to the point that real-time entertainment traffic
doubled in five years. In Europe, YouTube (24.4%), BitTorrent (6.1%), and Netflix (4.8%) are the
top three multimedia services consuming most of the bandwidth. In North America, Netflix
accounts for over 37% of the bandwidth, whereas YouTube and Amazon Video are the second
and third most demanding services with 17.8% and 3.1% of downstream traffic, respectively.
The most popular video-on-demand service, i.e., Netflix, is relatively new in Europe, as it
entered the market in 2012 and became available in some European countries only in 2013 or
2014, which explains the large difference. Regarding mobile network, real-time entertainment
represents more than 35% and 40% of peak downstream traffic in Europe and North America,
respectively. In both cases, YouTube is the most bandwidth consuming service with about 21%
of downstream bandwidth. Considering that 4 billion videos are viewed on YouTube everyday,
with 300 hours of additional video uploaded every minute, these figures demonstrate that we
should pay special care to providing high quality multimedia services. Indeed, the quality of
experience (QoE) provided by multimedia systems and services will greatly impact how much
we will use and interact with these technologies. Considering the increasing popularity of
immersive video technologies such as 3D, ultra-high-definition (UHD), and high dynamic
range (HDR) thanks to the recent developments in capture, storage, compression, and display
technologies and content availability, it is essential to conduct research on QoE in immersive
video technologies.

1.1 Immersive Video Technologies

Over the last decades, several technological revolutions have impacted the television industry,
such as the shifts from black & white to color and from standard to high-definition (HD).

1Sandvine Global Internet Phenomena Reports: available at https://www.sandvine.com



Chapter 1. Introduction

Nevertheless, further considerable improvements may still be achieved to provide a better
multimedia experience and a better picture quality, for example with ultra-high-definition
(UHD) (more pixels), high frame rate (HFR) (faster pixels), high dynamic range (HDR) & wide
color gamut (WCG) (better pixels), or 3D (volumetric pixels). These so-called immersive video
technologies aim at providing better, more realistic, and emotionally stronger experiences.

1.1.1 Ultra High Definition

Since the invention of television in the late 19th century, researchers have always been trying
to increase resolution. Earlier broadcasting television systems that were based on mechanical
systems had only about 30 lines of resolution. The first fully electronic television system, i.e.,
the Marconi-EMI 405-line system, was introduced with the BBC Television Service in 1936.
This system offered an actual image resolution of 377 lines high, which was a big step over
the best mechanical system, i.e., Baird 240-line sequential scan. However, the first electronic
systems used interlacing, whereas mechanical systems were progressive. The US National
Television System Committee (NTSC) 525-line system was introduced in 1941, whereas the
French 819-line system, which was introduced in 1949, is often considered as the first high-
definition (HD) television system with its 737 active lines.

The first color system was introduced in 1953 by the US NTSC and had a resolution of 525
lines for compatibility reasons with existing B&W systems. In Europe, the PAL and SECAM
color systems were added to the monochrome 625-line broadcasts in the 1960s. The NTSC
and PAL/SECAM had a 4:3 aspect ratio and actual image resolution of 480 and 576 lines,
respectively, which is commonly referred to as standard definition.

The Japan Broadcasting Corporation, NHK, began conducting research to “unlock the fun-
damental mechanism of video and sound interactions with the five human senses” after
the Tokyo Olympics, in 1964. In 1979, NHK developed the MUSE system, also marketed as
Hi-Vision (a contraction of HIgh-definition teleVISION), a 1125-line standard, with 1035 active
lines, 60 Hz refresh rate, and 5:3 aspect ratio. Based on this standard, work began on imaging
systems, recording devices, transmission systems, and large-screen displays.

Since 1972, the International Telecommunication Union (ITU) tried to create a standard for
high-definition television (HDTV). The efforts finally paid off in the 1980s, with the settlement
on 16:9 aspect ratio, which was a compromise between the 5:3 format used in MUSE and the
common 1.85 widescreen cinema format. Additionally, the first version of the ITU-R BT.709
(2015) recommendation was approved in 1990. This recommendation includes the 16:9 aspect
ratio, a specified colorimetry, and the scan modes 1080i (interlaced) and 1080p (progressive).

NHK started to explore a next-generation television system for HDTV as early as 1995. They
developed the first UHD system, nicknamed Super Hi-Vision, with 4000 scanning lines and a
22.2 channel multichannel sound system (Sugawara et al., 2003). The prototype was demon-
strated in 2003 and used an array of 16 HDTV recorders with a total capacity of almost 3.5 TB,
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which could capture only 18 min of test footage. The camera was built using four CCDs (two
for green and one each for red and blue), each with a resolution of 3840 x 2048 pixels, to reach
the resolution of 7680 x 4320 pixels.

The Society of Motion Picture and Television Engineers (SMPTE) first released the ST 2036
Standard series for ultra-high-definition television (UHDTV) in 2007 and included two levels:
UHDTVI (3840 x 2160 or 4K UHDTV) and UHDTV2 (7680 x 4320 or 8K UHDTV). The ITU
recommendation ITU-R BT.2020 (2015) was published in 2012 and is the equivalent of ITU-R
BT.709 (2015) for UHDTV. This recommendation specifies the picture spatial and temporal
characteristics, system colorimetry, signal format, and digital representation for new TV
systems, including displays.

As the angular resolution of the human visual system (HVS) is fixed (at about 1 arcmin for
normal vision), higher image resolution increases the field of view (FOV). Standard definition
only offered a FOV of 11° to 13° and full HD resolution corresponds to 31° FOV. However, the
FOV is increased to 58° and even 96° with 4K and 8K resolutions, respectively. To investigate
the impact of FOV on viewers, Emoto et al. (2006) conducted a subjective experiment with
still images acquired with a FOV of 60° and 100°. The images were presented at different
resolutions using a UHD projector, which resulted in FOV ranging from 30° to 100°. They
used a Likert scale to evaluate ‘presence’, ‘powerfulness’, ‘comfortableness’, and ‘depth’. While
the results for ‘comfortableness’ and ‘depth’ had a tendency to saturate as the FOV increased,
‘presence’ and ‘powerfulness’ almost monotonously increased as the FOV increased.

The 4K and 8K UHD resolutions contain 4 and 16 times the number of pixels of HD resolution,
respectively. Hence, the increase in resolution is at the cost of the amount of data that has to
be transmitted. If the same video coding format is used for 4K and 8K UHDTYV as for HDTV,
the bandwidth capacity must be increased to preserve the same visual quality. Terrestrial
broadcasting typically uses a bit rate of 18 Mbit/s to carry the audiovisual data, whereas Blu-ray
disks have a maximum data transfer rate of 54 Mbit/s for both audio and video data.

The H.262/MPEG-2 Part 2 video compression standard, which was standardized in 1996, is
still widely used for video broadcasting, even for HDTV. Its successor, i.e., H.264/MPEG-4 Part
10 Advanced Video Coding (AVC) (Wiegand et al., 2003a), showed a 50% bit rate reduction
for the same visual quality (Oelbaum et al., 2004). The latest standard developed by the Joint
Collaborative Team on Video Coding (JCT-VC), named H.265/MPEG-H Part 2 High Efficiency
Video Coding (HEVC) (Sullivan et al., 2012), also shows a 50% bit rate reduction over AVC
(Weerakkody et al., 2014). The performance of HEVC is mainly due to better flexibility and
adaptability, which is achieved with a larger block size (up to 64 x 64 for inter-frame coding and
up to 32 x 32 for intra-frame coding) when compared to previous standards (up to 16 x 16 for
inter-frame coding and 4 x 4 or 8 x 8 for intra-frame coding). Thus, HEVC is a perfect candidate
for UHD video compression. Note that HEVC supports resolutions up to 8192 x 4320 pixels.
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1.1.2 High Frame Rate

The HVS can perceive 10 to 12 frames per second (fps) as individual images. However, beyond
this limit, persistence of vision may create an illusion of continuity and the impression of
motion may be perceived from a sequence of still images. Early silent films had frame rates
between 14 and 26 fps, but the motion was often perceived as jerky or uneven as the film
was hand-cranked while recording. Moreover, during playback, the film was also often hand-
cranked or played at a different (typically higher) speed by the projection system.

With the introduction of sound film in 1926, where sound was inserted as an optical track on
the filmstrip alongside the image, variations in film speed were no longer tolerated, as humans
are more sensitive to changes in audio frequency. Since film is an expensive medium, the
movie industry settled for the slowest frame rate possible for producing intelligible sound, i.e.,
24 fps for 35 mm sound film.

With the advent of television, new frame rates were introduced for broadcasting. Indeed, the
first TV units used cathode ray tube (CRT) displays, which required a refresh rate at (multiple
of) AC line frequency. In particular, in the Americas and parts of Asia, the AC line frequency is
60 Hz, whereas 50 Hz is used in large parts of the world. This lead to the adaption of 30 fps,
interlaced (60i), for NTSC formats and 25 fps, interlaced (50i), for PAL and SECAM formats.
With interlaced scan, two video fields are flashed one after the other to make up one frame.
This format was used to double the perceived frame rate, which improves motion and reduces
flicker, without the need to increase bandwidth. However, current display technologies, e.g.,
liquid-crystal display (LCD), do not require to refresh the pixels anymore. These displays use
progressive scan, where each frame is scanned sequentially in its entirety.

Thanks to the development in camera technology, higher frame rates have appeared, e.g.,
48, 50, 60, 72, 100, 120, and 240 fps. The Hobbit film series from Peter Jackson was shot in
3D at 48 fps and screened in this format in selected theaters starting from December 2012.
Recommendation ITU-R BT.2020 (2015) specifies frame rates of 100 and 120 fps (among others)
for UHDTYV, which shows that UHD and high frame rate (HFR) are profoundly linked. BBC
Research also made some tests with frame rates up to 300 fps (Armstrong et al., 2009), which
can be easily down-converted to 50 and 60 fps for compatibility with existing standards. Note
that very high speed cameras with frame rates of 1000 fps and higher exist, but the captured
video cannot be played back in real time.

HEFR reduces motion blur and allows to display a clearer image, which can be particularly
beneficial for fast motion content such as sport. Emoto et al. (2014) investigated the degree of
improvement in video sequences recorded and displayed at different frame rates. They used
12 HD video sequences (mostly sport content) recorded and displayed at 60, 120, and 240 fps.
Results showed that the improvement from 60 to 120 fps (0.46 on a five point scale) was higher
than from 120 to 240 fps (0.23). The improvements were content dependent and varied from
0 to 1.4. Moreover, the authors observed a bandpass type relationship between the angular
velocity and the degree of improvement. This relationship can be due to many factors, e.g.,
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accumulation of blur in filming, response time of LCD, motion blur caused by eye movements,
and visual characteristics in pursuit and saccadic eye movements.

Increasing frame rate also increases the amount of data that has to be stored and transmitted.
However, motion between successive frames should be reduced with higher frame rates, which
means that a better temporal estimation could be achieved, also as the rigidity and constant
luminosity constraints are more likely to be met. Thus, the necessary bit rate is most likely not
going to be proportional to the frame rate. HEVC introduced a better signaling of the motion
information , which can be also beneficial for HFR content. Note that the maximum frame
rate supported by HEVC is 300 fps.

1.1.3 High Dynamic Range and Wide Color Gamut

An important part of our impressions and understanding about our surroundings are based
on sight. The HVS is capable of adapting to lighting conditions that span about ten orders of
magnitude (Ferwerda, 2001). The HVS can take up to 20 min to adapt from sunlight (typically
102 cd/m?) to starlight (typically 1073 cd/m?). However, once the HVS is adapted to a scene,
it functions over a range of about five orders of magnitude simultaneously (Reinhard et al.,
2005).

Since the beginning of photography, people have been trying to capture representations of a
scene that are as close as possible as what the HVS can see. However, the first photographic
equipment had very poor light sensitivity and required a rather long exposure time to produce
a result that captured only a black & white image with limited contrast. Through the years,
there has been a lot of progress in photographic films to capture color images and with a
wide contrast (for example, 8,000:1 for the Kodak VISION3 film). Nowadays, high-end digital
single-lens reflexs (DSLRs) cameras, e.g., the Nikon D810, can capture about 14.8 stops, also
referred to as exposure values (EVs), which corresponds to 28,500:1 contrast ratios.

To capture a dynamic range wider than that of the camera, the idea is to capture multiple shots
of the same scene with different exposure times and to recompose these shots into a single
image considering the transfer characteristics of the camera (Debevec and Malik, 2008; Mann
and Picard, 1995; Mitsunaga and Nayar, 1999; Robertson et al., 1999). This technique is called
exposure bracketing and was pioneered by Gustave Le Gray in the 1850s to render seascapes
showing both the sky and the sea. Le Gray used two negatives, one for the sky and another
one with a longer exposure for the sea, and combined them into one picture. DSLR cameras
offer an auto exposure bracketing mode, which typically takes 3, 5, or even 7 shots of the same
scene with different exposure times. The main problem with this technique is motion between
successive pictures, which results in blur in the composed image. For this reason, a tripod is
largely recommended, even if image alignment can be performed in post-processing. The
first mathematical theory to construct a HDR image with luminance values from differently
exposed pictures acquired via bracketing was proposed by Mann and Picard (1995). Note that
nowadays, HDR images can also be acquired using specific image sensors.
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A certain time after the development of new imaging technologies, the capabilities of capture
system frequently exceeded that of reproduction systems. Regarding photography, the dy-
namic range captured by negative films is significantly wider than what can be reproduced by
positive paper prints. Thus, manual tone mapping was applied during the development pro-
cess to selectively increase or decrease the exposure of specific regions of the photograph. This
process is called dodging and burning and is used to generate a better tonality reproduction.
The American photographer Ansel Adams played a lot with this technique and proposed the
zone system, a technique for determining optimal film exposure and development (Adams,
1980; Adams, 1981; Adams, 1983). The zone system is based on 11 zones, from 0 to 10, with 0
representing pure black, 5 middle grey, and 10 pure white. Zones 1 to 9 are recommended to
represent the darkest and lightest “useful” negative densities, while zones 2 to 8 are meant to
convey a sense of texture and the recognition of substance.

Conventional low dynamic range (LDR) displays, e.g., CRT and LCD, can best reproduce a
range of luminance values from 1 to 100 cd/m?, i.e., they can cover two orders of magnitude.
Thus, tone mapping operators (TMOs) have been designed to map HDR content into the
luminance range and color gamut of conventional LDR displays. Tone mapping is either
applied locally or globally over the whole picture. The work from Oppenheim et al. (1968) is
the first attempt at tone reproduction in computer graphics. The authors suggested a method
for simultaneously reducing dynamic range and enhancing contrast using homomorphic
filtering, thus proposing a local operator. Later, several TMOs were proposed (Devlin, 2002).
In particular, the TMO proposed by Reinhard et al. (2002) is based on the zone system from
Ansel Adams. Several TMOs have also been proposed for HDR video sequences, though a
major issue is the temporal coherence of the tone-mapped video sequence (Aydin et al., 2014;
Eilertsen et al., 2013). Finally, inverse TMOs have also been developed to expand the dynamic
range of LDR content to display legacy content on new HDR monitors (Banterle et al., 2009).
However, Akyliz et al. (2007) have found that simply linearly boosting the dynamic range of an
LDR image can be preferred over a true HDR image.

Traditional LCD display use a uniform backlight source, e.g., a series of cold cathode fluores-
cent lamps or an array of white or colored light-emitting diodes (LEDs). The front LCD panel
then modulates the backlight to produce the desired light. To create the first HDR display,
Seetzen et al. (2003) had the idea of using an active matrix array of ultra high brightness white
LEDs for the backlight. The LEDs were driven individually to control the local luminance. As
the sampling of the LED backlight is sparer than the definition of the front LCD panel and
because the point spread function (PSF) of one LED leaks over neighboring pixels, a compen-
sation has to be applied in the LCD panel to compensate the light leakage to obtain the desired
luminance. Therefore, a dual modulation between the LED backlight and front LCD was
proposed by Seetzen et al. to correct for the low resolution backlight through compensation in
the high resolution LCD panel. The HDR display developed by Seetzen et al. was capable of
displaying a luminance range from 0.1 cd/m? up to 10000 cd/m?, i.e., five orders of magnitude,
while maintaining the resolution, refresh rate, and image quality found in conventional LCD
displays. Seetzen et al. (2004) have also proposed another design based on a video projector
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instead of an active LED array for the backlight. This design uses a Fresnel lens and a diffuser
to collimate the projected light into a narrow viewing angle for maximum brightness and
to avoid color distortion due to diverging light passing through the color filters of the LCD
(Seetzen et al., 2004). This system can be constructed with off-the-shelf components. More
details regarding the signal processing to create the dual modulation signals can be found in
(Seetzen et al., 2004).

Gamma encoding, which was originally developed to compensate for the characteristics of CRT
displays, relies on a power law (typically with an exponent between 1.8 and 2.6) electro-optical
transfer function (EOTF) to map code values to luminance values to optimize quantization
when encoding an image (Poynton, 2012). Under common illumination conditions, the HVS
is more sensitive to relative differences between darker than brighter tones. According to
Weber's law, the HVS sensitivity approximately follows a logarithm function at high luminance
values (Shevell, 2003). However, at the darkest levels, the HVS sensitivity is closer to a square-
root behavior, according to Rose-DeVries law (De Vries, 1943; Rose, 1948). Thus, gamma
encoding is not optimized for encoding of dark and bright luminance values, as the shape of
the EOTF should be adjusted to take into account the Rose-DeVries and Weber laws. For this
purpose, Miller et al. (2013) have proposed an new EOTF for HDR content, named perceptual
quantizer (PQ), which is derived from the Barten contrast sensitivity function (Barten, 1999).
The PQ curve has a square-root and log behavior at the darkest and brightest light levels,
respectively, while it exhibits a slope similar to the gamma non-linearities between those
extreme luminance regions. The PQ EOTF was approved as SMPTE Standard 2084 and is used
in the HEVC HDRI10 profile, which is one of the current HDR formats accepted by HDR TV
sets. Recommendation ITU-R BT.2020 (2015) specifies a digital representation of 10 or 12 bits
per component, which is beneficial for HDR coding (using the PQ EOTF or another transform).
This specification shows that UHD and HDR are profoundly linked.

The red, green, and blue primaries of a monitor define the color gamut that can be rendered.
The color primaries specified in recommendation ITU-R BT.709 (2015) were defined consider-
ing the phosphorus capabilities of the CRT technology. However, the resulting color gamut
only covers 33.51% of the visible light that the HVS can perceive (Shevell, 2003). To be able to
render a larger portion of the human gamut, new color primaries must be used to obtain a
wide color gamut (WCG) display. The color gamut of typical LCD monitors can be extended
by using a LED backlight with red, green, and blue LEDs (Kakinuma et al., 2007; Sugiura et al.,
2003). The color gamut can be further extended using semiconductor lasers to generate the
three primary colors (Someya et al., 2006). This technology was considered to design the
colorimetry specifications in recommendation ITU-R BT.2020 (2015) (Masaoka et al., 2010).
This specification shows that UHD and WCG are profoundly linked too.

To conduct research on HDR imaging, the only available HDR monitor on the market is the
Sim2 HDR47E S 4K monitor, which can reproduce luminance levels from 0.001 cd/ m? to
4000 cd/m?, i.e., about 6.6 orders of magnitude. However, a major problem with this display is
its color reproduction fidelity, but an appropriate display characterization and pre-processing
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can be applied to provide a more accurate color reproduction (J. Liu et al., 2015b). For the
consumer market, several HDR&WCG TV sets with 4K UHD resolution have been released in
2015 and at the Consumer Electronics Show in Las Vegas in January 2016, e.g., the Samsung
JS9500 Series (1000 cd/m? peak luminance and 240 active LED zones) and Vizio Reference
Series (800 cd/m? peak luminance and 384 active LED zones), both using the Quantum Dot
technology, or the Panasonic DX900 Series (1000 cd/m? peak luminance and 512 active LED
zones), Philips 9000 Series (1000 cd/m? peak luminance and 256 active LED zones), Sony
X940C/X930C Series, and LG G6 Signature Series (which uses the OLED technology).

An important question for HDR displays is how much dynamic range is needed. Should it be
the range of luminance values that can be perceived by the HVS? Probably not, as this would
not be feasible from a technical point of view, especially to render a strong sunlight. Most
consumer-grade HDR monitors are mainly characterized by their peak luminance. However,
HDR is not only about brightness. In particular, the black level, or in other words, the contrast
ratio, is as important as the peak white level. Seetzen et al. (2006) investigated the impact of
peak luminance and contrast ratio on viewers preferences for peak luminance levels ranging
from 400 cd/m? to 6400 cd/m? and contrast ratios ranging from 2,500:1 to 10,000:1. They
found that the optimal contrast ratio increases logarithmically with peak luminance. For an
appropriate contrast ratio, they found that image quality also increases logarithmically with
peak luminance. However, above 6000-7000 cd/ m?, image quality started to decrease, but this
effect might be due to discomfort considering the ambient light conditions. A similar study
was conducted by Daly et al. (2013) on a custom built HDR display with a peak luminance of
20000 cd/m? and a 5,000,000:1 contrast ratio. They found that for diffuse reflective regions,
[0.1,650] cd/m? match the average preferences, whereas [0.005,3000] cd/m? is required to
satisfy 90% of the viewers. However, for specular highlights and emissive sources, 2500 cd/m?
peak luminance is sufficient to match the average preferences, whereas over 20000 cd/m? is
necessary to satisfy 90% of the viewers.

Both JPEG 2000 (Schelkens et al., 2009; Skodras et al., 2001) and JPEG XR (Dufaux et al., 2009)
standards can represent HDR images when used in combination with an appropriate pixel
encoding, such as logLuv (Pattanaik and Hughes, 2005; Ward, 1998) or perceptual quantization
(Mantiuk et al., 2004; Miller et al., 2013), as they support higher bit-depth. These two standards
can also be used to encode directly HDR images in floating point representation, though
with less efficiency. Nevertheless, those standards have not been adopted by the digital
photography market. As JPEG is currently de facto the most popular imaging format, it is
believed that an HDR image coding format should be backward compatible with the legacy
JPEG format to facilitate its adoption and inclusion in current imaging ecosystems.

First attempts to design a coding system for HDR still images that would also provide backward
compatibility were made by Spaulding et al. (2003) and Ward and Simmons (2006). The latter,
known as JPEG-HDR, also proposed a software implementation which made it popular for
compression of HDR images among some HDR enthusiasts. Minor limitations of that format
were the lack of support for WCG and lack of lossless coding. To overcome the lack of a
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standard for compression of HDR images that is backward compatible with JPEG format, the
Joint Photographic Experts Group (JPEG) Committee created the JPEG XT standard (Artusi
et al., 2015). Using this compression standard, HDR images are coded in two layers. A tone-
mapped version of the HDR image is encoded using the legacy JPEG format in a base layer,
and the extra HDR information is encoded in a residual layer.

Regarding compression of HDR video sequences, backward-compatible compression methods
that decompose an HDR video stream into a residual stream and a standard LDR stream
have also been proposed (C. Lee and C.-S. Kim, 2008; Mantiuk et al., 2006b). Additionally,
Mantiuk et al. (2004) have proposed an extension of MPEG-4 to accommodate HDR video
content. Similarly to LogLuv encoding, the algorithm uses an 11-bit perceptually uniform
representation for the luma channel and 8-bit for the chroma channels. Garbas and Thoma
(2011) have proposed a similar method with 12-bit for the luma channel. However, none of
these algorithms have been used in real applications. Recognizing the rise of HDR applications
and the lack of a corresponding video coding standard, the Moving Picture Experts Group
(MPEG) released in February 2015 a Call for Evidence (CfE) for HDR and WCG video coding
(N15083). The purpose of this CfE was to explore whether the coding efficiency and/or the
functionality of HEVC Main 10 and Scalable Main 10 profiles can be significantly improved for
HDR and WCG content. The results showed that visual quality can be noticeably improved
and efforts towards the development of HDR/WCG extensions of HEVC were initiated.

1.1.4 3D

3D can be considered as the oldest immersive video technologies, as the first stereoscopic
device, i.e., the stereoscope, was developed in 1838 by Sir Charles Wheatstone. Early attempts
were made to show stereo footage in 1915 using anaglyph glasses. Later in the 1950s, many 3D
movies were produced by cinema industry as a reaction to the invention of television. Even if
this period is called the “golden era” of 3D, the added value was not sufficient to overcome the
quality degradations when compared to 2D, which would explain why it did not successfully
break through. It is only recently, that 3D seems to have become increasingly successful. 3D
reached its climax in 2009 with Avatar, the highest-grossing movie of all time.

Currently, two main technologies are considered for stereoscopic displays to separate the left-
and right-eye images (Urey et al., 2011). The first one is passive and relies on light polarization
using filters mounted on the glasses to separate the two images. Circular polarization (left-
/right handedness) is the most common. Linear polarization is also used, in particular in IMAX
theaters (because of patent issues), but crosstalk, i.e., imperfect separation that causes a small
proportion of one eye image to be seen by the other eye as well, starts to appear when you lean
your head because of the imperfect alignment between the screen and your glasses. With this
technology, projection systems require a silver screen, which can reflect light while preserving
its polarization. Passive stereoscopic displays rely on a line-interleaved based set of filters,
where odd lines use one polarization, whereas the even lines use the other one. The second
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technology is active and relies on time multiplexing of the left and right images. It requires
glasses equipped with two tiny LCDs instead of the lenses, which are synchronized with the
display. With both technologies, the amount of light perceived by each eye is reduce by more
than two, but the spatial resolution of active systems is twice better than that of passive sys-
tems. Active stereoscopic systems require at least 120 Hz refresh rate, so temporal resolution
is usually not a problem. The amount of perceived crosstalk is similar in both technologies
as long as the eyes are aligned vertically with the center of the display with passive glasses,
but active glasses create flicker, which is mainly influenced by the video content and lighting
conditions (Andrén et al., 2012).

Current stereoscopic technologies still require the user to wear bulky glasses. This factor has a
significant impact on QoE, especially for users who are already wearing glasses. Autostereo-
scopic displays can be the solution to this problem. Two-view autostereoscopic displays are
the most common types of glasses-free displays. They use either a parallax barrier (Benzie
etal., 2007) or a lenticular sheet (Urey et al., 2011) to separate the two views. In the first system,
the left and right views are column interlaced. The parallax barrier, defined as a set of vertical
apertures placed in front of the screen, allows light to pass only to the desired viewing zone. In
the second system, the views are also column interlaced, and a lenticular sheet, i.e., a set of
vertical lenses placed in front of the screen, redirects the light to different viewing zones.

Multiview autostereoscopic displays have been developed to allow several users to enjoy 3D
at the same time. These displays mimic reality by offering different viewing angles. However,
current autostereoscopic display devices suffer from large quantities of crosstalk. Nevertheless,
it has the advantage of providing a smooth transition between the different views when moving
around the display, which is used to provide a good motion parallax depth cue. However, to
enjoy a quality 3D experience, viewers should sit in specific positions relatively to the display,
called sweet spots, where the amount of crosstalk is limited and the left and right views are
projected to the left and right eyes, respectively. The most common technology uses a slanted
lenticular sheet placed on the top of a regular screen (Urey et al., 2011). Each lens covers
several pixels horizontally such that the different views are projected to different locations.
The slanted system helps to reduce the “picket fence” effect and provides better transition
between two adjacent views (Benzie et al., 2007). Most displays have between 5 and 9 views,
some may have more than 25. The higher the number of views, the more natural is the motion
parallax (Nam et al., 2011). However, the higher the number of views, the lower the resolution
of each view since they are spatially multiplexed and the number of pixels on current displays
is limited. Even though this technology is not yet mature enough for a wide acceptance in the
consumer market, it shows promising results.

Several formats have been proposed for 3D content, e.g., stereoscopic, multiview, 2D-plus-
depth (2D+Z), and multi-view video plus depth (MVD) (Smolic et al., 2009a; Vetro et al., 2008).
The different formats have different characteristics and each application works best with a
particular format. Stereoscopic (left and right) is the “easiest” 3D format, but it also provides
very little capabilities. However, this format is the most common and is used for 3D movies,

10
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3D Blu-rays, 3D broadcasting, and current stereoscopic 3D displays.

The multiview format consists of two or more views of the same scene. This format can be
used for interactive system that allow the viewer to change the viewpoint to have a look around
capability (Huang et al., 2012; Maugey and Frossard, 2011; Maugey and Frossard, 2013; Maugey
et al., 2013; Toni et al., 2013). Additionally, the scene can be seen either as monoscopic or
stereoscopic. To efficiently encode multiview data, several prediction structures have been
proposed to take into account the spatial redundancy between the different views (Khattak
etal.,, 2012; Khattak et al., 2013; Merkle et al., 2006; Merkle et al., 2007c). Multiview extension of
AVC has been standardized under the name multiview video coding (multiview video coding
extension of AVC) (MVC) (Y. Chen et al., 2009; Vetro et al., 2011), as well as multiview video
coding extension of HEVC (MV-HEVC) (Muller et al., 2013; Sullivan et al., 2013).

The 2D-plus-depth format offers the ability to synthesize additional views, for example using
depth-image-based rendering (DIBR) (Fehn, 2004a). Since only one view is provided origi-
nally, the additional views have to be extrapolated and the missing information, which was
occluded in the available view, has to be filled using the available neighboring information.
Hence, the view synthesis capabilities with this format are rather limited to a narrow range
around the original viewpoint without creating too much artifacts. 2D-plus-depth coding was
standardized by MPEG in the MPEG-C Part 3 specification (Daribo et al., 2008).

The MVD format can be seen as the ultimate 3D format, as the other formats discussed above
can be considered as subsets of this format. Thanks to the multiple views, the interpolation
of virtual views in between two existing views (Smolic et al., 2008) will result in better visual
quality than with the 2D-plus-depth format, as the occluded information in one view is visible
in the other view. This possibility opens the door to several applications (Kauff et al., 2007;
Muller et al., 2008). For example, while watching 3D content on a stereoscopic display, the
depth perception can be adjusted by synthesizing a new stereo pair to cope with different
viewing preferences, viewing distances, and screen sizes (D. Kim et al., 2011). In multiview
autostereoscopic monitors, with the MVD format, the N displayed views can be interpolated
from a limited set of M < N input views (Smolic et al., 2008; Smolic et al., 2009b; Vetro et
al., 2008), as the capture capabilities are limited. Free viewpoint television (FTV) and free
viewpoint video (FVV) rely on the MVD format to provide the ability to change the viewpoint
and view direction (Smolic et al., 2004; Smolic and Kauff, 2005; Smolic et al., 2006; Smolic,
2011; Tanimoto, 2006). To efficiently encode MVD content, several prediction structures have
been proposed to take into account the spatial redundancy between the different views and
depth maps, and to use view synthesis prediction from the already coded views and depth
maps (Merkle et al., 2007a; Merkle et al., 2007b; Muller et al., 2009). To encode MVD content,
extensions of AVC and HEVC have been standardized under the names 3D video extension of
AVC (3D-AVC) (Y. Chen and Vetro, 2014) and 3D video extension of HEVC (3D-HEVC) (Muller
et al., 2013; Sullivan et al., 2013), as well as extension of MVC, which is referred to as MVC plus
depth (depth enhanced extension of MVC) (MVC+D) (Y. Chen et al., 2014).
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1.2 Quality of Experience

For many years, the quality assessment of multimedia systems and services was focused on
their fidelity and ability to satisfy a set of requirements. In the multimedia field, quality as-
sessment was performed by measuring the quality of service (QoS) of a particular multimedia
system. For ITU, QoS is defined as the “totality of characteristics of a telecommunications
service that bear on its ability to satisfy stated and implied needs of the user of the service”
(ITU-T E.800, 2008). Thus, the definition of QoS is very much focused on telecommunications
services. However, since the end of 1990s, the notion of quality of experience (QoE) has
gained popularity in different contexts. In particular, regarding communication, the concept
of QoS was perceived as not sufficient enough to represent the different aspects of modern
communication systems, which are more engaging, more interactive, more user-centered, etc.

The European Network on Quality of Experience in Multimedia Systems and Services, Qualinet
(COST Action IC 10032), was initiated in 2011 for a duration of four years. One of the main
topic in Qualinet was the discussion and definition of the term QoE and related concepts.
One of the major outcome of Qualinet is a White Paper on definitions of QoE, which gives the
following definition: “QoE is the degree of delight or annoyance of the user of an application
or service. It results from the fulfillment of his or her expectations with respect to the utility
and/or enjoyment of the application or service in the light of the user’s personality and current
state.” (Le Callet et al., 2013).

From the Qualinet definition of QoE, three major factors influencing QoE can be identified:
human, system, and context factors (Le Callet et al., 2013). The human factors are related
to the demographic and socio-economic background of the user, as well as his/her physical
and mental constitution and emotional state. The systems factors are related to the technical
properties and characteristics that determine the quality produced by an application or a
service. In the case of multimedia communication, this include all the aspects related to
content, media, network, and device. The context factors are related to the user’s environment
in terms of physical, temporal, social, economic, task, and technical characteristics.

The notion of QoS is centered around network performance and systems-level parameters,
whereas the notion of QoE has a wider scope and is more user-centric. QoE is a multi-
dimensional and multi-modal notion that includes important factors such as user character-
istics and context of usage. However, these aspects are not considered in the ITU definition
of QoS. QoS considers the performance aspects of physical systems, whereas QoE considers
the users’ assessment of the overall systems performance, which can be influenced by many
factors, e.g., context, culture, users’ expectations, socio-economic issues, or psychological
profiles. The assessment of QoS is very technology-oriented and relies on analytic approaches
and empirical or simulative measurements. However, the assessment of QoE requires a multi-
disciplinary and multi-methodological approach for its understanding. Nevertheless, QoS
and QoE are not opposite notions. On the contrary, QoS can be seen as a subset of QoE and, in
many cases, QoE is highly dependent on QoS. Regarding multimedia systems, the technical
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aspects can have a significant impact on some dimensions of QoE (Fiedler et al., 2010).

For more details about the many aspects of QoE and different applications of QoE, e.g.,
multimedia, web browsing, gaming, recognition tasks, or human-computer interaction, the
reader is recommended to have a look at the excellent book edited by Méller and Raake (2014).

1.3 Contributions

To measure QoE, subjective evaluation is the ultimate means since it relies on a pool of human
subjects. However, reliable and meaningful results can only be obtained if experiments are
properly designed and conducted following a strict methodology. In this thesis, we build a
rigorous framework for subjective evaluation of new types of image and video content. We
propose different procedures and analysis tools for measuring QoE in immersive technologies.

As immersive technologies capture more information than conventional technologies, they
have the ability to provide more details, enhanced depth perception, as well as better color,
contrast, and brightness. To measure the impact of immersive technologies on the viewers’
QoE, we apply the proposed framework for designing experiments and analyzing collected
subjects’ ratings. We also analyze eye movements to study human visual attention during
immersive content playback.

Since immersive content carries more information than conventional content, efficient com-
pression algorithms are needed for storage and transmission using existing infrastructures. To
determine the required bandwidth for high-quality transmission of immersive content, we
use the proposed framework to conduct meticulous evaluations of recent image and video
codecs in the context of immersive technologies.

Subjective evaluation is time consuming, expensive, and is not always feasible. Consequently,
researchers have developed objective metrics to automatically predict quality. To measure the
performance of objective metrics in assessing immersive content quality, we perform several
in-depth benchmarks of state-of-the-art and commonly used objective metrics. For this
aim, we use ground truth quality scores, which are collected under our subjective evaluation
framework.

To improve QoE, we propose different systems for stereoscopic and autostereoscopic 3D
displays in particular. The proposed systems can help reducing the artifacts generated at
the visualization stage, which impact picture quality, depth quality, and visual comfort. To
demonstrate the effectiveness of these systems, we use the proposed framework to measure
viewers’ preference between these systems and standard 2D & 3D modes.

