
RECEIVER-DRIVEN VIDEO ADAPTATION

Aaron J Smith

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of

Computer Science.

Chapel Hill
2021

Approved by:

Ketan Mayer-Patel

Leonard McMillian

Shahriar Nirjon

Donald Porter

Montek Singh

© 2021
Aaron J Smith

ALL RIGHTS RESERVED

ii

ABSTRACT

AARON J SMITH: Receiver-Driven Video Adaptation
(Under the direction of Ketan Mayer-Patel)

In the span of a single generation, video technology has made an incredible impact on daily

life. Modern use cases for video are wildly diverse, including teleconferencing, live streaming, vir-

tual reality, home entertainment, social networking, surveillance, body cameras, cloud gaming, and

autonomous driving. As these applications continue to grow more sophisticated and heterogeneous,

a single representation of video data can no longer satisfy all receivers. Instead, the initial encoding

must be adapted to each receiver’s unique needs.

Existing adaptation strategies are fundamentally flawed, however, because they discard the

video’s initial representation and force the content to be re-encoded from scratch. This process is

computationally expensive, does not scale well with the number of videos produced, and throws away

important information embedded in the initial encoding. Therefore, a compelling need exists for the

development of new strategies that can adapt video content without fully re-encoding it. To better

support the unique needs of smart receivers, diverse displays, and advanced applications, general-use

video systems should produce and offer receivers a more flexible compressed representation that

supports top-down adaptation strategies from an original, compressed-domain ground truth.

This dissertation proposes an alternate model for video adaptation that addresses these

challenges. The key idea is to treat the initial compressed representation of a video as the ground

truth, and allow receivers to drive adaptation by dynamically selecting which subsets of the captured

data to receive. In support of this model, three strategies for top-down, receiver-driven adaptation

are proposed. First, a novel, content-agnostic entropy coding technique is implemented in which

symbols are selectively dropped from an input abstract symbol stream based on their estimated

probability distributions to hit a target bit rate. Receivers are able to guide the symbol dropping pro-

iii

cess by supplying the encoder with an appropriate rate controller algorithm that fits their application

needs and available bandwidths. Next, a domain-specific adaptation strategy is implemented for

H.265/HEVC coded video in which the prediction data from the original source is reused directly in

the adapted stream, but the residual data is recomputed as directed by the receiver. By tracking the

changes made to the residual, the encoder can compensate for decoder drift to achieve near-optimal

rate-distortion performance. Finally, a fully receiver-driven strategy is proposed in which the syntax

elements of a pre-coded video are cataloged and exposed directly to clients through an HTTP API.

Instead of requesting the entire stream at once, clients identify the exact syntax elements they wish

to receive using a carefully designed query language. Although an implementation of this concept

is not provided, an initial analysis shows that such a system could save bandwidth and computation

when used by certain targeted applications.

iv

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

1 Introduction . 1

1.1 Motivation . 5

1.1.1 Trend 1: Diverse Receivers . 6

1.1.2 Trend 2: Tightly Integrated Compression . 7

1.1.3 Growing Tension . 8

1.2 Problem Definition . 9

1.3 Existing Approaches. 11

1.3.1 Approach 1: Scalable Coding . 11

1.3.2 Approach 2: Adaptive Streaming . 12

1.3.3 Approach 3: Full Transcoding . 12

1.3.4 System Model Diagram . 14

1.3.5 Limitations . 14

1.4 Proposed Approach . 15

1.4.1 System Model Diagram . 16

1.4.2 Contributions . 18

1.5 Thesis Statement . 21

1.6 Dissertation Overview . 22

2 Hybrid Video Coding . 24

2.1 The Bandwidth Challenge . 24

v

2.2 Transform Coding . 25

2.2.1 Discrete Cosine Transform . 27

2.2.2 Quantization . 28

2.2.3 Color Space Transform . 31

2.2.4 Chroma Subsampling . 33

2.3 Predictive Coding . 34

2.3.1 Differential Coding: A Precursor to Motion-Compensated Prediction 35

2.3.2 Inter-Frame, Motion-Compensated Prediction . 36

2.3.3 Intra-Frame Prediction . 40

2.3.4 Frame Partitioning . 42

2.4 Entropy Coding . 44

2.4.1 Shannon’s Source Coding Theorem . 44

2.4.2 Arithmetic Coding . 45

2.5 A Complete Hybrid Coding Model . 47

2.6 Digital Video Coding Formats . 49

2.7 Assessing Coding Performance . 51

2.7.1 Peak Signal-to-Noise Ratio (PSNR) . 52

2.7.2 Structural Similarity Index (SSIM). 53

2.7.3 Rate-Distortion Theory . 54

3 Existing Adaptation Strategies . 55

3.1 The Heterogeneous Client Problem . 56

3.2 Taxonomy . 57

3.3 Scalable Codecs . 58

3.3.1 Scalable Dimensions . 59

3.3.2 Layered Coding. 59

3.3.3 Other Scalable Approaches . 63

3.3.4 Scalable Extensions to Widely-Used Formats . 64

vi

3.3.5 Limited Support for Scalable Decoding . 65

3.4 Simulcast / Adaptive Streaming . 65

3.4.1 Adaptive Bitrate Streaming . 67

3.4.2 Dynamic Adaptive Streaming over HTTP (DASH) . 68

3.5 On-Demand Transcoding . 71

3.5.1 Transcoding . 72

3.5.2 Cascaded Transcoding . 72

3.5.3 Fast Transcoding . 73

3.5.4 Guided Transcoding . 74

3.5.5 Network Distributed Video Coding . 76

4 Predictive Scalable Coding . 78

4.1 Prediction Drift . 78

4.1.1 Availability of Prior Data at the Decoder . 78

4.1.2 Recursive Predictive Structure . 80

4.1.3 Prediction Loops in Hybrid Codecs . 80

4.1.4 Decoder Drift . 84

4.2 Challenges . 84

4.2.1 Drift-Free Scalable Predictive Coding . 85

4.2.2 Drift-Controlled Scalable Prediction . 87

4.2.3 Effect of Scalable Coding on Rate-Distortion Performance 90

5 Content-Adaptive Entropy Coding . 93

5.1 Formulation . 95

5.2 Budgeted Rate Controller . 97

5.3 Layered Scalable Extension . 99

5.3.1 Encoding a Symbol . 100

5.3.2 Partial Decoding . 101

5.4 System Block Diagram . 101

vii

5.5 Features . 103

5.5.1 Top-Down Adaptation. 103

5.5.2 Receiver-Driven Adaptation . 106

5.5.3 Dropped Symbol Awareness . 107

5.5.4 Computational Efficiency . 107

5.6 Application to H.265/HEVC . 108

5.6.1 Implementation . 109

5.6.2 Data Set . 112

5.6.3 Results and Discussion . 113

5.7 Application to M-JPEG . 115

5.7.1 Codec Selection . 118

5.7.2 Implementation . 118

5.7.3 Data Set . 122

5.7.4 Results and Discussion . 122

5.8 Takeaways . 131

5.9 Future Work . 132

5.9.1 Drift Management for Predictive Codecs . 133

5.9.2 Novel Predictive Codec Design . 138

5.9.3 Convergence of Layered Probability Models . 139

5.9.4 Application to Other Content Domains . 142

6 Drift-Controlled Residual Requantization . 144

6.1 Introduction . 145

6.2 Hierarchy of Syntax Elements in H.265/HEVC . 146

6.2.1 Partitioning Syntax Elements . 147

6.2.2 Prediction Syntax Elements . 147

6.2.3 Residual Syntax Elements . 148

6.3 Overview of Approach. 149

viii

6.3.1 System Components . 150

6.3.2 Operation Procedure . 151

6.3.3 Block Diagram . 154

6.4 Benefits of Proposed Approach. 155

6.4.1 Drift Compensation . 155

6.4.2 Decoder and Client Complexity . 155

6.4.3 Encoder and Server Complexity . 156

6.5 Justification for Prediction Reuse . 156

6.5.1 Stream Composition . 157

6.5.2 Source Encoding as Ground Truth . 160

6.6 Application to H.265/HEVC . 161

6.6.1 Residual Requantization of H.265/HEVC Data Streams . 161

6.6.2 Data Set . 163

6.6.3 Results and Discussion . 163

6.7 Future Work . 166

6.7.1 Prediction Adaptation . 168

6.7.2 Multiple Description Coding . 170

7 Future Work: Syntax Element API . 173

7.1 Challenges . 174

7.2 Anticipated Impact . 176

8 Conclusion . 178

BIBLIOGRAPHY . 180

ix

LIST OF TABLES

Table 2.1 Data rates for selected uncompressed video formats . 25

Table 2.2 Comparison of compressed video formats . 50

Table 3.1 Comparison of adaptive streaming standards . 68

Table 5.1 Descriptive statistics for M-JPEG content . 122

x

LIST OF FIGURES

Figure 1.1 Black-box compression system model illustration . 13

Figure 1.2 Proposed system model illustration . 17

Figure 2.1 JPEG DCT basis functions . 28

Figure 2.2 Abstract illustration of quantization. 29

Figure 2.3 Frequency transform and quantization block diagram . 31

Figure 2.4 Conventional arithmetic codec design block diagram . 46

Figure 2.5 Hybrid video encoder block diagram . 47

Figure 2.6 Hybrid video decoder block diagram . 49

Figure 3.1 Example dependency graph for layered coding . 61

Figure 3.2 Adaptive streaming block diagram. 67

Figure 3.3 Example segment design for adaptive bitrate streaming . 69

Figure 3.4 Network distributed video coding block diagram . 76

Figure 4.1 Prediction loops in the hybrid codec architecture . 82

Figure 4.2 Rate-distortion curves for various scalable approaches . 92

Figure 5.1 Layered entropy encoder block diagram . 102

Figure 5.2 Dependency graph for entropy layers . 103

Figure 5.3 Top-down versus bottom-up scalable rate-distortion curves 104

Figure 5.4 Experimental setup for H.265/HEVC layered entropy coding 108

Figure 5.5 PSNR per frame when only remaining level coefficient bits are layered. 111

Figure 5.6 SSIM per frame when only remaining level coefficient bits are layered. 112

Figure 5.7 Per-frame PSNR for HEVC layered entropy encoding experiment 113

Figure 5.8 Per-frame SSIM for HEVC layered entropy encoding experiment 114

Figure 5.9 Layered entropy encoding SSIM rate-distortion curve . 116

Figure 5.10 Layered entropy encoding PSNR rate-distortion curve . 117

Figure 5.11 M-JPEG adaptive encoder architecture . 119

xi

Figure 5.12 M-JPEG adaptive decoder architecture . 120

Figure 5.13 Sample frames for video content in M-JPEG experiment . 123

Figure 5.14 Baseline receiver sample frames . 126

Figure 5.15 Bounding Box receiver sample frames . 127

Figure 5.16 Contour receiver sample frames . 128

Figure 5.17 Sample masks supplied by Contour receiver . 129

Figure 5.18 Rate-distortion performance of M-JPEG adapted content 130

Figure 5.19 Full-quality ROI bit rates . 131

Figure 5.20 Proposed frame dependency graph . 134

Figure 6.1 Proposed H.265/HEVC fast transcoder components . 150

Figure 6.2 Proposed H.265/HEVC transcoder architecture block diagram 154

Figure 6.3 Average composition of an H.265/HEVC stream . 158

Figure 6.4 Relative size of prediction and residual data . 159

Figure 6.5 Residual requantization architecture . 162

Figure 6.6 Sample full-quality frames . 164

Figure 6.7 Comparison of high bit rate and low bit rate frames. 166

Figure 6.8 Residual requantization and drift compensation . 167

Figure 6.9 Rate-distortion performance of residual requantization . 167

Figure 6.10 Residual requantization for multiple description coding . 171

Figure 7.1 Maximal sampling of motion vectors within a CTU quadtree 175

xii

LIST OF ABBREVIATIONS

ABR Adaptive Bit Rate

AMVP Advanced Motion Vector Prediction

API Application Programming Interface

AVC/H.264 Advanced Video Coding

BL Base Layer

CABAC Context-Adaptive Binary Arithmetic Coding

CCD Charge-Coupled Device

CDN Content Delivery Network

CMOS Complementary Metal-Oxide-Semiconductor

CTU Coding Tree Unit

CB Coding Block

CU Coding Unit

DASH Dynamic Adaptive Streaming over HTTP

DCT Discrete Cosine Transform

DPB Decoded Picture Buffer

DPCM Differential Pulse-Code Modulation

DST Discrete Sine Transform

DWT Discrete Wavelet Transform

EL Enhancement Layer

GOP Group of Pictures

HEVC/H.265 High Efficiency Video Coding

HTTP Hypertext Transfer Protocol

IDCT Inverse Discrete Cosine Transform

IDR Instantaneous Decoder Refresh

IoT Internet of Things

JPEG Joint Photographic Experts Group

xiii

LPS Least Probable Symbol

MDC Multiple Description Coding

M-JPEG Motion JPEG

MCU Miminum Coded Unit

MDC Multiple Description Coding

MPD Media Presentation Description

MPS Most Probable Symbol

MPEG Moving Picture Experts Group

MSE Mean Squared Error

NDVC Network Distributed Video Coding

PB Prediction Block

PDF Probability Density Function

POC Picture Order Count

PU Prediction Unit

PSNR Peak Signal-to-Noise Ratio

R-D Rate-Distortion

RGB Color space with red, green, and blue dimensions

ROI Region of Interest

SHVC Scalabilty Extension of HEVC

SNR Signal-to-Noise Ratio

SSIM Structural Similarity Index Measure

SVC Scalable Video Coding

TB Transform Block

TU Transform Unit

VLC Variable-Length Coding

VR Virtual Reality

VVC/H.266 Versatile Video Coding

xiv

CHAPTER 1

Introduction

One of the reasons video compression research is so exciting is because of the myriad

ways in which video technology has affected daily life. In the span of a single generation, video

has permanently changed the way entire sectors are handled, including communication, business,

education, entertainment, advertising, medicine, transportation, surveillance, and others. Video has

revolutionized the way people interact with friends, family, colleagues, and strangers. Most recently,

during the global COVID-19 pandemic, multimedia shared through the internet has enabled the

world to connect even when isolating. It is thrilling to have the opportunity to study and contribute

to a technology that has touched and improved the human experience at such a global scale.

In a way, the scale and rapidity with which video technology has crept into daily life

over the past few decades has underscored and exacerbated the very question explored by this

dissertation: how best to provide compressed-domain video data to heterogeneous receivers at scale.