In summary, this thesis tackles the problems of measuring, predicting, and improving QoE in
immersive technologies. The following subsections describe in details the contributions of
the thesis in each of these categories.
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1.3.1 Measuring Quality of Experience

To compress an image or video sequence and reduce its file size, compression algorithms
typically try to exploit correlation, e.g., spatial and temporal, in the data, for example to predict
the current frame from previously encoded frames. Additionally, properties of the HVS are
exploited to further reduce the amount of data, for example to adaptively quantize the data.
To efficiently compress images and video sequences, i.e., reduce the number of bits used
for their representation, lossy processes must be used, which might result in visible quality
degradation. Therefore, the visual quality of compressed images and video sequence need to
be assessed to determine the range of compression ratio values where acceptable quality can
be achieved. As humans are ultimately the end-users of multimedia applications, the coding
efficiency of different compression algorithms is best compared by means of subjective quality
evaluations, carried out according to common evaluation methodologies defined by experts.

To evaluate the performance of image and video compression, a direct scaling of the different
algorithms under study is typically measured using category scaling or magnitude estimation.
However, for other scenarios such as the evaluation of different rendering techniques or new
display technologies, a direct scaling is often impossible or would introduce too much bias. In
this cases, the pair comparison (PC) method is more appropriate has it is similar to the process
followed by humans when they have to decide between two products. However, the results of
PC experiments are harder to interpret. Thus, PC results are often converted to mean opinion
score (MOS) equivalent results, as obtained with direct scaling, using statistical models, e.g.,
the Bradley-Terry-Luce (Bradley and Terry, 1952; Luce, 1959) and Thurstone Case V models
(Thurstone, 1927). Considering that ties convey information about significant differences
between two stimuli being compared, we proposed an extension of the Thurstone Case V
model to estimate confidence interval (CI) from PC experiments conducted with a ternary
scale (Hanhart et al., 2014b).

Comparing results of two subjective experiments conducted with the same test material but
with different conditions is essential. One goal can be to investigate the influence of different
factors, e.g., viewing distance, lighting conditions, display, test methodology, or rating scale.
For this task, it is recommended to compute four statistical evaluation metrics to estimate
the linearity, monotonicity, accuracy, and consistency between two groups of MOS values
corresponding to two different experiments. However, such a simple analysis may not be
sufficient to investigate the possible difference between two experiments. Thus, we proposed
new methods to compare MOS values of different experiments (Hanhart and Ebrahimi, 2013c),
which were inspired from recommended methods for benchmarking of objective metrics.

To calculate the coding efficiency between two compression algorithms, the Bjontegaard
model (Bjontegaard, 2001) is commonly used to compute the average peak signal-to-noise
ratio (PSNR) and bit rate differences between two rate-distortion (R-D) curves obtained from
the PSNR measurement when encoding a content at different bit rates. However, this model
considers only one bit rate and thus cannot be used to investigate the impact on quality of the
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interaction of the base and enhancement layers bit rates when comparing two-layer coding
systems. Therefore, we proposed an extension of the Bjontegaard model from R-D curve fitting
to rate-rate-distortion (R?-D) surface fitting (Hanhart and Ebrahimi, 2015). Additionally, the
Bjontegaard model might not be an accurate predictor of the true coding efficiency as it relies
on PSNR measurements. To estimate a more realistic coding efficiency, subjective quality
scores should be considered instead of PSNR measurements. Thus, we proposed a model to
calculate the average coding efficiency based on MOSs gathered during subjective evaluations
instead of PSNR measurements (Hanhart and Ebrahimi, 2014a).

Several standardization bodies, e.g., MPEG, Video Coding Experts Group (VCEG), and JPEG,
are at the roots of the still and moving pictures coding formats used over the past 30 years.
When a new activity is initiated by standardization bodies, evidence must be brought to show
potential value for a new coding format or extension of an existing coding format. In the
past, the standardization bodies have always relied on subjective quality evaluations to prove
that considerable coding gains, e.g., 50% bit rate reduction for the same visual quality, can
be achieved. Alternatively, standardization activities are also initiated when there is a lack of
standard, e.g., for new applications or new image/video formats. In particular, recognizing
the rise of HDR applications and the lack of a corresponding video coding standard, MPEG
released in February 2015 a CfE for HDR and WCG video coding (N15083). The purpose of this
CfE was to explore whether the coding efficiency and/or the functionality of HEVC Main 10
and Scalable Main 10 profiles can be significantly improved for HDR and WCG content. In
total, eight companies or aggregations of different companies and one university responded
to the CfE and submitted responses to one or more of the different categories. To benchmark
the potential coding technologies submitted in response to the CfE, we conducted a subjective
quality evaluation to determine whether the proposed technologies could achieve better visual
quality than the HEVC Anchor (Hanhart et al., 2015c¢). The subjective quality evaluation was
conducted on 5 HDR video contents encoded at 4 bit rates by each algorithms in competition,
leading to a total of 176 paired comparison against the HEVC Anchor. Overall 48 naive subjects
participated in the evaluation to collect a total of 24 ratings per video stimuli. Extensions of
HEVC for HDR video coding are still under development and, in December 2015, MPEG and
VCEG initiated a joint activity on this topic.

It is also important to conduct subjective evaluations during the development of coding
standards to assess the impact of new coding tools, or alternatively, to assess the impact of
removing coding tools, and to measure the quality improvements between different versions of
the test model. Additionally, the performance of the standard in development is also assessed
for new applications. In particular, efforts on the development of HEVC, the successor of
AVC, were initiated in October 2004 and the first version of the standard was completed in
January 2013. It was expected that HEVC could achieve even better compression efficiency
for resolutions beyond HDTV, especially due to increased prediction flexibility and a wider
range of block sizes. However, until August 2012, no subjective evaluation, including those
performed in the context of the Call for Proposals (CfP) evaluations (De Simone et al., 2011),
had been performed on resolutions higher than HDTV, mostly because of hardware limitations
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and the lack of high quality uncompressed content. To address this problem, we conducted
the first subjective quality evaluation to benchmark the performance of HEVC and AVC on 4K
UHD video content (Hanhart et al., 2012b). The subjective quality evaluation was conducted
with 36 naive subjects on 3 4K UHD video contents encoded with AVC and HEVC at 5 bit rates,
leading to a total of 30 video stimuli.

Similarly to previous video compression standards, HEVC provides an intra coding mode,
where each frame can be encoded separately by considering only intra picture prediction and
by disabling inter picture prediction. Thus, HEVC can also be used to compress still images or
video sequences without considering any temporal prediction. The coding efficiency of HEVC
intra coding for still image compression was investigated in a few studies that compare still
images compression standards with HEVC intra coding by using PSNR as an objective metric
for visual quality JCTVC-10461; JCTVC-10595). These objective evaluations demonstrated
that HEVC can achieve a considerable gain even compared to the state of the art JPEG 2000
compression standard. However, until January 2013, no subjective evaluation had been
performed to assess the performance of HEVC intra coding for still image compression. To
address this problem, we conducted the first subjective quality evaluation to benchmark HEVC
intra coding for still image compression (Hanhart et al., 2013) following the guidelines defined
by the JPEG committee for the evaluation of JPEG XR (De Simone et al., 2009b). The subjective
quality evaluation was conducted with 22 naive subjects on 6 high resolution image contents
encoded with JPEG, JPEG 2000 (both 4:2:0 and 4:4:4 chroma sampling formats), and HEVC at
6 bit rates, leading to a total of 144 image stimuli. Since its first version in January 2013, HEVC
defines a Main Still Picture profile for coding of 8-bits images with 4:2:0 chroma sampling. The
second version completed in 2014 defines the Main 4:4:4 Still Picture and Main 4:4:4 16 Still
Picture profiles for coding of still images with up to 4:4:4 chroma sampling and up to 16-bits
per sample, respectively.

Recognizing the lack of a widely accepted standard for HDR image coding that can be seam-
lessly integrated into existing products and applications, JPEG issued a CfP in 2012, which led
to the initiation of JPEG XT. This standard is meant to compress HDR images while preserving
backward compatibility with the original JPEG format. The core part of JPEG XT has been
published in June 2015, but the parts related to HDR coding are still to be published. During
its development, several objective evaluations of JPEG XT have been performed, mainly by
Richter. However, until May 2015, only one subjective evaluation was performed by Mantel
et al. (2014), but only for Profile C and only on six different images. To overcome the lack of
subjective evaluations of JPEG XT, we conducted the first extensive subject quality assessment
of the three main profiles, i.e., profiles A, B, and C (Artusi et al., 2015; Korshunov et al., 2015)
The subjective quality evaluation was conducted on 20 HDR image contents encoded with
profiles A, B, and C at 4 bit rates, leading to a total of 240 image stimuli. Overall 48 naive
subjects participated in the evaluation to collect a total of 24 ratings per stimuli.

Subjective quality evaluations are also important after the finalization of the standard for veri-
fication purposes and to have an idea of the actual performance of the standard as published.
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In particular, the Joint Collaborative Team on 3D Video Coding (JCT-3V) of MPEG and VCEG
finalized the MVC+D and 3D-AVC amendments of AVC for 3D video coding in January and
November 2013, respectively. In November 2013, JCT-3V issued a test plan (JCT3V-F1011)
to evaluate the performance of two amendments of these two coding technologies. Three
laboratories took part in this verification test: at EPFL in Switzerland, UWS in Scotland, and
FUB in Italy (Hanhart et al., 2014c¢). All laboratories evaluated the same video data, i.e., 4 MVD
contents encoded with MVC+D and 3D-AVC at 4 bit rates and rendered on a stereoscopic
display considering two different configurations, leading to a total of 64 video stimuli. At the
EPFL, 22 naive subjects participated in the evaluation.

HEVC is the latest video compression standard developed by JCT-VC. However, its commercial
use is subject to royalties, as HEVC is protected by several patents. This lead to the develop-
ment of royalty-free and license-free alternatives, e.g., VP9 (and its successor, VP10). Thus,
it is important as well to evaluate the performance of these alternatives in competition with
international standards. The developers of VP9 have shown that VP9 has similar compression
efficiency when compared to HEVC and a significantly higher compression efficiency when
compared to AVC Mukherjee et al. (2013). However, a different studies by Grois et al. (2013)
comes to a different conclusion, namely that VP9 is inferior to both AVC and HEVC. Such con-
flicting conclusions are mainly caused by different usage scenarios assumed in the papers and
by different encoding configurations used. These results show that a fair subjective evaluation
by a neutral and independent test laboratory is required. To address this problem, we con-
ducted the first subjective quality evaluation to compare the compression efficiency between
HEVC, VP9, and AVC assuming a real-time Internet-based streaming scenario (Rerabek et al.,
2015b). The subjective quality evaluation was conducted with 26 naive subjects considering a
crowdsourcing environment on 8 high-definition video contents encoded with AVC, HEVC,
and VP9 at 4 bit rates, leading to a total of 96 video stimuli.

For more than 40 years, most subjective quality evaluations have been conducted on 2D LDR
still images and video sequences. Since then, many technological revolutions have occurred
in imaging and display technologies, but the guidelines and methodologies for subjective
evaluations have not always been updated to reflect the requirements of new technologies.
For example, even if ITU has recently released a new recommendation for the assessment of
stereoscopic 3D television (3DTV) systems (ITU-R BT.2021, 2012), there is no recommendation
that addresses the specific issue of synthesized views. This lack of recommendation affects
the evaluation of FTV systems, which rely on DIBR or alternative methods to allow the user
to interactively control the viewpoint of the scene. To overcome the lack of standardize test
methodologies for FTV scenarios, we proposed an experimental protocol to evaluate the
impact of depth compression on perceived image quality in a FTV scenario (Bosc et al., 2013).
A specific use case was considered to allow a reliable comprehension of the impact of depth
coding: a smooth camera motion during a time freeze. This protocol is expected to enable
the evaluation of different types of depth coding distortions. To illustrate the suitability of
the proposed protocol, we conducted a subjective quality evaluation to assess the quality of
FVV sequences corresponding to a smooth camera motion during a time freeze, which were
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generated through DIBR from 3D content represented in the MVD format. The subjective
quality evaluation was conducted with 27 naive subjects on 6 MVD contents, with depth maps
compressed by 7 algorithms at 3 bit rates and processed by 2 more algorithms, and rendered
using 2 different view synthesis configurations, leading to a total of 276 video stimuli.

For more than 40 years, most subjective quality evaluations have been conducted in laboratory
environments. However, conducting subjective experiments is very time consuming and can
be quite expensive. To reduce the costs of subjective evaluations and also to consider more
practical environments, researchers are investigating crowdsourcing platforms, which allow
employing workers online from around the world. One of the constraints is the limited
variety of display devices used by online workers. Due to this limitation, for example, a
direct evaluation of 3D or HDR content is impossible, since 2D standard dynamic range
(SDR) displays are the most commonly used. Therefore, it is necessary to use alternative
representations of 3D and HDR content in crowdsourcing evaluations. To address the problem
of crowdsourcing evaluation of 3D content, we investigated two possible approaches to assess
the quality of MVD content on 2D displays: by using a virtual view and by using a FVV,
which corresponds to a smooth camera motion during a time freeze (Hanhart et al., 2014g).
To demonstrate the feasibility of the proposed approaches, the results of a crowd-based
evaluation were compared to the ground truth results of a lab-based evaluation on a database
of seven MVD contents encoded with 3D-AVC at four bit rates. The reference ground truth was
obtained via a subjective evaluation of stereo pairs on a stereoscopic monitor in a laboratory
environment with 22 naive subjects. The two proposed 2D representations were generated for
each bit rate and evaluated in a crowdsourcing environment with 20 naive subjects. To address
the problem of crowdsourcing evaluation of HDR content, we investigated the feasibility of
using LDR versions of original HDR content obtained with TMOs in crowdsourcing evaluations
(Hanhart et al., 2014d). To demonstrate the feasibility of the proposed approach, the results
of a crowdsourcing evaluation were compared to the ground truth results of a lab-based
evaluations on a database of five HDR image contents encoded with JPEG XT profile A at
four bit rates. The reference ground truth was obtained via a subjective quality evaluation
of the HDR images on a HDR monitor in a laboratory environment with 18 naive subjects.
The LDR versions were generated for each HDR image using eleven TMOs and evaluated in a
crowdsourcing experiment by 18 naive subjects.

Immersive video technologies aim at providing better, more realistic, and emotionally stronger
experiences. An important question however is how significantly these technologies impact
the viewers’ QoE? To measure the impact of 3D on viewers’ QoE, we investigated immersive
video presentation experience via explicit subjective rating analysis for 2D and 3D multimedia
contents (Kroupi et al., 2014a; Kroupi et al., 2014b; Kroupi et al., 2014c; Kroupi et al., 2015). A
subjective experiment was conducted with 16 naive subjects on 7 video contents presented
in 2D and 3D modes, with low and high quality levels, leading to a total of 28 video stimuli.
Various QoE-related aspects were investigated and compared. In particular, perceived quality,
depth perception, content preference, and sensation of reality are investigated with respect to
how they influence each other. To measure the impact of HDR on viewers’ QoE, we investigated

18



1.3. Contributions

the added value of higher dynamic range to viewers’ preference using stimulus comparison
(SC) with hidden reference and full pair comparison methods (Hanhart et al., 2014a; Hanhart
etal., 2014b; Hanhart et al., 2015a). Two subjective experiments were conducted using eight
HDR video contents presented at 100, 400, 1000, and 4000 cd/m? peak luminance levels, which
were displayed side-by-side on a professional reference HDR monitor. The first experiment
was conducted with 21 naive subjects and the full PC method was used with all possible
pairs, including 4000 cd/m? versus 4000 cd/m?, leading to a total of 56 paired comparison.
The second experiment was conducted with 20 naive subjects and the SC method was used
considering the 4000 cd/m? grade as hidden reference, leading to a total of 32 video stimuli.

Since immersive technologies have the ability to provide more details and depth, as well as
better color, contrast, and brightness, understanding human attention patterns and viewing
strategies for immersive image and video content is important for developing efficient data
compression algorithms, as well as accurate objective quality metrics and computational
models of visual attention. Although a significant number of public image and video datasets
for visual attention exist, there are very few eye tracking datasets for immersive technologies.
Regarding HDR content, there is only one dataset for HDR images by Narwaria et al. (2014)
and two for HDR video sequences (Dong et al., 2014; Narwaria et al., 2014). To the best of our
knowledge, no dataset with eye tracking data is available for UHD content. However, without
this subjective data, it is hard to understand what is the impact of immersive technologies on
visual attention and whether it is significant for practical applications. To measure the impact
of UHD on visual attention, we created the first dataset of 4K UHD images with eye tracking
data (Nemoto et al., 2014a; Nemoto et al., 2014b). The eye tracking experiment was conducted
with 20 naive subjects on 45 4K UHD images and their resized HD versions. The fixation
density maps (FDMs) computed from the eye tracking data for UHD and HD resolutions
were compared using three metrics to understand if there is a difference in visual attention
between UHD and HD resolutions. To measure the impact of HDR on visual attention, we
conducted the first eye tracking experiment investigating the difference in human visual
attention between a HDR image generated from multiple exposure pictures and a single
exposure LDR image of the same scene (Nemoto et al., 2015). The eye tracking experiment
was conducted with 20 naive subjects on 46 HDR images and their LDR versions. The FDMs
computed from the eye tracking data for HDR and LDR resolutions were compared using the
similarity score metric to understand if there is a difference in visual attention between HDR
and LDR.

1.3.2 Predicting Quality of Experience

Subjective visual experiments are time consuming, expensive, and not always feasible. There-
fore, objective quality metrics are needed to predict perceived visual quality. However, it
is known that quality metrics do not always accurately reflect perceived visual quality. For
example, it is known that PSNR is quite reliable to tune the performance of a particular codec
on a specific content (Huynh-Thu and Ghanbari, 2008), but that it fails at predicting visual
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quality when different contents and distortions are considered (Z. Wang et al., 2004). Therefore,
it is essential to evaluate the performance of objective quality metrics in predicting perceived
visual quality and to determine their scope of validity. For this purpose, ground truth subjec-
tive quality scores obtained via subjective visual quality experiments are used to evaluate the
performance of objective metrics. For new applications, e.g., FTV, or types of content, e.g., 3D
and HDR, it is also fundamental to determine the performance of existing metrics that are
widely used.

In this thesis, we evaluated the performance of several objective metrics for different ap-
plications. First, we investigated the performance of state-of-the-art 2D metrics for quality
assessment of stereo pairs formed from decoded and synthesized views (Hanhart et al., 2012a;
Hanhart and Ebrahimi, 2012). A total of 9 metrics were computed considering 5 objective video
quality models on a database of 8 MVD contents encoded with 24 compression algorithms
at 4 bit rates, leading to a total of 768 video stimuli. The ground truth consisted of MOS
and corresponding CI values collected from 18 naive subjects for each video stimuli during
the evaluations of the CfP on 3D Video Coding Technology issued by MPEG (N12036). The
objective metrics were evaluated in terms of linearity, monotonicity, accuracy, and consistency
with the ground truth. Additionally, the resolving power and classification errors of the metrics
were computed.

Next, we evaluated the performance of the same metrics as in the first scenario, but for quality
assessment of stereo pairs formed from two synthesized views (Hanhart and Ebrahimi, 2013a).
The metrics were computed considering three objective video quality models on the same
database. However, the ground truth was obtained for different stereo pairs and was collected
from 36 naive subjects, coming from two different test laboratories, for each video stimuli.
The objective metrics were evaluated in terms of linearity, monotonicity, and accuracy with
the ground truth.

The third application is also related to 3D, as it considers a FTV application. In particular, we
investigated the performance of state-of-the-art 2D metrics for quality assessment of FVV
sequences corresponding to a smooth camera motion during a time freeze (Hanhart et al.,
2014e). A total of 7 metrics were computed on the database of FVV sequences created in
Part I, which is composed of 6 MVD contents, with depth maps compressed by 7 algorithms
at 3 bit rates and processed by 2 more algorithms, and rendered using 2 different view syn-
thesis configurations, leading to a total of 276 video stimuli. The ground truth consisted of
differential mean opinion score (DMOS) and corresponding CI values collected from 27 naive
subjects. The objective metrics were evaluated in terms of linearity, monotonicity, accuracy,
and consistency with the ground truth. Statistical tests were performed to determine whether
the difference between two different objective metrics is statistically significant. A PCA was
also applied between the DMOSs and objective scores to further investigate the correlation of
the objective metrics with perceived quality.

In the fourth application, we investigated the performance of HDR and LDR metrics for HDR
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image quality assessment (Hanhart et al., 2015d). In total, 35 metrics (22 full-reference (FR)
and 11 no-reference (NR) LDR metrics, as well as 2 HDR FR metrics) were computed on the
database of HDR images encoded with JPEG XT created in Part I, which is composed of 20
HDR image contents encoded with profiles A, B, and C at 4 bit rates, leading to a total of 240
image stimuli. The LDR metrics were computed in the linear, logarithm, perceptually uniform
(PU), and PQ domains. The ground truth consisted of MOS and corresponding CI values
collected from 24 naive subjects for each image stimuli. The objective metrics were evaluated
in terms of linearity, monotonicity, accuracy, and consistency with the ground truth. Statistical
tests were performed to determine whether the difference between two different objective
metrics is statistically significant.

Finally, we investigated the effectiveness of HDR and LDR metrics to discriminate between
quality levels when comparing two HDR video sequences (Hanhart et al., 2015c). In total,
9 metrics (4 LDR metrics computed in the PQ domain, 2 color difference metrics, 1 metric
computed using multiple-exposure, and 2 HDR metrics) were computed on database of HDR
video sequences created in Part I, which is composed of 5 HDR video contents encoded with
HEVC and 9 algorithms in competition at 4 bit rates, leading to a total of 176 paired comparison
against the HEVC Anchor. The ground truth consisted of preference scores collected from 24
naive subjects for each video stimuli. The classification errors of the metrics were computed
to assess their performance.

PSNR values below 25 dB and over 40 dB are often considered as bad and excellent quality,
respectively. However, the exact relationship between PSNR values and perceived quality has
not been established yet. This relationship should consider non-linearities and saturation
effect of the HVS. As it was shown that PSNR is strongly content dependent, this relation-
ship should also be determined for each content separately. To predict perceived quality
of stereoscopic video sequences, we proposed a model based on content analysis (Hanhart
and Ebrahimi, 2013b). A logistic function was used to map the PSNR values to perceived
quality. The parameters of the mapping function were predicted using 2D and 3D content
features. The model was trained and evaluated on a dataset of stereoscopic video sequences
with associated ground truth MOS.

1.3.3 Improving Quality of Experience

Quality assessment in the conventional video processing chain takes into account many
characteristic 2D artifacts (Yuen and H. Wu, 2005). When extended to 3D video, the HVS further
processes additional monocular and binocular stimuli. Thus, the resulting video quality at
the end of the 3D video processing chain depends also on the level of stereoscopic artifacts
or binocular impairments affecting the depth perception. In fact, stereo artifacts can cause
unnatural changes in structure, motion, and color vision of the scene and distort the binocular
depth cues, which result in visual discomfort and eyestrain. Regarding the visualization stage,
crosstalk is one of the stereo artifacts with the largest influence on image quality and visual
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comfort (Meesters et al., 2004; Seuntiéns et al., 2005). Vergence-accommodation rivalry is
believed to increase visual discomfort (Hoffman et al., 2008). Additionally, all the problems
related to the sweet spot position in autostereoscopic displays also considerably reduce the
overall 3D QoE. In this thesis, we proposed and evaluated different systems to reduce stereo
artifacts generated at the visualization stage to improve QoE on 3D displays.

To improve the QoE provided by stereoscopic displays, researchers have proposed to exploit
visual attention (Huynh-Thu et al., 2011b). Since two decades, researchers have investigated
different solutions based on visual attention to reduce crosstalk and vergence-accommodation
rivalry on stereoscopic displays. Several systems have been developed, but they rely on the
accuracy of a computational model of visual attention and have not been assessed in a formal
subjective evaluation. To address these problems, we proposed and evaluated two different
approaches that exploit visual attention: an offline system, which uses a computational model
of visual attention to predict gaze position, and an online system, which uses a remote eye
tracking system to measure real time gaze positions (Hanhart and Ebrahimi, 2014b). From the
saliency map, which was computed using a 3D visual attention model, the region-of-interest
and its disparity were extracted. From the eye tracking measurements, filtered gaze points were
used in conjunction with the disparity map to extract the disparity of the object-of-interest.
Horizontal image translation was performed to bring the fixated object on the screen plane.
The shift was determined based on the extracted disparity values and filtered in time to have
smooth transitions that do no create visual discomfort. The user preference between standard
3D mode and the two proposed systems was evaluated in terms of image quality, depth quality,
and visual discomfort. A subjective evaluation was conducted with 21 naive subjects on 8
stereoscopic video contents using the PC method, leading to 24 paired comparisons.

To improve the QoE provided by mobile autostereoscopic displays, researchers have proposed
to perform active crosstalk reduction based on user position (Boev et al., 2008; Park et al.,
2011). A few systems have been developed and implemented on specific platforms (Boev
et al., 2009b; Park et al., 2011), but, to the best of our knowledge, no subjective assessment
demonstrating the effectiveness of an active crosstalk reduction system on a mobile device had
been reported. To overcome this lack, we proposed and evaluated an active crosstalk reduction
system for mobile autostereoscopic displays (Chappuis et al., 2014). The proposed system was
implemented on a HTC EVO 3D smartphone. To determine the crosstalk level at each position,
a full display characterization was performed. Furthermore, the localization of sweet spot
and computation of the viewing freedom was performed. A special Android application was
implemented to track the user face and eyes, and to correct artifacts in real-time according
to his/her position. The proposed system was designed in the way that it first helps the user
to find the sweet spot and then compensates for crosstalk artifacts and/or pseudoscopy. The
user preference between standard 2D and 3D modes and the proposed system was evaluated
in terms of image quality and depth quality. A subjective evaluation was conducted with 18
naive subjects on 5 stereoscopic image contents using the PC method, leading to 15 paired
comparisons.
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To improve the QoE provided by multiview autostereoscopic displays, researchers have pro-
posed to exploit viewer tracking and perform on-the-fly visual optimization to avoid the
repetition effect between the lobes and mitigate crosstalk (Boev et al., 2008; Kooima et al.,
2010). Most of the previous works only describe a proposed system without evaluating its
performance. Except for some specific research on very expensive technologies, e.g., laser
projection and low loss transparent display screen, which are far from mass production, most
previous works were performed on multiview autostereoscopic displays having a rather limited
number of views (typically eight to nine), whereas most advanced multiview autostereoscopic
displays, e.g., the Dimenco displays, typically have around 30 views. With fewer views, the
separation between the different luminance profiles is more pronounced and crosstalk com-
pensation is relatively easy, whereas this problem is much more difficult as the number of
views increases since the overlap between the luminance profiles is more sever. Additionally,
none of these works provides a full description and subjective evaluation of a complete active
crosstalk reduction system for current multiview autostereoscopic display technology. To
address these problems, we proposed and evaluated an active crosstalk reduction system for
current and future multiview autostereoscopic display technologies (Hanhart et al., 2015b).
The proposed system was implemented considering a 52” full HD 28-view Dimenco BDL5231V
autostereoscopic display with slanted lenticular sheet. The display was characterized in terms
of luminance distribution and the luminance profiles were modeled using a limited set of
parameters. A Kinect sensor was used to determine the viewer position in front of the display.
The proposed system performs an intelligent on the fly allocation of the output views to
minimize the perceived crosstalk. The user preference between standard 2D and 3D modes
and the proposed system was evaluated in terms of image quality, depth quality, and visual
discomfort. An informal subjective evaluation was conducted with 5 expert viewers on 4 MVD
image contents using the PC method, leading to 12 paired comparisons.

1.4 Organization

The remainder of this thesis is structured as follows. Part I addresses different topics related to
the measurement of QoE in immersive video technologies. In particular, Chapter 2 discusses
the different aspects that must be taken into account and procedures than can be used when
designing and analyzing subjective experiments. Chapter 3 focuses on different models to
calculate the coding efficiency in terms of bit rate and quality differences between two codecs.
Chapter 4 reports the performance analysis of different coding formats for still image, video,
HDR image, HDR video, and 3D video compression. All these performance analyses were
mainly performed using subjective quality evaluations to provide a more realistic estimation
of the true coding efficiency. Chapter 5 investigates alternative evaluation protocols for sub-
jective quality assessment. In particular, an experimental protocol to evaluate the impact of
depth compression on perceived image quality in a FTV scenario is proposed. Additionally,
alternative representations of 3D and HDR content are proposed for crowdsourcing evalu-
ations of MVD video and HDR image coding, respectively, on 2D LDR displays. Chapter 6
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investigates the impact of 3D and HDR on viewers’ QoE via subjective experiments. Chapter 7
quantifies the impact of UHD and HDR on visual attention via eye tracking experiments.

Part II addresses the challenging problem of predicting QoE in immersive video technolo-
gies using objective models. In particular, Chapter 8 describes some of the most common
quality metrics for still image, video, HDR, and 3D quality assessment. Chapter 9 provides
a detailed description of the different procedures available to benchmark objective quality
metrics. Chapter 10 reports the results of performance evaluation of state-of-the-art metrics
for quality assessment of stereo pairs formed from decoded and synthesized views and from
two synthesized views, HDR images, and HDR video sequences. Chapter 11 describes a model
to predict perceived quality of stereoscopic video sequences based on content analysis.

Part III focuses on different solutions to improve QoE on 3D displays. Chapter 12 describes
and evaluates different systems to reduce stereo artifacts generated at the visualization stage.
In particular, two different approaches that exploit visual attention to improve 3D QoE on
stereoscopic displays are investigated, as well as active crosstalk reduction systems for mobile
autostereoscopic displays and multiview autostereoscopic displays.

Finally, Chapter 13 concludes the thesis with the summary of the main achievements and
some outlook for future research.
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¥4 Design and Analysis of Subjective
Experiments

In a subjective visual quality experiment, a group of people, referred to as subjects, is presented
with a set of images or video sequences, referred to as stimuli, and is asked to judge their
aspect, referred to as assessment factor, e.g., overall quality, color rendition, sharpness, etc.
The stimuli are presented following a specific procedure and the subjects have to express their
judgment using a particular scale, which can be either discrete or continuous. The selection of
a particular stimuli presentation procedure and rating scale is referred to as test method. The
experiment is conducted under specific viewing conditions, e.g., test environment, viewing
distance, monitor peak luminance, ambient lighting, etc.

Subjective experiments are the ultimate means to assess quality of experience as they rely
on a pool of human subjects. However, reliable and meaningful results can only be obtained
if the experiments are properly designed and conducted following a rigorous methodology.
Several international recommendations have been published to provide guidelines for con-
ducting subjective visual quality experiments (ITU-R BT.1788, 2007; ITU-T P910, 2008; ITU-R
BT.500-13, 2012; ITU-R BT.2022, 2012; ITU-R BT.2021, 2012; ITU-T P911, 1998). The different
recommendations cover the selection of the test material, set up of the viewing environment,
choice of test method, pre- and post-screening of the subjects, and even analysis of data.
These recommendations result from experience gathered by difference groups, e.g., Video
Quality Experts Group (VQEG), JPEG, MPEG, VCEG, and some ITU study groups. These rec-
ommendations can be considered as a set of best practices and guidelines that should be
followed when designing a subjective experiment.

This chapter describes the different aspects that must be taken into account and procedures
than can be used when designing and analyzing subjective experiments. This chapter covers
the guidelines proposed in the different international recommendations as well as some
common practices followed by researchers actively working in the field of subjective quality
assessment. Different techniques are presented to analyze results of subjective experiments
and to compare results of different experiments. Some of these techniques are coming from
international recommendations and scientific publications, whereas other techniques were
developed during this thesis. Finally, a brief overview of the common techniques used to
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analyze eye movement data recorded with an eye tracker is presented. The different techniques
and guidelines described in this chapter were used in the subjective experiments reported in
the rest of the thesis.

2.1 Viewing Conditions

The viewing conditions can be decomposed into two main components: the test environment
and the monitor. Two different types of test environments are usually considered: labora-
tory and home environment. The first environment is intended to provide critical viewing
conditions, whereas the second is intended to provide a means to evaluate quality at the
consumer side of the TV chain. The characteristics of the home environment have changed
over the years and can be quite different from one country to another. Moreover, the variety of
home environment characteristics is quite large, so it is hard to find the conditions that are
representative of most home environments. In the home environment, the viewing distance
is usually large (typically about 3.5 m), which prevents the viewers to resolve small details
in high resolution content (see optimal viewing distance below), and the lighting conditions
are usually quite bright (about 200 Ix), which prevents viewers to see details in dark areas.
Therefore, the laboratory environment is usually preferred, as it is quite well defined and
provides more challenging test conditions. Nowadays, researchers are moving away from
well-controlled environments and conducting online crowdsourcing experiments (Hossfeld
and Keimel, 2014). In this case, there is almost no control on the viewing conditions and the
guidelines described in this section do not apply.

In the laboratory environment, walls and curtains are either black (similar to color grading
environment in video production) or mid grey (neutral). The room should not be completely
dark, so lights should be placed behind the monitor such that they do not reflect off of the
display. It is recommended that the ratio of luminance of background behind monitor to
display peak luminance should be around 15%. However, this value was determined for CRT
monitors and there is no recommendation for new display technologies and for HDR displays
in particular. For HDR content, its was found that high ambient light significantly attenuates
the perception of leakage defect (Mantel et al., 2015a), as the adaptation of the human eye to
higher luminance values could masks details in dark areas. Additionally, it was shown that the
loss of contrast in the dark regions could prompt subjects to elevate brightness settings for
higher ambient light levels (Rempel et al., 2009). However, it was reported that visual fatigue is
not a serious concern even in dark environments (Rempel et al., 2009). While some studies on
HDR content have been conducted with ambient levels of 200 cd/m? (Narwaria et al., 2015b),
we believe that the ambient light for HDR content should be set similar to LDR content. The
motivation is that HDR is also intended to provide deeper black levels, while head room should
be reserved for specular, highlights, special effects, etc. and that the average luminance level
should not be significantly higher than for LDR content.

The monitor should be calibrated to have a color reproduction as faithful as possible. Profes-
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Table 2.1: Optimal horizontal viewing angle and viewing distance in picture heights (H).

Optimal horizontal Optimal viewing

Resolution S .
viewing angle distance
1280 x 720 21° 4.8H
1920 x 1080 31° 3.2H
3840 x2160 58° 1.6H
7680 x 4320 96° 0.8H

sional monitors, e.g., the Eizo ColorEdge series, typically support a 3D look up table, generated
via a proper calibration, to provide accurate color reproduction. Most consumer-grade mon-
itors only provide basic controls, e.g., red/green/blue gain, whereas high-end consumer
monitors allow setting the red/green/blue/yellow/magenta/cyan colors and white balance
at ten different luminance levels. The white point should be calibrated to D65 (6500 K) and
the color gamut should be calibrated to Rec. 709 (Rec. 2020 or DCI P3 for WCG displays).
According to ITU-R BT.2022 (2012), the peak luminance should be between 70 and 250 cd/ m?,
but the value 120 cd/m? is typically adopted, as this value is commonly used for reference
monitors in a production environment in Europe (100 cd/m? in US and Japan) and is the
default value in most display calibration software. Obviously, this recommendation does not
apply to HDR displays.

The viewing distance, i.e., the distance between the display and the subjects, also plays an
important role. If subjects are seated too far away, then they cannot resolve small details
and some artifacts could be masked. Most recommendations were drafted at the time CRT
monitors were mostly used and their guidelines regarding viewing distance should not be
followed for LCD displays. Instead, the viewing distance should be set according to recom-
mendation ITU-R BT.2022 (2012), i.e., the distance at which two adjacent pixels subtend an
angle of 1 arcmin at the viewer’s eye. This value was selected at it corresponds to normal visual
acuity (see Section 2.3). The optimal viewing distance depends on the display resolution and
is typically expressed in relative units as a multiple of the display height (active part only).
Table 2.1 lists the optimal viewing distance in picture heights (H) and corresponding optimal
horizontal viewing angle for the most common resolutions found in today’s video formats.
As it can be observed, the relative viewing distance decreases as the resolution increases.
However, when displaying mixed resolution sources in their native format on the same display,
the absolute viewing distance remains the same, as it is determined by the pixel size.

2.2 Test Material

The source images or video sequences should be selected according to the goal of the experi-
ment, but should be of optimum quality for the standard considered. The absence of defects
in the source reference is crucial to obtain stable results. The number of sources should be
determined according to the goal of the experiment. However, at least four different scenes
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should be selected to avoid boring the subjects and to achieve a minimum reliability of the
results. The source selection is an important issue, especially when assessing the performance
of image and video compression algorithms. In this case, it is of essential importance to
select scenes that will challenge the compression algorithms. However, the scenes should
also be representative and consistent with the media service that the transmission channel is
intended to provide.

The source contents can be described following different characteristics. To characterize
the spatial information of a still image or video frame, the spatial perceptual information
(SI) measurement is proposed in ITU-T P910 (2008). The spatial perceptual information (SI)
is based on the Sobel filter. The luma component of the still image or video frame is first
filtered using a Sobel filter. For still images, the SI value is computed as the standard deviation
computed over the pixels of the Sobel-filtered image. For video sequences, this process is
repeated for each frame and the SI value is computed as the maximum value across all frames.

To characterize the temporal information of a video sequence, the temporal perceptual in-
formation (TT) measurement is proposed in ITU-T P910 (2008). The temporal perceptual
information (TI) is based on the pixel difference between consecutive frames, to estimate
motion difference. First, the difference between the luma component of the current frame
and that of the previous frame is computed. Then, the standard deviation is computed over all
pixels. Finally, the TI value is computed as the maximum standard deviation value across all
frames. Note that a higher TI value corresponds to more motion between consecutive frames.

For stereoscopic content, to characterize the depth along the spatial and temporal dimensions,
Urvoy et al. (2012) proposed to compute the SI and TI values on the depth maps instead of
the texture video, leading to the proposal of depth spatial indicator (DSI) and depth temporal
indicator (DTI).

For HDR content, the dynamic range of a still image or video frame is computed as

dynamic range = log;, (Iim“x) 2.1)
min

where L;;,i; and L4, are the minimum and maximum luminance values, respectively, com-

puted after excluding 1% of darkest and brightest pixels. For video sequences, the maximum

dynamic range across all frames is reported. Another measurement was proposed by Akyiiz

and Reinhard (2006) and is referred to as key. The key is in the range [0, 1] and gives a measure

of the overall brightness. The key is computed as

B logLavg —10g Liin

= 2.2)
log Lyax —1l0gLimin

key
where Linin, Lmax, and Layg are the minimum, maximum, and average luminance values,

respectively, computed after excluding 1% of darkest and brightest pixels. Finally, Narwaria
et al. (2015b) have also computed the SI and TI values in the PU (Aydin et al., 2008) domain.
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These measurements can be used in the content selection process. For example, for assessing
the performance of video compression algorithms, one will select sources with low SI and low
TI, high SI and low TI, low SI and high TI, and high SI and high TI, as well as some sources with
intermediate values. The set of sources should span the range of measurements of interest to
users of the devices under test.

2.3 Subjects

Subjects can be classified into two categories: naive and expert viewers. Expert viewers have
expertise in quality assessment and in particular in assessing the artifacts that may be intro-
duced by the system under test. Researchers working on image and video compression or
quality assessment are typically considered as expert viewers, but, to have a neutral compari-
son, subjects should not be, or have been, directly involved in the development of the system
under test. On the other hand, naive viewers have no expertise in quality assessment.

It is recommended that at least 15 subjects should assess each test stimuli, but it is usually
worthless to consider more than 40 subjects. For preliminary or pilot experiments carried out
before a larger test, a small group of four (absolute minimum for statistical reasons) to eight
expert viewers can provide indicative results and are referred to as informal studies.

Prior to the test, each subject must be pre-screened for normal visual acuity or corrected-
to-normal acuity and for normal color vision. Visual acuity can be tested using the Snellen
or Landolt chart. Normal visual acuity, sometimes referred to as 20/20 vision, means that a
human eye with nominal performance is able to separate contours that subtend an angle of
1 arcmin, which approximately corresponds to 1.75 mm apart at a distance of 20 feet. In the
Snellen scale, this corresponds to 20/20 and subjects should be rejected if they have a visual
acuity below 20/30. Color vision can be tested using the Ishihara chart. In this case, subjects
should be rejected if they miss more than 2 plates out of 12. In the context of assessment of
3DTV or auto-stereoscopic systems, it is recommended to also screen subjects for correct
binocular vision, which can be tested using the Randot test.

There is no recommendation regarding the age range or gender balance among the subjects.
However, subjects between 18 and 30 years old are often preferred because their visual system
is fully developed and they have a good visual acuity.

2.4 Test Methods

The selection of a particular test method, i.e., stimuli presentation procedure and rating scale,
is mainly determined by the systems under test that the experimenter wants to evaluate. For
example, to evaluate the performance of algorithms that introduce distortions, e.g., image
and video compression algorithms, the single stimulus (SS) or absolute category rating (ACR)
methods are used if the test material is spread over a wide range of quality levels. The double
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stimulus impairment scale (DSIS) or degradation category rating (DCR) methods are used
if it is necessary to check the fidelity with respect to the reference image or video sequence.
On the other hand, if the quality of the source reference image or video sequence is not
perfect or the algorithm under test can improve visual quality, e.g., image sharpening and
denoising algorithms, then the absolute category rating with hidden reference (ACR-HR) or
double stimulus continuous quality scale (DSCQS) methods are preferred. The single stimulus
continuous quality evaluation (SSCQE) or simultaneous double stimulus for continuous
evaluation (SDSCE) methods are selected if the rating should be made temporally along the
video sequence. To compare different rendering algorithms, display technologies, or other
algorithms, e.g., TMOs, the SC or PC methods are preferred as they rely on an indirect scaling
based on preference instead of a direct scaling based on a rating scale. These methods also
have a high discriminatory power, which is of particular value when visual differences between
stimuli are small. The test methods are described in details in the following subsections.

2.4.1 Single Stimulus and Absolute Category Rating

The single stimulus (SS) method, also referred to as absolute category rating (ACR) method, is a
category judgment where the stimuli are presented one at a time and are rated independently
on a category scale. Each test image or video sequence is presented for a particular duration
(typically about 10 s). Subjects should be asked to look at the display for the entire presentation
and to base their judgment on the overall impression given by the presentation. Subjects
should be asked to provide their judgment immediately after each presentation and to express
these judgments in terms of the wordings used to define the rating scale. During the voting
time, which is typically set to 5 s, the display should be set to mid grey.

The following five-grade quality scale is commonly used for rating overall quality

Excellent
Good
Fair

Poor
Bad

— N W s O

For the assessment of low bit-rate video codecs, the use of rating scales with more than five
grades could be beneficial. An extension of the five-grade scale to a nine-grade scale can be
used, with labels used for every second grade, as illustrated below
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Excellent

Good

Fair

Poor

= N W s~ 01N 0O

Bad

A further extension of this scale is shown below, where the endpoints have been verbally
defined as anchoring points which are not used for the rating. In this verbal definition, some
kind of explicit or implicit reference is used, e.g., the reference image or video sequence for
the upper endpoint, and it will be clearly illustrated during the training phase.

The number 10 denotes a quality of reproduction that is perfectly faithful to the original.

10 No further improvement is possible.
9 Excellent
8
7  Good
6
5 Fair
4
3 Poor
2
1 Bad
0 The number 0 denotes a quality of reproduction that has no similarity to the original.

A worse quality cannot be imagined.

Furthermore, a continuous scale divided into five segments associated with labels correspond-
ing to those of the five-grade scale can be used. The nine-grade, eleven-grade, and continuous
scales can be used if higher discriminative power is required, but it does not necessarily ensure
that the differentiation between two conditions is going to be more powerful.

Other dimensions than overall quality, e.g., brightness, contrast, or color reproduction, can
also be assessed. These dimensions may be useful for better understanding different per-
ceptual factors when the perceived overall quality is nearly the same, although the systems
are clearly perceived as different. For example, to assess stereoscopic 3DTV systems, it is
recommended to assess the following dimensions: picture quality, depth quality, and visual
comfort. In this case, picture and depth quality can be assessed using the same scale as
for overall quality. However, to assess visual comfort, the following labels should be used
instead: Very comfortable, Comfortable, Mildly uncomfortable, Uncomfortable, and Extremely
uncomfortable.
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These methods are easy and fast to implement, as each stimulus is presented one after the
other, with a voting period after each stimulus. Therefore, the presentation time is quite
short: the duration of the stimulus plus the duration of the voting time. If replications are
required, the stimuli are simply repeated at different points in time. In this case, the total time
is multiplied by the number of repetitions.

The absolute category rating with hidden reference (ACR-HR) method is a slight variation
of the ACR method in which the source reference images or video sequences are presented
and evaluated as any other stimulus. Instead of keeping the individual scores of the test and
reference images or video sequences, a differential score is computed between each test image
or sequence and its corresponding source reference (see Section 2.6.2). The advantage is
that the perceptual impact of the source reference image or video sequence can be removed
from the subjective scores. In particular, the influence of content preference, quality of the
source reference (e.g., due to camera quality), and monitor (e.g., professional quality versus
consumer grade) on the subjective scores can be reduced. Nevertheless, the ACR-HR method
should only be used with source reference images and video sequences having visual quality
evaluated as good or excellent by expert viewers. Additionally, this method may not be suitable
when impairments occur in the first and last 1 s of the video sequence, as the viewers might
be unfamiliar with the source reference video sequence due to the stimuli presentation order.

2.4.2 Double Stimulus Impairment Scale and Degradation Category Rating

In the double stimulus impairment scale (DSIS) method, also referred to as degradation cate-
gory rating (DCR) method, subjects are presented with pairs of images or video sequences,
referred to as stimuli A and B. The first stimulus in the pair (stimulus A) is always the unim-
paired source reference and the second stimulus (stimulus B) is the same source presented
through one of the systems to be evaluated, i.e., the same source impaired. Subjects are asked
to rate the impairments of the second stimulus in relation to the first stimulus, and to express
these judgments in terms of the wordings used to define the rating scale. The method uses an
impairment scale, e.g., the following five-grade impairment scale

Imperceptible

Perceptible, but not annoying
Slightly annoying

Annoying

— N W s O

Very annoying

The DSIS method is typically considered to evaluate the transmission fidelity with respect
to the source signal, which is an important factor in high quality video systems. In this case,
the labels associated with the rating scale (imperceptible/perceptible) are valuable when the
detection of impairment is an important factor. Similarly to the SS and ACR methods, an
extension of the five-grade scale to a nine-grade scale can be used, with labels used for every
second grade, as illustrated below
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Imperceptible
Perceptible, but not annoying
Slightly annoying

Annoying

= N W s~ 01N 0O

Very annoying

Note that it is usually found that the stability of the results is greater for small impairments
than for large impairments (ITU-R BT.500-13, 2012). However, it is recommended to use this
method with test stimuli covering a full range of impairments rather than a limited range of
impairments. If the discrimination of very small impairments is required, the reference and
test stimuli should be presented twice in a alternate manner, i.e., reference, test, reference, and
test. When the pair is presented only once, the method is referred to as DSIS Variant I, whereas
it is referred to as DSIS Variant II when the pair is presented twice. Before each stimulus
presentation, the display should be set to mid grey for 1 to 3 s. It is common practice to display
the letter A or B in black, at the center of the display, and over the mid gray background, to
indicate which of the reference or test stimulus will be presented. For Variant II, a star is
typically added next to the A and B letters at the second presentation to indicate that the
subjects will have to vote after the presentation of this pair. Alternatively, if display and source
resolutions permit, then the reference and test stimuli can be presented simultaneously on
the same monitor. In this case, the two stimuli should be displayed as side-by-side on a mid
grey background. During the whole test duration, the reference should always be placed on
the same side and the subjects must be aware of the positions of the reference and test stimuli.
However, the positions can be changed from one group of subjects to another, for example
to compensate for imperfect display uniformity. In the case of video content, the two video
sequences must be perfectly synchronized. At the end of the presentation, the display should
be set to mid grey for the voting time, which is typically set to 5 s.

2.4.3 Stimulus Comparison and Pair Comparison

In the stimulus comparison (SC) method, also referred to as pair comparison (PC) method,
subjects are presented with pairs of images or video sequences, referred to as stimuli A and B.
The pair of stimuli consists of the same source being presented first through one system under
test and then through another system. For each source reference, considering N systems
under test, all two-permutations of N should be considered to generate the pairs. This leads
to N(N —1) pairs for each source reference, which increases exponentially as the number of
systems under test increases. Hence, this method can require a lot of time when the number
of systems under test is large. Note that, ideally, all possible orders, e.g., XY, YX, should be
considered. However, the length of the test can be reduced by a factor two by spreading
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all possible orders over the different subjects, i.e., one half of the subjects will see the pair
XY, whereas the other half will see the pair YX. More complex designs, e.g., square design,
optimized square design, or adaptive square design have been investigated to further reduce
the number of pairs to be evaluated and it was shown that they provide comparable results
to that of the full pair comparison (J. Li et al., 2013a; J. Li et al., 2013b). The two stimuli
can be presented as side-by-side, either on the same display or on two aligned monitors,
or sequentially in time. In the first case, the two stimuli should be perfectly synchronized,
whereas the presentation time should be identical if the presentation is sequential. Note that
the test duration becomes longer in case of sequential presentation.

The SC method is classified in three types of methods: performance, adjectival categorical
judgment, and non-categorical judgment methods. In the performance method, subjects
are asked to select which stimulus in the pair is preferred based on some factor, e.g., overall
quality, depth quality, visual comfort, etc. To collect the answer, either a binary (A, B) or a
ternary (A, B, Same) scale is used. In the first case, which is referred to as forced choice (FC),
the subject is forced to select one or the other stimulus, even when no difference is visible
between the two stimuli.

The adjectival categorical judgment method aims at better quantifying the relation between
stimuli in a pair. The following scale is used to quantify the overall quality, for example, of
stimulus B when compared to stimulus A

+3  Much better

+2 Better

+1  Slightly better
0 Thesame

-1  Slightly worse

-2 Worse

-3 Much worse

In the non-categorical judgment method, two forms are considered to evaluate the relation
between stimuli in a pair. In the first form, a continuous scaling is considered using a scale
defined by its two extremes, e.g., Same-Different or Much better-Much worse. Additional
intermediate labels can be added. In the second form, each subject assigns each relation
with a number (the range may be constrained or not) that reflects its judgment on a specified
dimension, e.g., difference in quality. The number assigned may describe the relation in
absolute terms or in terms of that in a standard pair.

The main advantage of the PC method is its high discriminatory power, which is especially in-
teresting when several test stimuli have similar quality levels. This method is also very valuable
to assess more abstract dimensions, e.g., immersiveness or sense of presence, to determine
whether systems are perceived to differ, or to establish the point at which impairments be-
come visible. When training subjects on how to use the rating scale (see Section 2.5.1), it is of
common practice to present conditions representative of the different levels of the rating scale.
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With the PC method, when using the binary or ternary scale, training is thus easier and less
biased. Indeed, the experimenter can show examples where there are differences, but does
not have to relate these differences to a particular grade. The PC method is also particularly
suited to assess other systems than compression algorithms, e.g., new display technologies or
different rendering algorithms, as this method is similar to the process followed by humans
when they have to decide between two products.

2.4.4 Double Stimulus Continuous Quality Scale

In the double stimulus continuous quality scale (DSCQS) method, subjects are presented
with pairs of images or video sequences, referred to as stimuli A and B. One of the stimuli in
the pair is always the unimpaired source reference, whereas the other stimulus is the same
source presented through one of the systems to be evaluated. However, unlike in the DSIS
method, the order of the two stimuli is pseudo-random and the subjects does not know which
stimulus is the source reference. Subjects are asked to rate the quality of both stimuli using a
continuous quality scale divided into five segments (see Figure 2.1).

aB
Excellent
Good
Fair

Poor

Bad

Figure 2.1: DSCQS rating scale.

The two stimuli can be presented following two variants. In Variant I, only one subject is
seated in front of the monitor and the subject is free to select between stimulus A and B at each
presentation, until he/she has a mental measure of the quality associated with both stimuli.
In Variant IT, which considers simultaneous subjects, the pair of stimuli is presented one or
more times and the presentation order is determined by the experimenter. For still pictures,
a 3 to 4 s presentation time with five repetitions is recommended. For video sequences, two
presentations are recommended. In all cases, the display should be set to mid greyfor 1to 3 s
before each stimulus presentation. It is common practice to display the letter A or B in black,
at the center of the display, and over a mid gray background, to indicate which stimulus will
be presented. Subjects should vote immediately after the last presentation while the display is
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set to mid grey (typically set to 5 s).

The DSCQS method is useful when the test material does not cover the full range of quality.
Since both the source reference and system under test are evaluated, the DSCQS method has
the same advantages as the ACR-HR method (see Section 2.4.1) regarding the influence of
source reference or monitor. This method can also be used to evaluate algorithms that aim at
improving visual quality, e.g., image sharpening and denoising.

2.4.5 Subjective Assessment Methodology for Video Quality

The subjective assessment methodology for video quality (SAMVIQ) method (ITU-R BT.1788,
2007) uses a multi-stimuli approach. A graphical user interface presents a single source video
sequence, available as explicit reference and at different quality levels (including a hidden
reference). The subject is instructed to play the reference source as well as its different versions
and to rate their visual quality. For each source, the subject is instructed to compare between
all processed versions as well as against the reference, such that the subject can judge the
quality of all video sequences. The video sequences can be paused and stopped such that the
subject can switch between sequences. Each video sequence can be played as many times
as necessary until the subject can rate properly all sequences. Once the subject has made
his/her judgment about all sequences, then the next source can be evaluated. The SAMVIQ
method uses a continuous five-level quality scale (see Section 2.4.1) ranging from 0 (Bad) to
100 (Excellent).

Huynh-Thu et al. (2007) have shown that the SAMVIQ method provides similar results to
ACR. However, the method can could have some advantages, for example when subjects have
difficulties judging quality on a single viewing or when subjects might want to re-watch the
reference or change their score on a particular sequence. Nevertheless, the review capability
increases the artificiality of the method and the method limits the number of systems under
test that can be evaluated.

2.4.6 Single Stimulus Continuous Quality Evaluation and Simultaneous Double
Stimulus for Continuous Evaluation

With the methods previously described in this section, only an overall quality score is obtained
in the case of video sequences. Therefore, the effects of temporal quality fluctuations cannot
be measured. To assess quality along the temporal axis of the video sequence, the single
stimulus continuous quality evaluation (SSCQE) method can be used. This method is an
extension of the SS method (see Section 2.4.1), but the subjects use a liner slider to evaluate
video quality. The continuous five-level quality scale is used and subjects must adjust the
slider when they notice changes in the video quality. The slider position is recorded during
the whole sequence duration to allow a temporal analysis. While 10 s long video sequence are
typically used with the other methods, video sequences should be at least 5 min long in the
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SSCQE method. However, this method is commonly used with video sequences of 1 min long
only.

If temporal fidelity with respect to the source reference must be assessed, then the simultane-
ous double stimulus for continuous evaluation (SDSCE) method should be used. This method
is an extension of the DSIS method (see Section 2.4.2), but the subjects use a liner slider to
evaluate fidelity. The source reference and test video sequences are presented side-by-side,
either on the same display or on two aligned monitors, and subjects are aware of which is
the reference. A continuous five-level impairment scale is used and subjects must check the
differences between the two sequences and assess the fidelity of the test video by moving the
slider throughout the whole sequence duration.

2.5 Test Design

Visual experiments typically consist of one training session and one or more test sessions.
The goal of the training session is to explain the task to the subjects. Several training samples
are presented such that they can get familiar with the presentation methodology and the
range of quality or impairments. The test material is then evaluated during one or more test
sessions, depending on the number of stimuli and presentation duration of each stimulus.
The following subsections describe in details how the training and test sessions should be
designed.

2.5.1 Training Session

Before starting with the actual test, a scenario of the intended application of the systems under
test should be presented to the subjects. The test methodology, i.e., presentation of the stimuli,
timing, method of assessment, types and levels of impairments likely to occur, and grading
scale should be carefully described to the subjects. A minimum of five training images or
sequences should be presented to the subjects following the same procedure as in the actual
test. The training samples should be representative of the material shown later during the test
session(s), i.e., they should have similar types of impairments and cover the same range of
impairment or quality. It is of common practice to select one training sample representative
of each level of the rating scale, such that subjects can better relate each level of the scale with
a particular quality or impairment level. The different perceptual attributes, e.g., sharpness,
blurriness, blockiness, colors reproduction, etc. that should be considered to evaluate overall
quality or other dimensions should be explained and illustrated. Finally, questions about the
procedure or the instructions should be answered, but only before the start of the test session.

Regarding the training sources, recommendation ITU-R BT.500-13 (2012) states that “training
sequences |...] should be used with illustrating pictures other than those used in the test, but
of comparable sensitivity”, whereas recommendation ITU-T P910 (2008) states that “[training]
may contain video sequences other than those used in the actual tests”, which is more flexible.
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In general, it is preferred to use different sources for the training session than for the actual
test sessions. However, when impairments are difficult to perceive, training with the same
sources can improve the subjects discriminative power.

2.5.2 Test Session

In general, a test session should not last more than half an hour. For new technologies, e.g.,
3D and HDR imaging, the duration should be reduced to 15-20 min maximum, as they can
induce visual discomfort to the subjects. Therefore, depending on the number of images
or sequences to evaluate and the methodology, i.e., with or without repetition and with or
without the reference, the experiment has to be fragmented into several test sessions. Note
that each subject can also take part to only a subset of all test sessions depending on the total
test duration, as subjects tends to get bored and less effective after more than 1 to 1.5 hour.
The important is that each stimulus should be evaluated by a certain number of subjects (see
Section 2.3).

At the beginning of the first session, about five dummy presentations, whose scores are not
included in the results, should be included to stabilize the subjects’ opinion. It is of common
practice to select at least one sample representative of high, low, and mid quality. If the test
is split into several sessions, about three dummy presentations should be included at the
beginning of the following sessions.

The stimuli order of presentation should be pseudo-random and can be generated using
different designs, e.g., randomized design, Latin or Graeco-Latin square designs. The different
sources and quality levels should be balanced out from session to session. Different order
of presentation should be considered for the different (groups of) subjects to reduce any
effect on grading, which could be due to the presentation order (for example, presenting a low
quality stimulus after a high quality stimulus) or subject tiredness or adaptation. In any case,
the same source should never be shown in two successive presentations, even if the levels of
impairment are different.

Some of the stimuli can be presented twice or more, at different time instants during the
experiment, to check coherence. These replications can be used to estimate within subject
variation or to test subjects’ reliability. In the latter case, the some stimuli order of presentation
under identical conditions can be used. Otherwise, the resulting variation in the data can also
be impacted by the presentation order effect.

2.6 Data Processing

The methods described in Section 2.4 use either a discrete or a continuous scale. In the first
case, the range of scores is defined by the number of grades in the rating scale, e.g., 1-5 or 1-9.
In the latter case, the scores should be normalized to integer values between 0 (bottom of the
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scale, typically corresponding to Bad quality) and 100 (top of the scale, typically corresponding
to Excellent quality). Hence, subjective experiments performed using one of the methods
described in Section 2.4 will produce distributions of integer values, for example between 1
and 5 or between 0 and 100, for each test stimulus. To understand how two stimuli compare to
each other, their distributions must be analyzed using different statistical tools, as described
in the following subsections.

2.6.1 Outlier Detection

The first thing to do before performing any type of analysis is to discard subjects whose scores
appear to deviate strongly from others in a test session. When a subject is detected as outlier,
all his/her scores are removed from the results of the session. The outlier detection process is
applied independently to each test session. Then, the clean scores can be analyzed.

An outlier detection technique is suggested in ITU-R BT.500-13 (2012) for methods where
subjects have to provide an overall score. If the kurtosis coefficient is between 2 and 4, then the
data roughly follows a normal distribution. Otherwise, the data is considered as not-normal.
The methodology counts the number of times the subject fall outside of a specific interval,
defined as the mean value plus/minus the associated standard deviation times 2 (if normal)
or times v/20 (if non-normal). If this count is higher than 5% of the scores and the relative
absolute difference of occurrences below and above the specified interval is lower than 30%,
then the subject is classified as outlier.

Another detection technique was used by De Simone et al. (2011) and is inspired by the Tukey
boxplot (Tukey, 1977). In the Tukey boxplot, the lower and upper inner fences are defined
by the lower quartile minus 1.5 IQR and the upper quartile plus 1.5 IQR, respectively, where
IQR is the interquartile range and is defined as the difference between the upper and lower
quartiles. If the data is normally distributed, this range roughly corresponds to +2.7 the
standard deviation, which covers about 99.3% of the data. A subject is then classified as outlier
if more than 20% of his/her scores are outside of the region determined by the lower and upper
inner fences.

2.6.2 Mean Opinion Scores and Confidence Intervals

The statistical analysis is based on the assumption that a score s;; given by subject j for the
test condition i can be expressed as

Sij:IJj+€ij (2.3)

where p; is the reaction to the test condition and defined by the controlled experimental
variables (e.g., source and system under test) and €;; is an error caused by a set of uncontrolled
variables (Bech and Zacharov, 2006). This error is related to the subject (e.g., emotional
state, mood, expectations, interpretation, bias, etc.) and/or the experiment set-up (e.g.,
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lighting conditions, background noise, etc.). The experimental error is often assumed to be
normally distributed with a zero mean, .4(0, 012.), and thus the subjective scores for each test
condition are assumed to be normally distributed, A (,u,;a?), with mean y; and standard
deviation o ;. However, this assumption is sometimes not met, for example when the number
of subjects is low, or near the extremes of the scale, or because of the discrete nature of the
rating scale. Nevertheless, the data will be approximately normally distributed with large
number of subjects, regardless of the underlying distribution, according to the central limit
theorem.

Based on these characteristics, the subjective scores are commonly characterized using the
mean opinion score (MOS), related to the mean of the distribution, and the confidence interval
(CD), related to the standard deviation of the distribution. For some methods, the a differential
mean opinion score (DMOS) is computed between the source reference and test stimulus
instead. These properties are further described in the following parts.

Mean Opinion Scores

The MOS is computed independently for each test condition as
1 N
MOS; = — Z Sij (2.4)

where N is the number of valid subjects and s;; is the score by subject j for the test condition
i. The MOS reports the average score of a particular test condition computed based on a
sample of the population, i.e., the subjects who took part in the experiment, and is an unbiased
estimator of the true mean of the distribution (infinite number of subjects).

Differential Mean Opinion Scores

In some methods, e.g., ACR-HR and DSCQS (see Section 2.4), the source reference must also be
graded by the subjects. With these methods, instead of reporting the MOS for both the source
reference (SRC) and processed stimuli (PS), a DMOS is reported instead and is computed as:

DMOS(PS) = MOS(PS) — MOS(SRC) + max(rating scale) (2.5)

Note that DMOS values can be higher than the highest grade on the rating scale if the processed
stimuli was evaluated better than the source reference. Such condition should be considered
as valid.
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Confidence Intervals

The sample standard deviation, s, is an unbiased estimator of the true standard deviation of
the distribution and is computed as

1 XN 2
ST\ N-1 ]ZZI (517 —MOS;) 2.6)
The reader can refer to (Winkler, 2009) for an analysis of the impact of the rating scale and
MOS on the standard deviation.

The sample standard deviation is then used to compute the 100 x (1 — a)% confidence interval,
which is given by:

[MOSi—6i,MOS,’+5i] (2.7)

where

Si

6i=t(l—al/2,N) (2.8)
where #(1 — a/2,v) is the t-value corresponding to a two-tailed Student’s ¢-distribution with
degrees of freedom v (which is set to N—1) and a desired significance level a (equal to 1-degree
of confidence). It is recommended to used the 95% ClI, corresponding to a = 0.05. Note that it
is common to use the z-value corresponding to a two-tailed normal distribution instead of
the t-value (ITU-R BT.500-13, 2012). For the 95% CI, the z-value is equal to 1.96, whereas the
t-value for 15 subjects is equal to 2.14. Thus, the ¢-value generally leads to larger confidence
intervals, but this is the correct approach from a statistical point of view, because the variance
is unknown (and has to be estimated from the samples) and the number of samples (i.e.,
subjects) is generally relatively low. Recommendation ITU-T P1401 (2012) suggests to use the
Student’s ¢-distribution if there are less than 30 subjects and the normal distribution otherwise.

With a probability of 95%, the true mean of the distribution lies within the 95% CI. Thus, when
presenting the results, the MOSs should always be reported together with their corresponding
Cls.

2.6.3 The Bradley-Terry-Luce and Thurstone Case V Models

To analyze the data of a subjective evaluation, MOSs are generally computed for each test
condition. However, when using the PC or SC methods (see Section 2.4.3), only preference
scores between pairs of stimuli are recorded. In this case, relative MOSs can be estimated
from the preference scores using statistical models, e.g., the Bradley-Terry-Luce (Bradley and
Terry, 1952; Luce, 1959) and Thurstone Case V models (Thurstone, 1927). These models take
into account the relations between the different stimuli to rank them and to estimate relative
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scores. If a full pair comparison design was used, then all combinations are used to rank the
stimuli. Otherwise, only the tested combinations can be used, while the missing combinations
can be inferred, for example by transitivity (ex: if B is better than A and C is better than B, then
Cis likely to be better than A).

The major difference between the Bradley-Terry-Luce and Thurstone Case V models is the
assumption behind the distribution of the quality difference of two stimuli. The Thurstone
model assumes a Gaussian distribution, whereas the Bradley-Terry-Luce model assumes a
logistic distribution. Thus, the Bradley-Terry-Luce model was often preferred because the
logistic cumulative distribution function (CDF) has a closed-form expression, whereas the
Gaussian CDF requires evaluating the error function. Note that these models are only suitable
for binary or ternary scales, but scores from other scales can be converted. For example, when
considering an adjectival categorical judgment method, one vote can be attributed to Slightly
better, two votes for Better, and three for Much better.

Mean Opinion Scores Estimation

Before estimating the MOS values, the winning frequency w; ; and the tie frequency ¢;; (if the
option Same was used) are computed from the obtained subjective ratings for each pair of
stimuli / and j. Note that #;; = j; and w;; + wj; + t;; = N, where N is the number of subjects.
This can be done individually for each source or jointly over all sources.

Then, using winning frequencies w;; and the tie frequencies ¢;;, a count matrix C is con-
structed. Each element of the count matrix C;; is computed as follow

t..
Cij:wij+% (2.9)

Thus, C;; represents the number of times stimulus i is preferred over stimulus j, where i and
Jj are the row and column of the matrix. Ties are considered as being half way between the two
preference options, i.e., they are distributed equally between C;; and Cj; (Glickman, 1999).

In the Thurstone model, the quality scores are assumed to follow a Gaussian distribution,
N (4,0?), with mean u and standard deviation o. The corresponding probability density
function (PDF) is

1 —
px(x) = _¢>(x ”X) 2.10)
g gx

where ¢ is the standard normal PDF with zero mean and unit variance

1 1.2
—_— _p3X 2.11
e \/ﬁe ( )

If only two stimuli, A and B, are compared, the probability of choosing A over B can be
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expressed as
P(A>B)=P(A-B>0) (2.12)

Since A and B are two Gaussian random variables, their difference is also a Gaussian random
variable following the statistics A (1 ap, O'i g)» withmean pap = pa—pp and standard deviation
O'iB = 034 + O'% —2p A0 A0 B, Where p 4p is the correlation between A and B.

The probability of choosing A over B can then be written as

X 1 _ HAB) x2
P(A>B):P(A—B>0):f 2% dx = f 2955 dx
HAB (2.13)

HaB 1 2 HAB 1 IAB
=f—e Zai‘gdx: _¢(0 )dx_f¢(t)dt— (,UAB
AB

2 U AB O AB
“oo \/2T0% g %

where @ is the standard normal CDF.

w

The mean quality difference, pap, can then be obtained by inverting Equation (2.13)
pag =0a3® " (P(A>B)) (2.14)

where ®~! is the inverse CDF of the standard normal. Thurstone proposed to estimate the
probability P(A > B) by the empirical proportion of people preferring A and B

Cas ) (2.15)

. -1
A =0 AP (—
Cap+Cga

where (145 is an estimator of the true mean difference p4p. In the Thurstone Case V model, it
is further assumed that the two options have equal variance and zero correlation, i.e., 04 =0p
and p 4 = 0. Without any loss of generality, the variances can be set to one half, meaning that
the quality score values, 14 and up, can be estimated as

Can ) (2.16)

_ =p |l —2
HATHE (CAB +Cga

If multiple stimuli are compared, then a maximum likelihood estimation of the quality score
values should be performed to consider the interactions between the different pairs (Tsukida
and Gupta, 2011). The log-likelihood function is

A ZC,]log (i — )] (2.17)
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To find the maximum likelihood solution quality scale values, one must solve

argmax.% (Ap|C,u) subject to Z,uizo (2.18)
Au i

To help regularize the estimates, a prior of 1 can be added on all the counts, meaning that a
priori all choices are possible, which corresponds to Laplace smoothing (Tsukida and Gupta,
2011).

In the Bradley-Terry-Luce model, the probability of choosing A over B is defined as

TA
TaA+TTRB

P(A>B)=

(2.19)

where 7; satisfying 7; = 0 and }_7; = 1 can be considered as the quality score for stimulus i.
i

Hi . . .
By changing variables 7; = es', where s is a scale parameter, Equation (2.19) can be rewritten
as

P e 1+1t h
AB = == —an(
ettt 22

Ha—UB

> | = Fp-a0)=1-Fs 50 (2.20)

where F is the logistic CDF. Thus, it is consistent to assume that the random quality difference
A-B is a logistic random variable with mean p 4 — pp and scale parameter s.

The mean quality difference, p 45, can then be obtained by inverting Equation (2.20)

UAB = 2stanh ' (2P(A> B)—1) = s[In(P(A > B)) —In(1 - P(A > B))]
=s[In(P(A> B))-In(P(B > A))]

(2.21)

since tanh™ (x) = % [(In(1+x) —In(1 — x)]. The probability P(A > B) can be estimated by the
empirical proportion of people preferring A and B

(2.22)

Cas Cga
In —In
Cag+Cpga Cap+Cga

where [i 45 is an estimator of the true mean difference p4p.

fiap=s

Similarly to the Thurstone model, a maximum likelihood estimation of the quality score values
is performed if more than two stimuli are compared.

Note that for both models, the estimated MOSs are defined up to a scaled factor. Thus, it is
common to normalized them to the range [0, 100] for a better representation.
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Confidence Intervals Estimation

The preference scores collected during a PC experiment can also be used to estimate Cls.
Some techniques for example use the Hessian matrix of the log-likelihood function used to
estimate the MOSs. Another technique was proposed by J.-S. Lee et al. (2011) and assumes that
ties convey information about significant differences between two stimuli being compared.
The original method was proposed for the Bradley-Terry-Luce model. In the following, we
described an extension of this technique for the Thurstone Case V model.

First, the lower and upper bounds of the count matrix of stimulus i, Cl._j and C;rj, are computed
as

Ci_j = Wij Ci+j = Wij+tij (2.23)

assuming that the ties have been the preferences of stimulus j or 7, respectively.

Then, the CI [y; — Apy, i+ Ay;r] related to the quality score value for stimulus i is estimated
based on the Thurstone Case V model. If only two stimuli, A and B, are compared, the lower
and upper errors, A~ and Au™, are given by

o
—Au) = A+:®_l(¢)
(na=Auy) = (ks +App) C+Cl,
C+
Apt) - (us — A =®—1(¢) 2.24
(a+Apy) = (15— App) CiC, (2.24)

where 14 and up are the quality score values for stimulus A and B, respectively, estimated
considering ties as being half way between the two options.