The explosive growth and rapid integration of video technology in society has resulted in myriad

diverse use cases for video data. Teleconferencing, live streaming, virtual reality (VR), 360° video,

home entertainment, high dynamic range content, 4K content, social networking, surveillance,

security, autonomous vehicles, mobile consumption, object tracking, and cloud gaming are just

a few examples. At the same time, advances in image sensing technology allow consumer-grade

video sensors to capture more data from the environment than ever before. Data compression is

simply a requirement to store, transport, and process the massive bit streams produced by these

sensors. As a result, video compression has become a tightly integrated component of the diverse

applications listed above.

1

However, as these two opposing trends continue, they expose a fundamental limitation of

the de facto system model for video distribution which treats compression as a black box abstraction.

On one hand, advances in video sensor technology necessitate tightly integrated compression that is

all but built-in to the sensor (i.e. compression must take place early). On the other hand, diverse,

sophisticated applications require that the encoding process is delayed until a tailored, unique

version can be produced to meet each receiver’s individual needs (i.e. compression must take place

late). Since compression is treated by the current model as a black box, there is no compromise

between these two opposing forces.

Instead, existing solutions rely on transcoding the video content away from its initial

representation. Transcoding either takes place in advance (i.e. at or near capture time), or it takes

place on-demand (i.e. at or near request time). Both of these options have significant disadvantages.

If transcoding takes place at capture time, the encoder must anticipate in advance the correct

encoding parameters that will be needed later by the receiver. This is the case with adaptive

streaming techniques like MPEG-DASH as well as scalable encoding approaches like SVC or

SHVC. Common coding parameters that a receiver might need to customize include target bit rate,

bit depth, region of interest, resolution, frame rate, etc. And as receivers and use cases continue to

diversify, we can expect that these parameters will be increasingly difficult to predict at encoding

time.

Alternatively, if transcoding takes place at request time, the client is able to direct the

process by specifying its needs exactly to the encoder as part of the request. But this approach

requires performing a full transcode of the original content in response to each client request.

Transcoding is a computationally expensive operation, so this approach does not scale well with the

number of clients. Thus, on-demand transcoding has not seen much traction in practice.

The tension between these two opposing strategies is quickly becoming apparent in existing

video infrastructure. Video distribution organizations like Netflix, YouTube, and Twitch have so

far been able to keep up with heterogeneous client requests through systems-based solutions like

MPEG-DASH. But these solutions require significant computational resources and storage, do not

2

scale well for large number of video producers, and are limited in their ability to handle diverse

requests. Furthermore, few organizations actually have the resources necessary to implement

existing solutions at scale, resulting in monopolization of the video distribution industry.

This thesis proposes an alternate model for video distribution which would eliminate many

of the issues induced by the tension described above. The key to the proposed model is to treat

the initial compressed representation of a video that was originally produced by the capture device

as the ground truth representation. To support heterogeneous requests for this data, the original

compressed representation should be adapted on demand to match the request, while maintaining

as much of the initial structure as possible. We call this approach top-down adaptation. Existing

systems handle adaptation by full transcoding, which is computationally expensive and is not

faithful to the original representation. Instead, the proposed approach relies on smart clients to be

able to understand their own needs and priorities when making requests for the video data. Clients

therefore are given the opportunity to specify precisely which subset of a video’s encoded content is

needed to achieve their application-level goals. The requested data is extracted and transmitted in a

way that retains the same structure as the original source encoding. This approach has dual benefits

of reducing per-request computational expense while also ensuring that the client receives data that

most closely reflects the ground truth initial encoding.

In support of these ideals, two creative new strategies for achieving top-down adaptation

are proposed, implemented, and demonstrated. Both approaches consider the initial representation

to be the ground truth, and work by adapting from this initial representation downward to meet the

receiver’s requested bit rate.

First, a fundamental, content-agnostic technique for top-down adaptation is proposed in

which adaptation is characterized as a symbol-dropping problem during the entropy coding process.

Since the proposed approach is applied at the entropy layer, it could be used to adapt any content

as long as it is represented as an abstract symbol stream. The key idea is for a deterministic,

symbol-wise rate controller algorithm to be shared across the entropy encoder and decoder. For

each source-coded symbol, the rate controller determines whether it will be encoded in the bit

3

stream. A value is included in the bit stream only if the least probable symbol could hypothetically

be encoded without exceeding the rate controller’s target bit rate. The symbols that are not included

are dropped from the bit stream, and may be sent to an optional, dependent side channel or other

layer instead. The symbol dropping process is replicated at both the encoder and decoder, so both

know whether each symbol is included. The result is a receiver-driven, adaptive encoding of the

initial symbol stream. To assess the feasibility of the approach with video data, entropy-based

adaptation is applied both to an H.265/HEVC bit stream and to a M-JPEG bit stream. The results

show that top-down entropy-based adaptation works well with non-predictive codecs like M-JPEG.

Conversely, content encoded with H.265/HEVC is highly predictive. Experimental results indicate

that standard-compliant H.265/HEVC symbol streams are too interdependent to support receiver-

driven adaptation. Thus, this work suggests that there is room for a new predictive video codec that

is more amenable to top-down adaptation. Development of such a codec is left to future work.

Despite the demonstrated need for receiver-driven adaptation, most video content will

continue to be encoded using highly predictive codecs for the foreseeable future. Thus, the second

section of this dissertation explores a new technique for supporting receiver-driven adaptation when

the initial encoding is highly predictive. In particular, a fast transcoding approach is proposed where

all prediction syntax elements are forwarded unaltered to the receiver, and the residual signal is

requantized to meet the target bit rate. While such an approach would normally accrue decoder drift

due to desynchronized decoded picture buffers, a drift compensation mechanism is implemented at

the transcoder which tracks the drift experienced by the decoder and adds the computed drift error

to the residual before requantization. The result is a fast transcoder where the encoded bit rate can

be specified dynamically by the receiver. This technique is successfully applied to H.265/HEVC,

proving that receiver-driven, adaptive, dynamic, bit-rate scalable compression is possible even with

predictive codecs.

Finally, an early-stage idea is explored in which the syntax elements of a pre-encoded

video are cataloged and exposed directly to clients through an API. An adaptive server decodes the

syntax elements from the source bit stream and stores them in an intermediate representation on

4

disk. Next, the syntax elements are addressed and exposed through an API. Instead of requesting

the entire stream at once, clients select the syntax elements that they wish to receive through a

carefully designed query language. To save bandwidth and avoid unnecessary computation, clients

can identify and request only the syntax elements that are useful to them. For example, clients may

choose to request syntax elements based on their semantic meaning within the stream, region of

interest in the video, timing, etc. Although an implementation of this system is left to future work, a

strategy for addressing syntax elements is proposed using a simplified custom toy hybrid prediction-

transform codec. A basic analysis of the example compression system shows that bandwidth and

computation can be saved when applied to certain targeted use cases.

The remainder of this chapter introduces and outlines the themes and motivations for the

work that constitutes this dissertation. First, evidence is presented to support the claimed opposing

trends of receiver diversification and tightly integrated compression. Next, the existing solutions to

these challenges are described in terms of the de facto black-box model of compression, with special

attention to the limitations of these methods. In contrast, a proposed alternate model is offered

which treats the original compressed representation of a video as the ground truth, and adapts

downward based on the requests of smart clients capable of understanding and articulating their

video needs. The proposed solutions are described in the context of this new model, culminating

in a thesis statement for the dissertation. Finally, an outline is presented for the remainder of the

dissertation.

1.1 Motivation

This dissertation identifies two video coding trends which have become apparent over

the past few years. These two opposing trends form the motivation for the proposed work. First,

video formats and use cases are rapidly diversifying, resulting in video clients that require their

own unique encoding of a given captured piece of content. Second, video sensor technology has

improved, and consumer-grade sensors now produce so much raw data that on-chip compression

circuits have become widespread. These two trends are detailed with evidence below.

5

1.1.1 Trend 1: Diverse Receivers

Every year, Cisco publishes an annual update to their Visual Networking Index, a public

white paper well-known in industry and academic circles for providing a sentinel perspective of

networking trends worldwide. Each annual update highlights different concerns, achievements, and

trends based on latest growth statistics. Industry organizations use these statistics to shape their

product offerings and services to meet anticipated consumer demand. In the past few years, Cisco

has been using their annual publications intentionally to quantify ways in which internet traffic is

currently diversifying. The 2017 and 2021 publications identify the following trends, which focus

specifically on video data (Cisco, 2017).

1. Staggering Growth – In 2021, one million minutes of video will be transferred over the

internet every second, constituting 82% of all IP traffic.

2. Live Streaming – While a lot of video traffic, including that from popular video streaming

providers like Netflix and Hulu, is prerecorded, the share of video that is produced and

streamed live is also experiencing growth; by 2021, Cisco projects that 13% of all video

traffic will come from live-streamed sources. The rising popularity of live-streaming

services like Facebook Live and Twitch; internet TV streaming services such as SlingTV;

and live video conferencing services like FaceTime, Skype, and Google Hangouts have all

contributed to make live-streaming an important branch of multimedia networking.

3. Mobile Receivers – Internet usage is quickly moving in the direction of mobile devices; in

2021, smartphone-initiated traffic is projected to exceed PC-initiated traffic on the internet.

Ultimately, as internet users’ insatiable desire for video content and mobile access grows,

smartphones will be increasingly relied upon to act as the primary recorders, storage units,

transmitters, and players of the video content their owners demand.

4. Machine-to-Machine Use – Machine-to-machine (M2M) connections are experiencing

rapid growth as interest in internet of things (IoT) and connected home appliances explodes.

6

Many of these systems use video, including video surveillance, healthcare monitoring,

transportation, autonomous driving, and package or asset tracking. By 2023, Cisco projects

that M2M connections will represent 50% of devices and connections that use the internet.

Ostensibly, these statistics evidence that the world now consumes more video content

through increasingly diverse devices, network connections, and experiences. Today, internet

users realistically expect to receive video in a wide variety of ways, including (1) low-latency

live streaming, (2) streaming over mobile or unreliable network connections, (3) playback on

high-quality 4K high dynamic range (HDR) displays, (4) live conferencing, and (5) playback on

low-powered smartphones or other mobile devices. Additionally, machines also play an active

role in consuming internet video through sophisticated vision algorithms that automatically infer

information about the captured scene as they “watch” video.

1.1.2 Trend 2: Tightly Integrated Compression

As light sensor technology has improved, even cheap, consumer-grade sensors now are

able to sense at high resolution and bit depth. Most new smartphones are equipped with sensors that

can capture video at 4K resolution or higher. So even as users are capturing more and more minutes

of video, the video itself is being produced at higher bit rates. As an example, consider 4K video

data captured at 60 frames per second, with 3 color channels and a bit depth of 8. The resulting bit

rate for this uncompressed, raw 4K video is

8× 3× 3840× 2160× 60 = 11.9 Gbps (1.1)

This represents nearly 1.5 GB for every second of video captured. Not only is this a huge amount

of data to store, but the bit rate exceeds the write speed of SATA bus interface technology. Thus,

compression is simply a necessity before any captured data can be stored.

To solve this problem, compression must be applied before the video is even stored.

This is exactly the approach taken by consumer-grade video sensors, which are equipped with a

7

hardware-based compression chip that takes as input the raw video data and produces a compressed

representation as output. At the time of publication, H.264/AVC is the most common compressed

format used by these hardware chips, but H.265/HEVC is gaining market share. The raw video data

itself never actually makes it off the sensor chip. Instead, the first representation obtained off the

sensor is the compressed-domain bit stream produced in the hardware.

At a high level, the increases in data bit rates that have followed from advances in sensing

technology have forced compression to become tightly integrated in all video applications. A

video’s entire life cycle must be in the compressed domain, from the moment of capture to the

instant before it is displayed. Furthermore, any transcoding operation that occurs after the initial

encoding degrades the quality of the reproduction. This suggests that the ground truth representation

of video data is its initial compressed representation. All other representations—including both

transcoded compressed streams and decoded pixel-space representations—can be interpreted as

alternate renderings of the original.

1.1.3 Growing Tension

The recent trends in video coding system design are in opposition to one other. Advanced

use cases require compression that is tightly integrated in the application life cycle. No longer is

a single encoded representation of a video suitable for all use cases. As receivers become more

sophisticated and diverse, each one needs a different unique subset of the original captured video

stream. The naive solution of sending all captured data to every receiver is not feasible, since

receivers are typically limited by their available network bandwidth. Thus, separate encodings must

be created for different types of receiver, based on which subset of video data is most relevant to

their needs. If it is possible to predict the eventual use case for a video’s content, this process can

be performed in advance, before the requests are made. But as receivers continue to diversify, it

becomes more difficult to predict their needs. And some applications, including some VR systems,

require a tight dynamic feedback loop between the display device and the source. In extreme cases,

extraction and compression must take place on a per-user, per-request basis.

8

Clearly, advanced receivers are better suited when video compression takes place later,

after more information is known about the use case. However, delaying compression until request

time—as an advanced receiver would prefer—is not an option either due to the sheer size of raw,

uncompressed video. With limited exceptions, video data is almost always immediately compressed

by its sensor at capture time. This is because commodity sensor technology has advanced to the

point where even cheap sensors produce data at excessively large bandwidths. Writing and storing

the uncompressed video data produced by these sensors is impossible with SATA bus technology.

Therefore, commodity sensors are designed with integrated on-board hardware compression chips

that produce an encoded representation of all captured data. And since this encoded representation

is the only one that leaves the chip, it represents the ground truth representation.

Thus, an inevitable tension exists in the current system design for video compression that

will only continue to worsen. On one hand, video must be compressed early as a matter of necessity,

just to make storage and transfer of the captured data feasible. On the other, diverse receivers are

best served when compression takes place late, after the specific application and use case goals are

known. Ultimately, the resolution between these two opposing goals is that the initial compressed

representation of video content must be adapted to suit each application’s needs. And as the trends

of receiver diversification and tight integration of compression continue into the 2020’s, the need

for adaptation strategies for video data that are efficient and effective has never been more clear.

1.2 Problem Definition

To aid in the presentation of existing strategies for video adaptation, it helps to first clearly

define the problem. Therefore, the following steps outline the envisioned life cycle of video content,

from the moment it is captured to the time it is displayed. In particular, adaptation is defined as an

intermediate step whereby the captured content is adapted from its source representation to meet

the needs of the client.

9

1. Video Source – Raw, uncompressed, digital video content is originally created by a light

sensor, screen capture, 2D or 3D rendering, or other video producer device. The content

represents natural video and exhibits both spatial and temporal cohesion.

2. Initial Compression – The source device is designed to produce an initial compressed

representation of the video, a process that likely takes place in hardware. The compression

parameters used to guide creation of the initial representation generally cannot be controlled

by the adaptation system.