If multiple stimuli are compared, then a maximum likelihood estimation of the errors is
performed. The log-likelihood function is

L (ApIC, p) = ZC{jlog{<D [(Ni ~Ap;) - (Nj +Au]+-) }+ZC§jlog{® [(ui +Ap;) - (.Uj —Au})]}
1] L]

(2.25)
where y; is the quality score values for stimulus i estimated considering ties as being half way

between the two options. To find the maximum likelihood solution quality scale values, one
must solve

argmax. (AplC,u) subjectto Ap; =0 Vi (2.26)
Ap

The proof that the modified definitions of Thurstone’s Law for the lower and upper counts (see
Equation (2.24)) yield the maximum likelihood solution (see Equation (2.25)) for two stimuli is
given in Appendix A.
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To help regularize the estimates, a prior of 1 is added on all the counts, meaning that a priori
all choices are possible, which corresponds to Laplace smoothing (Tsukida and Gupta, 2011).

2.6.4 Relationship Between Estimated Mean Values

To determine whether the difference between two MOS values is statistically significant, a
two-sample unpooled z-test can be performed as the score distributions have unknown and
unequal variances. If the observed value is inside the critical region determined by the 95%
two-tailed Student’s t-distribution, then the two MOS values are considered to be statistically
different at a 5% significance level.

When comparing several groups of MOSs, the chance of incorrectly finding a significant
difference would increase with the number of comparisons if a simple ¢-test is performed for
each comparison. To overcome this problem, a multiple comparison procedure should be
applied instead (Snedecor and Cochran, 1989). These procedures are designed to provide an
upper bound on the probability that any comparison will be incorrectly found significant. An
analysis of variance (ANOVA) can be used to compare groups of MOSs, but also to evaluate
the significance of the test parameters.

When using the PC and SC methods (see Section 2.4.3), a statistical hypothesis test can be
applied on the ratings to determine whether the preference for one stimulus over the other is
statistically significant. First, the data need to be arranged in only two classes, for example by
splitting ties equally between the two preference options. This data roughly follows a Bernoulli
process B(N, p), where N is the number of subjects and p is the probability of success in
a Bernoulli trial, which is set to 0.5, considering that, a priori, both options have the same
chance of success. The binomial CDF is then used to determine the critical region for the
statistical test.

The Barnard’s test (Barnard, 1945) can also be used to determine whether preference for one
stimulus over the other is statistically significant. This test is a statistical significance test of
the null hypothesis of independence of rows and columns in a 2 x 2 contingency table. It is
claimed that the Barnard’s test is more powerful than Fisher’s exact test for contingency tables.
Thus, this statistical test can be used to test whether the preference probability is statistically
significantly different from 0.5.

2.7 Comparing MOS Values of Different Experiments

Comparing results of two subjective experiments conducted with the same test material
but with different conditions is essential. One goal can be to investigate the influence of
different factors, e.g., viewing distance, lighting conditions, display, test methodology, or
rating scale. There are plenty of studies investigating these aspects in different scenarios, for
example in the context of 3D evaluations (Barkowsky et al., 2013; Brunnstrém et al., 2013;
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Kulyk et al., 2013; J. Li et al., 2013c; Perkis et al., 2012). Recently, with the increasing popularity
of crowdsourcing based quality assessment, several studies have also been conducted to
investigate the correlation between experiments conducted in laboratory environment and
through crowdsourcing (Hossfeld et al., 2014a; Hossfeld and Keimel, 2014; Keimel et al., 2012;
Redi et al., 2013; Ribeiro et al., 2011).

Even if the same experiment is conducted on the same subject, with the same conditions
and presentation order, the scores given by the subject will never be exactly the same. This
can be interpreted as some noise overlaid on the results. Then, short-term context will
impact grading; this effect is commonly referred to as presentation order effect. Using a
different presentation order for each subject can be used to balance out this effect, but the
statistical uncertainty remains. Medium and long-term context will also impact grading. For
example, if an experiment contains mainly low quality stimuli, then subjects tend to score
them higher, and vice versa. This effect is due the fact that people tend to use the whole range
of the rating scale during the experiment, despite the labels associated with the scale. Finally,
there are long term dependencies that reflect the general cultural behavior of the subject,
e.g., interpretation of the category labels, attitude to quality, or language. Experience with
multimedia technologies is also a factor and expectations may change over time. Differences
between experiments can be due to these effects, but they can also be minimized by a proper
training, well-balanced design and mixed pseudo-random display orders, and by considering
enough subjects.

In the following subsections, a procedure to compare MOS values of different experiments is
proposed. This procedure is inspired by the standard procedure used to benchmark objective
quality metrics described in recommendations ITU-T P1401 (2012) and ITU-T J.149 (2004).
The main difference is that instead of comparing objective to subjective results, two groups of
subjective results are compared.

2.7.1 Mapping Subjective Scores of Two Experiments

On top of normal uncertainties described above, systematically observed differences can be
classified as

i) Bias (or offset): a bias consists of a constant offset between MOS values and can be
due to the overall quality of all stimuli, which can influence subjects to score more pes-
simistically or more optimistically. For example, if the same experiment with compressed
images is performed in a country where people have very fast internet access, e.g., fiber-
optic, and very high quality displays, e.g., UHD, then the scores might be generally lower
than for subjects coming from a country where internet access is very slow, e.g., dial-up,
and with standard monitors, e.g., VGA resolution. Different environments and displays
can also be the source of bias. However, an offset is usually observed in conjunction with
a gradient difference.

ii) Gradient difference: a gradient difference is observed when scores tend to become more
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pessimistic faster in one experiment than in the other. This effect can be observed when
the test stimuli do not cover the whole quality range.

iii) Ranking difference: a ranking difference occurs when the ranking of some stimuli is
different from one experiment to the other. This is the most sever problem, as the goal of
most quality assessment experiment is to determine the relative ranking of the systems
under test.

These effects can be observed in a scatter plot showing the MOSs of experiment B versus the
MOSs of experiment A (or vice versa). To remove the bias and gradient difference, a simple
linear mapping can be applied to align the scores of one experiment to that of the other
experiment. However, in general, a third order polynomial mapping is used for the mapping
(ITU-T P1401, 2012), as it will reduce some ranking difference, for example when the data on
the scatter plot forms a banana shape.

2.7.2 Statistical Evaluation Metrics

Statistical evaluation metrics are used to estimate the linearity, monotonicity, accuracy, and
consistency between two groups of MOS values corresponding to two different experiments.
In particular, one group of MOS values corresponds to the MOS values of experiment A,
MOSE*PA while the second group corresponds to the MOS values of experiment B, MOSE<PB,
mapped to those of experiment A, mExPB, considering a third order polynomial mapping
(see Section 2.7.1). As the mapping of MOSE*PB to MOSE*P4 yields slightly different results
when compared to mapping of MOSE*P4 to MOSE*PB, both mappings should be considered
and results should be reported for both cases. The Pearson correlation coefficient (PCC) and
Spearman’s rank correlation coefficient (SROCC) are computed between the two groups of
MOS values to estimate linearity and monotonicity, respectively. Accuracy and consistency
are estimated using the root-mean-square error (RMSE) and outlier ratio (OR), respectively.
Note that none of these metrics takes into account the subjective uncertainty.

Pearson Correlation Coefficient

The Pearson correlation coefficient (PCC) is a measure of the linear correlation between two
variables X and Y. The resulting value is in the range [—1, 1], where -1 corresponds to a total
positive correlation, 0 to no correlation, and 1 to a total positive correlation. The PCC is
computed as

PCC = ' 2.27)

where M is the total number of points.
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The PCC is computed to estimate the linearity between the two groups of MOS values.

Spearman Rank Order Correlation Coefficient

The Spearman’s rank correlation coefficient (SROCC) is a nonparametric measure of statistical
dependence between two variables X and Y, assessing how well their relationship can be
described using a monotonic function. The resulting value is in the range [—1, 1], and, if there
are no repeated values, a value of +1 indicates a perfect monotone function. The SROCC is
computed as

Y (-5 i -79)

i=1

%AZJ (xi—x_i)z\/ﬂf (vi-7)°

i=1 i=1

SROCC = (2.28)

where x; and x; denote the ranked variables and M is the total number of points.

The SROCC is computed to estimate the monotonicity between the two groups of MOS values.

Root Mean Square Error

The root-mean-square error (RMSE) of the absolute prediction error computed between
MOSE*PA and 108" P” is defined as

i

1 M S 2
RMSE= | —— ) (M0s;/*"* - 310s; ") (2.29)
M-1;5 l
where M is the total number of points. Note that the division by M — 1 corresponds to the
unbiased estimator for the RMSE.

The RMSE is computed to estimate the accuracy between the two groups of MOS values.

Outlier Ratio

The outlier ratio (OR) represents the ratio of the number of outlier-points divided by the total
number of points

_ total number of outliers
B M

OR (2.30)

where M is the total number of points and an outlier is defined as a point i for which the 95%
CIs do not overlap

MOSEPA — 108, PP > 6504 4 5EPE (2.31)
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where 6?” 4 and 5?” B are related to the 95% CIs (see Section 2.6.2) corresponding to
MOSE*P4 and mf"” B respectively.

i

The OR is computed to estimate the consistency between the two groups of MOS values.

2.7.3 Estimation Errors

Another way to analyze the results of two experiments is to consider the outcome of one
experiment as ground truth and to record the number of times the other experiment underesti-
mates or overestimates the results. For each condition, the two groups of scores are compared
according to Section 2.6.4 and the percentage of Correct Estimation, Underestimation, and
Overestimation are recorded. Note that it important to align the data following the procedure
described in Section 2.7.1, otherwise any systematic error, e.g., offset, will impact the results.
The process can be repeated considering the outcome of the other experiment as ground
truth.

2.7.4 Classification Errors

In recommendation ITU-T J.149 (2004), it is suggested to compute the classification errors
to evaluate the performance of an objective metric. A classification error is made when the
objective metric and subjective test lead to different conclusions on a pair of images or video
sequences (see Section 9.5). Here, we extend this methodology to the comparison of a pair of
subjective tests, X and Y, evaluated in a reference and test experiments. Three types of error
can happen

a) False Tie, the least offensive error, which occurs when the reference experiment says that
X and Y are different, whereas the test experiment says that they are identical,

b) False Differentiation, which occurs when the reference experiment says that X and Y are
identical, whereas the test experiment says that they are different,

¢) False Ranking, the most offensive error, which occurs when the reference experiment says
that X (Y) is better than Y (X), whereas the test experiment says the opposite.

The two groups of scores are compared according to Section 2.6.4 and the percentage of Correct
Decision, False Tie, False Differentiation, and False Ranking are recorded from all possible
distinct pairs of conditions. Note that unlike the estimation error (see Section 2.7.3), the data of
the two experiments should not be aligned, as there is no direct comparison between the two
experiments. The process can be repeated considering the outcome of the other experiment
as ground truth.
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2.7.5 Comparing Paired Comparison Data of Different Experiments

In Section 2.6.4, the Barnard’s test (Barnard, 1945) is proposed to determine whether the pref-
erence probability when comparing two stimuli in a paired comparison fashion is statistically
significantly different from 0.5. This statistical test can also be used to determine whether the
difference between two preference probabilities, corresponding to the same pair of stimuli
but evaluated in different conditions, is statistically significant. The Barnard’s test can be
applied to all pairs to record the number of times results significantly differ between the two
conditions.

To determine whether the difference between the two conditions has a significant impact
on the results, J. Li et al. (2013b) proposed to conduct a Monte Carlo simulation. At each
simulation, a group of results is randomly permuted between the two conditions and the ratio
of significantly different pairs is recorded. With a sufficiently large number of simulations, e.g.,
1000, the distribution of the ratio can be estimated. If the observed ratio is higher than the
95th percentile, then it can be assumed that the influence of the difference between the two
conditions is statistically significant.

The classification errors (see Section 2.7.4) can also be computed for paired comparison data.
In this case, the comparison of two groups of scores is made using the Barnard’s test.

2.8 Analysis of Eye Tracking Data

Eye tracking experiments are conducted to record eye movements from individual subjects
in various applications. In the context of quality assessment, eye movements are used for
example to investigate the impact of visual artifacts, e.g., compression artifacts, on visual
attention (Le Meur et al., 2010a; Ninassi et al., 2006) or to improve the performance of quality
metrics by considering the probability of watching a specific part of the image or video
sequence (Engelke et al., 2011; Le Meur et al., 2010b; H. Liu and Heynderickx, 2011; Ninassi
etal., 2007).

Eye movements are classified into two categories: fixations and saccades. Fixations last from
about 100 to 600 ms and allow the brain to process the visual information received by the eyes.
Saccades are fast jumps between two fixations and last from about 20 to 40 ms, while the eye
velocity can be up to 600 °/s. Information from a scene is mainly acquired during fixations,
whereas vision is largely suppressed during saccades. Thus, eye movements corresponding to
saccades should be removed. Similarly, eye movements recorded during blinks should also be
removed.

Typically, gaze points associated with gaze velocity below a fixation threshold are classified
as fixation points, while saccades are detected when the gaze velocity lies above the fixation
threshold. Blinks can also be detected automatically based on the distance between the two
eyelids of each eye. Most modern eye tracking systems automatically classify gaze points as
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fixation, saccade, or blink.

From all gaze points labeled as fixation points, a FDM is recorded. This map is an estimate
of the probability of watching a particular pixel in the image or frame of a video sequence.
The following subsections describe how to compute the FDM and how to compare two FDMs
using different statistical evaluation metrics.

2.8.1 Computation of Fixation Density Maps

A fixation density map (FDM) is computed by convolving the recorded gaze points with a
Gaussian filter, and then normalizing the result to values between 0 and 1. The FDM is an
estimate of the probability of watching a particular pixel in the image or frame of a video
sequence. Only gaze points corresponding to fixation points are used to compute a FDM. Gaze
points associated with saccades and blinks are not used in the computation. In the case of
still images, all gaze points recorded from all subjects during the presentation of a particular
image are used to compute the FDM of that particular image. For video sequences, this
process is performed for each frame independently and only the gaze points recorded during
the presentation of that particular frame are used, which requires a perfect synchronization
between the eye tracker and the video playback system.

The fixation points are filtered with a Gaussian kernel to compensate the eye tracker inac-
curacies and to simulate the foveal point spread function of the human eye. As suggested
in the state of the art (Engelke et al., 2009; Judd et al., 2012), the standard deviation of the
Gaussian filter used for computing the FDMs should be set to 1 degree of visual angle. This
standard deviation value is based on the assumption that the fovea of the human eye covers
approximately 2 degrees of visual angle.

2.8.2 Statistical Evaluation Metrics

Although several statistical evaluation metrics have been proposed to measure the similarity
between two FDMs, there is no standardized procedure. Typically, the similarity score and
Kullback-Leibler divergence (KLD) are used to measure the similarity between two FDMs.
Additionally, the attentional focus (Jermann et al., 2012) can be computed to determine
whether subjects look at few objects or more or less uniformly at several objects.

Similarity Score

The similarity score is a distribution-based metric of how similar two FDMs are. The similarity
score S between two normalized maps P and Q is computed as

S=) min(P;;,Q;;) where ) P;j=> Q;;j=1 (2.32)
i,j i,j i,j
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Low focus = High entropy

0.10.10.10.10.1

High focus = Low entropy

oo o o

01010101010 0 0 0 O

*The values in the windows indicate normalized average intensity of FDM.

Figure 2.2: Illustration of attentional focus metric.

A similarity score of 1 means that the two FDMs are the same, whereas 0 indicates that there is
no overlap between them.

Kullback-Leibler Divergence

The Kullback-Leibler divergence (KLD) is usually used to estimate the dissimilarity between
two probability distributions. In the context of FDMs, this is a measure of dissimilarity between
two histograms. If, in the corresponding histograms, p(x) and g(x) represent the probabilities
of a pixel to have value x, the symmetric KLD is computed as
1 p(x) q(x)
KLD = - (x)log——+ g(x)log—— (2.33)
52 |plog o+ e
When two probability distributions are strictly equal, the KLD value is 0, and when histograms
do not overlap at all, it tends to infinity.

Attentional Focus

The attentional focus (Jermann et al., 2012) is defined as the number of objects that are viewed
by the subjects during image observation. The rationale is to distinguish between cases where
subjects look at few objects versus cases where they look more or less uniformly at several
objects. To compute attentional focus, the FDM is first partitioned into blocks of N x N
pixels. Then, the average intensity is computed for each block. Finally, the attentional focus
is computed as the entropy of the normalized intensity across different blocks. Low entropy
indicates high attentional focus while high entropy indicates low attentional focus. Figure 2.2
shows a schematic representation of this concept. The size of the blocks is determined so as
to match the size of fovea, corresponding to 2 degrees of visual angle.

2.9 Conclusion

This chapter provided a detailed description of the different factors that have to be taken into
account when designing subjective experiments. From the selection of the test material to
the screening of subjects, we reviewed the guidelines suggested by the relevant international
recommendations, as well as some common practices. These factors were considered in the
different subjective experiments reported in the rest of the thesis. We have presented the
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common procedure used to compute MOSs and Cls, as well as alternatives procedures for
paired comparison methods, including a novel method to estimate Cls for the Thurstone
Case Vmodel. Statistical tools to compare two groups of subjective scores were described for
MOSs and PC data. This chapter also provided a description of the recommended procedure
to compare results of subjective experiments and some novel procedures that we proposed,
which were inspired from the procedures used to benchmark objective quality metrics. Finally,
a brief overview of the common techniques used to analyze eye movement data recorded
with an eye tracker was presented. These procedures were used to process and analyze the
subjective data collected in the rest of the thesis.
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“If you can not measure it, you can not improve it” (Lord Kelvin). This statement is especially
true in the case of image and video compression. To design efficient compression algorithms,
it is necessary to benchmark the performance of new algorithms against well-established
and state-of-the-art algorithms on a dataset containing different contents. The quality of the
compressed images and video sequences can be assessed by means of objective and subjective
evaluations. Objective quality assessment relies on the use of objective quality metrics (see
Chapter 8), which have been designed to predict the perceived quality of media content.
Objective evaluations based on PSNR measurements are widely used by most researchers
and coding experts as they are simple and can be performed automatically. However, it is
known that PSNR does not accurately reflect human perception of visual quality (Sheikh
et al., 2006). Nevertheless, previous studies (Huynh-Thu and Ghanbari, 2008; Huynh-Thu
and Ghanbari, 2012; Korhonen and You, 2012) have shown that the PSNR metric is reliable
as long as the content is not changed. In the case of subjective quality assessment, the
quality of the decoded data is evaluated by a pool of human subjects (typically more than 15
people), following a common methodology (see Chapter 2). Subjective tests are undeniably
the most accurate means to evaluate quality, as measurements are performed by human
observers. However, they are time consuming, expensive, and not always feasible. Moreover,
for codec optimization, where several parameters can be tuned to improve quality, subjective
evaluations are impractical.

To calculate the coding efficiency between different codecs based on PSNR measurements,
a model was proposed by Gisle Bjontegaard (2001) during the development of AVC. The
Bjontegaard model is used by various experts to calculate the coding efficiency of compression
standards. For example, this model was used during the development of AVC (Wiegand et al.,
2003b), MVC (Merkle et al., 2007c), HEVC (Ohm et al., 2012), and MV-HEVC (Vetro and Tian,
2012). The Bjontegaard model is also widely used by researchers working on image and video
compression to benchmark the performance of their algorithms against well-established
and state-of-the-art compression algorithms. The Bjentegaard model is used to calculate
the average PSNR and bit rate differences between two R-D curves obtained from the PSNR
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measurement when encoding a content at different bit rates. The model reports two values

i) the Bjontegaard delta PSNR (BD-PSNR), which corresponds to the average PSNR differ-
ence in dB for the same bit rate,

ii) the Bjontegaard delta rate (BD-Rate), which corresponds to the average bit rate differ-
ence in percent for the same PSNR.

Section 3.1 describes in details the Bjontegaard model and how these values are computed.

To investigate the impact on quality of the interaction of the base and enhancement layers
bit rates when comparing two-layer coding systems, the simple Bjontegaard model cannot
be used because it considers only one bit rate. Therefore, we propose an extension of the
Bjontegaard model from R-D curve fitting to R?-D surface fitting. Section 3.2 provides a
detailed description of the proposed model and some examples of application.

The Bjontegaard model might not be an accurate predictor of the true coding efficiency as
it relies on PSNR measurements. To estimate a more realistic coding efficiency, subjective
quality scores should be considered instead of PSNR measurements. Therefore, we propose a
model to calculate the average coding efficiency based on MOSs gathered during subjective
evaluations instead of PSNR measurements. Section 3.3 provides a detailed description of the
proposed model and some examples of application.

3.1 The Bjontegaard Model

Gisle Bjontegaard (2001) has proposed a model to measure the coding efficiency between two
different compression algorithms. To approximate a R-D curve given by a set of N bit rate
values (Ry, ..., Ry) with corresponding PSNR measurements (Dy, ..., D), a third order logarith-
mic polynomial fitting has been proposed in the Bjontegaard model, based on experimental
observations

D(R) = alog3R+ blog2R+clogR+d 3.1

where D is the fitted distortion in PSNR, R is the bit rate, and a, b, ¢, and d are the parameters
of the fitting function.

To simplify notation, in the rest of the chapter, we use lower case r when referring to the
logarithm of the bit rate, i.e., r =logR. Therefore, Equation (3.1) is rewritten as

Dr)y=ar®+br’+cr+d (3.2)

At least four R-D values are required to determine the fitting parameters of Equation (3.2). If
more than four values are used, then the R-D values are fitted in a least square sense.

The average PSNR difference between two R-D curves is approximated by the difference
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between the integrals of the fitted R-D curves divided by the integration interval (Bjontegaard,
2001)

'

/[Dz(r) —Dy(n]dr (3.3)

L

AD =E[Dy—D;] =
rg—rL

where AD is BD-PSNR computed between the two fitted R-D curves ﬁl (r) and ﬁg(r), respec-
tively, and the integration bounds, r; and ry, are

rr = max{min(ry , ..., r1,n,), Min(rz 1, ..., 72, n,) 3.4
ry = min{max(ry,..., 11,n,), max(r,1, ..., ’2,n,) }

To express the (logarithm of the) rate as a function of the distortion, a third order polynomial
fitting has been proposed in the Bjontegaard model to fit the R-D values

#(D)=aD®+bD?*+cD+d (3.5)

Note that a second fitting process is required to fit the bit rate values and that #(D) (see
Equation (3.5)) is not the inverse function of D(r) (see Equation (3.2)).

The average bit rate difference between two R-D curves is approximated as (Bjontegaard, 2001)

1 i
ppy J 172D)=P (DD

-1

R,—R R
AR:E[#]:E[ 2

R—] -1=E[10" "]-1=10""" -1~ 10

Ry 1

(3.6)

where AR is the BD-Rate computed between the two fitted R-D curves 7, (r) and 7, (r), respec-
tively, and the integration bounds, Dy and Dy, are

DL = max{min(DM, ...,DLNI),min(Dg,l, veey D2,Nz)} (3 7)
Dy =min{max(Dy 1,..., D1 n,), max(Dy,1,..., Dz, )} '

Thanks to the logarithmic bit rate scale, the estimation of the average bit rate reduction is also
simplified.

3.2 Extension for Two-Layer Coding Systems

In the recent years, layered coding (Ghanbari, 1989) has gained a large popularity in the image
and video compression community. Multilayer coding systems partition the information
between one base layer and one or more enhancement layers. This approach is typically used
for scalable coding, where the enhancement layers can provide spatial, temporal, or quality
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improvements when compared to the base layer. Additional scalable features, e.g., bit depth,
color gamut, or hybrid coding, can also be implemented. Several standards, e.g., JPEG 2000
(Skodras et al., 2001), scalable video coding (scalability video coding extensions of AVC) (SVC)
(Schwarz et al., 2007), and scalability extensions of HEVC (SHVC) (Boyce et al., 2016) rely on
layered coding to provide scalability. Backward compatibility is another feature that can be
implemented using two-layer coding: the base layer is encoded using a legacy encoder for
backward compatibility, whereas the enhancement layer is encoded using a different and
optimized coding scheme. JPEG XT (Artusi et al., 2015) and multi-resolution frame-compatible
(MFC) stereo coding (Lu et al., 2013) are examples of backward compatible standards using
two-layer coding.

X. Lietal. (2010) have proposed an extension of the Bjentegaard model, referred to as general-
ized BD-PSNR, to take coding complexity into account. However, neither this model nor the
Bjontegaard model can be used to investigate the impact on quality of the interaction of the
base and enhancement layers bit rates when comparing two-layer coding systems. Therefore,
we propose an extension of the Bjontegaard model from R-D curve fitting to R2-D surface
fitting. The proposed model uses a cubic surface as fitting function. While the generalized
BD-PSNR model (X. Li et al., 2010) only considers a rectangular domain in the RC-plane to
evaluate the delta PSNR, the proposed model uses a more complex characterization of the
domain formed by the data points to compute a more realistic estimate of the compression
efficiency.

3.2.1 Proposed Model

In this subsection, we propose an extension of the Bjontegaard model for measuring the
compression efficiency between two R2-D surfaces. First, the function used to fit the R2-D
surfaces is described. Then, the calculation of average PSNR and bit rate differences between
two fitted R2-D surfaces is presented. A MATLAB implementation of the proposed model can
be downloaded from: http://mmspg.epfl.ch/2dbd

Fitting Function

The Bjontegaard model uses a cubic function to fit the R-D curve, based on the observation
that R-D values expressed in (log(bit rate),PSNR) do not deviate much from straight lines
(Bjontegaard, 2008). Following the same principle, we propose to use a cubic surface to fit the
R?-D surface. The cubic surface is given by

2,y =Y pijxty! S={(i,j)eN?|i+j<3} (3.8)
(i,))es

where p;; are the parameters of the fitting function.

The cross-terms, i.e., p11xy, p21x2 ¥, and pi2x yz, allow more flexibility for the fitting of the
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x RB-RE-D triplets

Fitted surface

Figure 3.1: Rg-Rg-D surface fitting.

R2-D surface, which improves the goodness of the fit, but increases the number of required
data points. At least ten (x, y, z) triplets are required to determine the fitting parameters of
Equation (3.8). If more than ten triplets are used, then the data points are fitted in a least
square sense. However, in practice, to obtain a more realistic estimate of the performance
evaluation, 16 or more triplets should be used. Figure 3.1 shows the fitting result for one HDR
image encoded with JPEG XT. As it can be observed, the fitting accuracy is quite good.

Average PSNR Difference

The R?-D surface is obtained by varying one parameter of the base and enhancement layers
in coding schemes while measuring the PSNR of the reconstructed image or video sequence.
Considering M base layer parameter values (Pg 1, ..., Pg,») and N enhancement layer parame-
ter values (Pg 1, ..., PE,n), this yields to a set of M x N base layer bit rate values (Rp 11, ..., Rp,MN)
and enhancement layer bit rate values (Rg 11,..., Rg,mN) with corresponding PSNR values
(D11, .. Dyn). The corresponding R2-D surface is fitted in a least square sense using a cubic
surface

D(rg,re)= Y. pijre're’ S={G,j)eN?i+j=<3} 3.9)
(i,j)es

where D is the fitted distortion in PSNR, r and rg are the logarithms of the base and enhance-
ment layers bit rates, respectively, and p;; are the parameters of the fitting function.

Similarly to the Bjontegaard model, the average PSNR difference between two R?-D surfaces is
approximated by the difference between the integrals of the fitted R?-D surfaces divided by
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the area of the integration domain

1 N .
AD=E[Dy - D] = m[f [D2(rp,rg) — D1 (rp, 7E) | drdrg (3.10)
A

where AD is the delta PSNR computed between the two fitted R2-D surfaces D (g, rg) and
Dg(rB, rg), respectively, and the integration domain A is given by the intersection of the
domains on which the two R2-D surfaces are fitted

A=A1NA; (3.11)

Figure 3.2 illustrates the (rp, rg, D) triplets projected on the rprg-plane. The data points form
a domain defined by four corners corresponding to the extrema of Pp and Pg, (see Figure 3.2).
The domain is delimited by the four contours connecting the four corners. The contour which
starts at [ and ends at J is defined by the pairs ((rB,n, TEA1)) - (TB,M1, rE,Ml)). We propose to
fit these pairs with a cubic curve to estimate the contour

fp(rg) = arg® + brg® +crg+d 3.12)

The same principle is applied to estimate the three remaining contours, with the exception
that the contours between I and K and between J and L are expressed as a function of 7.

The domain delimited by the four contours (represented in gray in Figure 3.2) is thus defined
as

A={(rg,7E) € R*| Pmin(rE) < 7B < Pmax(TE), €min(7B) < TE < €max(7p)} (3.13)

where the functions  and € are extensions of the contour fitting functions that simply perform
repetition for points that lie outside the range of fitted values (as illustrated by the dashed lines
in Figure 3.2). For example, emip, is the extension of the contour which starts at I and ends at J

Fe(rgi1)  ifrpg<rpn
€min(7B) = fE(TB,Ml) if rg > T'B,M1 (3.14)

7E(rp) otherwise
The same principle is used for the other extensions.

The domain on which the R?-D surface is fitted is determined independently for both sur-
faces following the procedure described here above. Then, the integral is evaluated on the
intersection of the two domains. Even though the analytical form of the integral can be eas-
ily determined, its evaluation would require a complex parameterization of the integration
bounds. Therefore, the integral is approximated using a finite sum. Note that in the general-
ized BD-PSNR (X. Li et al., 2010) model, the integration domain corresponds to a rectangular
domain defined by the extreme values (as represented by the hatched area in Figure 3.2).
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Figure 3.2: Domain on which the R?-D surface is fitted. The hatched area represents a simple
integration domain based on min and max values, as used in (X. Li et al., 2010), while the
proposed model integrates over the whole area (represented in gray).

However, this simple integration domain might not be representative of the full domain.

Average Bit Rate Difference

To express the (logarithm of the) base layer bit rate as a function of the enhancement layer bit
rate and distortion, a cubic surface is used to fit the R?-D values

fp(re,D)= Y. pijre' D’ S=1{(,j)eN?|i+j<3} (3.15)
(i,j)eS
where 7p is the fitted base layer bit rate, rg is the logarithm of the enhancement layer bit rate,

D is the distortion in PSNR, and p;; are the parameters of the fitting function.

Similarly to the Bjontegaard model, a second fitting process is required and Equation (3.15) is
not the inverse of Equation (3.9). The inverse function of a cubic function can be determined
using Cardano’s formula, but fitting a new surface yields better accuracy between measured
and fitted values.

Then, the average base layer bit rate difference between two R2-D surfaces is approximated as

Rpy—Rp;

B,1

i I [P 2(re,D)=#p (rg,D)]drgdD

ARp=E =10 A4 -1 (3.16)

where ARp is the delta base layer rate computed between the two fitted R2-D surfaces 7 (rg, D)
and 7, (rg, D), respectively, and the integration domain is determined following a similar
procedure as for the average PSNR difference.
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Table 3.1: Goodness of fit: coefficient of determination p? and RMSE.

D(rp,rE) tp(rg, D) Pe(rg, D)
cross-terms
yes no yes no yes no
p2 0.9967 0.9919 0.9885 0.9695 0.8968 0.8759
RMSE 0.1830 0.3202 0.0316 0.0570 0.0901 0.1011

The computation of the average enhancement layer bit rate difference between two R?-D
surfaces is similar to the computation of the average base layer bit rate difference.

3.2.2 Applications and Discussions

In this subsection, we show two examples of application of the proposed model. For this
purpose, we used a dataset of 17 HDR image, which were encoded with JPEG XT (Artusi et al.,
2015). JPEG XT is based on a two-layer design and is backward compatible with the popular
JPEG compression standard. The base layer contains a LDR image, which is a tone-mapped
version of the HDR image, accessible to legacy implementations, while the enhancement layer
allows recovering the full dynamic range. The three main profiles of JPEG XT were used. For
each profile, the quality factor of the base and enhancement layers was varied in the range
[20,98] with a step of 2. Five different TMOs were considered to create the base layer LDR
image. The dataset consisted of 17 HDR images x 3 profiles x 40 base layer quality values x 40
enhancement layer quality values x 5 TMOs = 408,000 compressed images with corresponding
PSNR values.

Influence of Cross-Terms

Table 3.1 reports the goodness of fit computed between the (Rg, Rg, D) triplets and the fitted
values. The coefficient of determination p? and RMSE are averaged over the 17 HDR images, 3
profiles, and 5 TMOs. Results show that cross-terms increase the coefficient of determination
and decrease the RMSE in all cases.

Coding Performance of JPEG XT

Table 3.2a reports the average coding efficiency of the three main profiles of JPEG XT. The
values were averaged over the 17 HDR images and 5 TMOs. Results show that Profile C provides
a gain of over 3.2dB in PSNR for the same bit rate when compared to profiles A and B, whereas
Profile B provides a gain of about 0.84dB over Profile A. On the other hand, for the same PSNR
and enhancement layer bit rate, the bit rate of the base layer can be reduced by about 7.46%
for Profile A when compared to Profile B. For the same base layer bit rate, i.e., same quality of
the LDR image, the enhancement layer bit rate for Profile C can be reduced by about 30% and
20% when compared to profiles A and B, respectively.
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Chapter 3. Calculation of Coding Efficiency

Table 3.2b reports the influence of the TMO on the coding efficiency of Profile B. The values
were averaged over the 17 HDR images. Surprisingly, the simple gamma TMO, which is very
easy to inverse to predict the HDR image from the LDR image, reduces the PSNR of the
reconstructed HDR image by 1.7dB to 6.2dB for the same base layer and enhancement layer
rates. On the other hand, the mantiuk06 TMO, which usually produces pleasant LDR images,
allows reducing the bit rate of the enhancement layer by 28% to 46% when compared to other
TMOs.

As it can be observed, the proposed model allows a more complete and detailed quantitative
analysis when compared to the analysis reported by Pinheiro et al. (2014). The results reported
in their study are more qualitative and their analysis was mostly performed on two dimensions
only (distortion and enhancement layer bit rate), by fixing the quality parameter of the base
layer. Additionally, the proposed model can be used for other applications than two-layer
coding. For example, this model can be used for video plus depth or mutliview video plus
depth coding, to find the optimal bit rate allocation between the texture and depth data, to
maximize the quality of a synthesized viewpoint.

Note that the proposed model only considers one distortion, e.g., the distortion of the base
or residual layer, or the distortion of a derived image/video sequence (see example above).
To consider two different distortions, e.g., the base and enhancement layer distortions, a 4D
model must be used. In this case, 20 or more quads are required, while most performance
analysis are conducted with only 4 x 4 combinations of base and enhancement layer parameter
values.

3.3 Extension for Calculation Based on Subjective Quality Scores

The coding efficiency of different compression algorithms can be adequately compared only by
means of subjective tests, carried out according to common evaluation methodologies defined
by experts. During the development phase of their compression standards, JPEG, MPEG, and
VCEG have relied during past years on both objective and subjective evaluations to select
and evaluate potential coding technologies, as well as for verification purposes. For example,
subjective evaluations were conducted during the development of JPEG XR (De Simone et al.,
2009b), MPEG-4 (Alpert et al., 1997), AVC (Baroncini and Quackenbush, 2012; Fenimore et al.,
2004; Oelbaum et al., 2004), SVC (Baroncini and Quackenbush, 2012; Oelbaum et al., 2008),
and HEVC (Baroncini and Quackenbush, 2012; De Simone et al., 2011; Weerakkody et al., 2014).
Independent researchers have also conducted subjective evaluations, both during and after
the development phase of compression standards, as a validation process or to evaluate the
codecs in different scenarios. These evaluations have been conducted for both image and
video compression.

To estimate a more realistic coding efficiency, subjective quality scores should be considered
instead of PSNR measurements. Therefore, we propose a model to calculate the average
coding efficiency based on MOSs gathered during subjective evaluations instead of PSNR
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measurements. We call this approach subjective comparison of encoders based on fitted
curves (SCENIC). To consider the intrinsic nature of bounded rating scales, as well as nonlin-
earities and saturation effects of the HVS, a logistic function is used to fit the R-D values. The
average MOS and bit rate differences are computed between the fitted R-D curves similarly
to the Bjontegaard model. To consider the statistical property of subjective scores, the 95%
CIs associated with the MOSs are considered to estimate corresponding confidence intervals
on the calculated average MOS and bit rate differences. To provide meaningful measures, the
R-D curves should ideally cover the full range of the rating scale. This recommendation is
considered in the proposed model to estimate a confidence index on the calculated average
MOS and bit rate differences.

3.3.1 Proposed Model

In this subsection, we propose a method for subjective comparison of encoders SCENIC.
First, the function used to fit the R-D values is described. Then, the calculation of average
MOS and bit rate differences between two fitted R-D curves is presented. Finally, the Cls
and reliability index on the calculated average MOS and bit rate differences are presented. A
MATLAB implementation of the proposed model can be downloaded from: http://mmspg.
epfl.ch/scenic

Fitting Function

According to recommendation ITU-R BT.500-13 (2012), the relationship between MOS and
the objective measure of picture distortion tends to have a sigmoid shape, provided that the
natural limits of picture distortion extend far enough from the region in which the MOS varies
rapidly. If the distortion parameter is measured in a physical unit, e.g., a time delay (ms),
then a non-symmetrical function should be used to approximate this relationship (ITU-R
BT.500-13, 2012). If the picture distortion is measured in a related unit, e.g., PSNR (dB), then a
4-parameter logistic function is commonly used (see Section 9.1). The 4-parameter logistic
function (see Figure 3.3) is
b-a

y=fx)=a+ S ———r (3.17)

where a, b, ¢, and d are the parameters of the fitting function.

As bit rate is not a direct measure of picture distortion, a non-symmetrical function should be
used to map bit rate values to MOS, according to recommendation ITU-R BT.500-13 (2012).
However, Gisle Bjontegaard has observed that R-D values expressed in (log(bit rate), PSNR) do
not deviate much from straight lines (Bjontegaard, 2008), meaning that there is a somewhat
linear relationship between log(bit rate) and PSNR. Therefore, based on this observation, and
following the common practice to map PSNR values to MOS, we propose to use a logistic
function to fit the R-D values expressed in (log(bit rate), MOS).
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Figure 3.3: 4-parameter logistic function y = f(x) = a+

Fitting a logistic function to a set of observed values is a nonlinear curve-fitting problem and
can be expressed in least-squares sense. Several solutions have been proposed to solve this
class of problem. However, the initial conditions may be critical to converge towards the
optimal solution. Nevertheless, in most cases, constraints can be applied on the different
parameters based on a priori knowledge to restrict the parameter search.

Most rating scales are divided into five categories with associated labels, such as (Bad; Poor;
Fair; Good; and Excellent) or (Very annoying; Annoying; Slightly annoying; Perceptible, but not
annoying; and Imperceptible) (see Section 2.4). The asymptotes of the relationship between
MOS and bit rate, which are caused by the use of bounded rating scales and the saturation
effects of the HVS, are typically associated with the two extreme categories of the rating scale.
Moreover, the subjective scores should increase from the lower to the upper categories as the
bit rate increases. Therefore, constraints are imposed on the logistic function such that the
lower and upper asymptotes are associated with the lower and upper categories, respectively,
and that the function is strictly increasing

1 1
Umin < a < umin+gAu umax—gAqus Umax c>0 (3.18)

where Au = Umax — Umin, Umin and umayx are the boundaries of the rating scale, and %Au
corresponds to the “length" of one category in a five categories scale.

Integration Bounds

Whereas the R-D curve based on PSNR measurements is unbounded, the R-D curve based
on MOS is bounded due to the use of a bounded rating scale, the fact that many evaluation
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methods consist in comparing the quality of a test stimulus against the quality of a reference
stimulus, and the saturation effect of the HVS. Therefore, we think that it is not meaningful
to compute average MOS or bit rate differences when both R-D curves have reached the
saturation phase.

In statistics, it is common to consider only the values lying within the 95% CI. In the proposed
model, we consider a similar approach by discarding the lower and upper parts of the fitted
R-D curve and keeping only the values between y; and yy, (see Figure 3.3), which covers 95%
of the range spanned by the fitted R-D curve

y1=a+0.025(b - a) Yn=a+0.975(b—-a) (3.19)
The x values corresponding to y; and yj, are determined as

x=f"ow xn = ) (3.20)
where f~! is the inverse function of the logistic function

b-y
y—d

1
x=f_1(y)=g(y)=—zln +d 3.21)

Average MOS Difference

To approximate the R-D curve given by a set of N bit rate values (Ry, ..., Ry) with corresponding
MOSs (Dy, ..., Dy), the R-D values are fitted in a least square sense using a logistic function
with the constraints specified in Equation (3.18)

b—a

D(r)=a+ T expl_c(r—d)] (3.22)

where D is the fitted distortion in MOS, r is the logarithm of the bit rate, and a, b, ¢, and d are
the parameters of the fitting function.

Similarly to the Bjontegaard model, the average MOS difference between two R-D curves is
approximated by the difference between the integrals of the fitted R-D curves divided by the
integration interval

TH
f[Dg(l‘) —Dy(n]dr (3.23)

.

AD =E[Dy—D;] =
rgH—rL

where AD is the delta MOS computed between the two fitted R-D curves D1 (r) and D, (1),
respectively, and the integration bounds, r; and ry, are

rr =max{min (ry1, ..., 71,n, ), min (r2,1,..., 72N, ), min (1,7, 72,1) }

(3.24)
re =min{max(ri,1,..., 71,n, ), max (ra 1, ..., r2,n, ), max (ry,p, r2,) }
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T

(a) Computation of delta MOS. (b) Computation of delta rate.

Figure 3.4: Integration bounds: the shaded area represents the integral of the difference of the
two curves, evaluated between the lower and upper bounds.

where ry ; and ry ;, (r2,; and r» j,) are lower and upper rate bounds on Dl (r) (ﬁg(r)) determined
according to Equation (3.20).

To compute AD, the analytical expression of the integral of the logistic function is used
b-a
F(x) = ff(x)dx =——In{l+exp[-c(x—d)}+bx+(a-b)d+C (3.25)
c

where C is an arbitrary constant.

Figure 3.4a illustrates the computation of the average MOS difference between two fitted R-D
curves.

Average Bit Rate Difference

Instead of applying another fitting to express the (logarithm of the) bit rate as a function of the
distortion, as in the Bjontegaard model, the inverse function of Equation (3.22) is used
1. b—-D

F(D)=—-—-1
F(D) an—a

v d (3.26)

where 7 is the fitted bit rate, D is the distortion in MOS, and a, b, ¢, and d are the parameters
determined for Equation (3.22). Therefore, the logistic fitting is applied only once for a given
set of R-D values.

Similarly to the Bjontegaard model, the average bit rate difference between two R-D curves is
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approximated as

Dy
1 ~ ~

_ _— [ (D)—7,(D)]dD
Ry,—R; D-Df DfL 2 1

Ry

~
~

ARzE[

-1 (3.27)

where AR is the delta rate computed between the two fitted R-D curves 71 (r) and 7 (r), respec-
tively, and the integration bounds, Dy and Dy, are

Dr = max{min(ﬁlyl,...,Dlle),min(ﬁg,l,...,ﬁg,Nz),min(ﬁl,l,Dz,z)} (3.28)
Dy =min {HlaX(f)Lb oy D1,ny), max(Dy 1, ..., ﬁz,Ng),maX(f)l,h,f)z,h)} '

where lA)Ll and ﬁl'h (Dgyl and Dgyh) are the lower and upper distortion bounds on Dl (r) (Dg ()
determined according to Equation (3.19).

To compute AR, the analytical expression of the integral of the inverse logistic function is used

b- -a
G(y) :[g(y)dy - Ty (In(b—y)-1]+ yT (Iny-a) -1]+dy+C (3.29)
where C is an arbitrary constant.

Figure 3.4b illustrates the computation of the average bit rate difference between two fitted
R-D curves.

Confidence Interval

To consider the statistical property of a MOS, u;, the corresponding CI, [ﬁi -0;,u;i+0 ,-] (see
Section 2.6.2), should be considered in the proposed model when computing the average MOS
and bit rate differences. In recommendation ITU-R BT.500-13 (2012), it is proposed to consider
three series of grades, constructed from the MOSs for each test condition and associated 95%
Cls

i) minimum grade series (i1 —01,...,Uny —OnN),
ii) mean grade series (uy, ..., ), and
iii) maximum grade series (u; +91,..., Un + O ).

According to this recommendation, the three grade series should be fitted independently.

Figure 3.5 depicts an example of MOSs and associated 95% CI. The fitting functions D~ (r),
D(r), and D* (r) (see Table 3.3) for the minimum, mean, and maximum grade series, respec-
tively, are drawn on the same graph to provide an estimate of the 95% continuous confidence
region, which can be used to determine a tolerance range. The space between D*(r) and
D~ (r) is not an exact 95% CI, but a mean estimate thereof (ITU-R BT.500-13, 2012).

71



Chapter 3. Calculation of Coding Efficiency

x D(r)
-= D)
---D(r)

r

Figure 3.5: Different grade series: D~ (r), D(r), and D*(r) are the fitting functions for the
minimum, mean, and maximum grade series, respectively, constructed from the MOSs for
each test condition and associated 95% Cls.

Table 3.3: Fitting functions for the different grade series.

Fitting functions  Fitting of Values

D™ (r), 7~ (D) minimum grade series (i1 —91,..., Uy —ON)
D(r),#(D) mean grade series (Uy,..., uN)
D*(r),#*(D) maximum grade series (441 +61,..., Uy +On)

The parameters a, b, and c of the logistic function are constrained as the subjective scores
should increase from the lower to the upper categories as the bit rate increases. (see Equa-
tion (3.18)). These constraints should be modified when fitting the minimum and maximum
grade series to consider the CIs. If we consider a typical R-D curve and rating scale divided into
five categories, at the extreme parts of the curve, the CIs generally tends to become smaller,
due to the intrinsic nature of bounded rating scales, but they may slightly span outside of the
extreme categories. Therefore, for the fitting of the minimum (maximum) grade series, we
decrease (increase) the lower (upper) bound on parameters a and b by half of the “length” of
one category (see Table 3.4).

The average MOS and bit rate differences are computed from the mean grades series as
described here above. The corresponding 95% CI is estimated using the minimum and
maximum grade series to consider the Cls associated with the MOSs.
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Table 3.4: Constraints for the different fitting functions.

Constraints on parameter

Fitting functions
& a b c
D™ (r),7~ (D) umin—l—loAusasumin—i-%Au umax—%Ausbs Umax c>0
D(r), (D) Umin < a < umin+%Au Umax — AU < D < Umax c>0
D (r),#t(D) Umin < a4 < umin+13—0Au Umax = AU < D < Umax + 1—10Au c>0
Q

e b
1 o

r

Figure 3.6: Confidence interval: the green, yellow, and blue areas illustrate the calculation of
ADnpin, AD, and A Dy, respectively. For illustration purpose, only part of the total area used
in the calculation of each value is represented. The same principle applies for the calculation
of ARmin, AR, and ARy ax.

The average MOS difference, AD, and its corresponding estimated 95% CI [ADmjin, ADmax],
are

AD = ¢(Dy(r), Da2(r), 1, TH)
ADmin = min{¢ (D7 (r), D3 (1), 11, r1), ¢ (DY (1), D5 (1), rr, 1)} (3.30)
ADax = max{¢ (D7 (1), D5 (1), 11, 1), (DT (1), D5 (1), 1, 71)}

where r7 and rg are the integration bounds computed from (ry,1,...71,n,), (r2,1,...72,N,), F1(D),
and 7, (D) according to Equation (3.24), and ¢ is a generic function to compute the average
MOS difference between two fitted R-D curves D; () and D, (r), between r; and ry

'

1 R R
f[Dg(r) —Dy(r)]dr 3.31)

L

¢ (D1(r), Da(r), rp, 1) =

g

Figure 3.6 illustrates the calculation of ADpiy, AD, and AD .
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The average bit rate difference, AR, and its corresponding estimated 95% CI [ARpin, A Rmax],
are

ARmin = min{y (#{ (D), 5 (D), Dy, Dy), v (] (D), #3 (D), Dy, Dyy)} (3.32)
ARmax = max{y (7] (D), 75 (D), D1, Dy),y (7] (D), 5 (D),Dr,Dp)}

where Dy and Dy are the integration bounds computed from (Dy1,...D1,n,), (D2,1,...D2,N,),
Dl (r), and ﬁg(r) according to Equation (3.24), and v is a generic function to compute the
average bit rate difference between two fitted R-D curves 7; (D) and 7» (D), between Dy and
Dy

1 P
= DfL [72(D)~ 1 (D)}dD

Y (71(D), 72(D), D1, D) = 10 -1 (3.33)

Confidence Index

To provide confident measures, the R-D curves should ideally cover the full range of the rating
scale. In most quality evaluations, both objective and subjective, a predefined set of targeted
bit rates is usually considered. In well-designed subjective tests, the lower bit rate is chosen
such that at least one test stimulus (specific combination of content, codec, and bit rate)
would have a quality corresponding to the lower category. However, care should be taken
to avoid too low quality test stimuli. Therefore, it is possible that at the lower bit rate, one
codec produces bad quality, whereas another codec produces fair or good quality, if there is a
significant difference in terms of compression efficiency between the two codecs.

These considerations are incorporated in the proposed model to produce a confidence index
on the calculated average MOS and bit rate differences. As it is impossible in most practical
situations to cover the full range of the rating scale with both R-D curves for the above-
mentioned reason, we assume that at least one of the two R-D curves should cover 80% of the
rating scale to have a valid measure of the average MOS and bit rate differences. The range of
the rating scale, Au; and Auy, covered by the two R-D curves is

Aul = max(DM, ""Dl,Nl) — min(DM, ""Dlle)

) (3.34)
Auy =max(Dy, ..., D2 n,) —min(Dy,y, ..., D2 n,)
We also consider the goodness of the fitting functions, measured in terms of the PCC
=r((D1,1,.., D1,z,), (D11, ., D1, N,)
P1 ( 1,1 1,N; 1,1 1 1) (3.35)

p2=7((D21,..., Da,n,), (DZ,I;---,DZ,NZ))

where r(-) is the PCC.
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Figure 3.7: Rate-distortion curves for content woman.

The confidence index is computed as

(3.36)

max(Auy,Au
Confidence index = min { 1 (A 2 1 2}

’ 0.8(Umax — Umin)

where umin and umay are the boundaries of the rating scale.

3.3.2 Applications and Discussions

In this section, three case studies are presented where the Bjgntegaard and proposed models
were used to calculate average coding efficiency. The aim of these examples is twofold. The
first objective is to show that the Bjontegaard model does not always provide an accurate
measure of coding efficiency, whereas the proposed model should report more realistic coding
efficiency. However, as there is no ground truth for the coding efficiency, it is impossible to
quantify the performance of the two models, but rather to discuss when the two models do
not agree. The second objective is to illustrate the usefulness of the CIs and confidence index
provided by the proposed model.

Quality of High Resolution Images

In this case study, we used the results from the evaluation of HEVC image compression
reported in Section 4.2. Tables 3.5 and 3.6 report the coding efficiency calculated for content
woman using the Bjontegaard and proposed models, respectively. Figure 3.7 shows the fitted
R-D curves for content woman.

Table 3.5 reports an average bit rate difference for JPEG 2000 4:2:0 over JPEG 2000 4:4:4 of —31%
based on the Bjontegaard model. However, Table 3.6 reports an average bit rate difference
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3.3. Extension for Calculation Based on Subjective Quality Scores

of +61% [+24%,+109%] based on the proposed model. Note that the 95% CI resulting from
the proposed model does not contain the value calculated by the Bjentegaard model. These
results show that JPEG 2000 4:2:0 has better coding efficiency than JPEG 2000 4:4:4 according
to the Bjontegaard model, whereas the proposed model dictates the opposite. To understand
why the two models lead to different conclusions, it is necessary to analyze the objective and
subjective scores. According to PSNR measurements, JPEG 2000 4:2:0 performed always better
than JPEG 2000 4:4:4 (see Figure 3.7a), whereas the subjective results dictate the opposite (see
Figure 3.7b).

Visual weighting was disabled for JPEG 2000 4:2:0, whereas it was enabled for JPEG 2000 4:4:4.
The lack of visual weighting creates distortions, particularly at lower bit rates, as reported
during the development of JPEG 2000. This example shows that when PSNR fails to capture
a specific distortion, the comparison of coding efficiency using the Bjontegaard model may
lead to wrong conclusion. In this case, the proposed model, which relies on subjective scores,
should report more realistic estimation of coding efficiency.

Table 3.5 reports an average bit rate difference over JPEG of —44% and —53% for JPEG 2000
4:2:0 and HEVC, respectively, based on the Bjontegaard model. However, Table 3.6 reports
an average bit rate difference over JPEG of +10% [-6%,+33%] and —5% [-21%,+17%] for
JPEG 2000 4:2:0 and HEVC, respectively, based on the proposed model. Note that the 95% Cls
resulting from the proposed model do not contain the values calculated by the Bjontegaard
model. As it can be observed from Figure 3.7, HEVC outperformed JPEG by at least 3 dB on
all bit rates, whereas JPEG was evaluated better than or equal to HEVC at 0.75bpp and above
based on the subjective results. This example shows that the coding efficiency reported by the
Bjontegaard model may be over-estimated in some cases.

It is known that PSNR does not accurately reflect human perception of visual quality (Sheikh
et al., 2006). As the Bjontegaard model relies on PSNR measurements, it is not surprising that
the coding efficiency calculated with this model may not accurately reflect the true coding
efficiency in some cases. Using a different model relying on a perceptual metric that better
correlates with perceived quality, e.g., structural similarity (SSIM), would probably result in
more accurate estimation of coding efficiency.

Quality of UHD Video Sequences

In this case study, we used the results from the evaluation of HEVC video compression reported
in Section 4.1. Table 3.7 report the coding efficiency for HEVC over AVC calculated on each test
content using the Bjontegaard and proposed models. Figure 3.8 shows the fitted R-D curves
for content Traffic.

For content Traffic, subjects evaluated nine out of ten video sequences as Imperceptible (see
Figure 3.8b). These results show that, at the selected bit rates, the R-D curves are mostly in
the upper saturation phase. However, it is impossible to predict this behavior from the PSNR
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Table 3.7: Average coding efficiency for HEVC over AVC.

(a) Bjontegaard model.

Content Deltarate (%) Delta PSNR (dB)
PeopleOnStreet 27 +1.6
Traffic -38 +1.8
Sintel2 —68 +4.4
Overall —44 +2.6

A negative (positive) value indicates a decrease (increase) of bit rate for the same PSNR.
A negative (positive) value indicates a decrease (increase) of PSNR for the same bit rate.

(b) Proposed model.

Content Delta rate AR [ARmin, ARmax] Delta MOS AD [ADmin, ADmax] Confidence index (%)
PeopleOnStreet —53% [—69%,—27%] +25.8 [+13.0,+38.4] 79
Traffic -59% [-,—5%)] +10.8 [-2.2,+20.3] 28
Sintel2 —73% [-,—60%] +40.7 [+28.9,+52.4] 62
Overall —62% [-,—31%] +25.8 [+13.2,+37.1] 56

A negative (positive) delta rate indicates a decrease (increase) of bit rate (MOS) for the same MOS (bit rate).
A negative (positive) delta MOS indicates a decrease (increase) of bit rate (MOS) for the same MOS (bit rate).
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Figure 3.8: Rate-distortion curves for content Traffic.

measurements as the two curves are continuously increasing and the PSNR values are below
40 dB, which is often considered as excellent quality.

For this particular content, the R-D values were mostly measured in the upper saturation phase,
and not across the entire rating scale, as recommended. Therefore, the average PSNR/MOS
and bit rate differences calculated using the two models are not representative of the true
coding efficiency for this content. Nevertheless, for the proposed model, this problem is
reflected in the low confidence index (28%) and wide CI reported in Table 3.7b. Note that the
value for A Rpin could not be determined as there was no overlap between the two R-D curves.
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Figure 3.9: Rate-distortion curves for content Balloons.

However, the the Bjontegaard model does not consider the saturation effect of the HVS and
does not provide such indication regarding the confidence of the calculated coding efficiency.

Quality of 3D Video Sequences

In this case study, we used the same dataset as for the benchmarking of objective metrics
on stereo pairs formed from two synthesized views reported in Section 10.2. Tables 3.8
and 3.9 report the coding efficiency calculated for content Balloons using the Bjontegaard and
proposed models, respectively. Figure 3.9 shows the fitted R-D curves for content Balloons.

The average bit rate reduction values calculated using the Bjontegaard model (see Table 3.8)
are in general similar to those calculated using the proposed model (see Table 3.9), except
for the values related to proponent P25. To understand why the two models differ for this
particular proponent, it is necessary to analyze the objective and subjective scores. As it can
be observed from Figure 3.9, proponent P25 obtained constant low PSNR values, whereas it
obtained high subjective scores.

It is known that one proposal submitted in response to the CfP used a different view synthesis
algorithm. As the data submitted by the proponents is anonymous, we cannot be certain that
proponent P25 used a different view synthesis algorithm. However, these results show that
coding efficiency calculated based on PSNR measurements might not accurately reflect the
true coding efficiency in the case of stereoscopic content formed from synthesized views, as
PSNR is not accurate to assess perceived quality of synthesized views (see Section 10.2). Using
a different model relying on a perceptual metric that better correlates with perceived quality
of stereoscopic content, e.g., VIF or VQM, would probably result in more accurate estimation
of coding efficiency.
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3.4 Conclusion

This chapter described in details the Bjgntegaard model, which is commonly used to calculate
the coding efficiency between different codecs. This model reports two values: average PSNR
difference in dB for the same bit rate and the average bit rate difference in percent for the same
PSNR. We proposed two extensions of the Bjontegaard model. The first extension is designed
for two-layer coding systems and aims at investigating the impact on quality of the interaction
of the base and enhancement layers bit rates. The proposed model extends the Bjontegaard
model from R-D curve fitting to R?-D surface fitting. It uses a cubic surface as fitting function
and a more complex characterization of the domain formed by the data points to compute a
more realistic estimate of the compression efficiency. We presented two applications of the
proposed model to measure the compression efficiency of JPEG XT. The proposed model can
also be used for other applications, e.g., to optimize the bit rate allocation between texture
and depth in 3D video coding.

The second extension relies on subjective quality scores instead of PSNR measurements. To
consider the intrinsic nature of bounded rating scales, as well as nonlinearities and saturation
effects of the human visual system, a logistic function was used to fit the R-D values. The
average MOS and bit rate differences were computed between the fitted R-D curves. To
consider the statistical property of subjective scores, the 95% CIs associated with the MOSs
were considered to estimate corresponding confidence intervals on the calculated average
MOS and bit rate differences. We presented three case studies where the Bjontegaard and
proposed models were used to calculate average coding efficiency. Results showed that the
Bjontegaard model does not always report an accurate measure of the true coding efficiency as
it relies on PSNR measurements, which does not accurately reflect human perception of visual
quality. However, the proposed model, which relies on subjective scores, is expected to report
more realistic estimation of coding efficiency. This model was also used in the performance
analysis of image and video compression reported in the rest of the thesis.
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Performance Analysis of Image and
Video Compression

Every day, 350 million photos are shared on Facebook and 4 billion videos are viewed on
YouTube, whereas 300 hours of video are uploaded every minute. For a typical 12 megapixels
still image, captured with an iPhone or digital camera, each image needs 36MB of storage
to be represented in uncompressed RAW format. Similarly, for a typical full HD video at 24
frames per second, which is typical for movie, each 1 second of video requires about 150MB
to be stored in RAW format. Considering these characteristics, Facebook would require 12.6
peta bytes of additional storage capacity every day and YouTube’s IT engineers would have to
add about 40 4TB hard drive disks in their storage bay every minute. Without efficient image
and video compression algorithms, it would not be feasible to transmit and store such a huge
amount of multimedia content.

To compress an image or video sequence and reduce its file size, algorithms typically try to
exploit correlation, e.g., spatial and temporal, in the data, for example to predict the current
frame from previously encoded frames. Additionally, properties of the HVS are exploited
to further reduce the amount of data, for example to adaptively quantize the data. Most
coding schemes rely on the following processing. First, a non-linear mapping, referred to as
gamma encoding (Poynton, 2012), is applied on the linear red, green, and blue (RGB) signal
to optimize the usage of bits when encoding an image based on the observation that the
HVS is more sensitive to changes in dark areas than bright areas. Then, the RGB image is
converted to another color space, e.g., YCbCr, to decorrelate the redundant information in
the red, green, and blue components. The new components are typically composed of a
luma component, which is related to the luminance information after gamma expansion,
and two chroma components, which are related to the chrominance information. Based
on the observation that the HVS is more sensitive to loss of resolution in luminance than in
chrominance, the chroma components are often downscaled from 4:4:4 (full horizontal and
vertical resolutions) to 4:2:2 (half horizontal resolution, full vertical resolution) or 4:2:0 (half
horizontal and vertical resolutions) sampling. The image is then decomposed into several
blocks, e.g., 8 x 8 pixels, and each block is processed following a specific order. The image
blocks can be transformed to another space, for example using the discrete cosine transform
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(DCT) (Ahmed et al., 1974), which decomposes a block into a sum of different sinusoidal
patterns, with different horizontal and vertical periods. As the HVS is more sensitive to low
frequency than high frequency, an adaptive quantization of the DCT coefficients is performed
to further reduce the amount of data. This block-based transform coding is referred to as
intra-frame coding. Further prediction can be performed, for example to predict a block in
the current frame from a neighboring and already coded block in the current frame, which is
referred to as intra-frame prediction, or from another block in the previous frame, which is
referred to as inter-frame prediction. These approaches try to exploit the spatial and temporal
redundancy of the data to further reduce the amount of data that has to be transferred or
stored. Finally, the encoded data is further reduced using entropy encoding (Wiegand and
Schwarz, 2010). Note that this last step is lossless, whereas the most previous steps are lossy
and can result in quality degradation. The reader is invited to have a look at the following
text books for a more detailed and more comprehensive description of image and video
compression schemes: (Bhaskaran and Konstantinides, 1997; Haskell et al., 1997; Mitchell,
1997; Netravali, 2013; Rabbani and Jones, 1991; H. R. Wu and Rao, 2005).

Several standardization bodies are at the roots of the still and moving pictures codecs used over
the past 30 years. For example, the Joint Photographic Experts Group (JPEG) has published
the following image compression standards: JPEG (Wallace, 1991), JPEG 2000 (Christopoulos
etal., 2000), JEPG XR (Dufaux et al., 2009), JPEG XT (Artusi et al., 2015). The Moving Picture
Experts Group (MPEG) and Video Coding Experts Group (VCEG) have published the following
video compression standards: H.261, H.262/MPEG-2 Part 2 (Haskell et al., 1997), H.263,
H.264/MPEG-4 Part 10 Advanced Video Coding (AVC) (Wiegand et al., 2003b) and its scalable
(SVC) (Schwarz et al., 2007) and 3D (MVC, MVC+D, and 3D-AVC) (Y. Chen et al., 2014; Vetro
etal., 2011) extensions, H.265/MPEG-H Part 2 High Efficiency Video Coding (HEVC) (Ohm
et al., 2012) and its scalable (SHVC) (Boyce et al., 2016) and 3D (MV-HEVC) (Y. Chen and
Vetro, 2014) extensions. Recently, Google was actively involved in the development of VP9
(Mukherjee et al., 2015a) and its successor VP10 (Mukherjee et al., 2015b), an open source
alternative to AVC and HEVC that is used in YouTube.

The coding efficiency of different compression algorithms can be adequately compared only
by means of subjective tests, carried out according to common evaluation methodologies
defined by experts (see Chapter 2). During the development phase of their compression stan-
dards, JPEG, MPEG, and VCEG have relied during past years on both objective and subjective
evaluations to select and evaluate potential coding technologies, as well as for verification
purposes. For example, subjective evaluations were conducted during the development of
JPEG XR (De Simone et al., 2009b), MPEG-4 (Alpert et al., 1997), AVC (Baroncini and Quacken-
bush, 2012; Fenimore et al., 2004; Oelbaum et al., 2004), SVC (Baroncini and Quackenbush,
2012; Oelbaum et al., 2008), and HEVC (Baroncini and Quackenbush, 2012; De Simone et al.,
2011; Weerakkody et al., 2014). Independent researchers have also conducted subjective evalu-
ations, both during and after the development phase of compression standards, as a validation
process or to evaluate the codecs in different scenarios.
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This chapter reports the results of performance analysis of HEVC for video (see Section 4.1)
and image (see Section 4.2) compression. Additionally, Section 4.5 reports the performance
analysis of potential coding technologies to further extends the capabilities of HEVC for HDR
video compression. Sections 4.3 and 4.4 report the performance analysis of VP9 for video
compression and JPEG XT for HDR image compression, respectively. Finally, Section 4.6 report
the performance analysis of the MVC+D and 3D-AVC 3D video compression standards. The
performance analysis performed on HDR and 3D video compression reported in this thesis
were conducted in a collaboration with MPEG and reported to the standardization body. All
subjective evaluations were conducted and analyzed following the guidelines described in
Chapter 2 and coding efficiency was measured following the models described in Chapter 3.

4.1 Evaluation of HEVC Video Compression

The current trend in video consumption clearly shows that the already large quantity of video
material distributed over broadcast channels, digital networks, and packaged media is going
to increase in the coming years. As an effect of the growing popularity, the users’ demand for
increased resolution and higher quality is driving the efforts of the technological development.
From this point of view, the evolution of video acquisition and display technologies is much
faster than that of network capabilities. Thus, a clear need for a new video coding standard
with higher efficiency when compared to the popular AVC codec (Wiegand et al., 2003a) was
identified.

To develop the next-generation video coding standard, a group of video coding experts from
VCEG and MPEG, called JCT-VC, has been created. The JCT-VC standardization effort is being
referred to as HEVC. The new standard targets a wide variety of applications such as mobile TV,
home cinema, and UHDTV. It aims at supporting next-generation acquisition and display de-
vices featuring progressive scanned video with higher frame rates and resolutions (from WVGA
to HDTV and UHDTV), as well as improved picture quality in terms of noise level, color gamut,
and dynamic range. HEVC aims at a substantially improved coding efficiency compared to the
AVC High Profile, i.e., reducing the bit rate requirements by half while keeping comparable
image quality, but at the expense of increased computational complexity. Depending on
the application scenario, a trade-off between computational complexity, compression ratio,
robustness to errors, and processing delay should be supported.

A Joint CfP on Video Compression Technology (N11113) was issued by JCT-VC in January
2010. A total of 27 proposals were evaluated with respect to two AVC anchors in the largest
subjective video quality testing effort ever conducted (Sullivan and Ohm, 2010). All propos-
als used a coding architecture conceptually similar to AVC, containing the following basic
elements: (a) block-based coding, (b) variable block sizes, (c) block motion compensation,
(d) fractional-pel motion vectors, (e) spatial intra prediction, (f) spatial transform of residual
difference, (g) integer-based transform designs, (h) arithmetic or VLC-based entropy coding,
and (i) in-loop filtering. However, the individual coding tools differed a lot between the indi-
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vidual proposals. Key elements of some of the best proposals were combined to develop an
initial Test Model, as a starting point for the definition of the new standard (Sullivan and Ohm,
2010). The initial Test Model was refined over the next JCT-VC meetings and, in January 2011,
an official Test Model, named HEVC reference software (HM), was publicly released. The HM
software integrates the latest developments that have been validated within the JCT-VC group
and a new version is available at each JCT-VC meeting cycle.

The compression efficiency of different codecs can be reliably compared only by means of
subjective tests, carried out according to common evaluation methodologies defined by ex-
perts. Therefore, the responses to the CfP were evaluated during a formal subjective test
campaign (De Simone et al., 2011) and informal subjective tests were still carried out dur-
ing the development of the standard to assess the improvements of the integrated coding
tools (M22988; M23863). It was expected that HEVC could achieve double the compression
efficiency of AVC, at the expense of a significant increase in computational complexity. In
particular, it was expected that HEVC could achieve even better compression efficiency for
resolutions beyond HDTYV, especially due to increased prediction flexibility and a wider range
of block sizes. However, until August 2012, no subjective evaluation had been performed on
resolutions higher than HDTV, mostly because of hardware limitations and the lack of high
quality uncompressed content. To address this problem, we performed the first subjective
quality evaluation to benchmark the performance of HEVC and AVC on 4K/quad full high defi-
nition (QFHD) video content. This section reports the details and results of this performance
analysis.

4.1.1 Dataset

At the time of this study, the availability of high quality 4K uncompressed video data free of use
for research purpose was very limited. Only two contents were available to the JCT-VC group:
PeopleOnStreet and Traffic. To cover a wider application scenario, synthetic content from the
Sintel movie was included. Two synthetic scenes were included in the dataset: one for the test
(Sintel2) and one for the training (Sintel39). The dataset was thus composed of four contents,
one for the training and three for the test, with different visual characteristics, resolutions,
and frame rates (see Table 4.1). Figure 4.1 shows the first frame of each content. Figure 4.2
shows the SI and TI indexes computed on the luminance component of each content (see
Section 2.2). It can observed that sequences Sintel2 and Sintel39 have large TI values, whereas
content Traffic shows a small TI index. Since the Traffic sequence is five seconds long only,
it was decided to clip all contents to five seconds to maintain consistency during the test
between the different contents. All test sequences were stored as raw video files, progressively
scanned, with YCbCr 4:2:0 color sampling, and 8-bit per sample.

The video sequences were compressed with AVC and HEVC using AVC reference software (JM)
18.3 and HM 6.1.1, respectively. The random access (RA) configuration was selected for this
study since it gives better results than the low delay (LD) configuration. The group of pictures
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(c) Sintel2 (d) Sintel39

Figure 4.1: Sample frames of the individual contents considered in the subjective test.

Table 4.1: Dataset

Dataset  Video Resolution  Framerate
PeopleOnStreet 3840 x 2160 30
Test Traffic 3840 x 2048 30
Sintel2 3840x 1744 24
Training Sintel39 3840 x 1744 24

(GOP) size was set to 8 pictures and the Intra Period was set to 24 and 32 pictures for 24 and 30
fps contents, respectively. Hierarchical B-pictures were used, with a quantization parameter
(QP) increase of 1 between each Temporal Level. The Coding Order was setto 084213657.
The configuration parameters for AVC and HEVC were selected such that similarity was
ensured between the two codecs to avoid penalization. For example, BLevelOMoreRef and
BIdenticalList were set in the JM configuration file. More details on the configurations can
be found in Table 4.2.

For each content and codec, five different bit rates were selected. Due to the different spatio-
temporal characteristics of the contents and the presence of both natural and synthetic
content, it was decided to select the targeted bit rates for each content separately. Since no
Rate Control is implemented in HM 6.1.1, fixed QPs were used. Typical QPs for AVC are in the
range of 25 to 37. First, a few sequences were compressed for each content using this range,
keeping in mind the ~ 12.5% per QP rule (i.e., there is approximately a 12.5% bit rate reduction
for every increase in QP), and trying to map the QPs of the HM to those of the JM. To be
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Figure 4.2: SI versus TI indexes of the selected contents.