3. Adaptation – At some point, the initial compressed representation is adapted to fit its use

case. This may involve transcoding to adjust coding parameters such as bit rate, resolution,

bit depth, frame rate, etc. By the time adaptation takes place, at least some knowledge of

the video’s use case exists so that the parameters can be tuned appropriately. If the use

case can be anticipated, adaptation might take place before a request is made.

4. Heterogeneous Requests – Either asynchronously or synchronized with the capture time

of the video, one or more distributed client devices make a request for the video data.

Each client has a different application-level goal for requesting the video and different

computing resources available for achieving this goal. Based on the client’s profile, they

may not need all data originally captured by the source. Depending on the capabilities of

the system, a client may be able to express the subset of data that it needs, and the provider

may be able to extract and respond with only the requested information. This can conserve

network bandwidth as well as computing resources for both the client and the provider.

5. Smart Clients – Ultimately, the video data is received by the client, decoded, and used in

the application. Traditionally, the primary purpose of video is to be displayed to a human.

However, the growth of M2M applications is challenging this assumption. In the future,

machine-endpoint applications may become the dominant use case.

10

1.3 Existing Approaches

This section describes the existing strategies for video adaptation. Existing adaptive

techniques are characterized by the assumption that data compression is a black-box abstraction,

and that the initial encoding of a video is disposable. Adaptation is generally achieved entirely

by the system layer instead of within the compression format. These approaches can generally be

classified into three categories: scalable coding, adaptive streaming, and full transcoding.

1.3.1 Approach 1: Scalable Coding

Scalable coding represents the only category of existing approaches in which adaptation

is cast as a compression problem. Scalable coding works by encoding video data in a way such

that certain designated subsets of the encoded bit stream can be separately decoded to produce

an incomplete—but still useful—approximation of the stream. The most common organizational

strategy for scalable coding is a layered approach, where the encoded data is separated into a base

layer and a series of enhancement layers. The base layer must be received by every decoder, and

provides the lowest quality decodable approximation of the stream. The enhancement layers can be

decoded and incorporated with the base layer to improve the reconstruction quality. For instance,

one layer may provide the necessary information to increase the resolution of the reconstructed

frames, while another doubles the frame rate. Decoders can select which layers to receive based on

their available resources and application needs. If all layers are received, the full-quality stream can

be recovered.

Scalable coding has a long history in video compression research, and has been successfully

demonstrated as an extension for many existing codecs including H.264/AVC, H.265/HEVC, and

AV1. Despite this, scalable coding has not seen much use in practice. A scalable encoding generally

is created for a given video before any client requests are made. The parameters that should be

client-scalable therefore must be predicted ahead of time. This means scalable coding approaches

are unable to provide fully dynamic, receiver-driven adaptation.

11

1.3.2 Approach 2: Adaptive Streaming

Adaptive streaming, also called simulcast, is the practice of independently transcoding

a single video multiple times, producing a set of independent encodings of the same content.

Presumably, each independent encoding is created with a different set of coding parameters,

effectively resulting in a set of pre-created options for a client to choose from. All of these options

are hosted by a simple file server, alongside a text-based manifest file which simply lists the available

encodings. Clients receive the manifest file first, and use it to select and request the encoding that

best matches their resources and use case. By segmenting all encodings at synchronized points in

time, clients can effectively switch between the different available encodings dynamically, during

streaming.

By far, adaptive streaming is the dominant adaptive technique for use in practice. Since

requests can be handled by a simple file server, video can be hosted on content delivery networks

(CDNs) for fast, distributed delivery that scales well with the number of requests. Like scalable

encoding, adaptive streaming requires that the coding parameters needed by clients can be predicted

ahead of time.

1.3.3 Approach 3: Full Transcoding

Full transcoding strategies place a full transcoder in between the content source and the

requesting client. Thus, the initial representation produced by the sensor is completely thrown

out and replaced with a new encoding according to the client’s needs. Full transcoding may take

place before a request is made if the client’s needs are predictable; or, in fully receiver-driven

dynamic situations, transcoding may take place on-demand. On-demand full transcoding places a

large per-request computational cost on the consumer, so it does not scale well with the number of

requests.

12

Source Device

Sensor

Video Encoder

Client 1

Client 8

Full Transcoder

Video
Decoder

Video
Encoder

Scalable Encoder

Video
Decoder

Scalable
Encoder

Client 2

Client 3

Client 4

Client 5

Client 6

Client 7

DASH Encoder

Video
Decoder

Encoder

Encoder

Encoder

Initial
compressed

representation

Storage and/or
transfer

Figure 1.1: This figure depicts the de facto black-box abstraction model for video compression
and adaptation. Video data is initially captured and immediately encoded by a sensor. Clients that
have the available bandwidth can receive and use this initial encoding. For other clients, the initial
encoding must be adapted to their use case and available network bandwidth. Three adaptation
strategies are depicted: scalable encoding, simulcast with MPEG-DASH, and full transcoding. None
of these adaptive approaches support reuse of the initial representation.

13

1.3.4 System Model Diagram

Figure 1.1 depicts a system model that illustrates all three existing adaptive approaches

described above. Visual data is captured by a light sensor and immediately is processed by an

accompanying hardware encoder to produce an initial compressed representation bit stream. It

is assumed that clients are distributed from the capture device. If no adaptation is needed (or if

the client has sufficient bandwidth and can perform adaptation by itself), then the encoded video

data can be forwarded directly to the client, as is the case with Client 1. For situations where

adaptation is required, the three existing approaches are shown. All three approaches begin by fully

decoding the video to pixel space, thereby discarding the initial encoding. Scalable systems support

adaptation by generating a scalable encoding of the pixel-space video data in advance of requests.

Adaptive streaming (e.g. MPEG-DASH) independently encodes the video multiple times and stores

the resulting representations to be streamed by a file server. Full transcoding simply re-encodes the

pixel-space data according to the client application’s needs.

1.3.5 Limitations

The existing approaches to video adaptation are based on a fundamentally misaligned

view of the video life cycle, in which the initial compressed representation is disposable and video

compression is treated as a black-box abstraction. All three approaches immediately throw out the

initial compressed representation, in favor of producing a new representation from pixel space. This

is simply an unsustainable approach to adaptation. Recent increases in sensor technology have

translated into increases in video bandwidth. To keep up, video codecs have become more complex

and tightly inter-dependent so as to maximize compression performance. This has resulted in two

effects. First, the initial encoding of a video is even more important than before, since its prediction

representation is now more sophisticated and provides semantic information about the captured

environment. Second, the process of video encoding is now computationally more taxing than ever

before.

14

These two effects are the nail in the coffin for existing approaches. Existing adaptation

strategies dispose of the initial representation and re-encode from scratch. This is inefficient and

unsustainable on two levels: (1) it incurs the high computational cost of encoding from scratch, and

(2) it throws away the semantically useful information embedded in the initial encoding about the

captured environment. The existing approaches will simply always be disadvantaged due to these

design choices.

So far, major video distribution organizations including YouTube, Twitch, Netflix, Disney+,

Amazon, and others have been able to mask these fundamental systemic flaws through massive

investments in computational infrastructure. With enough computing resources, servers can simply

pay the price for the inefficiency incurred by re-encoding content using the existing solutions.

However, this does not scale well with the number of video producers. As the trends of increasing

coding complexity and diverse receivers continue, existing solutions will continue to strain our

infrastructure. Furthermore, the high cost of deploying the infrastructure necessary to implement

existing solutions will price out smaller video distributors from competing. Already, the video

industry is monopolizing around a small number of powerful video distributors who have the

resources to keep up.

1.4 Proposed Approach

As described in the previous section, the fundamentals of the existing approaches to video

adaptation are misaligned with recent trends in video capture and applications. Since these trends

show no sign of slowing down, it’s time to consider alternate system models that can alleviate the

tension that is currently building. This dissertation proposes and evaluates one such model, built

upon the following core assumptions about video systems.

• Receivers are diverse – As receiver technology continues to advance, receivers are diver-

sifying in many ways. Many of the old assumptions about the capabilities and applications

of a video receiver are no longer accurate. Despite this, receivers are unifying around one

15

commonality: they are becoming smarter and more capable. In the future, receivers will

be more aware of their own needs for video content than any encoder is.

• Source encoding is ground truth – With the incorporation of on-sensor hardware en-

coders, a consumer-grade video’s life cycle is spent almost entirely as an encoded stream.

This suggests that the compressed representation of video is, in fact, the primary repre-

sentation. The uncompressed, pixel-space representation is merely an alternate rendering

of the source data. Furthermore, whenever a video undergoes a transcode operation, the

output is farther away from the initial ground truth representation.

• Applications are sophisticated – Smart clients of the future may be capable of under-

standing and using the compressed-domain syntax elements of an encoded video stream to

help achieve their diverse application goals. For example, motion vector information is

encoded in every video, but is not usually exposed by decoders. If it were available, smart

clients could possibly use this data to infer in-scene motion without needing to decode the

entire stream.

1.4.1 System Model Diagram

Based on these ideals, this dissertation proposes a new system model for video compression

and adaptation. The new system treats the source encoding for video data as the ground truth,

and implements adaptation as a top-down, receiver-driven process. All adapted versions of the

video retain the original semantically valuable prediction information from the initial encoding.

Furthermore, semantic scene information like motion vectors can be exposed to smart clients to be

used for more advanced application goals.

By treating the initial encoding as ground truth and adapting downward, the proposed

model completely avoids the limitations of existing techniques. Full pixel-space transcoding never

takes place in the proposed system. This means the computationally expensive encoding process is

skipped entirely.

16

Source Device

Sensor

Video Encoder

Client 1

Client 4

API for Syntax Elements

Symbol Dropping

Symbol
Dropper

Client 2

Client 3

Residual Transcoding

Rate controller

Drift-Compensated
Fast Transcoder

Initial
compressed

representation

Target rate, prioritized
regions, etc.

Syntax
Elements

Entropy
Encoder

Requested syntax
elements

Figure 1.2: This figure depicts the proposed model for video compression and adaptation. Three
adaptation strategies are proposed, all of which respect the original compressed representation as
the ground truth and work by adapting downward. The first approach treats adaptation as an abstract
symbol-dropping problem in the entropy coding layer. The second strategy adapts by requantizing
the prediction residual signal while compensating for decoder drift. Finally, the third technique
extracts and indexes the originally encoded syntax elements, exposing them to clients through an
API.

17

Figure 1.2 depicts the proposed system model. Three novel, top-down, receiver-driven

adaptation strategies are illustrated: entropy-based symbol dropping, drift-free residual transcoding,

and a receiver-driven syntax element API. Unlike the existing model depicted in Figure 1.1, none of

these proposed adaptation strategies begin by discarding the initial representation. Instead, they

adapt downward from the initial encoding in a receiver-driven way. Each of these ideas is briefly

described in the next section, along with their intellectual merit.

1.4.2 Contributions

In support of the model presented in Figure 1.2, this dissertation contributes the following

three unique strategies for achieving top-down, receiver-driven adaptation.

Entropy Symbol Dropping

First, I propose a new, fully entropy-based adaptation strategy. The proposed technique

uses an abstract symbol stream as its source model, which means it is not specific to video data and

could be used to achieve adaptation for any stream of data. The technique revolves around the idea

of strategic symbol dropping. To achieve adaptation, a synchronized, deterministic rate controller

algorithm is reproduced by both the encoder and decoder. For each originally encoded source

symbol, this rate controller determines whether that symbol should be included in the adapted

stream. This decision is made without knowledge of the symbol’s value (since the decoder must

be able to follow along), but can incorporate knowledge of the symbol’s estimated probability

distribution. If the rate controller determines that there is enough bandwidth available to include the

symbol (even at its worst-cast cost), then the symbol is encoded; otherwise, it is dropped from the

bit stream. Decoders therefore know exactly which symbols are received, and which could not be

signaled while still meeting the requested bit rate.

This approach is notable for its flexibility. By allowing the receiver to supply the rate

controller algorithm, the process of selecting which symbols to include can be completely receiver-

driven. Alternatively, a series of predetermined rate controllers can be applied instead to produce

18

a scalable, layered encoding of the initial symbols. Either way, adaptation always prioritizes the

original encoding with this approach. Receiving more symbols in the adapted bit stream directly

corresponds to a closer decoded reconstruction of the original stream. By receiving all symbols, a

decoder can reconstruct the original stream exactly. Therefore, the resulting adaptation is top-down

and treats the initial encoding as ground truth.

To evaluate the performance of entropy-based adaptation on encoded video data, two

experiments are performed. First, an H.265/HEVC bit stream is adapted by decoding the constitute

syntax elements from the initial encoding, and then layering these same syntax elements in the

adapted version. The results successfully demonstrate that top-down adaptation is possible with

video data, as the adaptive rate-distortion curve produced is correctly anchored at the top. However,

the tight inter-dependence of H.265/HEVC symbols limits the coding efficiency of this approach.

Most symbols, including all prediction and partitioning syntax elements, must be included in the

base layer in order for a decoder to even be capable of decoding the rest of the stream. Furthermore,

any layered syntax elements not received by a decoder introduce drift in the decoder’s picture

buffer due to the predictive coding structure used by H.265/HEVC. This drift quickly dominates the

recovered signal for decoders that receive only the lowest layers.

These results suggest that the structure of H.265/HEVC is overly inter-dependent, making

it a poor candidate for top-down adaptation. In the future, new predictive video codecs could be

better designed with top-down adaptation in mind. However, in the meantime, top-down adaptation

can be applied to non-predictive video codecs with much better results. This is demonstrated by

applying layered, entropy-based adaptation to the symbols of a M-JPEG coded video. M-JPEG

streams consist entirely of I-frames and do not use predictive coding. The results clearly show that

top-down adaptation works well in a non-predictive environment. The adaptive rate-distortion curve

provides a smooth trade-off between rate and distortion. The receiver is able to drive adaptation by

indicating exactly which portions of the video in which it is interested. And since the decoder is able

to perfectly recover the complete original stream by receiving all layers, this approach successfully

treats the source representation as the ground truth as desired.

19

Drift-Free Residual Transcoding

The results of the entropy-based symbol dropping experiment confirm that as currently

defined, existing predictive codecs like H.265/HEVC produce a highly inter-dependent symbol

stream which is not particularly well-suited to an adaptive approach. Despite this reality, widely

distributed hardware encoders all but ensure that most video content will be initially encoded in this

way for the foreseeable future. Therefore, it is worthwhile to explore top-down adaptation strategies

that are amenable to highly inter-dependent, predictive coding.

To this end, the next major contribution of this dissertation is a drift-compensating residual

transcoding technique for H.265/HEVC encoded video. Two salient observations motivate this

approach. First, the prediction syntax elements of an H.265/HEVC stream represent the most

important semantic data from the ground truth encoding. Thus, this information should be preserved

by all adapted versions of the content. Second, decoder drift was the main antagonist of symbol

dropping with predictive coding. Therefore, compensating for this drift is crucial to achieve

reasonable coding efficiency.

The proposed technique allows a receiver to specify the target bit rate for the adapted

stream. For each frame, the original source prediction information is directly re-used by the adapted

version. This achieves the goal of the source encoding as ground truth. The residual information

is requantized by the provider to meet the requested target bit rate. Decoder drift is tracked by

the transcoder and compensated during requantization. The resulting system is a fast transcoder

which allows the receiver to dynamically drive the exact target bit rate, and operates at per-request

complexity similar to that of a decoder.

The drift-compensated residual transcoder is implemented and applied to a test set of

H.265/HEVC coded source streams for evaluation. The adaptation rate-distortion curve achieved

shows a smooth trade off between rate and distortion that is anchored at the top. At lower bit rates,

the adapted stream is unable to maintain the same coding efficiency as a comparable non-adaptive

encoding. This is because lower bit rates can sometimes save bits and achieve better compression

performance using a less precise prediction. However, signaling a less precise prediction would

20

undermine the stated goal of retaining the source encoding in all adapted representations. Thus, in

our view, the coding efficiency penalty associated with reusing the original prediction is more than

offset by the benefits achieved with a top-down approach that treats the initial encoding as ground

truth.

Syntax Element API

Finally, the last contribution of this dissertation is a prospective system in which the

encoded syntax elements from a video’s source representation are cataloged and exposed by a

provider through a well-defined API. Such a system would allow for truly receiver-driven adaptation,

where receivers identify and request the exact syntax elements—or groups of syntax elements—that

they need. For example, a motion-sensing M2M application could request only the motion vectors

of an encoded video, and use them to infer whether significant object motion is present in the scene

at each frame. This could result in massive bandwidth and complexity savings for targeted use

cases.

This dissertation does not implement or evaluate such an approach. Instead, its philosophi-

cal merits are discussed and certain specific use cases that could potentially benefit from such an

approach are outlined.

1.5 Thesis Statement

As digital video sensors improve, the massive amount of data they produce necessitates

tightly integrated data compression. At the same time, video applications and receivers are diversi-

fying and becoming smarter. To better support the unique needs of smart receivers, diverse displays,

and advanced applications, general-use video systems should produce and offer receivers a more

flexible compressed representation that supports top-down adaptation strategies from an original,

compressed-domain ground truth.

21

1.6 Dissertation Overview

The remainder of this dissertation is organized into the following chapters.

• Chapter 2 describes the technical innovations of the late twentieth century which resulted

in the hybrid prediction-transform video coding structure. These advances propelled digital

video to become the dominant medium for visual technology, and remain integral to all

modern video compression formats today.

• Chapter 3 outlines the heterogeneous client problem, which refers to the fact that capture

devices, displays, and use cases for video are rapidly diversifying. It makes the case that

diversification is causing strain on existing compression resources. Finally, it outlines

existing strategies for adapting pre-encoded video to the needs of receivers.

• Chapter 4 describes the fundamental challenges associated with developing a scalable,

predictive codec. It highlights the importance of tracking the received content available for

reference at the decoder, and explains how various associated challenges can be mitigated

even in a receiver-driven environment.

• Chapter 5 offers a novel, fundamental strategy for content adaptation that integrates with

arithmetic entropy coding. The resulting approach is content-agnostic and could be used to

adapt any data source coded as an abstract stream of symbols. To evaluate the system on

both predictive and non-predictive codecs, it is applied to both H.265/HEVC and M-JPEG

coded streams.

• Chapter 6 takes a different approach toward solving the heterogeneous client problem,

in which pre-encoded video content is adapted on-the-fly in response to each client’s

request. The proposed technique accounts for decoder drift, ensuring that the reconstruction

recovered by the decoder exhibits near-optimal rate-distortion performance.

• Chapter 7 describes future work: the proposed development of a fully receiver-driven

compression system in which a video’s constituent syntax elements are exposed through

22

a HTTP API. Receivers can request the exact syntax elements they need through an

expressive syntax element query language.

• Chapter 8 concludes the dissertation by reviewing the proposed techniques and highlight-

ing the potential impact of the completed efforts.

23

CHAPTER 2

Hybrid Video Coding

A central claim of this thesis is that video systems can provide clients with increased

efficiency and flexibility by better leveraging the underlying representation of the data recorded at

the video source, instead of treating video compression as a black box. All modern video standards

generally employ a similar “hybrid” model for representing and compressing video data that

combines multiple independent techniques taken from the image compression, signal processing,

and data representation communities (Chen et al., 2001). This section presents a historical overview

of the most important elements of the digital video model, with emphasis on areas of particular

significance to later chapters.

2.1 The Bandwidth Challenge

In the early days of digital video systems research during the mid-twentieth century,

a major challenge was the massive amount of data required to represent a digital video signal.

Uncompressed, raw video data is well-known to take up incredible amounts of bandwidth; for

perspective, a 1920x1080 high-definition video camera that samples incoming light at 30 frames

per second (fps) with 8 bits of resolution per color channel produces a data stream of 1.49 gigabits

per second (Gbps) of video. At this order of magnitude, raw digital video is simply an impractical

technology for all but extremely limited use cases.

For most of the twentieth century, the bandwidth challenge limited the feasibility of digital

video, and prevented it from overtaking analog video as the dominant content technology. Given the

available technology, analog was simply a more efficient format than digital, both for video storage

and transfer.

24

Resolution Color Depth Refresh Rate Data Rate
480p 640 x 480 24 bits 30 fps 221 Mbps
720p 1280 x 720 24 bits 30 fps 663 Mbps

1080p 1920 x 1080 24 bits 30 fps 1.49 Gbps
60 fps 2.98 Gbps

4K 3840 x 2160 24 bits 30 fps 5.97 Gbps
60 fps 11.9 Gbps

Table 2.1: Data rates for selected uncompressed video formats

Things began to change in the 1970’s with the development of the hybrid prediction-

transform model for representing digital video (Chen et al., 2001). This huge leap forward was

the combination of two key technical innovations for video compression: motion-compensated

prediction and the discrete cosine transform. Together, they form the hybrid prediction-transform

model for digital video which has been the basis for all widespread digital video formats ever since

(Fang et al., 2006).

Armed with motion prediction and the discrete cosine transform, video compression was

well-equipped to solve the bandwidth problem by the 1990’s, propelling digital video to become the

dominant technology ever since. These two crucial contributions are described in detail below with

important historical context.

2.2 Transform Coding

One of the major technical achievements that helped solve the bandwidth problem and

enable the digital revolution was the development of the discrete cosine transform for decorrelating

visual data into its frequency components. The discrete cosine transform is an example of transform

coding, a class of compression techniques where a relatively simple, reversible transformation is

applied to raw input data before any compression is applied. The high-level goal of applying a

transform is to map the source data into a different—yet equivalent—space where the most relevant

qualities of the signal have been decorrelated into independent dimensions. Transform coding is

most often applied to digital signals that produce numerical values which can be easily transformed

25

by an invertible mathematical function. Common domains for this family of techniques include

digital audio, image, and video.

Since the transform function is generally reversible, it is a lossless operation that imparts no

compression on the data by itself. Instead, its sole purpose is to alter the representation of the source

signal so that more and less important features are isolated into separate dimensions. Selecting a

suitable transform to exhibit this behavior obviously requires substantial domain knowledge about

the particular signal being compressed, as well as an understanding of the end goal of the data. In

other words, transform coding is only applicable when one knows (1) how the signal will ultimately

be used, and (2) which dimensions of the data contribute most to the success of that goal.

Once an appropriate transform has isolated the important features as defined by the ap-

plication, a lossy compression algorithm can be applied to the data in transformed, decorrelated

space. The lossy process makes strategic decisions about how much to approximate the transformed

features in the final representation, taking into account target compression goals as well as how

much each feature contributes to the overall application goal (i.e., how “important” each feature is).

Coarser approximations of feature values yield higher compression and lower fidelity, while finer

approximations result in lower compression but a more faithful reproduction.

The end result of applying lossy compression is an approximated representation of the

transformed signal. Any loss incurred by the lossy step is unrecoverable, since the approximated

features in transformed space will likely no longer map to their original values. However, since the

approximation is applied to the decorrelated signal, it can be targeted to the features that have the

least effect on the end goal of the system.

Modern digital video systems generally employ transform coding to apply controlled loss

at two strategic points in the overall compression system. First, the discrete cosine transform (DCT)

is used to map still, two-dimensional image data into frequency space, where quantization can then

be applied to target loss at particular frequencies. Second, a color space transform maps RGB pixel

data measured at the source into the YCrCb color space, where subsampling can target loss in the

26

chromatic dimensions of the signal. Below, these four techniques—DCT, quantization, color space

transforms, and subsampling—are described in greater detail with historical context.

2.2.1 Discrete Cosine Transform

The discrete cosine transform (DCT) is a reversible mathematical operation such that, when

applied to 2D still visual data like an image or video frame, decorrelates the data by frequency—

that is, it separates high frequency texture information from low frequency texture information.

Through qualitative analysis, researchers discovered that the human visual system (HVS) tends

to overemphasize low frequency textures when assessing overall quality of visual data (Winkler

et al., 2001). In other words, eliminating the high frequency textures of a visual signal results in the

lowest overall reduction of perceived quality when rated by a human observer, in comparison to

eliminating all frequencies equally or only eliminating low frequencies.

These engineers also recognized that the human tendency to disregard high frequency

textures can be exploited to reduce the total amount of digital video data transferred or stored, at

minimal perceived quality loss. Instead of storing the exact value of every high frequency texture

coefficient in the signal, compression algorithms could simply retain approximations for high

frequency data with low precision, when convenient. And, at least according to their experiments,

human viewers would be unlikely to perceive the difference.

Nasir Ahmed was the researcher who originally proposed using the discrete cosine trans-

form as the mechanism for separating high frequency and low frequency texture information in

1972 (Ahmed, 1991). Since then, other mathematical frequency transforms have also been adapted

to achieve a similar effect: the discrete wavelet transform (DWT) (Jensen and la Cour-Harbo,

2001), the fast Fourier transform (FFT) (Rao et al., 2010), and the discrete sine transform (DST)

(Jdidia et al., 2021) are well-known examples. These other transforms have secondary benefits that

make them an attractive alternative to the DCT for certain situations. But ultimately, all of these

transforms can be used to achieve the same primary effect: to separate low frequency data from

high frequency data so that they can be represented differently by a compression algorithm.

27

Figure 2.1: These 64 matrices represent the DCT basis functions used by JPEG to apply the 8x8
discrete cosine transform. Once a given 8x8 patch of pixels is transformed, the resulting DCT
coefficients correspond to the weights of their associated basis functions depicted here.

For a square, 2-dimensional matrix I with dimensionsN×N , the discrete cosine transform

is defined by

DCT(x, y) =
1√
2N

C(x)C(y)
N−1∑
i=0

N−1∑
j=0

I(i, j) cos

(
(2i+ 1)xπ

2N

)
cos

(
(2j + 1)yπ

2N

)
(2.1)

where C(ξ) is

C(ξ) =


1√
2
, if ξ = 0

1, if ξ > 0

(2.2)

This is the formulation of the DCT used by JPEG (Wallace, 1992).

2.2.2 Quantization

Quantization is the primary method by which coding systems apply lossy compression

to data. Quantization works by defining a mathematical quantizer function and a corresponding

inverse quantizer function, which map signal components to and from a compressed representation

28

Compressed
Space

Source
Space

Reconstructed
Space

QP QP
-1

Figure 2.2: An abstract illustration of quantization is depicted. The quantizer function, QP, maps
from source space to a compressed space with lower cardinality. The inverse quantizer function,
Q−1P , maps from compressed space back to source space. The quantization process causes some
points to be aliased during reconstruction, inducing both compression and loss.

space. By definition, the compressed space produced by a quantizer must have lower cardinality

than the input space. This forces the quantizer to alias some distinct inputs to the same point in

compressed space, and the inverse quantizer to choose a representative element in input space for

each aliased point in compressed space. In other words, quantizing a value loses precision (see

Figure 2.2).

The quantization strategy used by digital video systems is simply rounded division of

bounded real input values by a positive integer constant (Ding and Liu, 1996). Mathematically, this

can be expressed as follows. For input matrix X and constant quantization matrix P, define the

quantizer function QP by

QP(X) = round (X / P) (2.3)

where / represents element-wise division. The corresponding inverse quantizer function is Q−1P ,

defined by

Q−1P (X) = X ∗ P (2.4)

29

where ∗ represents element-wise multiplication. Not only is this strategy computationally simple,

but it also provides an easy way to control the amount of loss incurred for each component of the

input signal. Each element of quantization matrix P determines the cardinality of the quantizer’s

range for that signal component, and therefore controls how many values in input space will alias to

the same point in compressed space. By intentionally setting the values in the quantization matrix,

loss can be targeted towards selected signal components.

Intuitively, decreasing the magnitude of an element in P results in the following behavior

for its corresponding signal component:

1. Increased cardinality in compressed space

2. Fewer distinct input values aliased to the same point in compressed space

3. Increased accuracy of recovered, inverse-quantized values

4. Decreased effective compression

Increasing the magnitude of elements in P has the opposite effect. This inverse trade-off between

accuracy of reproduction and achieved compression is a fundamental mechanism of all lossy data

compression.

Quantization has wide applications throughout signal digitization and processing for its

ability to easily trade off reproduction accuracy for data compression. In the field of image and

video compression, which is most relevant to this thesis, it is primarily used to apply controlled loss

to the coefficients produced by the DCT or equivalent frequency transform.

A typical image transform and quantization process is depicted in Figure 2.3. First, an

image consisting of pixel intensity values in the range 0-255 is spatially segmented into two-

dimensional, square coding blocks; 8x8, 16x16, 32x32, or 64x64 pixels are common block size

choices. Each block serves as a distinct input data frame for the transform and quantization

process. Next, a frequency transform like DCT is applied to each block, producing a same-sized

corresponding output block of transformed, real number frequency coefficients. The transformed

30

DCT IDCTQP QP
-1

P
Source pixel

intensities

Transformed
frequency coefficients

Recovered pixel
intensities

Quantized coefficients
for transfer or storage

Recovered
frequency coefficients

P

Figure 2.3: This block diagram illustrates how frequency transform and quantization are used by
digital image and video systems to apply controlled loss to image signals. Input values are two-
dimensional blocks of bounded pixel intensities, for example an 8x8 block of integers ranging from
0 to 255. P represents a quantization matrix containing a quantization parameter for each frequency
coefficient in the block. The transformed and quantized signal may be stored or transferred before it
is transformed back into original space.

frequency coefficients are then quantized using a predefined quantization matrix P, which defines

how much each coefficient will be quantized. The values in the quantization matrix are set so that

high frequency coefficients of less visual importance are quantized more heavily, and more important

low frequency coefficients are quantized less heavily. At this point, the quantized coefficients may

be transmitted or stored at reduced data rates until a reproduction is desired. At that time, the

inverse quantization can be applied—using the same quantization matrix as before—followed by

the inverse DCT transform. The result is a recovered approximation of the original signal, ready to

be displayed or used by the application.