Table 4.2: Selected encoder settings for AVC and HEVC.

realistic, it was decided to set the upper bit rate limit to 20 Mbit/s. Then, an expert screening
session was conducted to select the lower and upper bounds for each content separately,
keeping in mind the standard QP range and targeting realistic bit rates, to try to cover the full
quality scale. Finally, the targeting bit rates were refined and validated during a second expert
screening session. The training material was selected during the last expert screening session
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Codec AVC HEVC
Encoder JM18.3 HMG6.1.1
Profile High 5.1 Main
Reference Frames 4 4
R/D Optimization On On
Motion Estimation EPZS EPZS
Weighted Prediction On -
Search Range 128 64
GOP 8 8
Hierarchical Encoding On On
Temporal Levels 4 4
Intra Period 1s 1s
Deblocking On On
Rate Control Off -
8x8 Transform On -
Adaptive Loop Filter - Off
Coding Unit size / depth - 64 /4
Transform Unit size min / max - 4732
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Table 4.3: Targeted bit rates (Mbit/s).

Content Codec Rl R2 R3 R4 R5
PeopleOnStreet AVC 5.000 7.000 10.000 14.000 20.000
HEVC 5.000 7.000 10.000 14.000 20.000
Traffic AVC 3.500 5.000 7.000 10.000 14.000
HEVC 2.500 3.500 5.000 7.000 10.000
. AVC 1.200 1.600 2.000 2.500 3.500
Sintel2

HEVC 0.768 1.200 1.600 2.000 2.500

Table 4.4: Actual bit rates (Mbit/s).

Content Codec Rl R2 R3 R4 R5

AVC 4743 6.799 9.454 14.561 20.745
HEVC 4.889 6.960 9.833 13.871 20.278
AVC 3.490 4914 7.208 9.429 14.717

PeopleOnStreet

Traffic HEVC 2277 3346 4997 6.720 10.474
. AVC 1.205 1.571 1.935 2.389 3.455
Sintel2
HEVC 0.705 1.204 1.616 1.903 2.674
Table 4.5: Quantization Parameters.
Content Codec R1 R2 R3 R4 R5
AVC 44 41 38 34 31
PeopleOnStreet oy 4o 39 36 33 30
ijﬁc AVC 37 34 31 29 26
HEVC 38 35 32 30 27
. AVC 35 32 30 28 25
Sintel2

HEVC 32 28 26 25 23

to cover the full quality scale. For the three intermediate quality levels, examples of both AVC
and HEVC degradations with similar strengths were selected. Tables 4.3 and 4.4 report the
complete sets of targeted and actual bit rates, respectively. Table 4.5 report the QPs used to
encode these sequences.

4.1.2 Methodology

Natural playback in native spatial and temporal resolutions of raw 4K/QFHD video sequences
at 30 fps requires specific hardware. Particularly, reading and displaying in real time YUV 4:2:0
color subsampled QFHD (3840 x 2160 pixels) video sequences at 30 fps requires a data rate
of 373.25 MB/s. Since the typical reading speed of current Hard Disk Drives (HDD) is below
160 MB/s, a hardware solution based on Solid State Drives (SSD) was adopted.

To display 4K/QFHD content, a 56” professional high-performance 4K/QFHD LCD reference
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I

Figure 4.3: Experimental setup.

monitor Sony Trimaster SRM-L560 was used. The monitor consists of four full HD panels.
The panels are driven by four display ports and mutually synchronized by the graphic board
of the video server to prevent any tearing effect. This monitor can operate in tree different
modes (4K/QFHD, Quad View, and 2K/HD Zoom), while only the first one is available when
DVI inputs are used.

To assure the reproducibility of results by avoiding involuntary influence of external factors,
the laboratory for subjective video quality assessment was set up according to Section 2.1. The
monitor was calibrated using an EyeOne Display2 color calibration device according to the
following profile: SRGB Gamut, D65 white point, 120 cd/m? brightness, and minimum black
level. The room was equipped with a controlled lighting system that consisted of neon lamps
with 6500 K color temperature, while the color of all the background walls and curtains present
in the test area was mid grey. The illumination level measured on the screens was 20 Ix and the
ambient black level was 0.2 cd/m?. The test area was controlled by an indoor video security
system to keep track of all the test activities and of possible unexpected events, which could
influence the test results. The experiments involved three subjects assessing the test material,
seated in one row perpendicular to the center of the monitor, at a distance of about 3.5 times
the height of the display.Figure 4.3 depicts the MMSPG test environment where assessments
took place.

Test Method

Since the test sequences are only five seconds long and subjects were not used to watch
UHDTYV, the DSIS Variant Il method with a continuous five-level impairment scale (see Sec-
tion 2.4) was chosen to perform the subjective quality assessment experiments.
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Test Planning

Since the evaluation task requires a lot of attention due to the short sequences duration, it
was decided to split the test in sessions that are no longer than 15 min each, followed by a
resting phase. Furthermore, to avoid a possible effect of the presentation order, the stimuli are
randomized in a way that the same content is never shown consecutively. One DSIS Variant II
presentation took about 46 s. We had to evaluate a total of 30 test sequences (2 codecs x 3
contents x 5 bit rates), thus it was decided to split the test in two sessions. We decided to
include two dummy presentations and one reference vs reference pair at the beginning of the
first session. The first test session contained 18 presentations (2 dummies + 1 ref vs. ref + 15
stimuli), corresponding to about 14 min. The second test session contained 15 presentations
(15 stimuli), corresponding to about 11.5 min.

The test was planned over two days, with three time slots per day. Each time slot was attended
by six subjects, which were split into two groups of three subjects each. While one group was
evaluating one session in the test room, the other group was resting in a separate room. A
total of 36 naive people took part in the test campaign. 30% of the observers were female
and the age of the subjects ranged from 20 to 61 years old, with a median of 25 years old. All
participants were screened for correct visual acuity and color vision using Snellen charts and
Ishihara charts, respectively.

The training of the subjects of each group was conducted before the first test session, as
a 10 min training session, where oral instructions were provided to explain the task and
a viewing session was performed to allow the subject to familiarize with the assessment
procedure. The video sequences used as training samples had quality levels representative of
the labels reported on the rating scales: the experimenter explained the meaning of each label
reported on the scale and related them to the presented sample sequences.

To collect evaluation scores, subjects were provided with scoring sheets to enter their quality
scores. The scores were then offline converted into electronic version. All the scores were
converted by one operator and crosschecked by a second operator to identify and correct any
eventual manual mistake.

Data Processing

To detect and remove subjects whose scores appear to deviate strongly from the other scores
in a session, outlier detection was performed. The outlier detection was applied to the set
of results obtained from the 36 subjects. The boxplot inspired outlier detection technique
proposed by De Simone et al. (2011) (see Section 2.6.1) was used. In this study, no outlier
subjects were detected. Then, the MOSs were computed for each test stimulus as the mean
across the rates of the valid subjects, as well as associated 95% Cls, assuming a Student’s
t-distribution of the scores.
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4.1.3 Results

Figure 4.4 shows the resulting PSNR and MOS/CI plots for the different contents. As it can be
seen from the small CIs, the results are reliable and the variations between the subjects are
rather small. The subjective results show that, especially for lower bit rates, the performance
of HEVC exhibits a substantial quality improvement compared to AVC.

Traffic is relatively easy to encode since it has a small TI index. Therefore, bit rates as low as
5 Mbit/s and 2 Mbit/s for AVC and HEVC, respectively, are evaluated as transparent. PeopleOn-
Street is more challenging since it has higher SI and TI indexes, but mostly because artifacts
are more visible in the upper left corner due to higher sensitivity of the HVS in low intensity
areas (Weber law). For this content, blockiness was perceived in AVC encoded sequences,
whereas the content was smoothed out in HEVC encoded sequences, which is less annoying.
For the synthetic content, HEVC exhibits a significant improvement over AVC and very low bit
rates can be achieved due to the absence of camera noise in the original content. A bit rate as
low as 1.2 Mbit/s is perceived as transparent with HEVC, whereas the same bit rate for AVC is
evaluated as annoying.

To accurately analyze the performance of HEVC and evaluate whether the obtained results
were significantly different from those obtained with AVC, a multiple comparison significance
procedure has been applied to the data, for each combination of content and bit rate separately.
To identify the test conditions that resulted in statistically different MOSs, a one-way ANOVA
and multiple comparison tests were performed, considering as treatment the combination of
codec and bit rate. Figure 4.5 shows the results comparing all the possible pairs of treatments,
for each content separately. Comparing the two codecs at similar bit rates, HEVC outperforms
AVC for four bit rates out of four for Sintel2 (1.2, 1.6, 2, and 2.5 Mbit/s) and for four bit rates
out of five for PeopleOnStreet (5, 7, 10, and 14 Mbit/s), whereas only for one bit rate out of four
for Traffic (3.5 Mbit/s). For the remaining bit rates, the codecs show the same performance.
A two-way ANOVA, considering the codec and the bit rate as two separate treatments, has
also been performed, resulting in a significant codec effect and significant bit rate effect, but
irrelevant interaction effect.

Table 4.6 reports the average coding efficiency for HEVC over AVC computed using the Bjonte-
gaard and SCENIC models (see Chapter 3). It can be noticed that BD-PSNR under estimates
the actual bit rate reduction, especially for PeopleOnStreet. For this content, BD-PSNR under
estimates the actual gain because PSNR does not fully capture the difference between AVC
and HEVC artifacts. For Sintel2, the values are very similar since the relation between MOS
and PSNR is almost linear for the considered bit rates. In the case of Traffic, the difference is
due to the saturation effect in perceived quality, which is not captured by PSNR.
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Figure 4.4: R-D curves: PSNR versus bit rate (left) and MOS versus bit rate (right).
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Figure 4.5: Results of the multiple comparison test for the different test conditions, i.e., combi-
nation of codec (A stands for AVC and H stands for HEVC) and bit rate (R1 to R5). In each plot,
the color of each square shows the result of the significance test between the MOSs related to
the two test conditions reported in the corresponding column and row. A white (black) square
indicates that the MOS corresponding to condition A is statistically significantly better (worse)
than the MOS corresponding to condition B, whereas a grey square indicates that there is no
sufficient statistical evidence indicating differences between the two MOSs.

94



4.2. Evaluation of HEVC Image Compression

Table 4.6: Average coding efficiency for HEVC over AVC.

(a) Bjontegaard model.

Content Deltarate (%) Delta PSNR (dB)
PeopleOnStreet —27 +1.6
Traffic -38 +1.8
Sintel2 —68 +4.4
Overall —44 +2.6

A negative (positive) value indicates a decrease (increase) of bit rate for the same PSNR.
A negative (positive) value indicates a decrease (increase) of PSNR for the same bit rate.

(b) SCENIC model.

Content Delta rate AR [ARmin, ARmax] Delta MOS AD [ADin, ADmax] Confidence index (%)
PeopleOnStreet —53% [—69%,—27%] +25.8 [+13.0,+38.4] 79
Traffic -59% [-,—5%] +10.8 [-2.2,+20.3] 28
Sintel2 —-73% [-,—60%] +40.7 [+28.9,+52.4] 62
Overall —-62% [-,—31%] +25.8 [+13.2,+37.1] 56

A negative (positive) delta rate indicates a decrease (increase) of bit rate (MOS) for the same MOS (bit rate).
A negative (positive) delta MOS indicates a decrease (increase) of bit rate (MOS) for the same MOS (bit rate).

4.2 Evaluation of HEVC Image Compression

As showed in the previous section, HEVC is demonstrating significant quality gains when
compared to state of the art video codecs such as AVC. Such effectiveness in video compression
suggests the potential efficiency of using HEVC intra coding for still images. In particular,
when compared to previous standards, the following features of HEVC can contribute to
improving coding efficiency for still images (Lainema et al., 2012): (a) quadtree-based cod-
ing structure following the HEVC block coding architecture, (b) angular prediction with 33
prediction directions, (c) planar prediction to generate smooth sample surfaces, (d) adaptive
smoothing of the reference samples, (e) filtering of the prediction block boundary samples,
(f) prediction mode dependent residual transform and coefficient scanning, and (g) intra
mode coding based on contextual information. The coding efficiency of HEVC intra coding
for still image compression was investigated in a few studies that compare still images com-
pression standards with HEVC intra coding by using PSNR as an objective metric for visual
quality JCTVC-10461; JCTVC-10595). These objective evaluations demonstrated that HEVC
can achieve a considerable gain even compared to the state of the art JPEG 2000 compression
standard.

However, the PSNR metric, despite its popularity in visual quality evaluations, does not
accurately reflect perceptual visual quality of the HVS (Sheikh et al., 2006). In addition, the lack
of standardization in the field of objective quality assessment and the lack of extensive and
commonly accepted comparisons of the different metrics make the PSNR-based assessments
rather questionable. Therefore, to fully confirm the claim raised by objective evaluations
on the effectiveness of HEVC intra coding for still images, a formal subjective evaluation is
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) po6 (h) bike (i) cafe () woman

Figure 4.6: Dataset: training set (a-d) and testing set (e-j).

necessary. To address this problem, we performed both objective and subjective evaluations
of HEVC intra coding for still image compression following the guidelines defined by the JPEG
committee for the evaluation of JPEG XR (De Simone et al., 2009b). HEVC intra coding was
compared to the existing JPEG and JPEG 2000 (both 4:2:0 and 4:4:4 configurations are used)
standards using high resolution 24 bpp images. The compression efficiency was evaluated
by means of PSNR objective metric, for comparison with previous work, and subjective tests,
which were conducted in a specific testing environment and following formal evaluation
methodology. This section reports the details and results of this performance analysis.

4.2.1 Dataset

The dataset from the JPEG XR evaluation (De Simone et al., 2009b) was used in this study. All
the images had a resolution of 1280 x 1600 pixels and were available in RGB 4:4:4 uncompressed
format. The whole image set was split into a training set of 4 images (referred to as p04, p14,
p22, and p30) and a testing set of 6 images (referred to as p01, p06, p10, bike, cafe, and woman).
Figure 4.6 provides an overview of the dataset. This set of images was coded using the 3 codecs
and 4 different coding configurations described below. Similarly to the JPEG XR evaluation, the
following bit rates were selected: 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50 bpp. Thus, this resulted in
a final test set of 144 coded images used for the subjective evaluation.

The JPEG compressed images were produced using the IJG implementation, version 6b. The
images were coded in Baseline Profile and the target coding bit rates were controlled by varying
the quality factor input parameter.
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For JPEG 2000 coding, the Kakadu implementation version 6.0 was used. Two different
configurations were considered. The first configuration uses chrominance subsampling, which
requires external pre- and post-processing steps. Since the weighting tables in JPEG 2000
have been designed and optimized for 4:4:4 content, visual weighting was disabled in this
configuration. The following parameters were used:

(i) pre-processing: RGB to YCbCr conversion and 4:4:4 to 4:2:0 downsampling,

(ii) 64 x 64 code block size, 1 layer, no precincts, 9 x 7 wavelets, and 5 decomposition levels,
(iii) no visual weighting, and
(iv) post-processing: 4:2:0 to 4:4:4 upsampling and YCbCr to RGB color conversion.

As visual weighting impacts the performance of the JPEG 2000 codec, a second configuration
with visual weighting enabled was also included in the evaluations. The parameters in this
second configuration were the same as before but the pre- and post-processing steps were
discarded and the RGB 4:4:4 images were encoded directly without any subsampling. The rate
control option was used to encode the images at the target coding bit rates.

For HEVC intra coding, the HM version 8.0rc2 was used. As for JPEG 2000, the images were
converted from RGB 4:4:4 to YCbCr 4:2:0 prior to encoding and then back-converted to obtain
the final decoded image. The images were coded in Main Intra Profile and the target bit rates
were obtained by varying the QP.

4.2.2 Methodology

The experiments were conducted at the MMSPG quality test laboratory, which fulfills the
recommendations for the subjective evaluation of visual data issued by ITU. The laboratory
setup was intended to ensure the reproducibility of the subjective tests results by avoiding
unintended influence of external factors. The test area was controlled by an indoor video
security system to keep track of all the test activities and possible unexpected events, which
could affect the test results.

An Eizo CG301W LCD monitor with a native resolution of 2560 x 1600 pixels was used to display
the test stimuli. The monitor was calibrated using an EyeOne Display2 color calibration device
according to the following profile: sSRGB Gamut, D65 white point, 120 cd/m? brightness, and
minimum black level. The room was further equipped with a controlled lighting system that
consists of neon lamps with 6500 K color temperature, whereas the color of all the background
walls and curtains present in the test area were in mid grey. The illumination level measured
on the screen was 15 Ix and the ambient black level was 0.2 cd/m?.

The experiment involved only one subject per display assessing the test materials. Subjects
were seated in line with the center of the monitor, at a distance approximately equal to the
height of the screen, but were encouraged to vary the viewing distance whenever needed, to
inspect the high-resolution image shown on the screen.

97



Chapter 4. Performance Analysis of Image and Video Compression

Test Method

The subjective quality evaluations to compare the image compression algorithms described
in Section 4.2.1 were conducted following the method proposed in (De Simone et al., 2009b).
As an adaptation of the DSCQS method for video quality evaluation (see Section 2.4.4), the
selected method implies that two images are displayed simultaneously by splitting the screen
horizontally into two parts. One of the two images was always the reference (unimpaired)
image. The other was the test image, which in this study was a compressed version of the
reference. The position of the reference image on the screen was randomly selected at each
visualization. Instead of judging the quality of both images, the subject was asked to detect
the impaired image in the pair and rate its quality, using a continuous five-level quality scale.

Training Session

Before the test starts, oral instructions were provided to the subject to explain his/her task.
Additionally, a training session was organized to allow subjects to familiarize with the assess-
ment procedure and the graphical user interface. The contents shown in the training session
were not used in the test session and the data gathered during the training were not included
in the final test results. The four training contents, shown in Figure 4.6, were coded with the
different codecs and bit rates described in Section 4.2.1. Five training samples were manually
selected by expert viewers so that the quality of samples were representative of all categorical
quality levels on the rating scale. The training materials were presented to subjects exactly as
for the test materials, thus in side by side image pairs, where one of the two stimuli was always
the unimpaired image.

Test Sessions

Since the total number of test samples was too large for a single test session, the overall
experiment was split into 4 sessions of approximately 13 min each. After each session, each
subject took a 5 min break before starting the next session. Each session included test materials
corresponding to 3 contents (p01, p06, p10in sessions 1 and 3 and bike, cafe, woman in sessions
2 and 4), all the codecs under analysis, and only a subset of the bit rates, which were uniformly
distributed across all the sessions.

Four dummy pairs, whose scores were not included in the results, were included at the
beginning of each session to stabilize the subjects’ ratings. To reduce contextual effects, the
stimuli orders of display were randomized applying different permutation for each subject,
whereas the same content was never shown consecutively.

A total of 22 subjects, 6 female and 16 male, took part in the test, completing all the test
sessions. All participants were screened for correct visual acuity and color vision using Snellen
and Ishihara charts, respectively.
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Data Processing

To detect and remove subjects whose scores appear to deviate strongly from others in a
session, outlier detection was performed. The outlier detection was applied to the set of
results obtained from the 22 subjects and performed according to the guidelines described in
Section 2.3.1 of Annex 2 of ITU-R BT.500-13 (2012). In this study, 2 outliers were detected in
session 1 and 1 outlier was detected in session 2. Then, the MOSs were computed for each
test stimulus as the mean across the rates of the valid subjects, as well as associated 95% ClIs,
assuming a Student’s ¢-distribution of the scores.

4.2.3 Results

Figure 4.7 shows the PSNR based R-D performance for all compression algorithms and con-
tents. It is clear that HEVC outperforms other codecs across the majority of contents and
through most investigated bit rates. JPEG 2000 with 4:2:0 sampling configuration is the only
competitive compression algorithm in comparison to HEVC, especially for content p01. The
observed performance difference of JPEG 2000 4:2:0 and HEVC in terms of PSNR is between
0.0 - 3.0 dB for all tested bit rates and contents. Furthermore, the PSNR improvement of HEVC
relative to JPEG 2000 4:4:4 and JPEG varies through all tested contents and bit rates between
0.7-4.9dB and 1.1 - 8.6 dB, respectively.

Similar results for still image compression performance comparison based on objective met-
rics have been reported in two recent studies. Using the dataset containing, among others, the
images described in Section 4.2.1, HEVC HM 6.0 encoder and reference software encoders
for other standards, JCTVC-10595 reports an average bit rate reduction of 43% and 22.6% for
HEVC intra coding over JPEG and JPEG 2000 4:2:0, respectively. Additionally, JCTVC-10461
reports an average bit rate reduction of 56% over JPEG. The BD-Rate values computed with
the Bjontegaard model (see Section 3.1) and reported in Table 4.7 are similar to those reported
in above mentioned studies and confirm that, according to objective evaluations based on
PSNR, a significant bit rate reduction can be achieved for HEVC intra coding over the JPEG
standards.

Figure 4.8 shows the subjective R-D plots illustrating the MOS and CI values for each content.
For each content, the MOS values span the entire range of quality levels. The only exception
to this overall behavior is on content cafe, whose structure is sensitive to compression artifacts
and therefore, even for the highest bit rate, the image quality is rated below 90.

An overall impression of the performance of the different codecs can be obtained when looking
closely at the R-D plots in Figure 4.8. In general, all examined coding standards have the same
or very similar performance at the highest bit rate. However, at lower bit rates, the performance
of individual coding algorithms varies significantly depending on the content. Although HEVC
outperforms (particularly at bit rates below 1.00 bpp) other coding algorithms for contents
bike, cafe, and p10, its performance is quite comparable to both versions of JPEG 2000 for

99



Chapter 4. Performance Analysis of Image and Video Compression

bike cafe
42 351
el
40+ e
38+
36 30+
8o g
g g
» 32r n
o o
30+ 25F
281 ‘
—A—JPEG o —A— JPEG
—6—JPEG 2000 4:2:0 —©—JPEG 2000 4:2:0
261 - JPEG 2000 4:4:4 iR o JPEG 2000 4:4:4
-©-HEVC -©-HEVC
24 1 1 1 T T i 20 1 1 1 T T i
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
bit rate [bpp] bit rate [bpp]
pO1 po6
46 48
44 46
42+ 44
40F 42
— 38 — 40
m [a1]
k=l h=h
o 36+ o 38
z z
7] (7]
& 34t & 36
32+ 34
30F —A— JPEG 32 —A— JPEG
—6—JPEG 2000 4:2:0 -6~ JPEG 2000 4:2:0
28r -+ JPEG 2000 4:4:4 30 - JPEG 2000 4:4:4
-©-HEVC -©-HEVC
26 1 1 1 1 T T i o8 1 1 1 1 T T i
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1 1.2 14
bit rate [bpp] bit rate [bpp]
p10 woman
501 42r
40+
451
38
36
@ 40f )
S S,
o o 34
z z
2 4
35+ 3l
30+
30F —A— JPEG —A— JPEG
—6—JPEG 2000 4:2:0 o8l -6~ JPEG 2000 4:2:0
-0~ JPEG 2000 4:4:4 -+ JPEG 2000 4:4:4
-©-HEVC -©-HEVC
o5 1 1 1 1 : T i 26 1 1 1 1 T T i
02 0.4 0.6 1.2 1.4 1.6 0.2 0.4 0.6 1.4

100

0.8 1
bit rate [bpp]

Figure 4.7: R-D performance.

0.8 1
bit rate [bpp]

1.6



4.2. Evaluation of HEVC Image Compression
bike cafe
100 @-wii 100
QF o P TT 90F
80F 80F
70+ 70-
60F 60
8 so 8 so
s = -
40 40-
30+ 30F
20+ —A— JPEG 20 7/ ——JPEG
—&— JPEG 2000 4:2:0 i —6— JPEG 2000 4:2:0
10 -~ JPEG 2000 4:4:4 10 ‘== JPEG 2000 4:4:4
-@-HEVC -=-HEVC
0 ‘ ‘ ‘ ‘ : : ‘ 0 ‘ ; i i . . ‘
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1 12 14 16
bit rate [bpp] bit rate [bpp]

MOS

MOS

201 —— JPEG 20 ——JPEG
—=—JPEG 2000 4:2:0 —&—JPEG 2000 4:2:0
10F -1 JPEG 2000 4:4:4 10 =+ JPEG 2000 4:4:4
-©-HEVC -=-HEVC
0 i i i i : : i 0 1 1 | | : - )
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
bit rate [bpp] bit rate [bpp]
pi0 woman
T00p 1001
90r 90
80 80
70r 70r
60r 60
(9] [}
O 50 Q 50
= =
40t 401
30r 30+ @
20+ —— JPEG 20+ —— JPEG
—=—JPEG 2000 4:2:0 —=—JPEG 2000 4:2:0
10F -1~ JPEG 2000 4:4:4 10 -1~ JPEG 2000 4:4:4
-©-HEVC -©-HEVC
0 1 1 1 1 ; 0 1 1 1 1 ;
0.2 0.4 0.6 0.8 1 1.2 14 1.6 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
bit rate [bpp] bit rate [bpp]

Figure 4.8: Mean opinion scores vs. bit rate for the different compression algorithm across the

test images.

101



Chapter 4. Performance Analysis of Image and Video Compression

*(Xapul 2duapyuo)) XU gy ‘W Ty] (Vv :Surpeay 91el 1Iq dUIes 3y} 10] SOIA JO (9SeaIdUl) aSeaIdap B S9)edIpul anfea (aanisod) aanedau v (q)

*(Xopul 20uapyuo))) MWy y ‘WWyy] iy :3urpedy "SOIN dWes 31} 10J 1.1 JIq JO (SSBIIIUT) ISBAIIIP B SAIBIIPUI anfea (9anisod) aane3au y ()

(%89) [0°9+8'81—-]1 €'9—
(%¥2) [0T—T'22-] T'¥1—

(%89) [8'81+0'9-1 €9+

(%¥2) [009+‘€'02-] 12—

(%¥2) [T°22+0°T+] T'FI+
(%¥L) [€02+09-] T'L+

(%66) [0°6€+S9T+] 8L+
(%001 [T'€E+6°L+] 9°0C+
(%001) [7'92+F'C+] GVI+

OAdH

¥:%:¥ 000 Odd[
0:2'% 000 OddI

(%66) [G91—06E—]1 8L~ (%00T) [62—T°€€-1902— (%001 [F'2—99¢—1 SF1— - Oddl
SON vijod (q)
OAHH ¥:¥7'% 000C Oddl 0:2% 000¢ HddI Oddl
01 9ATIR[AI dOUIJIP SOIN 23BIdAY
- (%89) [%LT+ %LV —] %L1— (%VL) [%E€+BIG—] %BTIE—  (%66) [%SC—%09—] %TH— OAdH
(%89) [%STT+ %Y 1—] %EE+ - (%P [%92+ %1V —] %ST—  (%001) [%9T—"%1S—] %SE— ¥:¥:¥ 000 DA

(%¥L) [%0CT+ % +] %LG+

(%VL) [%EL+ %V T—] %CC+

- (%001) [%€E—"%0V—] %EC—

0:¢:¥ 000¢ Oddl

(%66) [%61C+ BIT+] %101+ (%00T) [%8TT+‘%ETH] %EI+  (%00T) [%06+ ‘%OT+] %EV+ - Oddl

a1v.1 V312 (V)

OAIH ¥:¥:¥ 000 Odd[ 0:2:% 000¢ OddI Oddl Surpoouq

0] 9AIB[21 9OUDIIHIP 91kl 11q 93eIdAY :
‘Tepow DINADS :Adud101j9 Surpood a3eIdAy :8'F 9[qel,

‘9lel 1Iq oures ay) 10] YNSd Jo Awmmw.ﬁugc 9SBIIOIP B S3aJeIIPUT 9OUIJJIP YN S ﬁw\&u_moﬁc ®>5NMQC Y
“gINSJ SWes Y} 10§ 91L1 1Iq JO (ISLIOUIL) ISLIIAP B SOJEIIPUI QOUIHIP 9181 11 (eanisod) eaneSou v
- g€+ Vi+ 8%+ - Y- 61— 4% OAJH
Ge- - I'e— €1+ 78+ - €+  LT— ¥ 000C OAdI
V- Ie+ - Vet gc+ 0€— - Iv— 0:2:% 0002 HdI
8V— €1 V'eE— - 611+ ¢ct 1.+ - Oddl
OAdH #0002 0:C:% 0002 OHdI OAIH  #¥%:% 0002 0:2:% 0002 OddI Surpooug

(gp) 01 9ATIR[DI DUAIJIP YNSJ d3eIoAY

(9%) 01 9ATIB[2I DUSIJJIP 9181 1Iq d3BIdAY

‘[Ppowu preedajuslg :A0uaronjo 3UIpod 93eIdAY 1L '¥ 9[qel,

102



4.2. Evaluation of HEVC Image Compression

Table 4.9: Results of the multiple comparison test expressed in terms of number of contents
for which HEVC performs better, equal, or worse than the other codecs.

Bit rate (bpp)

Condition 0.25 050 0.75 1.00 1.25 1.50

HEVC > JPEG 6 6 5 1 3 0
HEVC = ]JPEG 0 0 1 4 3 6
HEVC < JPEG 0 0 0 1 0 0
HEVC > JPEG 2000 4:2:0 4 3 5 1 4 0
HEVC = JPEG 2000 4:2:0 2 3 1 5 2 6
HEVC < JPEG 2000 4:2:0 0 0 0 0 0 0
HEVC > JPEG 2000 4:4:4 3 3 4 1 1 0
HEVC = JPEG 2000 4:4:4 2 2 1 4 5 6
HEVC < JPEG20004:4:4 1 1 1 1 0 0

contents p0I and p06. Moreover, HEVC shows always better or equal performance than JPEG
with the exception of content woman. Looking at the MOS results of the image woman, which
consists in a woman’s face portrait, one can see that HEVC is outperformed by JPEG and
JPEG 2000 4:4:4. Whereas JPEG outperforms HEVC only at 0.80 bpp and 1.00 bpp, JPEG 2000
4:4:4 seems to be better for all bit rates below 1.00 bpp (1.00 bpp included). This might be
explained by the specific banding artifacts introduced by HEVC at lower bit rates for this
particular content. Such banding artifacts are subjectively more disturbing in comparison to
the typical blurring effect introduced by JPEG 2000 4:4:4 coding.

Table 4.8 reports the average coding efficiency computed from the MOSs using the SCENIC
model (see Section 3.3). The estimated bit rate saving based on MOS for HEVC relative
to JPEG, JPEG 2000 4:2:0, and JPEG 2000 4:4:4 is about 44%, 31%, and 17%, respectively.
The differences between the outcome of the Bjontegaard and SCENIC models shows the
importance of subjective tests to determine a more realistic estimation of the achievable bit
rate reduction.

Interesting observations can be made by looking at the mutual comparison of both versions of
JPEG 2000. Although JPEG 2000 4:2:0 performs always better than JPEG 2000 4:4:4 in terms
of PSNR, the subjective results dictate the opposite. This might be explained by the fact
that visual weighting was disabled for JPEG 2000 4:2:0 while it was enabled for the second
color sampling configuration of JPEG 2000. The lack of the visual weighting creates strong
distortions, especially on the skin texture at lower bit rates, as reported during development of
JPEG 2000 standard, which is not captured by PSNR based metric.

Table 4.9 reports the results of the multiple comparison test, detecting the significant difference
pairwise among individual codecs and comparing the performance of HEVC to all other
codecs for all test conditions. These results confirm all the findings from the R-D plots.
Although at the highest bit rate, all compression standards perform equally, at bit rates lower
than 1.00 bpp, HEVC performs usually better, or at least equal, when compared to all other

103



Chapter 4. Performance Analysis of Image and Video Compression

standards, except for JPEG 2000 4:4:4 on content woman. JPEG 2000 4:4:4 is the second best
performing compression algorithm while its performance is the same as for HEVC in 20 out of
36 cases. On the other hand, JPEG performs practically always worse than HEVC.

4.3 Evaluation of VP9 Video Compression

Recent dramatic increase in video consumption over IP-networks, with video data taking more
than 75% of Internet traffic, prompted for the development of new video compression tech-
nologies that would be significantly more efficient than the existing video codecs, including
the popular AVC. The development efforts led to the creation of two video codecs: HEVC and
VP9 Mukherjee et al., 2015a. VP9 is an open source alternative to HEVC developed by Google
and is positioned as a royalty-free, license-fee-free solution, with the main focus on supporting
Internet-based video consumption.

The fact that VP9 was released at a similar time frame to HEVC and that it was announced
as a superior alternative raised interest in the research and professional communities. It
resulted in several studies comparing these two codecs to each other and to AVC. Most such
studies relied on objective metrics to measure coding efficiency and resulted in conflicting
conclusions depending on the study performed. In (Grois et al., 2013), the authors claim that
VP9 is inferior to both AVC and HEVC and demonstrate that HEVC provides average bit rate
savings of 43.3% compared to VP9. However, a different study by Mukherjee et al. (2013) comes
to a different conclusion, with VP9 showing similar compression efficiency when compared
to HEVC and a significantly higher compression efficiency when compared to AVC. Such
conflicting conclusions are mainly caused by different usage scenarios assumed in the papers
and by different encoding configurations used. The authors of (Grois et al., 2013) have further
extended their study to a LD scenario (Grois et al., 2014), which is more suitable for real-time
video applications, and by using PSNR measurements, and conclude that using HEVC results
in average bit rate savings of 32.5% when compared to VP9.

In the above studies, authors relied only on PSNR as objective metric to compare compres-
sion efficiency of selected encoding schemes. However, human perception is subjective, and
results of subjective assessments performed using standard quality evaluation methodolo-
gies is a priori a more reliable measure of compression efficiency. Therefore, a subjective
evaluation of HEVC, VP9, and AVC codecs was performed by Rerabek and Ebrahimi (2014) to
determine the actual perceived quality of compressed video content. The study assumed a
broadcasting scenario using UHD video content in a standard test laboratory environment
with controlled lighting conditions and a professional UHD reference monitor. According to
the subjective evaluation results, HEVC outperformed VP9, showing on average a nearly 50%
bit rate reduction for the same subjective quality.

However, no subjective quality evaluation had been performed to validate or refute the findings
of Grois et al. (2014) on the LD configuration. To address this problem, we performed the first
subjective quality evaluation to compare the compression efficiency between HEVC, VP9, and
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AVC assuming a real-time Internet-based streaming scenario. In such a scenario, subjects
receive a real-time streamed video content and watch it in a web browser in an uncontrolled
environment. HD content is typical for current video consumption over the Internet and is
compressed using parameters most suitable for Internet-based scenario. In our experiments,
a total of 26 subjects took part in a crowdsourcing subjective assessment, evaluating 8 different
video contents with resolutions ranging from 720p to 1080p, which were compressed to four
different bit rates using HEVC, VP9, and AVC.

4.3.1 Dataset

Ten video sequences were used in the experiments, with different spatial and temporal charac-
teristics, resolutions, and frame rates. Eight sequences were used for the subjective tests and
two sequences were used for training. Figure 4.9 shows a representative frame sample of each
video sequence. Each video sequence was ten seconds long and stored as raw, progressively
scanned video file, with YCbCr 4:2:0 color sampling and 8 bits per sample. Furthermore,
each video file was encoded with all three evaluated codecs at four bit rates. Since fixed QP
configuration was used to control the quality of AVC, HEVC, and VP9 compressed bit streams,
the sequences were first encoded at various QP values. Then, an expert screening session was
conducted to select the lower and upper QP bounds for each content separately (including
training), by targeting bit rates defined in (De Simone et al., 2011) and trying to cover the full
quality scale for each content. Table 4.10 reports the final sets of targeted (R1’ - R4’) and actual
(R1 - R4) bit rates, with corresponding QPs, for each codec.

Codecs Configuration

For HEVC, the HM reference software version 16.2 was selected, as it is a popular implementa-
tion. The latest version of the VP9 codec released by Google, i.e., release v1.3.0-4786-gbf44117,
was selected and used in our experiments. Finally, the x264 library, release 12491, was used
to evaluate the performance of AVC based coding scheme as it is fast, publicly available, and
one of the most commonly used implementations of AVC. For each codec, the fixed quality
parameter was set separately. Such setting allows fair mutual comparison of encoders as it
removes all rate control adaptation between video frames. A more detailed description of the
selected encoders, including their profiles and parameters configuration, is presented further
in this section.