2.2.3 Color Space Transform

In addition to the discrete cosine transform, modern video coding systems also employ a

color space transform to decorrelate color image data into its luma (i.e. relative brightness) and

chrominance (i.e. color) components.

Humans are trichromatic organisms. The human eye has three types of “cone” receptor

cells, which are sensitive to three overlapping regions of the visible light spectrum: one dominated

by red wavelengths, one by green, and one by blue. This biological reality has had great influence

31

over the theory and design of visual systems, including image sensors, color representation, and

display technology. Color itself is merely a construct used to describe how humans perceive different

spectra of visible light. The most natural way of categorizing color is by describing the red, green,

and blue components present in a light spectrum, just like the human eye does. This approach

was first explored in the 1920s, culminating in the publication of the CIE 1931 color spaces and

marking the first quantitative attempt at mapping colors to three-dimensional space according to

human physiological perception (Ohno, 2000).

Today, image sensors and displays still model light as a combination of red, green, and

blue components (RGB). This makes sense, since light is physically captured and emitted by these

devices as combinations of red, green, and blue. Video compression systems, on the other hand,

have no fundamental tie to an RGB representation. They benefit by transforming to a different color

space where brightness has been decorrelated from the rest of the signal.

Isolating brightness information in video data has two benefits. Most importantly, the

HVS is known to be more sensitive to errors in brightness when assessing quality of visual data

(Winkler et al., 2001). By storing brightness separately, compression algorithms can easily target

loss towards the other, less visually important aspects of the signal. But the other reason brightness

is stored separately is historical. In the mid-twentieth century, older black-and-white cathode ray

tube (CRT) displays were being replaced by color CRTs. To take advantage of these new displays,

engineers needed a backwards-compatible media format for color video that would continue to

work on older, black-and-white displays. The most straightforward solution was to multiplex a

backwards-compatible, luma-only analog signal together with the color data as a side channel.

This prompted researchers to develop non-RGB color spaces and corresponding transforms (Szedo,

2006).

Color space transforms can bridge the gap between the way light is sensed or displayed

(i.e. as red, green, and blue triplets) and the way it is stored or transmitted (i.e. as luma and

chrominance triplets). To this end, numerous non-RGB color spaces have been developed since

the 1970’s, including YUV, YPbPr, YCbCr, HSV, and HSL. While these spaces have varied uses

32

across different devices and domains, they all decorrelate brightness into its own dimension. YCbCr

is used most frequently in image and video compression literature, and is standardized by the

ITU-Recommendation BT.709 for use by digital HDTV applications (Pedzisz, 2013). The space is

defined as a linear transform of RGB space according to the following transformations:


Y

Cb

Cr

 =


0.2126 0.7152 0.0722

−0.1146 −0.3854 0.5

0.5 −0.4542 −0.0458



R

G

B

 (2.5)


R

G

B

 =


1 0 1.5748

1 −0.1873 −0.4681

1 1.8556 0



Y

Cb

Cr

 (2.6)

Here, (R,G,B), (Y,Cb, Cr) ∈ [0, 1]3, Y is the luma component of the color, and Cb and Cr are the

chrominance components. Cb stands for chroma-blue and Cr stands for chroma-red, representing

roughly the offset from luma required to recreate the blue and red color values of the given light

sample.

2.2.4 Chroma Subsampling

After image data is decorrelated into its luma and chrominance components, a lossy

compression algorithm can apply loss to the chrominance signal with minimal loss of perception.

This process is analogous to applying the DCT to decorrelate by frequency and then quantizing

the resulting coefficients. However, modern video compression systems use chroma subsampling

instead of quantization for applying loss to chrominance. Subsampling is the simple process of

skipping samples at a regular interval. For instance, subsampling an array by a factor of 3 would

mean omitting every third value in the output representation.

There are two common patterns of chroma subsampling used by video coding systems:

4:2:2 and 4:2:0. With 4:2:0 subsampling, chrominance pixels are subsampled by a factor of 2 in

both the horizontal and vertical direction. This yields an overall bit rate savings of 50% when

33

applied to a color image. With 4:2:2 subsampling, chrominance plane is subsampled by a factor of

2 in the horizontal direction but none in the vertical dimension, yielding overall bit rate savings of

33%. As an abuse of notation, the terminology 4:4:4 is sometimes used to refer to an image that has

not been subsampled at all. Thus, a 4:4:4 “subsampled” image contains the same number of pixels

in the chrominance planes as it does in the luma plane.

2.3 Predictive Coding

Transform coding, like DCT and the color space transform, allows compression algorithms

to target loss toward areas of less visual importance along the spatial dimensions. This yields huge

decreases in required bandwidth with minimal reduction in perceived quality. But the bandwidth

problem was not solved by transform coding alone—another contribution was also vital to the suc-

cess of digital video: the development of sophisticated prediction algorithms, capable of losslessly

eliminating redundancy across both spatial and temporal dimensions. This family of techniques is

called predictive coding.

Predictive coding refers to a compression scheme in which data is segmented into a

sequence of frames, symbols, or units. Each frame of data is represented by first specifying

instructions on how to generate a prediction for the frame based on previously signaled data, and

then specifying an error correction signal for correcting the predicted values. The error correction

signal R is called the prediction residual, and is equal to the difference between the prediction P

and the true frame data T .

T = P +R (2.7)

If the frame being compressed is highly correlated with prior frames, then it is possible to use

this prior data to form a good prediction, i.e. P ' T . In this case, the residual will be small in

magnitude and uncorrelated—resembling random noise. This yields a compact representation for

the frame that avoids unnecessarily re-transmitting redundant information.

34

Predictive coding is attractive because it reduces the task of orchestrating compression

down to the more straightforward task of forming a good prediction, thereby playing to the human

strength of pattern recognition. It is a perfect choice for compressing natural digital video, since

adjacent frames in the temporal dimension and nearby textures in the spatial dimension exhibit so

much redundancy. Modern video compression formats therefore support prediction in both temporal

and spatial dimensions. Temporal prediction is sometimes referred to as inter-frame coding or

motion-compensated prediction, because it involves forming a prediction using reconstructed

samples from prior decoded frames. Spatial prediction is called intra-frame coding because it

exploits redundancy in textures across a single frame.

2.3.1 Differential Coding: A Precursor to Motion-Compensated Prediction

Many simple compression strategies, such as differential coding, can be interpreted as

a predictive coding technique. Consider a series of integer samples representing a monophonic,

one-dimensional digital audio signal. Here, neighboring integers are highly correlated, as they

approximate a continuous waveform. A naive compression algorithm for such a signal would be

to simply calculate differences between adjacent samples—that is, compute and store the time

derivative of the signal together with the true value of the first sample. This simple approach uses

the unaltered previous sample as the prediction for the next sample. Since the same prediction

algorithm is used for every sample, no “prediction instructions” need be communicated as part

of the compressed representation. The prediction residual, then, simply becomes the difference

between the prediction (i.e. the prior sample) and the true value (i.e. the next sample).

In fact, this exact strategy was proposed for coding analog video in 1959, as a notable

precursor to motion-compensated prediction. The researchers simply computed and transmitted

the difference between subsequent analog video frames as a form of compression. Naturally,

this strategy does not take motion between frames into account; any motion present in the scene

manifests itself as part of the residual signal. And while the development of more sophisticated

motion-compensated prediction in the 1970’s quickly eclipsed these early simplistic approaches,

35

the overall idea of removing redundancy by forming a prediction that incorporates prior data has

remained the same.

2.3.2 Inter-Frame, Motion-Compensated Prediction

Differential coding simply reuses the previous frame as the prediction for the next frame.

The major limitation of this strategy for video prediction is that it is unable to model the effect of

natural motion occurring between frames. Even simple motion that is overall quite predictable,

such as an object translating across the frame at constant speed, cannot be predicted by differential

coding. Since motion is such a dominating (and predictable) feature of natural video, it makes sense

to design prediction for it. Thus, researchers in the 1970’s designed motion-compensated prediction

techniques to effectively model in-scene motion.

Motion-based prediction generally works in two steps. First, a motion estimation or motion

detection algorithm is applied by an encoder to analyze successive frames and estimate the motion

between them using motion vectors. The resulting motion model is then used to generate instructions

for how to use one frame to predict the other—this is called motion compensation. Suppose an

encoder is generating a prediction for frame B, based on information previously signaled in prior

frame A. First, the encoder partitions frame B into a grid or quadtree of smaller image patches,

perhaps 8x8, 16x16, 32x32, or 64x64 pixels each. Each “patch” is either called a block, macroblock,

superblock, or coding unit, depending on the coding algorithm being used. Next, the encoder

performs a search algorithm for each coding unit, attempting to find a nearby patch of the image in

frame A that is similar to the data in frame B. If a suitable match is found, the encoder computes

the resulting two-dimensional motion vector, which is the pixel offset in both the x and y directions

between the coding unit’s spatial location in frame B and the corresponding suitable patch of pixel

data from frame A. A motion vector for a given coding unit in frame B therefore identifies the

corresponding location in frame A where the matching prediction pixels are located. Sometimes

there is no matching patch in frame A, in which case the search algorithm fails to find a good

prediction for the coding unit. When this occurs, the encoder must fall back to a different prediction

36

method, such as intra-frame, gradient, or constant value prediction (discussed below). This might

occur, for instance, in a frame where an object is making its first appearance in the video as it moves

from an off-scene location. On the other hand, if a suitable match in A is found, the encoder simply

encodes the motion vector in the compressed data stream. The encoded motion vector represents

the output of the motion estimation step, and conveys a model for the motion in the scene. Later,

when a decoder wishes to reproduce frame B, it decodes the motion vector and uses it together with

a decoded copy of frame A to completely recreate the prediction for all coding units in frame B.

This represents the motion compensation portion of the algorithm, since the prediction of frame B

compensated for the motion detected between the frames.

The characterization of motion estimation and compensation given above has been used

by all major video coding standards since the 1970’s. However, a number of refinements and

innovations have been incorporated into newer video coding formats, allowing encoders to be more

expressive and flexible when describing motion-based prediction. The result is that video data coded

with modern video formats contains an expressive, meaningful, semantic prediction that not only

understands the concept of motion between successive frames, but also supports rough segmentation

for describing in-scene moving objects. The most important developments in prediction features are

summarized below.

Sub-pixel motion vectors

Although early motion vectors were described using integer pixel offsets, new codecs

support sub-pixel displacements in both x and y dimensions for describing a suitable prediction

patch. Motion vectors that use sub-pixel precision indicate that the prediction patch should be

attained by spatially interpolating the prior frame’s pixel values at the specified location, typically

using linear interpolation. This feature reflects the assumption that the resolution of real-world

motion exhibited through time is often higher than the spatial resolution recorded by image sensors.

37

Variable block sizes

Early video coding formats required encoders to divide frames into fixed-size blocks for

prediction. Over time, formats have evolved to support varied prediction block sizes. Newer formats,

beginning with MPEG-4 and H.264, support variable sized, non-square prediction blocks. Intuitively,

objects in motion rarely project onto the imaging plane as perfectly symmetric squares, so it makes

sense for prediction to evolve toward supporting arbitrary shapes. However, over-specifying the

prediction block size requires extra bits in the output representation, so there is a trade-off between

expressiveness and bit cost. Today, the most successful modern formats still constrain prediction

regions to a limited number of predefined rectangular shapes, but are much more flexible with the

sizes of these blocks than original codecs once were.

Global motion

There are generally two types of motion present in a natural video scene: global motion and

object motion. Global motion is the result of the video camera physically rotating or translating in

space, altering the viewpoint of the scene. Local motion refers to motion or deformation of physical

objects present in the scene. Both types of motion result in distinct changes to the two-dimensional

projection of the scene being captured by the sensor as time passes.

Early efforts to generalize motion-compensated prediction included separate models for

describing the global motion and the local motion present between successive frames. However,

proposals for a global motion model were dropped from H.264 during the planning phase. Experi-

ments found that local motion vectors were sufficient for modeling both local and global motion,

and a separate model for global motion was not necessary. Furthermore, motion vector prediction,

described below, is able to predict most global motion trends present across all coding units in a

frame, with very low overhead in the output stream.

38

Motion vector prediction

Motion vector prediction is the process of introducing a separate prediction model for

coding the motion vectors. Spatially collocated prediction blocks often exhibit motion in the same

direction—especially if a large moving object in that region spans multiple coding units. This means

that nearby motion vectors are often correlated, and therefore are a good candidate for predictive

coding. To exploit this redundancy, modern codecs beginning with H.264/AVC and H.265/HEVC

introduce prediction models for representing the motion vectors.

Motion vector prediction works by first computing a “candidate list” of nearby, previously

signaled motion vectors within the same frame to serve as the prediction for the next motion vector.

The process of computing the candidate list must be completely deterministic and reproducible by

the decoder. Next, the encoder simply signals which candidate motion vector to use as the prediction

by encoding its index within the candidate list as part of the output stream. The decoder is expected

to be able to follow along, since it presumably has decoded enough information to reproduce

the complete candidate list. The winning candidate selected and signaled by the encoder should

be the motion vector in the candidate list that most closely represents the true motion vector as

determined by the encoder’s search algorithm. Finally, after encoding the winning candidate’s index,

the encoder signals the motion vector “residual,” which is the difference between the candidate

vector’s x and y values and the true x and y values for the given prediction block’s motion vector.

Bi-directional motion prediction

Motion-compensated prediction requires that a previously coded frame has been decoded

and is available to be referenced when forming the prediction for the next frame. However, a richer

prediction could be obtained by referencing predicted blocks from the two previously decoded

frames, instead of only from the last one. This is the intuition behind bi-directional motion prediction.

However, correlation due to motion in nearby frames is highest when those frames are closest in

time. For a triplet of adjacent frames F1 – F2 – F3 in order by capture time, frame F2 is more highly

correlated to frames F1 and F3, due to its adjacency to them; frames F1 and F3 are less correlated.

39

Thus, an optimal prediction is achieved when frame F1 and frame F3 are encoded before frame

F2 in the compressed bitstream, and then frame F2 is encoded afterwards. This way, frame F2 is

able to predict in both temporal directions—backwards to F1 and forwards to F3. This is called

bi-directional motion prediction.

Video codecs that support reordering frames to enable bi-directional motion prediction

commonly distinguish between display order, referring to the order in which the frames were

captured, and coding order, the order in which they are coded in the compressed stream. There is

no fundamental requirement that coding order must match display order, so long as the decoder has

enough time and memory to buffer any decoded out-of-order frames, store them to be referenced for

prediction, and re-order them before they are displayed. However, dependencies between frames

must be carefully tracked. Modern codecs therefore explicitly assign each frame an index indicating

its display order, called its picture order count. This index is signaled for each frame as part of

the encoded stream. Additionally, each frame is labeled based on what type of prediction it uses,

determined by its coding order position within the stream. Frames that have two previously decoded

neighboring frames to reference for prediction are labeled B-frames, indicating that they support

bidirectional prediction. Frames that only have one previously decoded neighboring frame to

reference are labeled P-frames, indicating that they support normal prediction. Finally, frames that

do not have any previously decoded neighboring frames to reference are labeled I-frames, indicating

that they support intra-frame prediction only. I-frames are a necessary part of every video, since the

very first frame must be signaled without motion prediction.

2.3.3 Intra-Frame Prediction

Not all coding units can be predicted using motion-compensated prediction. For example,

some frame regions represent new textures that were not present in previously coded frames.

Sometimes, the search algorithm is unable to find a match in the nearby search region. And in the

case of I-frames, a prior frame from which to predict may not even exist. In these situations, a

40

prediction must be formed that does not reference image content from prior frames. This is called

intra-frame prediction.

For these coding units, video codecs provide a number of fallback strategies for forming

a prediction using only pixel data from spatially adjacent, previously decoded pixels within the

same frame. Usually, the only pixel values used for forming an intra-frame prediction are the

reconstructed pixels in the column directly to the left of the block and those in the row directly

above the block. The blocks below and to the right of the block are not generally used for prediction,

since most video formats require that blocks are signaled left-to-right, top-to-bottom. Thus, the

samples below and to the right are typically not yet available for prediction, since they have not

yet been signaled in the output stream. Sometimes, even the values to the left and above aren’t

even available—such as when the block is located on the left or top edge of the frame. Thus, the

algorithm for forming an intra-frame prediction must be flexible, dealing with numerous possible

edge cases.

Video standards predefine a number of strategies for forming an intra-frame prediction

using the available neighboring pixels. These strategies are called intra prediction modes. Newer

codecs tend to support more intra prediction modes; for instance, H.264/AVC offers only 9 modes,

while H.265/HEVC supports 35. Intra prediction modes generally may be organized into the

following three categories.

DC Prediction Mode

When the DC prediction mode is selected, a single intensity value is used as the prediction

for all pixels in the prediction block. The single intensity value may be encoded as part of the output

stream, or, more commonly, it may be formed as the average of the available previously decoded

pixels to the left and above the block. This mode is commonly used to form the prediction of the

very first coding unit of the frame, since no neighboring samples are available from which to predict.

It is also a good choice for predicting very “flat” regions that exhibit very little texture or intensity

changes throughout the block.

41

Planar Prediction Mode

The planar prediction mode predicts that the block’s intensity values are sampled from a

plane. The plane used to form the prediction is parameterized by three noncollinear points, which

are typically fitted to minimize the discontinuity between the block and any available neighboring

pixels on the left and top boundaries. Since this mode uses only the available neighboring pixels to

form a prediction, no additional parameters need be signaled in the output stream beyond the mode

itself in order to fully recreate this prediction.

Directional Prediction Modes

Finally, the directional prediction mode indicates that the prediction should be formed by

linearly extrapolating the available neighboring pixels on the left and top boundaries downward

and rightward across the block, along an angle specified as a parameter in the output stream. This

effectively extends the texture of the neighboring decoded block linearly across the next block, and

is useful for regions where a large, homogeneous, linear texture is present across multiple coding

units. Whereas H.264/AVC defines 8 discrete directions for linear extrapolation, newer formats

have expanded to support more precise prediction (H.265/HEVC supports 33 discrete directional

modes).

2.3.4 Frame Partitioning

Prediction and transform coding work best on relatively small patches of image data,

because the spatial and temporal patterns they exploit are local in time and space for natural video.

For instance, a single pixel’s value is likely to be relatively consistent across a small number of

frames; however, across a long video like a movie or live stream, that same pixel’s overall intensity

histogram will be more uniform. Similarly, a small region of pixels for a given frame might all

have the same intensity value—even if the overall intensity histogram for the frame is uniform.

By partitioning video frames into small pieces, these local spatial and temporal patterns can be

described and exploited more easily.

42

Asserting a single optimal image patch size for a general-use compression algorithm is

difficult, however. The scene’s content, sensor’s resolution, and frame rate all affect the size and

duration of patterns present in the resulting captured intensity data. In the early days of digital video,

digital cameras were relatively homogeneous, and these parameters were relatively stable for most

video content. Thus, early video coding formats like H.264/AVC enforced a uniform macroblock

size of 16x16 pixels, which served as the base image patch size. As sensor pixel density–and thus

resolution—has increased, however, 16x16 pixels is now too small to describe or exploit textural

patterns that may span across many times more pixels.

Thus, a recent movement in video format design has been to support more flexible par-

titioning regimes that allow for larger block sizes. H.265/HEVC was the first major standard to

move away from a fixed, square macroblock. Instead, video coded with H.265/HEVC is partitioned

using a quadtree, with coding units that can range from 64x64 down to 16x16. Newer formats

AV1 and H.266/VVC both support 128x128-sized superblocks, which can be subdivided by the

encoder into various configurations of smaller-sized rectangular blocks to best support the encoded

content. This movement towards larger block sizes has resulted in huge bit rate savings, especially

for high-definition and 4K content.

However, this movement also means that video coded with modern codecs contain em-

bedded within them a much more sophisticated prediction, including spatial segmentation for each

frame that identifies regions based on their coded complexity. Areas that involve high motion or

detailed textures are identified in the prediction by smaller coding blocks. Areas of low motion or

coarse textures are easily identifiable because they are coded using larger blocks. This dissertation

claims that the sophisticated prediction of modern codecs is underutilized by modern video systems.

To bridge this gap, it investigate ways in which this embedded semantic understanding of a video

scene can be exposed to clients to better serve application-level goals or exploited to achieve

real-time scalable coding.

43

2.4 Entropy Coding

So far, this chapter outlined the bandwidth problem facing digital video in the 1970’s, and

described the two major algorithmic innovations that together formed a solution: predictive coding

and transform coding. However, the full picture of modern video coding is incomplete without a

discussion of entropy coding. Entropy coding describes a family of lossless compression techniques

concerned with assigning codewords of different lengths to the possible input symbols according to

the expected probability of each symbol appearing in the data stream. The high-level intuition is

that the most frequent symbols should be assigned codewords that are easier to signal, whereas rarer

symbols can afford to be assigned longer codewords. Entropy coding techniques try to optimize the

process of assigning codewords in a way that minimizes the output compression rate.

2.4.1 Shannon’s Source Coding Theorem

Information theory is the branch of mathematics concerned with entropy coding techniques.

It was founded in 1948 when Bell Labs engineer Claude Shannon published his landmark paper “A

Mathematical Theory of Communication” in the Bell System Technical Journal (Shannon, 1948). In

this seminal work, Shannon pointed out that the “significant aspect” of representing and signaling a

message is not what is ultimately expressed, but instead the fact that the message sent was “one

selected from a set of possible messages.” In other words, any particular message may only be

meaningfully expressed by a system that is also capable of expressing the non-selected messages.

Shannon underpinned this interpretation of communication by inventing a system of

mathematics to describe his ideas. Define symbol alphabet A, which represents the complete set of

all messages (or symbols) that might be conveyed. In this context, Shannon defined communication

as the act of selecting and signaling a particular element from A. Thus, let S be the random variable

describing which symbol is chosen, and let P (S = s) be the probability that that symbol is s ∈ A.

Intuitively, Shannon argued that highly probable symbols are expected to be signaled most often, and

they therefore convey less information. In contrast, low-probability symbols are more informative

44

to the recipient because they represent an outcome that is unexpected. To express this concept,

he defined the self-information, or surprisal I(S = s) of each outcome s ∈ A to be the negative

logarithm of the probability of that outcome:

I(S = s) = − logb P (S = s) (2.8)

While the value of the logarithm base b is unimportant for the following analysis, it does

determine the units of self-information. Intuitively, one unit of self-information represents the

amount of information gained when a single event occurs out of b equally probable outcomes. When

b = 2, self-information is expressed in units of bits. As expected, improbable symbols convey

higher self-information than probable ones. Shannon further defined the entropy H(S) of event

S to be the expected value of the self-information of signaling a symbol in A, before it is known

which symbol will be signaled:

H(S) = E[I(S)] = −
∑
s∈A

P (S = s) logb P (S = s) (2.9)

This definition of entropy implies an upper bound on the maximum compression achievable when

representing stochastic information. More specifically, Shannon proved that no coding technique

can represent information from a stochastic source using on average less than H(S) bits per symbol

in the long run. This important result is often called Shannon’s Source Coding Theorem.

2.4.2 Arithmetic Coding

Arithmetic coding is an entropy-based technique for serializing an input symbol stream to

a bitstream that supports arbitrarily precise symbol probability models and can obtain theoretically

optimal compression. Due to this flexibility, it is a well-known compression technique widely

used in modern video coding standards. While the details of arithmetic coding are not crucial for

this dissertation, a basic understanding of its probability model management is important and is

therefore outlined below.

45

Encoder Decoder

Entropy

Encoder

Entropy

Decoder

Probability

Model

Probability

Model

next

symbol
encoded

value

decoded

symbol

2

1

3

1

4

5

Traditional Arithmetic Coding

5

Figure 2.4: A conventional arithmetic coding structure is depicted with numbered edges expressing
the data flow as a symbol is processed. 1© Encoder and decoder query the probability model to
determine which bit patterns to use when coding symbols. 2© The encoder receives the next symbol
from the input stream. 3© The entropy encoder uses the symbol’s probability to encode it in the
bitstream. 4© The decoder uses the symbol’s probability to decode it from the bitstream. 5© The
encoder and decoder use the symbol value to update their probability models.

Every time a symbol from the input stream is about to be processed by an arithmetic codec,

a precondition is that the encoder and decoder must share a common symbol probability model. This

model estimates, for each possible value of the next symbol, an associated probability representing

how likely it is that that value will be the next coded symbol in the stream. The shared probability

model is used by the encoder and the decoder to deterministically decide how many bits to spend

when signaling each possible value, in a way that high probability values will be signaled with

shorter bit patterns and low probability values will be signaled with longer bit patterns. After the

true next symbol value is signaled in the bitstream, the encoder and decoder may update the state of

the probability model based on the signaled value, since both the encoder and the decoder know

what the value was; probability models which adjust in response to prior coded values are called

adaptive. Furthermore, the probability model may also change for the next coded symbol based on a

semantic understanding of the meaning behind that next symbol and a corresponding understanding

of which symbols are likely given that meaning. Note that adapting in this way requires knowledge

about the specific data being coded. Probability models that adjust based on an understanding of the

symbol’s contextual meaning within the larger stream are generally called context-adaptive.

46

DCT

IDCT

QP

QP
-1

Prediction
Estimation

Entropy
Encoder

+

–

Decoded
Frame Buffer

In-Loop
Filtering

Prediction
Residual
Frame

Input Video
Frame

Prediction Syntax
Elements

Residual Syntax
Elements

Predicted
Frame Output

Bitstream

Reconstructed
Frame

Rate
Controller

P

Figure 2.5: This block diagram depicts typical data flow for a hybrid prediction-transform video
encoder.

Figure 2.4 depicts a high-level block diagram of a context-adaptive arithmetic codec.

2.5 A Complete Hybrid Coding Model

This section presents the complete hybrid coding model used by modern video formats,

including both encoder and decoders. The model described herein takes a high-level approach,

presenting codec elements as a block diagram. All three crucial elements described in this chapter

are included by the model: predictive, transform, and entropy coding.

In the hybrid encoder depicted by Figure 2.5, each frame of raw input video is first fed

into the prediction estimator, which partitions the frame into coding units. The prediction estimator

performs inter-frame and intra-frame search algorithms for each coding unit to determine the best

47

mode for prediction. Once the optimal prediction coding decisions have been made, they are

sent from the prediction estimation unit to the entropy encoder to be coded as part of the output

bitstream. At the same time, they are also used to create the predicted frame. Next, the predicted

frame is subtracted from the input frame to produce the prediction residual. The residual matrix

is transformed by a frequency transform, like DCT, and quantized according to the quantization

matrix P specified by the rate controller. The result is a series of quantized coefficients, which are

sent to the entropy encoder so they can be encoded in the bitstream. However, the encoder also

needs to retain a reconstructed version of the frame to use for future prediction. The residual syntax

elements are therefore de-quantized, inverse-frequency-transformed, and added to the predicted

frame. When the reconstructed frame has been recovered, it is stored in the decoded frame buffer to

be used for future prediction. Finally, note that many formats require that in-loop filtering is applied

to all reconstructed frames to reduce blocking artifacts that appear in the reconstructed signal when

quantization is applied separately across adjacent transform blocks.

The corresponding hybrid decoder is depicted in Figure 2.6. An entropy decoder decodes

the input bitstream, converting the encoded codewords into symbols that can be interpreted as syntax

elements. To decode a frame, the system first splits the decoded symbols into prediction elements

and prediction residual elements. The prediction elements inform the decoder how to create a

prediction for the next frame, by using previously decoded frames from the decoded frame buffer.

The prediction residual is also recovered by de-quantizing and inverse-frequency-transforming the

prediction residual elements from the input bitstream. Once both the prediction and the prediction

residual have been recovered, they are added together to form the reconstructed frame. Finally,

in-loop filtering is applied to all reconstructed frames, if required by the video coding format being

used. The filtered, reconstructed frames are buffered in the decoded frame buffer so they can help

form the prediction of future frames. They also form the output of the decoding process.

48

IDCTQP
-1

Prediction
Calculation

+

Decoded
Frame Buffer

In-Loop
Filtering

Input
Bitstream

Reconstructed
Frame

Entropy
Decoder

Prediction
Residual Frame Predicted

Frame

Figure 2.6: This block diagram depicts typical data flow for a hybrid prediction-transform video
decoder.