The latest versions of the HM reference software was used for encoding video sequences
with HEVC. The LD configuration in default main profile with B frames was selected. LD
configuration with B frames was selected since is achieves higher coding efficiency (because
of bi-prediction), when comparing to low-delay configuration with P frames only. In this
configuration, the first frame is encoded as an I frame and subsequent frames are encoded as
B frames, while reordering of the B frames is not allowed, i.e., only the reference picture list 0,
which references to past frames, is used. Therefore, this configuration introduces minimal
coding delay and can be used for real-time application scenarios.
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4.3. Evaluation of VP9 Video Compression

Table 4.11: Selected parameters and settings for the AVC, HEVC, and VP9 codecs.

Software Parameters

HM Default main LD profile with B frames. IntraPeriod = -1 (only first frame encoded as I frame).
List0 reference.
X264 --profile high --tune psnr --ref 4 --direct auto --weightp 2 --level 5.1

--subme 8 --b-pyramid none --bframes O --b-adapt O --merange 24 --me tesa
--no-fast-pskip --trellis 2 --min-keyint=9999 --keyint=9999 --pass 1
--slow-firstpass --fps <FR> --qp <QP> --psnr -v

VP9 --end-usage=3 --codec=vp9 --kf-max-dist=9999 --kf-min-dist=9999
--lag-in-frames=0 --good --cpu-used=0 --passes=1 --cq-level=<QP>
-w <W> -h <H> --fps=<FR> --psnr -v -t O

For this work, the VP9 encoder and decoder were considered as a most recent implementation
of the WebM Project. Due to the lack of official documentation and specifications for this
encoder, the parameters were set based on recommendations received from the WebM Project
lead developers. VP9 encoder allows to set the QP in two different ways. First approach (Grois
et al,, 2013; Grois et al., 2014) sets the --min-q and --max-q parameter to the same value.
According to the comments of lead developers of VP9, such a setting apparently decreases the
compression efficiency (Rerabek and Ebrahimi, 2014). Therefore, the available fixed quality
mode --end-usage=3, which allows to vary the coding quality factor, was selected for VP9
encoding. Furthermore, the Intra Period parameters (--kf-min-dist and --kf-max-dist)
were set to very large values to ensure that only the first frame is an I frame, which corresponds
to LD configuration requirements for real-time scenarios considered in this paper. The selected
configuration for VP9 allows comparative testing with AVC and HEVC.

Since the x264 implementation allows LD configuration only with P frames, it is only used
as an orientation anchor to benchmark the other two next generation codecs. More detailed
information about the configuration of all investigated encoders can be found in Table 4.11.

4.3.2 Methodology

The SS method with a five-grade quality scale (see Section 2.4.1) was chosen for evaluations.
The subjects were asked to judge the overall quality of the evaluated video sequence. To
reduce contextual effects, the stimuli orders of display were randomized applying different
permutation for each subject, while the same content was never shown consecutively.

To display the video sequences and collect individual scores, a slightly modified version of
the QualityCrowd 2 framework (Keimel et al., 2012) was used. QualityCrowd 2 uses a simple
scripting language that allows for the creation of test campaigns with high flexibility, e.g.,
specific pages for instructions, mixing different methodologies, etc. However, QualityCrowd 2
uses a fixed task order for each batch. To overcome this drawback, a plugin was developed to
redirect each worker to a different batch, with a different display order for stimuli. Additionally,
the VLC web plugin was used instead of the default Flash player, as it offers fullscreen playback.
Fullscreen was automatically enforced for full HD video sequences.
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All decoded video sequences were re-encoded with AVC, since transmitting uncompressed
video data to remote workers is impractical and there is no browser video plugin capable of
reliable real-time decoding and displaying for all evaluated codecs and resolutions, especially
for HEVC and VP9 full HD content. The 720p contents at 50 fps were compressed at 20 Mbit/s,
which is commonly considered as perceptually transparent quality for video broadcasting.
For other frame rates and resolutions, the bit rate was set proportionally to their frame rate
and resolution corresponding to the above mentioned bit rate. For example 1080p contents at
50 fps were encoded at 45 Mbit/s. A two-pass encoding was used and the deblocking filter was
disabled to preserve the original blockiness artifacts when encoded at low bit rates. Expert
viewing session was conducted prior to the main subjective assessment and the expert viewers
evaluated the quality of this second encoding as visually lossless.

To mimic the realistic real-time application scenario, the subjective tests should ideally be
conducted in form of crowdsourcing. Nevertheless, as it is relatively difficult to find online
subjects equipped with a full HD monitor and because of the relatively large amount of
transmitted video data, the experiments were conducted at EPFL in an uncontrolled lab
room with desktop computers. Therefore, the workers’ demographic was limited to university
students participating on voluntary basis, and thus they were not remunerated for their
effort. However, this approach helps to focus the subjective tests to compression part of
the transmission chain only, as it limits the artifacts due to network transmission, transport
protocol and playback settings.

A total of 26 subjects participated in the study. Each subject evaluated all test stimuli. Half
of the subjects evaluated the 720p contents first, while the other half evaluated the 1080p
contents first. To minimized visual fatigue effects, subjects took 10 min break between the
two tasks.

Before the experiments, short written training instructions were provided to the subjects
to explain their tasks. Additionally, three training samples, representative of Excellent, Fair,
and Bad quality, were displayed to familiarize subjects with the assessment procedure. The
training instructions and samples were presented using QualityCrowd 2.

To evaluate perceived quality, standard statistical indicators describing the score distribution
across subjects for each test condition (combination of content, codec, and bit rate) were
computed. First, outlier detection was applied to remove subjects whose scores deviated
strongly from others. Assuming the reliability of subjects participating on voluntary basis,
no crowdsourcing measures, such as honeypots, were used to detect the outliers. However,
the outlier detection was performed according to the guidelines described in Section 2.3.1 of
Annex 2 of ITU-R BT.500-13 (2012). In our experiments, none of the subjects was detected as an
outlier for any of the test sessions. Then, the mean opinion score (MOS) and 95% confidence
intervals (CI), assuming a Student’s ¢-distribution of the scores, were computed for each test
condition.
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Figure 4.10: PSNR (dashed line) and MOS and CI (solid line): 720p contents.

4.3.3 Results

Figures 4.10 and 4.11 depict the R-D curves for the 720p and 1080p contents, respectively.
The R-D curves based on PSNR measurements are plotted with dashed lines, whereas the
subjective ratings, i.e., MOS and CI, are plotted with solid lines. Based on PSNR measurements,
HEVC outperforms VP9 by 0.5 to 2 dB, while VP9 provides a gain ranging from 0.5 to 6 dB when
compared to AVC. For all contents and bit rates, objective measurements show that HEVC
outperforms both coding algorithms.

The subjective results show relatively small CIs, indicating a high reliability of the results and
rather small variation across subjects. The ratings show similar trend to objective measure-
ments: HEVC provides the best visual quality for a similar bit rate and largely outperforms AVC
in most cases. Also, VP9 achieves better visual quality than AVC, except for contents ParkRun
and Seedof, where Cls overlap significantly. However, in some cases (in particular, at high
bit rates), HEVC and VP9 have similar ratings and there is no sufficient statistical evidence
indicating differences in performance between these codecs at these bit rates. Finally, both
HEVC and VP9 codecs can achieve Good to Excellent quality, i.e., MOS = 4, at the highest bit
rates used in our study, with the only exception of content ParkRun. Lower ratings for ParkRun
content can be explained by the large values of spatial and temporal indices (see Section 2.2),
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Figure 4.11: PSNR (dashed line) and MOS and CI (solid line): 1080p contents.

implying that this content contains areas with high level of details and a lot of motion, and
thus it is very demanding in bit rate.

Figure 4.12 shows the results comparing all possible conditions for the 720p and 1080p con-
tents. Comparing HEVC and AVC at similar bit rates, HEVC always provides statistically better
visual quality when compared to AVC for contents Stockholm, Parakeets, Kirsten&Kara, and
Seedof. For the other contents, there is not sufficient statistical evidence to show that HEVC
outperforms AVC, especially at high bit rates. Looking at HEVC vs. VP9, HEVC is significantly
better at the three lowest bit rates for contents Seedof, Kirsten&Sara, and ParkRun, whereas
there are no statistical differences on contents Parakeets and UnderBoat. For the other con-
tents, HEVC only outperforms VP9 at the lowest bit rates. Regarding the comparison between
VP9 and AVC, VP9 outperforms AVC at the three lowest bit rates on the 720p contents, except
for content ParkRun where there is no statistical difference. Similarly, VP9 shows better perfor-
mance to AVC on the two lowest bit rates for the 1080p contents, with the exception of content
Seedof, where there is not sufficient statistical evidence to show that VP9 outperforms AVC.
Note that there is no case where AVC nor VP9 outperform HEVC, or when AVC outperforms
VP9.
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Table 4.12: Comparison of investigated coding algorithms in terms of bit rate reduction for
similar PSNR and MOS. Negative values indicate actual bit rate reduction. Note that the bit
rate difference between HEVC and AVC on content Stockholm could not be computed as the
R-D curves have no horizontal overlapping.

Content HEVC vs. AVC HEVC vs. VP9 VP9 vs. AVC
BD-Rate (%) AR (%) BD-Rate (%) AR (%) BD-Rate (%) AR (%)

ParkRun -54.8 -53.0 -44.0 —46.2 -18.3 -7.4
Stockholm —46.1 -54.7 -55.9 -49.7
Parakeets -69.1 —-62.4 -32.1 —-28.0 —-55.5 —-48.5
Kirsten&Sara —60.1 —62.6 -20.8 —-43.8 —-52.8 -30.8
Basketball -55.8 -59.3 —-38.3 —45.6 -31.5 —28.3
Cactus -54.3 -57.5 -23.6 -43.0 -42.9 -31.9
Seedof -52.8 —61.8 -36.0 —-51.1 -26.9 -21.9
Underboat —54.2 —-60.1 —-27.6 —26.6 —-39.2 —-48.1
Average -57.3 -59.5 -33.6 —42.4 —-40.4 -33.3

Table 4.12 reports the average bit rate reduction BD-Rate and AR computed based on the
Bjontegaard and SCENIC models (see Chapter 3), respectively. Results based on objective
measurements show that the average bit rate reduction of HEVC relative to AVC and VP9 is
57.3% and 33.6%, respectively. Although we used different encoders, different parameters (i.e.,
quality control parameters for VP9), and different PSNR metric, the results comparing HEVC
to VP9 correspond to findings of (Grois et al., 2014), where authors claim 32.5% bit rate savings
in favor of HEVC. In other studies (Grois et al., 2013; Mukherjee et al., 2013; Rerabek and
Ebrahimi, 2014), authors used RA encoders configuration, and therefore mutual comparison
of our results to those works is irrelevant.

On the other hand, results based on the subjective ratings indicate an average bit rate saving
of 59.5% and 42.4% for HEVC when compared to AVC and VP9, respectively. Furthermore,
the bit rate reduction achieved by VP9 relative to AVC is 40.4% and 33.3% based on estimated
and perceived quality, respectively. These results show that the compression efficiency of
HEVC over AVC predicted based on PSNR values is similar to the gain observed from subjective
ratings. However, the performance of VP9 computed based on objective measurements seems
to be overestimated, as the compression efficiency estimated from subjective ratings shows
lower values. These results indicate that previous studies relying only on objective evaluations
might have overestimated the performance of VP9.

4.4 Evaluation of JPEG XT HDR Image Compression

Despite a rapid increase of scientific activities and interests in HDR imaging, its adoption by
industry is rather limited. One of the reasons is the lack of a widely accepted standard for HDR
image coding that can be seamlessly integrated into existing products and applications. To
resolve this problem, in 2012, the JPEG issued a CfP, which led to the initiation of JPEG XT, a
JPEG backward compatible standard for HDR image compression. An important requirement
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was the possibility for any legacy JPEG decoder to be able to recover a LDR version of the
coded HDR image, resulting in a two-layer design of a base LDR and an extension codestream.
Another important requirement was to impose both base and extension codestreams to use
legacy JPEG compression tools in order to facilitate implementations. Compression efficiency
was also considered as a third objective.

The JPEG XT standard defines a common codestream syntax and a common decoder architec-
ture. To make practical implementations easier, the set of coding tools offered by the standard
can be restricted to smaller subsets denoted as Profiles. Currently, the standard defines four
profiles, referred to as profiles A, B, C, and D, of which Profile D is a very simple entry-level
decoder that allows a 12 bit mode compatible to the 8 bit Huffman mode of JPEG while offering
a precision similar to the 12 bit mode of legacy JPEG. Each profile offers a technical solution
for coding HDR images considering additional requirements for different applications.

A few objective evaluations of JPEG XT have been performed (Pinheiro et al., 2014; Richter,
2013; Richter, 2014). However, only one subjective evaluation was performed by Mantel et
al. (2014), but only for Profile C and only on six different images. To overcome the lack of
subjective evaluations of JPEG XT, we performed an extensive subject quality assessment
of the three main profiles, i.e., profiles A, B, and C. A subjective experiment was conducted
with 24 naive subjects to evaluate 20 different HDR images coded at 4 different bit rates and
displayed on a SIM2 HDR47E S 4K monitor. This section reports the details and results of this
performance analysis.

4.4.1 Dataset

The challenge of testing backward-compatible HDR compression is that the compression
performance does not depend only on a single quality control parameter, but also on the
quality settings for the base layer and on the choice of TMO, which produces this layer. To
fully understand the implications of those parameters on perceptive viewing, a practical set of
testing conditions was used in a subjective experiment (Section 4.4.2).

Image Selection

A set of 20 HDR images with resolutions varying from full HD (1920 x 1080) to larger than
4K (6032 x 4018) were selected (see Figure 4.13 for display-adapted versions). The dataset
contains scenes with architecture, landscapes, and portraits. The original images were taken
from other public datasets, including Fairchild, HOM-HDR-2014, and EPFL's HDR-Eye datasets.
Then, the images were processed for subjective evaluation as follows.

Images were adjusted for a SIM2 HDR monitor. Images were first cropped and scaled by a
factor of two with a bilinear filter to fit their size to 944 x 1080 for side-by-side subjective
experiments (details in Section 4.4.2), and then tone-mapped using display-adaptive TMO
(Mantiuk et al., 2008) to map the relative radiance representation of the images to an absolute
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(€) MtRushmore2* (d) setz4

(h) 507+ (i) canadianFalis* (]) dragon’ (K) Hancockkitchin* (1) LabTypewriter* (M) LasVegasStore* (N) McKeesPub*

(0) setzs (p) set22 (q) set23 (1) ses1 (S) set3s (t) willyDesk*

Figure 4.13: Display-adapted images of the dataset. The reinhard02 TMO was used for images
from (a) to (g) and the mantiuk06 TMO was used for the remaining images. Copyrights: *2006-
2007 Mark D. Fairchild, Blender Foundation | www.sintel.org, under Creative Commons BY,
#Mark Evans, under Creative Commons BY.

radiance and color space of SIM2 HDR monitor. The regions to crop were selected by expert
viewers in such a way that cropped versions were representative of the quality and the dynamic
range of original images. Downscaling together with cropping approach was selected as a
compromise, so that a meaningful part of an image can be shown on the SIM2 HDR monitor.
Figure 4.13 shows tone-mapped versions of images in the dataset and Table 4.13 presents
different dynamic range and key characteristics (see Section 2.2) of these images.

Profiles Configuration

A common configuration for all tests in this paper has been chosen to ensure a fair comparison
of profiles and to allow comparable evaluation results. For this purpose, the base layer always
uses 4:2:0 chroma-subsampling, as it is traditionally employed in JPEG compression. To allow
optimal quality, we decided to enforce 4:4:4, i.e., no chroma-subsampling, for the extension
layer. All implementations enabled optimized Huffman coding, i.e., used a two-pass encoding
to identify the optimal Huffman alphabet. Profile C in particular uses a 12-bit extension (8-bit
legacy coding plus four refinement bits) for which no example Huffman table has been listed
in the legacy JPEG; it should be noted, however, that the R-D curve of the 8-bit and 12-bit
extension mode lie exactly on each other as quantization loss dominates, except that the 12-bit
mode allows Profile C in particular to extend this curve towards higher bit rates and higher
qualities, allowing scalable lossy to lossless coding.
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Table 4.13: Characteristics of HDR images from the dataset.

Dynamicrange Key

507 4.097 0.743
AirBellowsGap 4.311 0.768
BloomingGorse2 2.336 0.748
CanadianFalls 2.175 0.729
DevilsBathtub 2.886 0.621
dragon 4.386 0.766
HancockKitchenlnside 4.263 0.697
LabTypewriter 4.316 0.733
LasVegasStore 4.131 0.636
McKeesPub 3.943 0.713
MtRushmore2 4.082 0.713
PaulBunyan 2.458 0.702
setl8 4.376 0.724
set22 3.162 0.766
set23 3.359 0.764
set24 3.862 0.778
set31 4.118 0.678
set33 4.344 0.698
set70 3.441 0.735
showgirl 4.369 0.723
sintel 3.195 0.781
WillyDesk 4.284 0.777
min 2.175 0.621
max 4.386 0.781
mean 3.722 0.727
median 4.089 0.731

Despite these choices, we imposed no further restrictions or requirements on the encoder,
though requested experts involved in their design to supply their recommendations for optimal
coding performance. Like many other standards, JPEG XT itself does not specify the encoder
and only imposes the requirement that it should create a syntactically correct codestream that
describes the image with suitable precision.

Bit Rate Selection
Test images were created using the following procedure:

(i) Based on expert viewing on HDR monitor, for each of the 20 images, a tone-mapping
algorithm was chosen out of 5 considered candidates (each TMO was applied with
default parameters): a simple gamma-based algorithm, global logarithmic operator
(Drago et al., 2003), global version of photographic operator reinhard02 (Reinhard et al.,
2002), operator optimized for encoding (Mai et al., 2011a) and local operator with strong
contrast enhancement mantiuk06 (Mantiuk et al., 2006a). For 7 images, reinhard02
TMO was selected and for 13 images mantiuk06 was selected as producing the best
visual quality for these images.
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Figure 4.14: Tllustration of the test images creation process for LabTypewriter and Profile A.
1) The TMO that produces the best visual quality is selected. 2) The tone-mapped image is
encoded with JPEG at four different quality parameter (q) values such that they produce visual
qualities corresponding to very annoying, annoying, slightly annoying, and imperceptible. 3)
The HDR image is compressed with JPEG XT, using the base layer image and base layer quality
parameter selected in 1) and 2), respectively. The quality parameter of the extension layer
(Q) is set for each profile such that it produces the same bit rate as that of the base layer. For
printed representation, the compressed HDR images were tone-mapped with mantiuk06.

(i)

(iii)

(iv)

)
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Since JPEG XT images consist of a base and an extension layer, the overall bit rate has
to be allocated to each of the layers. The bit rate allocation can be done differently
and the strategy used can affect the performance of the profiles. To keep the overall
number of samples small enough to allow subjective evaluation, for this study, we used
the following allocation to generate codestreams.

We first fix for each image the bit rate of the base layer codestream. For the tone-mapped
version of the image, the JPEG quality parameter was set to four different values such that
they produce four different visual qualities based on the expert viewing: very annoying,
annoying, slightly annoying, and imperceptible (see Figure 4.14).

The quality of the extension layer was then chosen for each profile in such a way that it
would produce the same bit rate as that of the base layer. Such strategy resulted in a total
of 12 (4 bit rates x 3 profiles) compressed versions for each HDR image (see Figure 4.14).
Fixing the bit rate of the extension layer instead of its quality level ensured that profiles
produced images with similar bit rates but potentially different perceptual qualities,
which led to a fairer subjective evaluation of performance for each profile.

A visual verification was then performed on SIM2 HDR monitor to confirm that 12
compressed versions of each HDR image cover the full quality scale from very annoying
to imperceptible.
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Figure 4.15: Three observers assessing a test image relative to a reference image shown on the
SIM2 HDR monitor.

4.4.2 Methodology

Subjective evaluations were conducted at MMSPG test laboratory, which fulfills the recommen-
dations for subjective evaluation of visual data issued by ITU. The laboratory setup ensures the
reproducibility of subjective test results by avoiding unintended influence of external factors.
In particular, the laboratory is equipped with a controlled lighting system with a 6500 K color
temperature, a mid gray color is used for all background walls and curtains, and the ambient
illumination did not directly reflect off of the monitor. During the experiment, the background
luminance behind the monitor was set to 20 Ix.

To display the test stimuli, a full HD 47” SIM2 HDR monitor with individually controlled LED
backlight modulation, capable of displaying content with luminance values ranging from
0.001 to 4000 cd/m?, was used. Prior to subjective tests, following a warm-up phase of an hour,
a color calibration of the HDR display was performed using the software provided by SIM2.
The red, green, and blue primaries were measured for white set to 1400 cd/ m? level since the
measurement probe (X-Rite i1Display Pro) is limited to a maximum value of 2000 cd/ m?2.

In every session, three subjects assessed the displayed test images simultaneously, as illus-
trated in Figure 4.15. They were seated in an arc configuration, at a constant distance of 3.2
times the picture height (see Table 2.1).

Test Method

The DSIS Variant I method with a five-grade impairment scale (see Section 2.4.2) was selected,
since this methodology is recommended for evaluating impairments and is typically used
to evaluate compression algorithms. Two images were presented in side-by-side fashion to
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reduce visual memory efforts by subjects. Due to the availability of only one full HD HDR
monitor, each image was cropped and scaled to 944 x 1080 pixels with 32 pixels of black border
separating the two images. One of the two images was always the reference (unimpaired)
image. The other was the test image, which is a reconstructed version of the reference.

To reduce the effect of order of images on the screen, the participants were divided into two
groups: the left image was always the reference image for the first group, whereas the right
image was always the reference image for the second group. After the presentation of each
pair of images, a six-second voting time followed. Subjects were asked to rate the impairments
of the test images in relation to the reference image.

Test Design

Before the experiment, a consent form was handed to subjects for signature and oral instruc-
tions were provided to explain their tasks. Additionally, a training session was organized
allowing subjects to familiarize with the test procedure. For this purpose two images outside
of the dataset were used. Five samples were manually selected by expert viewers for each
image so that the quality of samples was representative of the rating scale.

Since the total number of test samples was too large for a single test session, the overall
experiment was split into 3 sessions of approximately 16 min each. Between the sessions,
subjects took a 15 min break. The test material was randomly distributed over the test ses-
sions. To reduce contextual effects, the order of displayed stimuli was randomized applying
different permutation for each group of subjects, whereas the same content was never shown
consecutively.

A total of 24 naive subjects (12 females and 12 males) took part in the experiments. Subjects
were aged between 18 and 30 years old with an average of 22.1. All subjects were screened for
correct visual acuity and color vision using Snellen and Ishihara charts, respectively.

Data Processing

The subjective scores were processed by first detecting and removing subjects whose scores
deviated strongly from others. The outlier detection was applied to the set of results obtained
from the 24 subjects and performed according to the guidelines described in Section 2.3.1 of
Annex 2 of ITU-R BT.500-13 (2012). In this study, two outliers were detected. Then, the MOS
was computed for each test stimulus as the mean across scores by valid subjects, as well as
associated 95% CI, assuming a Student’s ¢-distribution of the scores.
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Figure 4.17: Standard deviation of subjective ratings versus MOS. The red lines represent
the respective medians. Points are colored according to the bit rate of the corresponding
compressed HDR image.

4.4.3 Results

Figures 4.16 to 4.18 show different characteristics of the obtained subjective scores. Fig-
ure 4.16a demonstrates that subjects’ answers are well distributed within the rating scale
and across profiles. As it can be observed in Figure 4.16b, MOS values reflect the subjects
perception fairly with enough MOS samples for each meaningful value range. Figure 4.17
shows that subjective rating deviations do not exceed one rating point. Also, median value
of the standard deviations is 0.62, which is about half of the rating scale step, and it leads
to relatively small CIs, demonstrating that individual ratings are consistent across subjects.
Median for the MOS values is about about 3.4, which is close to the middle of the rating scale
with a slight skew towards the top of the scale. Figure 4.18 presents the distribution of MOS
values for each evaluated content. It can be noted that, for most contents, MOS values cover
almost the whole range from very annoying to imperceptible. While for some contents (e.g.,
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Figure 4.18: MOS distribution for each content. Whiskers are from minimum to maximum.

DevilsBathtub, set18, and showgirl) the MOS values are clustered nearer the extreme ends of
the scale, Figure 4.18 shows that there are still enough of MOS values to cover the whole scale
range. Such even distribution of MOS values means that the dataset is well-balanced overall,
both in terms of quality distribution across the rating scale and across contents, which is a
desirable feature for designing and benchmarking objective quality metrics.

Figure 4.19 shows the plots of MOSs and ClIs at different bit rates for the three JPEG XT profiles.
In most cases, there is not sufficient statistical evidence to indicate differences in performance
between profiles. However, at the lowest bit rates, profiles B and C outperform Profile A on
some contents. Likewise, for some contents, Profile C shows lower performance at medium
bit rates. Nevertheless, at the highest bit rates, all three profiles reach transparent quality.

The results deviated strongly from the general trend for two contents: MtRushmore2 and
showgirl. For the first content, Profile B clearly outperforms the other two profiles. However,
Profile B is outperformed by profiles A and C for the second content. For content MtRushmore2,
many block coding artifacts can be observed for Profile A at the three lowest bit rates, as well
as for Profile C at the lowest bit rate, which resulted in low quality scores. However, Profile B,
as well as Profile C at medium bit rates, mostly exhibit color coding artifacts, and less block
coding artifacts than Profile A, resulting in higher scores than Profile A. Regarding content
showgirl, all profiles exhibit strong block and color coding artifacts at lower bit rates. Profile B
shows block coding artifacts even at the highest bit rates, but mostly exhibits strange greenish
and pinkish colors and some other color artifacts located near the top and bottom black
borders. When encoded with Profile C, the image exhibits a one pixel wide red line near the
transitions between the skin area and other areas, even at highest bit rate. Profile A encoded at
the highest bit rate provides the best overall quality, but is not a perfect representation of the
original image. This content is very challenging, because humans are very sensitive to artifacts
in skin regions.
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Figure 4.19: Plots of the MOS at different bit rates.
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Figure 4.19: Plots of the MOS at different bit rates (Continued).

Overall, we observed that Profile A exhibits a lot of block coding artifacts in flat areas, similar
to JPEG, but usually preserves colors, except at very low bit rates. Profile B suffers from color
bleeding on areas of uniform colors, but exhibits less block coding artifacts when compared to
Profile A. In addition, Profile C performs better on flat uniform areas, but exhibits a checker-
board style color pattern on non-flat areas and introduces color noise near edges at low and
medium bit rates, depending on content.

4.5 Towards HDR Extensions of HEVC

Since the completion of the first edition of the HEVC standard, several key extensions of its
capabilities have been developed to address the needs of an even broader range of applica-
tions. Recognizing the rise of HDR applications and the lack of a corresponding video coding
standard, MPEG released in February 2015 a CfE for HDR and WCG video coding (N15083).
The purpose of this CfE was to explore whether the coding efficiency and/or the functionality
of HEVC Main 10 and Scalable Main 10 profiles can be significantly improved for HDR and
WCG content.

Potential evidence might include among others new video compression algorithms and coding
tools, as well as new signal processing techniques, and different color spaces and transfer
functions. The CfE addressed four different categories covering various applications, including
backward compatibility with existing SDR decoders and/or displays, with either normative
or non-normative changes to existing HEVC profiles. Note that non-normative changes are
categorized as modifications that do not have impact on the decoding process, e.g., color
sampling conversion. More particularly, the submission categories are defined as follows
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» Category 1: Single layer solution for HDR
e Category 2: Backward compatible solutions

2a: Backward compatibility with legacy SDR decoders and displays, using an encoding
system that has both HDR and SDR inputs

2b: Technology Under Consideration for backward compatibility with legacy SDR
decoders and displays, using an encoding system that has only an HDR input

2c: Technology Under Consideration for backward compatibility with legacy SDR
displays, but not SDR decoders, using an encoding system that has both HDR and
SDR inputs

2d: Technology Under Consideration for backward compatibility with legacy SDR
displays, but not SDR decoders, using an encoding system that has only HDR input

* Category 3: Non-normative changes to the existing HEVC profiles

3a: Main 10 Profile
3b: Scalable Main 10 Profile

Each test condition, i.e., category, is described in more details within the CfE document
(N15083). In the context of the CfE preparation for HDR/WCG video coding, HEVC Anchors of
the selected content (M35480) were generated (M35852) using the official HM software with
carefully selected bit rates as test points. These Anchors served as reference testing sequences
as described in the CfE (N15083). Each proponent had provide the selected content encoded
with a proprietary solution at the same bit rates as an attempt to improve compression
efficiency of HEVC Main profiles.

In total, eight companies or aggregations of different companies and one university responded
to the CfE and submitted responses to one or more of the different categories. Initially,
responses to categories 1, 2b, 3a, and 3b were planned to be tested through formal subjective
evaluations. However, based on the large number of responses, it was further agreed that
only responses to categories 1 and 3a would be tested in the formal subjective evaluations. To
benchmark the potential coding technologies submitted in response to the CfE, we performed
a subjective quality evaluation to determine whether the proposed technologies could achieve
better visual quality than the HEVC Anchor. The subjective tests were performed in the form of
partial PC, where one video sequence of the pair was always the Anchor as a reference. Overall
48 naive subjects participated in the subjective experiment, which leads to a total of 24 ratings
per video stimuli. This section reports the details and results of this performance analysis.

4.5.1 Dataset

The dataset used for the subjective evaluation tests consists of five HD resolution HDR video
sequences, namely, Market3, AutoWelding, ShowGirl2, WarmNight, and BalloonFestival. Fig-
ure 4.20 shows a typical frame example of each content. Each video sequence was cropped to
950 x 1080 pixels, so that the video sequences were presented side-by-side with a 20-pixels
separating black border. Each video sequence was displayed at 24 fps, which is the native
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(a) Market3 (b) AutoWelding () ShowGirl2 (d) WarmNight (e) BalloonFestival

Figure 4.20: Representative frames of the sequences used in the experiments. Tone-mapped
versions are shown, since typical displays and printers are unable to reproduce higher dynamic
range images.

Table 4.14: HDR test sequences used in the subjective evaluations.

Anchor bitrates  (kbit/s)

Sequence fps  window frames R 3 " Rl

Market3 50 970 1919 0 239 1248 2311 4224 7913
AutoWelding 24 600 1549 162 401 454 778 1383 3157
ShowGirl2 25 350 1299 94 333 574 971 1652 3316
WarmNight 24 100 1049 36 275 462 780 1328 2441

BalloonFestival 24 0 949 0 239 1276 2156 3767 6644

frame rate of the display used in the experiments (see Section 4.5.2), and cut to 240 frames,
which corresponds to 10 seconds. Note that the Market3 sequence was played at a slower
frame rate than the original content (50 fps). This solution was evaluated as visually more
pleasant than playing every other frame, which created temporal distortions. The coordinates
of the cropping window, selected frames, and bit rates are given in Table 4.14.

The data was stored in uncompressed 16 bit TIFF files, in 12 bit non-linearly quantized (using
Dolby PQ EOTF) RGB signal representation, using the SDI data range (code values from 16 up
to 4076) and Rec. 2020 RGB color space. The side-by-side video sequences were generated
using the HDRMontage tool from the HDRTools package (M35471).

4.5.2 Methodology

The experiments were conducted at the MMSPG test laboratory, which fulfills the recom-
mendations for subjective evaluation of visual data issued by ITU. The test room is equipped
with a controlled lighting system of a 6500 K color temperature. The color of all background
walls and curtains in the room is mid grey. The laboratory setup is intended to ensure the
reproducibility of the subjective test results by avoiding unintended influence of external
factors. In the experiments, the luminance of the background behind the monitor was about
20 cd/m?. The ambient illumination did not directly reflect off of the display.
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To display the test stimuli, a full HD (1920 x 1080 pixels) 42” Dolby Research HDR RGB backlight
dual modulation display (aka Pulsar) was used. The monitor has the following specifications:
full DCI P3 color gamut, 4000 cd/m? peak luminance, low black level (0.005 cd/m?), 12-
bits/color input with accurate and reliable reproduction of color and luminance. In every
session, three subjects assessed the displayed test video content simultaneously. They were
seated in one row perpendicular to the center of the monitor, at a distance of about 3.2 times
the picture height (see Table 2.1).

Test Method

Two video sequences were presented simultaneously in side-by-side fashion. Since only one
full HD 1920 x 1080 HDR monitor was available, each video was cropped to 950 x 1080 pixels
with 20 pixels of black border separating the two sequences. One of the two video sequences
was always the Anchor, with a randomized position on the screen (either on the left or on the
right). The other video sequence was the Proponent to be evaluated, at the same (targeted) bit
rate as the Anchor.

Subjects were asked to judge which video sequence in a pair (‘left’ or ‘right’) has the best
overall quality, considering fidelity of details in textured areas and color rendition. The option
‘same’ was also included to avoid random preference selections.

Statistical Analysis

No outlier detection was performed on the raw scores, since there is no international recom-
mendation or a commonly used outlier detection technique for PC results.

For each test condition, i.e., combination of content, algorithm, and bit rate, the winning
frequency of the Anchor, w,;, winning frequency of the Proponent, wp;, and tie frequency, ¢;,
are computed from the obtained subjective ratings. Note that w4; + wp; + t; = N, where N is
the number of subjects. To compute the preference probability of selecting the proponent
version over the Anchor, pp, ties are considered as being half way between the two preference
options.

To determine whether the visual quality difference between the Proponent and the Anchor is
statistically significant, a statistical hypothesis test was performed. As ties are split equally
between the two preference options, the data roughly follows a Bernoulli process B(N, p),
where N is the number of subjects and p is the probability of success in a Bernoulli trial and
was set to 0.5, considering that, a priori, the Anchor and Proponent have the same chance of
success. Figure 4.21 shows the CDF for Binomial distribution with N =24 and p = 0.5. The
CDF is used to determine the critical region for the statistical test.

To determine whether the proponent provides statistically significant results, a one-tailed
binomial test was performed at 5% significance level with the following hypotheses
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Figure 4.21: CDF for Binomial distribution with N =24 and p = 0.5.

HO: Proponent is equal or worse than Anchor
H1: Proponent is better than Anchor

In this case, the critical region for the preference probability over Anchor, pp, is [%, 1], as
the CDF for 16 or more successful trials is above 95% (see Figure 4.21, B(16,24,0.5) = 0.9680).
Therefore, if there are 16 or more votes in favor of the Proponent, the null hypothesis can be
rejected.

Similarly, to determine whether the Proponent provides statistically significantly lower visual
quality than the Anchor, a one-tailed binomial test was performed at 5% significance level

HO: Proponent is equal or better than Anchor
H1: Proponent is worse than Anchor

. s . o1s . 75
In this case, the critical region for the preference probability over Anchor, pp, is [0, ﬁ], as

the CDF for 7.5 or less successful trials is below 5% (see Figure 4.21, B(8,24,0.5) = 0.0758).
Note that the Binomial distribution is not defined for non-integer values, and that extension is
usually obtained using the floor function. Therefore, if there are 7.5 or less votes in favor of the
proponent, the null hypothesis can be rejected.