2.6 Digital Video Coding Formats

In the decades since the digital video revolution, video coding standards have iterated on

the basic hybrid model described above. New format releases aim to support new innovations in

video compression, new display and sensor capabilities, new video use cases, and new types of

clients. Overall, the trend has been towards more expressive predictions, higher computational

costs for encoding and decoding, and higher compression ratios, especially for high-resolution

content. Table 2.2 lists various descriptive parameters for recent video format releases, illustrating

the community’s race to design codecs that support content for larger screens at lower bandwidths.

49

Release Date Max Block Size Partitioning Transform Publisher

MPEG-2 1994 8x8 Macroblock DCT MPEG

MPEG-4 1999 16x16 Macroblock DCT MPEG

AVC/H.264 2003 16x16 Macroblock DCT JVT

VP9 2012 64x64 Tree DCT/DST Google

HEVC/H.265 2013 64x64 Quadtree DCT/DST JVT

AV1 2018 128x128 Tree DCT/ADST AOMedia

VVC/H.266 2020 128x128 Multi-type Tree DCT/DCT7/DCT8 JVT

Table 2.2: This table highlights differences in representation between the major video coding standards released between 1994 and 2020.

50

2.7 Assessing Coding Performance

Finally, this section introduces the necessary theory used by the rest of this dissertation

to benchmark video compression algorithms, compare their effectiveness, and assess their relative

strengths. Traditionally, competing video compression algorithms and coding systems are compared

based on (at least) the following three qualities:

1. Reproduction Quality – The mathematical or perceived quality of the reconstructed video

at the decoder. This is particularly important for lossy compression, which results in an

imperfect reproduction. Various algorithms for assessing reproduction quality have been

proposed. The most common in the literature are PSNR and SSIM, defined below.

2. Compression Rate – The rate of bits required per second of video for the compressed

representation. Video encoded at higher bit rates demand more network transfer and

storage resources, while those at lower bit rates require less resources.

3. Codec Complexity – The computational complexity required to encode and decode the

video. This becomes an important consideration when designing codecs for real-time

applications as well as systems that need to support scaling the number of users.

Other trade-offs exist between compression algorithms, too, such as latency, scalability, receiver

flexibility, support for new use cases, etc. However, the three qualities above are most commonly

presented in the literature, reflecting the community’s historic interest in algorithms that optimize

specifically for these metrics. This dissertation challenges that assumption, arguing that as storage,

network, capture, and display technology continues to rapidly advance, receiver flexibility has

usurped reproduction quality, compression rate, and codec complexity as the dominant compression

goal.

51

2.7.1 Peak Signal-to-Noise Ratio (PSNR)

Peak Signal-to-Noise Ratio (PSNR) is a metric imported for lossy image and video com-

pression, originally taken from the signal processing community for quantifying the relative amount

of noise present in a signal. PSNR is the ratio between a signal’s maximum possible power and the

average power of the noise present. PSNR is often presented in decibel units.

Suppose a still, monochrome image I with dimensions m × n is encoded using lossy

compression such that a corresponding decoder reproduces image R. The mean squared error

(MSE) between I and R can be expressed as

MSE(I, R) =
1

mn

m−1∑
i=0

n−1∑
j=0

(Ii,j −Ri,j)
2 (2.10)

Here, Ii,j represents the intensity of the pixel in row i, column j for image I . Ri,j represents the

intensity of that same pixel in image R. MSE represents a simplistic metric for comparing images I

and R, but it is absolute with respect to the size of the signal—that is, the scale of MSE values are

dependent on the the dynamic range of the image intensities. PSNR fixes this problem by expressing

a ratio.

The PSNR of reconstructed image R can be computed, relative to the original image I ,

as the logarithm of the ratio between the square of the maximum possible intensity value imax

and the mean squared error between I and R. For images with pixel bit depth 8, this means

imax = 28 − 1 = 255.

PSNR(I, R) = 10 log10

(
i2max

MSE(I, R)

)
(2.11)

PSNR can easily be extended to apply to video data by computing the PSNR between

each pair of corresponding frames in the image. The average PSNR across all frames is often

reported for a segment of video. Typical PSNR values for images and video coded using lossy

compression are between 25 and 50 dB. Higher values represent less noise, and therefore a more

faithful reproduction. Thus, a PSNR value can be thought of as a proxy for reproduction quality.

52

2.7.2 Structural Similarity Index (SSIM)

PSNR has received criticism for its inability to assess structural reproduction and other

qualities in an image that may be more important to a human viewer. For example, consider two

images, I and I ′ such that I ′ = I − 5 (assuming a dynamic range of 0–255). The PSNR between

I and I ′ would be fairly low, indicating that I ′ is a low quality reproduction of I—even though a

human may not be able to perceive the difference on a typical display.

Thus, an avenue of research has been devoted to developing so-called perceived quality

metrics as an alternative to PSNR. Perceived quality metrics are engineered to respond to certain

image qualities that may be more noticeable to human viewers. As a consequence, these metrics are

typically much more complicated than PSNR.

Structural Similarity Index (SSIM) is one such perceived quality metric. SSIM is the sum

of three comparison metrics: luminance (l), contrast (c), and structure (s). Each of these sub-metrics

intends to assess a separate quality to which humans have been shown to be sensitive.

l(I, R) =
2µIµR + c1imax

µ2
I + µ2

R + c1imax
; c1 = 0.01 (2.12)

c(I, R) =
2σIσR + c2imax

σ2
I + σ2

R + c2imax
; c2 = 0.03 (2.13)

s(I, R) =
σIR + c3imax

σIσR + c3imax
c3 = 0.5c2 = 0.015 (2.14)

Here, µI and µR represent the mean pixel value of images I and R, respectively; σI and σR

represent the variance of pixel values in the images, and σIR represents the covariance of pixel

values between the images. Like before, imax represents the maximum possible intensity value,

which is 28 − 1 = 255 for 8-bit images.

53

Once l, c, and s have been computed for a noisy image (or image patch), the SSIM can be

computed as the sum of the three components:

SSIM(I, R) = l(I, R) + c(I, R) + s(I, R) (2.15)

2.7.3 Rate-Distortion Theory

In “A Mathematical Theory of Communication,” Claude Shannon introduced rate-distortion

theory as an important branch of information theory (Shannon, 1948). This branch of mathematics

is concerned with optimally transmitting information across a noisy channel in a way that minimizes

bit rate and simultaneously prevents the resulting noise from exceeding a predefined distortion

level. The inverse relationship between bit rate and distortion explored by rate-distortion theory is

fundamental to all lossy compression theory, including that of video coding algorithms.

Lossy compression algorithms offer a fundamental trade-off between bit rate and distortion,

which is described in Shannon’s seminal work: lower bit rates can be achieved only at the cost of

increased distortion (i.e. error) in the reproduction. Conversely, if distortion cannot be tolerated, a

more accurate reproduction can only be guaranteed at the cost of a high bit rate encoding.

In the literature, it is typical to illustrate the trade-off between bit rate and distortion

achieved by a given video compression algorithm as a curve on a rate-distortion graph (R-D graph).

By convention, R-D graphs show target bit rate on the x-axis and an achieved quality metric on

the y-axis. Generating a R-D curve for a particular video content source and a given video codec

requires encoding the same content multiple times at different target bit rates, and plotting the

achieved reproduction quality for each target rate. The result is a curve that generally arcs from the

high quality, high bit rate quadrant of the graph down to the low quality, low bit rate quadrant. The

shape of this graph indicates how the codec performs at different bit rates for the given content. A

“good” codec is able to maintain a relatively high quality despite decreases in bit rate, and depicts a

smooth R-D curve to indicate apt control over the trade-off between bit rate and quality.

54

CHAPTER 3

Existing Adaptation Strategies

Chapter 2 described the hybrid prediction-transform coding techniques used by modern

video coding standards to compress digital video content. For the most part, these techniques

have successfully mitigated the bandwidth challenge, allowing digital video to be encoded at a

reasonable bandwidth. Nonetheless, the past few decades have seen significant advances in capture,

display, and application technology for digital video. Today, it is no longer safe to make the same

assumptions about a client’s available bandwidth, quality, or computational capabilities when a

request for digital video content is made.

This chapter addresses the heterogeneous client problem facing the online video industry

today: as use cases diversify for video, existing codecs and server infrastructure is being strained.

No longer is a single encoding of a given video sufficient for all use cases; instead, video must

be adapted dynamically to fit clients’ needs. Next, existing strategies for video adaptation are

presented, organized in three categories: scalable codecs, adaptive streaming, and on-demand

transcoding. These approaches represent three different system architectures for providing tailored

versions of a video in response to diverse client requests.

All major video distribution organizations today use one or a combination of the techniques

described in this chapter to adapt source video and other multimedia content to diverse clients.

For each approach, this chapter identifies its strengths, limitations, assumptions, and selected

representative works.

55

3.1 The Heterogeneous Client Problem

As explained in Chapter 1, recent editions of the Cisco Visual Networking Index have iden-

tified and quantified the following three trends in consumer demand for online video consumption.

1. Diverse Content – Video content is diversifying as a result of improvements in the

capabilities of both sensor and display technology. New types of content include high

dynamic range (HDR), 4k, 360° video, virtual reality, and live streaming.

2. Diverse Receivers – As handheld technology has improved, video receivers have become

more diverse, capable, and powerful. Examples include multimedia streaming dongles,

smartphones, tablets, laptops, cars, internet of things (IoT) devices, machine learning

endpoints, and desktops.

3. Diverse Applications – To take advantage of improved display, sensor, and receiver

capabilities, video-enabled applications are also advancing. New use cases for video

include machine-to-machine, machine learning, autonomous driving, body cameras, live

streaming, and mobile video.

These trends have shown no signs of slowing down, and may even have accelerated during the

COVID-19 pandemic. A key assumption of this dissertation is that they will continue through the

2020s.

The recent developments in video systems outlined above are exciting because they rep-

resent ways in which technology can better interface with and improve the human experience.

However, they also represent important challenges for existing infrastructure, and raise questions

about scalability and equity of access for large audiences. As receivers, content, and applications

continue to diversify, these challenges are amplified.

Slowly, tension is becoming apparent. On one hand, video receivers, content, and applica-

tions are quickly diversifying. On the other, existing, aging video codecs—which were not designed

to handle diverse requests on par with modern demand—are struggling to meet these needs. Major

56

industry players like Netflix and Google so far have been able to keep up by investing millions

of dollars in server infrastructure. But as the trends of client diversification and ever-increasing

demand continue, it is uncertain how long this approach will be feasible. There is also concern that

smaller video distributors which do not have the same level of financial security as the top tech

companies will struggle to provide a high quality of service for diverse clients.

This dissertation labels the tension between receiver diversification and existing compres-

sion technology the heterogeneous client problem. Ultimately, we claim that this tension will

recalibrate the focus of new video coding formats so that they prioritize flexibility and receiver-

driven use cases first. Evidence pointing towards this shift already exists in the literature and in

industry video system trends. Recent publications and calls-to-action have focused on secondary

(but growing) use cases for video, including virtual reality applications, systems where machines

are the receiving endpoint of video content, 3D rendered content, and requests for video based on

regions of interest. At the same time, video content distributors are already pouring millions of

dollars into infrastructure to create systems that are capable of providing video to heterogeneous

clients across the globe in real time.

3.2 Taxonomy

Solving the heterogeneous client problem requires an adaptive system that can respond

to diverse client requests and provide different representations of the source content to each. The

remainder of this chapter is dedicated to categorizing and describing the existing solutions to this

problem. Prior work in this area can generally be categorized into the following three categories of

approach:

1. Scalable codecs solve the heterogeneous client problem at encoding time, before the video

content has been requested by a client.

2. Adaptive streaming techniques, also called simulcast, solve the heterogeneous client

problem at the application layer by treating the video’s encoding as a black box.

57

3. On-demand transcoding techniques solve the heterogeneous client problem at request

time by integrating the process of transcoding the video with the act of serving it to clients.

3.3 Scalable Codecs

Scalable codecs are a family of video coding techniques that aim to address the heteroge-

neous client problem during the video encoding process. The idea behind a scalable codec is to

encode the content to an output stream in a way where receivers can stop decoding in the midst

of the stream, and still produce an approximation of the content (Amon et al., 2008). Receiving

and decoding a higher percentage of the stream results in a closer approximation of the content,

whereas truncating the stream earlier yields a lower-quality reproduction. Only if the full stream is

decoded can the complete, full-quality version be obtained. Content encoded with a scalable codec

allows the decoder to “scale” the quality of the reproduction by deciding how much of the stream to

receive and decode.

The primary benefit of a scalable approach is to give decoders the ability to easily trade

off between quality of reproduction and bandwidth usage without requiring server intervention. A

server can provide the exact same scalable video encoding to all clients, but each client can make

a unique, tailored decision about how much of the stream to receive and decode according to its

available resources and application needs.

However, designing an effective scalable codec is difficult. Scalable encoders must simul-

taneously optimize two often opposing goals: on one hand, the traditional data compression goal of

eliminating redundancy in the output stream; on the other, ensuring that the output stream has the

desired scalable substructure where heterogeneous clients can stop at different points in the stream

and recover a usable approximation. In the following sections, a few approaches for designing

scalable codecs are described including layered coding, bit plane coding, and wavelet transform

coding.

Scalable coding for video was an active area of research in the early 2000’s, around the

time that AVC/H.264 was released. Most video encoding formats, including AVC/H.264 and

58

HEVC/H.265, and AV1, are accompanied by officially approved scalable extensions. However, scal-

able codecs are rarely used in practice, as adaptive streaming provides a much more straightforward

system design that greatly simplifies the process of deploying video web servers to handle diverse

requests.

3.3.1 Scalable Dimensions

Scalable codecs allow receivers to easily trade off between quality and bit rate, but the

client has very limited control over which features of the video are omitted for lower bit rates. That

decision is made at encoding time, when the encoder selects which dimension or dimensions of the

signal will be scaled. Scalable codecs support a number of predefined scalable dimensions from

which the encoder can choose for scaling the bit rate. The following dimensions have been proposed

and implemented for scaling video data using various coding formats.

• Signal-to-Noise Ratio (SNR) Scaling – As more data is decoded, the reproduced pixel

intensities move closer to their true values.

• Frame Rate Scaling – As more data is decoded, the reproduced video’s frame rate

increases.

• Resolution Scaling – As more data is decoded, the spatial resolution of the reproduced

video increases.

• Dynamic Range Scaling – As more data is decoded, the dynamic range of the recovered

pixel intensities is increased.

• Color Gamut Scaling – As more data is decoded, the color gamut of the recovered frames

widen.