Test Planning

Before the experiments, a consent form was handed to subjects for signature and oral in-
structions were provided to explain the evaluation task. A training session was organized
to allow subjects to familiarize with the assessment procedure. The same contents were
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used in the training session as in the test session to highlight the areas where distortions
can be visible. Eleven training samples were manually selected by expert viewers. First, two
samples, one of high quality and one of low quality, without any difference between left and
right, were selected from the AutoWelding sequence. The purpose of these two examples was
that subjects could get familiar with HDR content, as this content has both dark and bright
luminance levels and fast luminance temporal changes, and see the extreme levels of quality
observed in the test material. Then, one sample from AutoWelding with large visible difference
was presented to illustrate the main differences that can be observed between the left and
right video sequences, i.e., loss of texture/details and color artifacts. Finally, for each of the
remaining contents, two samples were presented (one example with large difference and one
example with small differences) in the following order: Market3, BalloonFestival, ShowGirl2,
and WarmNight. The training materials were presented to subjects exactly as for the test
materials, thus in side-by-side fashion.

The overall experiment was split into 6 test sessions. Each test session was composed of 30-31
basic test cells, corresponding to approximately 14 min each. To reduce contextual effects,
the stimuli orders of display were randomized, whereas the same content was never shown
consecutively. The test material was randomly distributed over the six test sessions.

Each subject took part to exactly three sessions. Three dummy pairs, whose scores were not
included in the results, were included at the beginning of the first session to stabilize the
subjects’ ratings. Between the sessions, the subjects took a 14 min break.

A total of 48 naive subjects (16 females and 32 males) took part in the experiments, leading
to a total of 24 ratings per test sample. Subjects were between 18 and 49 years old with an
average and median of 25.3 and 24 years of age, respectively. All subjects were screened for
correct visual acuity and color vision using Snellen and Ishihara charts, respectively.

4.5.3 Results

Figure 4.22 reports the preference probability of selecting the Proponent version over the
Anchor for each content separately. Category 1 submissions (P11, P12, P13, P14, and P22) are
plotted with plain lines, whereas Category 3a submissions (P31, P32, P33, and P34) are plotted
with dashed lines. Values on or above the horizontal upper dashed line provide statistically
significant visual quality superior to the Anchor, while values on or below the horizontal
lower dashed line provide statistically significant inferior visual quality when compared to the
Anchor.

As it can be observed, there is evidence that potential coding technologies can do better than
the Anchor in a statistically significant way, especially for contents Market3 and BalloonFestival.
For instance, on content ShowGirl2, Proponent P22 provides statistically significant superior
visual quality when compared to the Anchor at rates R1 to R3. Improvements can also be
observed for Proponents P11 and P12. Regarding content WarmNight, Proponents P32 and
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Figure 4.22: Preference probability of selecting the Proponent version over the Anchor.

P22 outperform the Anchor for rates R2 to R4. Proponents P31 and P11 also show gains for
specific rate points. Finally, for content AutoWelding, Proponent P32 provides gain for rates
R2 to R4, while Proponent P12 is at the limit for the rate R1.

In general, Proponent P32 seems to perform better on dark contents than on bright contents.
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Regarding P14, wrong colors were observed throughout the test material, probably due to a
wrong color transformation, as well as occasional green noise in the table scene on content
WarmNight. Regarding the selection of contents, bright scenes are better to perceive color
artifacts, especially in whitish parts, and loss of details and high frequencies, especially in tex-
tured areas. Sequences such as ShowGirl2 and Market3 are good for testing HDR compression.
On the other hand, sequences with a wide dynamic range and strong luminance temporal
changes, such as AutoWelding although good for demonstrating HDR, may not be necessarily
best to assess HDR compression performance. Dark scenes are important too, as HDR is not
only about high brightness, but it might be hard to see the improvements in these sequences,
especially if the previous test sequence was bright, due to the adaptation time of the eye.

4.6 Cross-lab Evaluation of MVC+D and 3D-AVC 3D Video
Compression

Consistent and imitable subjective measurement 3D video quality assessment is investigated
for evaluating 3D service parameters and as an essential criterion towards the development
of objective models. Quality assessment of 3D video is identified to range over numerous
psychophysical extents, e.g., picture excellence, depth perception, and visual comfort, which
may lead to higher level insights, e.g., visual experience and naturalness.

An important factor in subjective quality assessment experiments is the viewing conditions
and it can be greatly influenced in the case of 3D video where the perception of depth is an
additional factor when compared to 2D video. Furthermore, selecting and calibrating the
display is very crucial in 3D video as it has a significant effect on the perceived brightness and
overall quality, especially when more than one lab is involved in subjective evaluation. It is an
interesting and challenging task to conduct the 3D video quality assessment in different labs
and attempt to simulate the same conditions. It helps not only to measure the video quality
accurately and precisely, but also gives us foundation to define the objective metrics for 3D
video.

Perkis et al. (2012) performed cross-lab video quality assessment of 3D video to address
various issues regarding certification of multimedia quality assessment. They evaluated two
test scenarios, namely, a 2-view input configuration, on stereoscopic display, and a 3-view
input configuration, on both auto-stereoscopic as well as stereoscopic display. However, in
any single scenario, only two laboratories results were considered for cross validation.

Recently, Barkowsky et al. (2013) have studied cross-lab 3DTV quality assessment method with
amain focus on defining the effect of different lab conditions like passive polarized displays,
active shutter displays, viewing distance, number of parallel viewers, and voting device.

In November 2013, JCT-3V issued a test plan for 3D video subjective assessment (JCT3V-F1011)
to evaluate the performance of two amendments of the AVC video coding standard, namely
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Table 4.15: Multiview video plus depth contents used in the experiments.

. F . Depth Input

Sequence Resolution "¢ Frames QP settings P . 1.1p !
rate resolution views
Poznan Hall2 1920 x 1088 25fps 0-199 26,31,36,41 Quarter 6.25—-5.75 6-5.5

7-6-5

Poznan Street 1920 x 1088 25fps 0-249 26,31,36,41 Quarter 5-4-3 4.25-3.75 4-3.5
1-5-9
9-5-1

SS stereo pair  OS stereo pair

Undo Dancer 1920 x1088 25fps 0-249 31,38,41,46 Full 4-6 5-7
GT Fly 1920 x 1088 25fps 0-249 26,31,36,41 Quarter 6-4 7-5

1. MVC+D (Y. Chen et al., 2014): the main target of this extension is to enable 3D enhance-
ments while maintaining MVC stereo compatibility.

2. 3D-AVC (Y. Chen and Vetro, 2014): the main aims for higher compression efficiency by
jointly compressing texture and depth data.

To analyze and compare the performance of the proposed technologies, a formal subjective
quality evaluation was carried out, and a set of test video sequences, encoded with the pro-
posed technologies, was produced. Three laboratories took part in the evaluation campaign
of this test material: at EPFL in Switzerland, UWS in Scotland, and FUB in Italy.

This section analyzes the results obtained from three subjective experiments on the aforemen-
tioned coding techniques using identical video content and following similar methodologies
and instructions. Cross-laboratory analysis is performed to find out whether or not consistent
results can be obtained. These analyses show that laboratories employing different displays
and different subjects could still produce highly correlated results, as they follow similar guide-
lines to carry out the evaluations. This confirms that the participating laboratories have high
correlation to conduct subjective evaluation.

4.6.1 Dataset

Four MVD sequences, with different visual characteristics, were used in the experiments (see
Table 4.15). The encoded views used in the experiments were the same as those specified in
the common test conditions (CTC) (JCT3V-E1100) of the 3DV Core Experiments conducted by
JCT-3V. All sequences were stored as raw video files, progressively scanned, with YCbCr 4:2:0
color sampling, and 8 bit per sample.

The sequences were compressed with MVC+D and 3D-AVC using 3D-ATM v9.0 JCT3V-G1003)
under the conditions defined in (JCT3V-E1100; JCT3V-F1011) (see Table 4.15). For each
sequence, two stereo pair configurations were considered: a stereo pair formed from two
synthesized views, referred to as SSin this paper, and a stereo pair formed from one original
(decoded) view and one synthesized view, referred to as OS in this paper. For each codec, four
rate points were considered. Additionally, a “reference” stereo pair was generated from the
original data for each stereo pair configuration. Thus, this resulted inaset of 4 x2x (1+2x4) =
72 test stimuli. The synthesized views were generated using VSRS-1D-Fast v8.0 JCT3V-G1005),
under the conditions defined in JCT3V-E1100; JCT3V-F1011) (see Table 4.15).
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Table 4.16: Test environment.

Labl Lab2 Lab3
Monitor Hyundai S465D LG 47LM660 Sony KDL-55X9005A
Size 46" 47" 55"
#Subjects (57/9) 22 (15/7) 24 (14/10) 18 (16/2)

Age (average) 20-31 (23.1) 18-28(19.6) 20-31 (26.5)

Additionally, five training samples were generated using the Poznan CarPark sequence with
similar conditions and manually selected by expert viewers so that the quality of samples were
representative of all grades of the rating scale.

4.6.2 Methodology

In total, three laboratories conducted the subjective evaluation. All laboratories fulfill the
recommendations for the subjective evaluation of visual data issued by ITU. Each test room is
equipped with a controlled lighting system with a 6500 K color temperature and an ambient
luminance at 15% of the maximum screen luminance, whereas the color of all the background
walls and curtains present in the test area are in mid grey.

The experiment involved up to three subjects assessing the test materials simultaneously.
Subjects were seated in a row perpendicular to the center of the monitor, at a distance of about
3 times the picture height. All subjects were screened for correct visual acuity, color vision,
and stereo vision using Snellen chart, Ishihara chart, and Randot test, respectively. The main
differences between the laboratories were in terms of display characteristics and number of
observers (see Table 4.16).

Test Method

The SS method with a five-grade numerical categorical scale (see Section 2.4.1) was chosen.
The rating scale ranged from 1 to 5, with 1 indicating the lowest quality and 5 indicating the
highest quality. After the presentation of each video sequence, a five-second voting time
followed. Subjects were asked to rate the overall quality of the video sequence to be evaluated,
and to express these judgments in terms of the wordings used to define the rating scale.

Test Design

Before the experiment, oral instructions were provided to the subjects to explain their tasks.
Additionally, a training session using the five training samples was organized to allow subjects
to familiarize with the assessment procedure. Since the total number of test samples was too
large for a single test session, the overall experiment was split into two sessions of approxi-
mately ten minutes each. Between the sessions, the subjects took a ten minutes break. The
test material was randomly distributed over the two test sessions.
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Four dummy video sequences (one with high quality, one with low quality, and two of mid
quality), whose scores were not included in the results, were included at the beginning of each
test session to stabilize the subjects’ ratings. To reduce contextual effects, the stimuli orders of
display were randomized applying different permutation for each group of subjects, whereas
the same content was never shown consecutively.

4.6.3 Results

Figure 4.23 shows the scatter plots comparing the results of the different laboratories. The
horizontal and vertical error bars represent the CI corresponding to the laboratories on the
x- and y-axis, respectively. The data points are colored based on the different contents or
rate points for better visualization. The cubic regressions fitted to each data set following the
procedure described in Section 2.7.1 are represented to illustrate the trend of the data points.

Ideally, all points would be on a 45° line if the MOS values for each condition were the same
between two laboratories. However, some points lie above the line, whereas others lie below.
For example, subjects in Lab3 graded content UndoDancer at rate points R2, R3, and R4 lower
than subjects in Lab1. Similarly, subjects in Lab3 graded content Poznan Hall2 at rate points
R2, R3, and R4 lower than subjects in Lab2. Nevertheless, no significant systematic offset
can be observed between the MOS values of the different laboratories, which means that,
in overall, subjects did not score more pessimistically nor more optimistically between the
different laboratories.

Regarding the comparison between Lab1 and Lab3, the cubic fitting is close to a straight line,
but its slope is smaller than 45°. This indicates that subjects in Lab3 graded low quality stimuli
higher than subjects in Lab1, whereas subjects in Lab1 graded high quality stimuli higher
than subjects in Lab3. Regarding the comparison between Lab1 and Lab2 as well as between
Lab2 and Lab3, the fitted cubic curves exhibit a sigmoid shape, which indicates non-linearity
between the results of the different laboratories. For example, the ranges of grades associated
with rate points R1 and R4 are wider in Lab2 than in Lab1. Nevertheless, the cubic regressions
do not deviate much from a straight line.

As the mapping of MOS X to MOSLYY yields slightly different results when compared to
mapping of MOSLY to MOSL4PX  both mappings are considered in the following subsec-
tions and results are reported for both cases. A value v(i, j) on row i and column j is computed
considering mapping of MOSL4Y! to MOSL4bJ

In the following part, to determine whether the difference between two sets of scores cor-
responding to the same stereo pair evaluated in two different laboratories is statistically
significant, a multiple comparison test based on ANOVA was performed at a 5% significance
level on the raw scores.
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Figure 4.23: Comparison of MOS values obtained in the different laboratories.

Statistical Evaluation Metrics

Table 4.17 reports the statistical evaluation metrics described in Section 2.7.2. Results show
that there is a strong correlation between the different laboratories, as the correlation indexes
are above 0.92 in all cases. The PCC, SROCC, and RMSE indexes are similar in all cases.
However, the OR index shows a wider variation between the different cases. In particular, the
OR values when mapping the results of Lab2 to Lab1 and Lab3 to Lab1 are above 27% and
below 13%, respectively, whereas the average OR value is about 20% in the other cases. These
results indicate that the correlation between Lab1 and Lab3 is the strongest.
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Table 4.17: Statistical evaluation metrics.

PCC SROCC RMSE OR (%)

Labl Lab2 Lab3 Labl Lab2 Lab3 Labl Lab2 Lab3 Labl Lab2 Lab3

Labl — 0.9461 0.9429 — 0.9393 0.9340 — 0.3962 0.4073 — 20.83 16.67
Lab2 0.9407 — 0.9321 0.9399 — 0.9356 0.3911 — 04177 27.78 — 19.44
Lab3 0.9430 0.9294 — 0.9340 0.9356 — 0.3737 0.4146 — 12.50 20.83 —

Table 4.18: Estimation errors.

Correct estimation(%) Underestimation(%) Overestimation (%)
Labl Lab2 Lab3 Labl Lab2 Lab3 Labl Lab2 Lab3
Labl - 9444 97.22 - 417 278 - 1.39 0.00
Lab2 93.06 —  93.06 2.78 - 4.7 4.17 - 2.78
Lab3 98.61 88.89 - 0.00 6.94 - 1.39 4.17 -
Table 4.19: Classification errors.
Correct decision(%)  False ranking (%)  False differentiation(%)  False tie (%)
Labl Lab2 Lab3 Labl Lab2 Lab3 Labl Lab2 Lab3 Labl Lab2 Lab3
Labl — 82.20 79.50 — 0.00 0.00 - 7.63 7.00 — 10.17 13.81
Lab2 80.99 - 78.09 0.00 — 0.08 7.86 - 8.76 11.15 - 13.07
Lab3 79.03 78.48 - 0.00 0.20 - 10.95 10.45 — 10.02 10.88 -

Estimation Errors

Table 4.18 reports the estimation errors (see Section 2.7.3). Results again show that there is
a strong correlation between the different laboratories; especially between Lab1 and Lab3
(Correct estimation above 97%). However, when mapping the results of Lab3 to those of Lab2,
the Correct estimation is below 89%, whereas the Underestimation and Overestimation are
above 4%.

Classification Errors

Table 4.19 reports the classifications errors (see Section 2.7.4). About 80% of all possible
distinct combinations of two stereo pairs lead to the same conclusion in different laboratories.
Moreover, False ranking, which is the most offensive error, almost never occurs. False tie
occurs in more than 10% of the cases, but this is the least offensive error. Results for False
differentiation are in overall lower between Lab1 and Lab2 than between Lab1 and Lab3, which
indicates that the correlation between Lab1 and Lab2 is higher than between Lab1 and Lab3,
as opposed to the results of the statistical evaluation metrics. However, the difference is not as
big as for the statistical evaluation metrics.
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Figure 4.24: R-D curves: OS stereo pair.

Rate Distortion Curves

The previous results show a strong correlation between the different laboratories. To further
determine whether the scores from the different laboratories can be merged, an ANOVA was
performed at a 5% significance level on the raw scores. The main effect of laboratories was not
significant. Therefore, the raw scores from the three laboratories were merged in the following
analyses.

Figures 4.24 and 4.25 depict the R-D curves for the SS and OS stereo pairs, respectively. As it
can be observed, 3D-AVC usually outperforms MVC+D, as most of the R-D curve of 3D-AVC lie
above that of MVC+D. However, comparing the two codecs at specific QP settings show that
the CIs overlap in most cases, which indicates that the difference between the two codecs is
not significant in most cases.

Average Bit Rate Difference

Table 4.20 reports the average bit rate difference AR for 3D-AVC over MVC+D computed from
the MOSs using the SCENIC model (see Section 3.3). For both stereo pair configurations,
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Figure 4.25: R-D curves: SS stereo pair.

Table 4.20: Bit rate differences for 3D-AVC over MVC+D.

(a) SS stereo pair

Sequence AR [ARmin, ARmax] Confidence index (%)
Poznan Hall2 —-17% [-31%,—1%] 89
Poznan Street —8% [—25%, 17%] 93
UndoDancer —14% [—25%,10%] 88
GT Fly -16% [—32%,5%] 89
Average -14% [-28%,8%] 90

(b) OS stereo pair

Sequence AR [ARmin, ARmax] Confidence index (%)
Poznan Hall2 —-13% [-29%,3%] 87
Poznan Street —-21% [—35%,—3%] 84
UndoDancer —-15% [—-32%,8%] 82
GT Fly —6% [—25%, 19%] 87
Average —14% [-30%,7%] 85
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4.7. Conclusion

results show that, in average, 3D-AVC offers 14% bit rate reduction when compared to MVC+D,
which is lower than the 22.6% bit rate reduction measured based on objective results (JCT3V-
F0094). However, from the ClIs, it can be seen that the bit rate difference varies from —30% to
+8%, which indicates that sometimes MVC+D is better than 3D-AVC, as it can observed from
the R-D curves.

4,7 Conclusion

This chapter reported the performance of different coding formats for still image, video,
HDR image, HDR video, and 3D video compression. Some of these coding formats, e.g., the
HDR&WCG extension of HEVC, are still under development by international standardization
organizations. However, other coding formats, e.g., HEVC, were recently standardized and are
starting to appear in consumer applications, thanks to dedicated hardware implementation
in new devices. These new coding formats provide a solution to the increasing amount of
data due to higher resolution, faster frame rate, higher bit depth, higher dynamic range, wider
color gamut, etc. In particular, results showed that HEVC can achieve more than 50% bit
rate reduction when compared to AVC, which is the current standard used in video delivery,
while providing the same visual quality. A significantly higher compression performance
can be achieved on resolutions beyond HD, manly thanks to better flexibility, adaptability,
and signaling. The upcoming HEVC video compression standard seems to be one of the key
elements towards a wide deployment of 4K and 8K resolutions. Additionally, HEVC intra
coding outperforms encoders for still images with an average bit rate reduction ranging from
17% (compared to JPEG 2000) up to 44% (compared to JPEG). These findings imply that both
still images and moving pictures can be efficiently compressed by the same encoder, i.e., HEVC,
and therefore specialized still image compression encoders may be becoming redundant, at
least if judged by compression efficiency criteria only. Extensions of HEVC for higher bit depth
and enhanced chroma sampling structures (Sullivan et al., 2013), screen content coding (J. Xu
et al.,, 2016), 3D video coding (Y. Chen and Vetro, 2014), scalable video coding (Boyce et al.,
2016), and HDR&WCG video coding make HEVC a perfect multi-purpose coding format.

All these performance analyses were mainly performed using subjective quality evaluations
to provide a more realistic estimation of the true coding efficiency. Except for the study on
VP9 video compression, which was targeting an Internet-based streaming scenario, all other
evaluations were performed in a controlled test environment that fulfills the recommenda-
tions for the subjective evaluation of visual data issued by ITU to obtain repeatable results. All
evaluations were performed following the guidelines provided by international recommen-
dations to obtain reliable results. To illustrate the reliability and repeatability of the results,
the study on 3D video compression was performed in three different laboratories in Europe.
Even though the different laboratories used different displays and different subjects, analyses
showed that the test laboratories could still produce highly correlated results, as they follow
similar guidelines to carry out assessments.
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Investigation of Alternative Evaluation
Protocols

For more than 40 years, most subjective quality evaluations have been conducted on 2D LDR
still images and video sequences. The first version of the ITU-R BT.500 recommendation on
“Methodology for the subjective assessment of the quality of television pictures” was released
in 1974. Since then, many technological revolutions have occurred in imaging and display
technologies, e.g., the shifts from analog to digital, CRTs to LCDs, 2D to 3D, or LDR to HDR.
Unfortunately, the guidelines and methodologies for subjective evaluations have not always
been updated to reflect the requirements of new technologies. For example, in ITU-R BT.500-
13 (2012), the maximum observation angle and preferred viewing distance are still based
on the properties of CRT displays. Some other recommendations have been published to
overcome some of these problems, e.g., ITU-R BT.2021 (2012) for “Subjective methods for the
assessment of stereoscopic 3DTV systems” and ITU-R BT.2022 (2012) for “General viewing
conditions for subjective assessment of quality of SDTV and HDTV television pictures on flat
panel displays”. However, there is still a lack of evaluations guidelines, methodologies, and
protocols for new applications, e.g., FTV, HDR, interactive technologies, or virtual reality.

For more than 40 years, most subjective quality evaluations have been conducted in labo-
ratory environments. However, conducting subjective experiments is very time consuming
and can be quite expensive, especially in countries such as Switzerland, even when hiring
students. To reduce the costs of subjective evaluations and also to consider more practical
environments, researchers are investigating crowdsourcing platforms, which allow employing
workers online from around the world. The authors of (Hossfeld et al., 2014a) provide a com-
prehensive overview of crowdsourcing approaches for subjective evaluations of image and
video content and (Hossfeld et al., 2014b) discusses and compares the corresponding existing
implementation frameworks. Both works also discuss issues and limitations of crowdsourcing
in the context of subjective evaluations. One of the constraints is the limited variety of display
devices used by online workers. Due to this limitation, for example, a direct evaluation of 3D
or HDR content is impossible, since 2D SDR displays are the most commonly used, especially
for workers from Bangladesh, India, Pakistan, Philippines, Singapore, or Thailand, which
are commonly found on crowdsourcing platforms such as Microworkers.com (Redi et al.,
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2013). Therefore, it is necessary to use alternative representations of 3D and HDR content in
crowdsourcing evaluations.

This chapter investigates alternative evaluation protocols for subjective quality assessment.
In particular, to overcome the lack of standardize test methodologies for FTV scenarios, we
propose a new subjective assessment protocol that consists in assessing the perceived image
quality of FVV sequences corresponding to a smooth camera motion during a time freeze.
Section 5.1 provides a detailed description of the proposed assessment protocol and inves-
tigate the assessment of the impact of depth compression on perceived image quality in a
FTV scenario using the proposed protocol. This study considers depth maps compression
only (and not color view compression, as in a classical scenario), as it has been shown that
depth compression has a critical impact on the quality of synthesized views. Sections 5.2
and 5.3 investigate alternative representations of 3D and HDR content for crowdsourcing
evaluations of MVD video and HDR image coding, respectively, on 2D LDR displays. The
crowd-based evaluations results are compared to ground truth subjective scores obtained in
lab-based evaluations to investigate the suitability of crowdsourcing evaluations for 3D and
HDR content.

5.1 A Quality Assessment Protocol for Free-Viewpoint Video
Sequences

With the growing interest for stereoscopic 3D imaging (Kubota et al., 2007), VCEG and MPEG
have joined their efforts to develop new 3D video formats and coding standards. Among the
numerous possible 3D scene representations is the MVD format (Smolic et al., 2007). This
format consists of multiple texture views and associated depth maps acquired at different
viewpoints of the represented scene. Although the history of stereoscopic video sequences
dates back from the last century, the subjective quality assessment protocols that are essential
to evaluate new 3D viewing systems are not standardized yet. This is very likely to be due to
the complexity brought by 3D and the numerous possible 3D applications. The most popular
applications are 3DTV and FTV. 3DTV provides a depth feeling thanks to an appropriate 3D
display. FTV allows the user to interactively control the viewpoint of the scene.

Considering the demand for high-quality visual content, the success of 3D video applications
is closely related to its ability to provide viewers with a high quality level of visual experience.
While many efforts have been dedicated to visual quality assessment in the last twenty years,
some issues still remain unsolved in the case of 3D video. The assessment of 3D contents
arises different issues

i) Quality assessment of synthesized views: 3DTV and FTV are likely to require view synthe-
sis, which is often performed via DIBR. This process can induce new types of artifacts.
Since view synthesis is fundamental for both 3DTV and FTV, the quality assessment of
synthesized views is crucial.
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ii)

ii)

iv)

V)

vi)

Specific distortions in DIBR: artifacts in DIBR are mainly geometric distortions. These
distortions are different from those commonly encountered in video compression and
that are assessed by usual evaluation methods. Most video coding standards rely on
discrete cosine transform, which results in specific artifacts (some of them are described
by Yuen and H. R. Wu (1998)). These artifacts are often scattered over the whole image,
whereas DIBR related artifacts are mostly located around the disoccluded areas. Thus,
since most of the usual objective quality metrics were initially designed to address specific
usual distortions, they may not be suitable to assess the quality of DIBR synthesized
views (see Sections 10.1 and 10.2 and (Bosc et al., 2011a; Bosc et al., 2012b)).

Use case and visualization scenario: the evaluation of DIBR systems is a difficult task
because the type of evaluation differs depending on the context of use. Different factors
are involved in the different 3D imaging applications. A major discriminatory factor is
the stereopsis phenomenon (the fusion process of left and right images by the HVS),
exploited by 3DTV systems. Psycho-physiological mechanisms are induced but they are
not completely understood. A FTV application is not necessarily used in conjunction
with a stereoscopic display, as FTV can be watched in a 2D context. Consequently, the
quality assessment protocols differ as they address the quality of synthesized views in
two different contexts (2D and stereoscopic visualization). It is obvious that stereoscopic
impairments (such as cardboard effect, crosstalk, keystone, flickering depth, picket-fence,
etc., as described by Meesters et al. (2004)), which occur in stereoscopic conditions, are
not assessed in 2D conditions. Also, distortions detected in 2D conditions may not be
perceptible in stereoscopic conditions.

Assessment factors: Depending on the use case, except for the conventional image
quality, new assessment factors can be considered such as comfort, naturalness, and
depth perception (W. Chen et al., 2012).

Clear definition of assessment factors: even though a training session is usually per-
formed before each subjective quality assessment test, subjects are generally non-expert.
In addition, they may not be familiar with simulated stereoscopic viewing. Therefore,
there is a risk of collecting erroneous results due to the novelty of the media display,
which may not always be taken into account in these subjective quality assessment
methodologies. The assessment factors need to be clearly defined to avoid confusion
during the rating procedure.

Need for no-reference metric: another limitation of usual objective metrics concerns the
need for non-reference quality metrics. In particular use cases, such as FTV, references
are unavailable because the generated viewpoint is virtual. In other words, there is no
ground truth allowing a full comparison with the distorted view. Though, assessment
tools are required to evaluate the quality of the synthesized views.

The ITU has recently released a new recommendation for the assessment of stereoscopic 3DTV
systems: ITU-R BT.2021 (2012). This recommendation is mostly an extension for 3DTV of the
well known recommendation ITU-R BT.500-13 (2012), which was established for 2D television.
The recommendation includes a subset of four methods from ITU-R BT.500-13 (2012) (see
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Table 5.1: MVD contents used in the experiment.

Content Resolution  Type Encoded views Frame no.
S1  Balloons 1024 x 768  Natural 1-5 1
S2 BookArrival 1024 x768  Natural 6—10 33
S3  Undo Dancer 1920x1080 Synthetic 1-9 250
S4 GTFly 1920 x 1080  Synthetic 9-1 157
S5 Kendo 1024 x 768  Natural 1-5 1
S6  Newspaper 1024 x 768  Natural 2-6 1

Section 2.4), namely the SS, DSCQS, SC, and SSCQE methods. According to ITU-R BT.2021
(2012), picture quality, depth quality, and visual comfort of stereoscopic imaging technologies
should be assessed. However, this recommendation does not address the specific issue of
synthesized views. Therefore, subjective quality assessment of 3D contents represented in the
video plus depth or MVD formats, and, as a consequence, of virtual synthesized views, has
been conducted according to methods used for the assessment of conventional 2D contents.
For example, Hewage et al. (2009) have used the DSCQS methodology to evaluate the quality
of stereoscopic video sequences that were synthesized from video plus depth video sequences.
Recently, the DSIS has been used to evaluate the responses of the MPEG CfP on 3D Video
Coding Technology. The evaluations have been performed on both stereoscopic and multiview
auto-stereoscopic displays. The displayed 3D contents were synthesized via DIBR from a
limited number of input views represented in the MVD format.

In this section, we investigate the assessment of the impact of depth compression on per-
ceived image quality in a FTV scenario. This study considers depth maps compression only
(and not color view compression, as in a classical scenario), as it has been shown that depth
compression has a critical impact on the quality of synthesized views. To overcome the lack of
standardize test methodologies for FTV scenarios, we propose a new subjective assessment
protocol that consists in assessing the perceived image quality of FVV sequences correspond-
ing to a smooth camera motion during a time freeze, which were generated through DIBR
from 3D content represented in the MVD format. This protocol is expected to enable the
evaluation of different types of depth coding distortions. The proposed protocol is original
because it proposes a novel approach to assess image quality of free-viewpoint content via
synthesized frames in a freezing time scenario. In this section, we make a complementary use
of simple and reliable statistical tools to analyze the subjective evaluation results. This section
reports a detailed analysis of the results, which shows the importance of content selection
when evaluating visual image quality of free-viewpoint data.

5.1.1 Dataset

Six MVD contents were used in this experiment: Book Arrival, Newspaper, Kendo, and Balloons
are real scenes with estimated depth maps; and GT Fly and Undo Dancer are synthetic scenes
with ground truth depth maps. Table 5.1 summarizes the characteristics of the contents and
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encoded viewpoints. The contents are referred to as SI to S6 (see Table 5.1). The contents and
the key frames were selected for their availability and amount of depth.

The depth map compression algorithms under test are labeled from CI to C7, where CI to C4
are state-of-the-art codecs

- CI: 3D-HEVC, 3D-HTM version 0.4, inter-view prediction and View Synthesis Optimization
enabled,

- C2: MVC, JM version 18.4, inter-view prediction enabled,

- C3: HEVC, HM version 6.1,

- C4: JPEG 2000, Kakadu implementation,

- C5: based on (Gautier et al., 2012), a lossless-edge depth map coding based on optimized
path and fast homogeneous diffusion,

- C6: based on (Pasteau et al., 2011), this algorithm exploits the correlation with color frames,
and

- C7: Z-LAR-RP (Bosc, 2012), a region-based algorithm.

All compression algorithms were used in intra coding mode. In the case of 3D-HTM, colored
views and their associated depth maps were provided as inputs to the encoder, but only the
decoded depth maps were employed in our experiments. The stimuli were not classically
selected relying on a list of bit rates to be evaluated. Instead, the stimuli were previously
selected by expert viewers based on their visual quality. For each compression algorithm,
the subjective visual quality of the views synthesized from decompressed depth data, at
different bit rates, were first considered by the expert viewers. Then, for each compression
algorithm, the expert viewers selected one stimulus corresponding to each of the following
categories: Good, Fair, and Poor. Therefore, three QPs were selected for each depth map
compression algorithm under test, according to the visual quality of the rendered views. For
each compression algorithm, we refer to the highest, middle, and lowest bit rates evaluated as
RO, R1, and R2, respectively. This choice was motivated by the need to cover a wide range of
categories in the visual quality scale to properly assess each codec under test. Two additional
methods were also included to increase the variety of distortions: low pass filtered depth
maps (noted F) and depth maps with low-pass filtered applied on edges only (noted FE).
Table 5.2 provides our observations regarding the specific distortions of each method, when
using a coarse quantization. The first column indicates the effects of coarse compression on
depth maps. The second column indicates the resulting effects on views synthesized from
this decompressed depth data. The depth compression related artifacts mostly affect the
strong depth gradients (object edges), which results in flickering around the object edges in
the synthesized sequence.

Two different synthesis modes were considered in this study. The synthesis process was
performed through the 3D-HTM renderer, also referred to as VSRS-1D-Fast, which is the view
synthesis algorithm used by JCT-3V at the time of writing this paper. Two different modes for
the synthesis process, referred to as VSI and VS2 in the rest of the paper, were considered:
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Table 5.2: Impact of coarse depth quantization on depth maps and synthesized views.

Method Effects on depth maps Effects on synthesized views

CI scattered blocking effect staircase effect on object edges
c2 blur inaccurate edges

C3 blur inaccurate edges

C4 blurred, ringing edges deformed edges, crumbling edges
C5 blur, introduction of gradients deformed objects

Cc6 blocking effect blocking effect around edges

c7 smooth depth fading reduced parallax

F blur deformed objects

FE blurred edges inaccurate edges

- VSI: Blended Mode disabled: all pixels visible in the closer reference view are copied to the
virtual view, and only hole areas are filled from the farther reference view and

- V§2: Blended Mode enabled: a weighted blending based on the baseline distance is used
for hole filling, such that pixels from the reference camera that are closer to the virtual
view are assigned a higher weight.

5.1.2 Methodology

The proposed quality assessment protocol aims at highlighting the impact of depth coding
only on the synthesized views in a FTV scenario. A specific case of use is considered to allow a
reliable comprehension the impact of depth coding: smooth motion of camera when freezing
time in a free-viewpoint application. In this subsection, the choices that motivated the design
of this experimental protocol are presented. Then the subjective assessment conditions and
analysis tools are discussed.

Proposed Experimental Protocol

In the absence of subjective methodologies specifically designed to assess the quality of 3D
content, assessment protocols that have been developed and validated for 2D content are
mostly used. The aim of this experiment is to evaluate the impact of depth compression
on perceived image quality of free-viewpoint data. Depth maps compression only (and not
color view compression, as in a classical scenario) is considered in this experiment as it has
been shown that depth compression has a critical impact on the quality of synthesized views.
We recall that stereopsis is not considered in this experiment. Considering the aim of this
experiment, the design of a subjective quality assessment methodology should be based
on consideration of reliability, accuracy, efficiency, and easiness of implementation of the
available methodologies. Our experimental protocol relies on these concerns.

Regarding the construction of the assessed stimuli, we considered a scenario that involved the
generation and the quality assessment of synthesized views in a FTV scenario. The assessment
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Figure 5.1: Overview of the experimental protocol.

protocol targets depth coding only and not color coding as in the “real” case of use because
the goal is to provide an assessment protocol able to underline the impact of depth coding
only on the synthesized views. Moreover, to allow a reliable comprehension of the studied
phenomenon (impact of depth coding), a specific case of use is considered in the proposed
methodology: smooth motion of camera when freezing time in a free-viewpoint application.
Indeed, most of the free-viewpoint applications involve freezing time when moving from one
viewpoint to another. This particular case is prone to meticulous observation by the user and
distortions occurring at this stage may reduce the perceived QoE.

So, only the depth maps were encoded as for an example of evaluation of depth coding
algorithms. The general scheme followed in this experiment is depicted in Figure 5.1. From
a given MVD sequence, two different viewpoints at one time instant ¢ (also referred to as
key frames in the following) were considered. The associated depth maps were encoded
through seven depth map codecs under test. From the decoded depth maps, fifty intermediate
viewpoints (equally separated) were generated in-between the two considered viewpoints. A
sequence of 100 frames (at 10 fps) was built from the 50 intermediate virtual frames to simulate
a smooth camera motion from left to right and from right to left. This experimental protocol
is expected to reveal the distortion specificity of each compression strategy. This leads to
a specific case of use in free-viewpoint applications since it simulates a smooth motion of
camera when freezing time.

Evaluation Method

Among the different standardized subjective quality assessment methods, the ACR-HR (see
Section 2.4.1) has been widely used to assess 2D content and have also been used to assess
content related to 3D video applications (Campisi et al., 2007; Kalva et al., 2007). This method
is often chosen for its known reliability in the context of the eval