3.3.2 Layered Coding

Layered coding is an organizational strategy used by many scalable codecs in which the

encoded content is partitioned into multiple streams, called layers. A decoder that decodes all layers

59

can recreate the full quality representation of the content. However, decoders may instead choose

to decode only some of the layers, producing a lower quality approximation at a lower bit rate.

This allows decoders to scale quality and bit rate. The layers generally follow a predetermined

dependency hierarchy, meaning that not every layer is useful on its own; if a layer has dependencies,

those layers must be decoded first. One layer, called the base layer, can be independently decoded

to provide the lowest quality version of the content—this is the starting point for all decoders. The

rest of the layers are called enhancement layers, and are used to improve the quality of the base

layer’s reproduction by incorporating additional information. All decoders must start with the base

layer, and then follow the dependency graph to decode and incorporate enhancement layers until

the desired reproduction quality is attained.

Multiple Description Coding (MDC)

Layered coding is related to but distinct from a similar coding technique called multiple

description coding (MDC). With multiple description coding, an encoder produces multiple distinct,

independent, low-quality versions of the source content—each of which is called a description.

Any single description can be decoded independently to reproduce a low-quality reconstruction of

the stream. However, by receiving and decoding more than one description in tandem, a decoder

can combine them in some way to recover a higher quality version of the content. The major

difference between MDC and layered coding is the base/enhancement layer dependency hierarchy

that allows layered encoders to assume the presence of other layers at the decoder. With MDC, there

is no assumed hierarchy between descriptions. For video coding and many other applications, this

means that any two distinct descriptions would contain significant duplicated information associated

with ensuring that a minimal quality reproduction of the content is obtained from decoding the

description by itself.

60

L0

LD

LQ2

LQ1 LRLT

Dependent
Enhancement
Layers

Independent
Base Layer

Figure 3.1: This directed graph illustrates how a scalable codec might produce layers for a video.
Nodes represent layers; edges indicate dependencies between layers. L0 represents the base layer, a
non-scalable representation of the content with no dependencies. LT , LQ1, LQ2, LR, and LD are
dependent enhancement layers. LT provides the information necessary to double the frame rate;
LQ1 and LQ2 successively improve the SNR quality; LR doubles the resolution in both dimensions;
and LD increases the dynamic range.

Advantages

Layered coding is both intuitive and modular. Layered coding provides an intuitive way of

organizing content as part of a scalable codec, because the layers form logical units where each

provides a specific type of enhancement to the base stream. For example, as depicted in Figure 3.1,

one layer might provide the information necessary to double the frame rate; another might scale the

resolution by a factor of two; a third layer might increase the dynamic range of the reproduced video.

Two additional dependent layers might improve the SNR quality of the video in two successive steps.

Decoders can select which enhancement layer(s) best match their display capabilities, available

bandwidth, and application needs.

By enforcing dependencies between layers, layered coding reduces redundancy in the

output stream, yielding higher compression rates than if no dependency graph was enforced. For

example, consider a series of two or more dependent enhancement layers which provide improved

61

SNR quality. Since the layers are dependent, the representation of each layer can rely on the fact

that the prior layer has already been decoded and integrated into the reproduction. Thus, successive

layers can focus on improving the already enhanced content, without re-coding the same corrections.

The result is a single, compact encoding that supports modular, scalable decoding with minimal

redundancy.

Finally, the structure of layered coding naturally supports backwards-compatibility with

non-scalable decoders. To achieve this, the independent base layer can be formulated as a standard-

compliant, non-scalable, low quality coded version of the content. Off-the-shelf, non-scalable

decoders would therefore be able to decode and display the base layer, but would be unable to

incorporate information from the enhancement layers. Only full scalable decoders would be able to

decode the full-quality content.

Disadvantages

The benefits of layered coding come at the cost of additional computational complexity at

both the encoder and decoder, when compared with an equivalent non-scalable alternative. Video

data and stream dependencies must be managed carefully by the encoder for all layers concurrently,

resulting in increases in memory requirements and computational complexity. Similarly, decoders

interested in reproducing high-quality versions of the content must decode and incorporate all

available layers. Decoding a high number of layers generally corresponds to higher computational

requirements. The layered decoding process is inherently sequential and not easily parallelizable,

due to the dependencies between layers.

Moreover, there is compression overhead associated with providing a layered version of a

video when compared to a non-scalable version. This is because layered approaches are inherently

suboptimal when paired with predictive coding techniques, which are used heavily in video coding

(Rose and Regunathan, 2001). Predictive coding involves using prior decoded information to form

a prediction for future frames. However, with a layered approach, the availability of prior data at

the decoder is thrown into question. In particular, the layer dependency graph must be respected by

62

the prediction process. No prediction can be made while coding a layer that extrapolates data from

another layer, unless the other layer is a dependency. The power of prediction is therefore weakened

by layered coding, especially for layers with few dependencies. This phenomenon is most obvious

with the base layer. Since the base layer has no dependencies at all, any predictions made during

the base layer’s coding process can only extrapolate from prior data in that layer. This means that

the low quality version of prior frames must be used when predicting for the base layer, even if the

decoder has higher quality prior frames available from decoding the enhancement layers.

3.3.3 Other Scalable Approaches

Overall, layered coding has seen the most success in scalable video codec design, likely

due to its intuitive modular design. Despite this success, a number of other scalable technique

have also been proposed and demonstrated in the literature. Below, these approaches are briefly

described.

Bit Plane Coding

One area of research proposed by researchers in the scalable video coding community

during the early 2000’s is bit plane coding (Mayer et al., 2002). Bit plane coding relies on the

knowledge that a byte’s most significant bits are more important to the magnitude of the value

than the lower order bits. The idea is to prioritize higher order bits when transmitting bytes to a

bit stream. Consider a two dimensional integer matrix where each element is represented by a

single byte. Such a matrix may represent quantized frequency coefficients or raw pixel values for

an image or frame. The idea is to separate the bits that form the element bytes into eight separate

bit planes; that is, one plane to store the highest order bits from each element, one plane to store

the second-highest order bits from each element, and so on down to the least significant bits. The

resulting planes are then written to the bit stream in order from most significant to least significant.

By encoding a matrix using bit plane coding, the resulting stream exhibits the quality that

the precision of the stored values increases as more of the stream is decoded. Decoders that do not

63

need full precision of the matrix elements are free to abandon decoding midway through the stream,

as soon as sufficient precision has been received. A matrix encoded using bit plane encoding is

therefore scalable with respect to the precision of its values.

Bit plane coding has been used for scalable coding in multiple commercial image com-

pression standards, including the scalability extension of JPEG and JPEG-2000 (Wallace, 1992;

Marcellin et al., 2000). It has also been explored as a technique for coding video content (Radha

et al., 2001; Wu et al., 2000; Wang et al., 2002).

Pyramid Coding

The pyramid representation is a well-known approach for supporting spatial scalability for

images (Burt and Adelson, 1987; Tan and Ghanbari, 1995). With this strategy, a low-resolution

version of an image is first encoded at the beginning of the stream. Next, a series of residual layers

are encoded that provide the necessary information to expand the resolution of the image. Decoders

can choose how many layers to incorporate according to their desired final resolution.

Various mathematical operations have been proposed for decomposing and recovering an

image according to a pyramidal structure. For instance, Gaussian or Laplacian filters may be applied

to the image before it is down-scaled or up-scaled (Burt and Adelson, 1987). Another approach is

to decompose the image using a Haar wavelet transform, such that each residual enhancement layer

adds new higher frequency data into the up-scaled reproduction (Kekre et al., 2010).

3.3.4 Scalable Extensions to Widely-Used Formats

Many existing video coding standards, including AVC/H.264 and HEVC/H.265, are ac-

companied by officially supported scalable extensions that dictate how the formats can be altered to

support scalable requests. Scalable Video Coding (SVC) is the published extension for AVC/H.264,

and Scalable High Efficiency Video Coding (SHVC) is the analogous scalable extension for

HEVC/H.265. As discussed below, these have not yet seen notable traction in practice, due in part

64

to the added computational and logistical complexity that accompanies supporting the extensions at

both the encoder and the decoder.

Both HEVC and AVC are accompanied by officially approved scalable extension standards,

termed Scalable HEVC (SHVC) and Scalable Video Coding (SVC), respectively (Boyce et al.,

2016; Schwarz et al., 2007). Leading up to the release of these extensions, a number of proposed

techniques for scalability were considered for inclusion in the final publication. (Ohm, 2005) lists

some of these approaches. In practice, sing SHVC and/or AVC requires a server-side transcoding

step, as the original stream must be transcoded to a scalable format after capture time but before

request time.

3.3.5 Limited Support for Scalable Decoding

A major practical obstacle that has hampered real-world success of layered coding and

other scalable approaches—including the officially released scalable extensions listed above—has

been limited support by decoders and receiver devices. In theory, a scalable encoding of video

content can provide optimal experiences to a wide range of clients. However, this only works if the

clients are capable of decoding the scalable codec. In practice, scalable decoders are not widely

available. Thus, many real-world clients are unable to take advantage of the enhancement layers

and would be limited to receiving and decoding only the low-quality, non-scalable base layer. Due

to limited decoder support for scalable codecs, video providers often choose alternate approaches

like adaptive streaming to provide non-scalable standard-compliant encodings to diverse clients.

3.4 Simulcast / Adaptive Streaming

Scalable video coding works by reorganizing video data during the encoding process so

that subsets of the encoded data stream can be decoded independently to produce a lower-quality

approximation of the content. In contrast, adaptive streaming works entirely outside the encoding

process, in the application layer. The source video content is completely decoded to pixel space and

then re-encoded multiple times to create a set of fully independent versions of the content. Diverse

65

clients can request the version of the content which best suits their use case, and it is statically

streamed to them. Adaptive streaming is characterized by the following traits:

1. Application layer adaptation – Video coding is treated as a black box. An off-the-shelf,

non-scalable codec is used, and the only encoder configuration applied is the value of the

coding parameter(s) that should be adapted.

2. Separate encoder and content server – The encoding process is completely independent

from the act of serving the content. There is no feedback loop between the content server

and the encoder. The encoder must decide in advance which parameters and which values

will be scaled, without any real-time input from client or server.

3. Independently coded streams – Unlike scalable codecs, no attempt is made to eliminate

redundancy in the transcoded representations. Each transcoded representation is encoded

as a completely independent stream, even though this results in duplicated information.

Adaptive streaming is therefore sometimes called simulcast, because multiple independent

versions of the same content are simultaneously broadcast to clients.

Figure 3.2 depicts adaptive streaming as a block diagram. The source device captures and

encodes the video content, producing an initial representation. Next, it uploads the encoded data to

a transcoding server which transcodes the video multiple times, producing multiple independent

output streams with different coding parameters. These transcoded versions of the video are then

stored on the web server, and clients are able to request any of the pre-coded versions. No coding

dependencies exist between versions of the content.

Adaptive streaming has been widely adopted and is often used in practice by content

providers to support diverse requests for multimedia data (De Praeter et al., 2017). Numerous

standards for adaptive streaming have been published by different vendors, summarized in Table 3.1

(Müller et al., 2012; Fecheyr-Lippens, 2010; Bocharov, 2009; Sodagar, 2011).

66

4 Mbps

2 Mbps

1 Mbps

512 kbps

256 kbps

8 Mbps

Time

5 s 10 s 15 s 20 s

B
it

 R
at

e

Source
encoding

Independently
transcoded
segments

Transcode

Encoding
Server

Web Server
or CDN

Decoder Decoder

DecoderDecoder

Source

HTTP segment
requests and
responses

Heterogeneous
receivers

Transcoded
segments

Source upload

Transcoded
segments

Network

Figure 3.2: An adaptive streaming system diagram is depicted. Video content is uploaded from a
source device across a network to an encoding server, which transcodes the content multiple times
to produce a set of independently coded segments. These segments are stored on a web server
or CDN and served to clients via HTTP.. Heterogeneous clients asynchronously request different
segments of the video, according to their available network bandwidth or application needs.

3.4.1 Adaptive Bitrate Streaming

When an adaptive streaming system is deployed specifically to allow decoders to scale

the bit rate of the received content, it is called adaptive bitrate streaming (ABR streaming). For

video content streamed over the internet, variable transfer bit rates are common—bandwidth varies

from client to client, and sometimes even the throughput of a single connection fluctuates. ABR

streaming can mitigate these issues by allowing clients to adapt to changes in their available network

bandwidth. Thus, ABR streaming has quickly become a particularly common application for

adaptive streaming technology.

67

Name Acronym Vendor

Dynamic Adaptive Streaming over HTTP DASH MPEG

HTTP Dynamic Streaming HDS Adobe

HTTP Live Streaming HLS Apple

Smooth Streaming Microsoft

Table 3.1: This table highlights differences in representation between the major adaptive streaming
standards in use today.

3.4.2 Dynamic Adaptive Streaming over HTTP (DASH)

Dynamic Adaptive Streaming over HTTP (DASH) is an implementation of adaptive stream-

ing that is codec-agnostic and exclusively uses HTTP for network transfer (Sodagar, 2011). DASH

works by temporally partitioning multimedia content into small segments, each containing about

5-15 seconds of non-overlapping content. Each segment is then independently transcoded multiple

times using different encoding parameter values. Ultimately, this process yields a large number

of short, independent video fragments, which are stored on the file system of a HTTP web server.

Clients can select and request these fragments, using them to piece together the full content on the

client side.

By transcoding each segment multiple times and varying the encoding parameter values, a

range of options are produced for clients to choose from when requesting that segment of content.

To reproduce the full content, clients must select and request a transcoded version for each temporal

segment. Clients choose which transcoded version of each segment to request based on available

client-side resources or application-level goals. Once the requested segments are received, the client

plays them back sequentially to recreate the full content. Thus, the system is scalable because it

allows clients to “scale” one or more encoding parameters by selecting which pre-transcoded version

to download when requesting each segment of content. Furthermore, it allows clients to adjust

their decisions throughout the content. This is important, for example, if the client is attempting to

respond to system changes outside their control (e.g. network fluctuations).

68

4 Mbps

2 Mbps

1 Mbps

512 kbps

256 kbps

8 Mbps

Time

5 s 10 s 15 s 20 s

B
it

 R
at

e

Source
encoding

Independently
transcoded
segments

Transcode

Encoding
Server

Web Server
or CDN

Decoder Decoder

DecoderDecoder

Source

HTTP segment
requests and
responses

Heterogeneous
receivers

Transcoded
segments

Source upload

Transcoded
segments

Network

Figure 3.3: This diagram shows how a source encoding may be transcoded to produce smaller,
temporally synchronized video segments at various bit rates for use in ABR streaming. Each
rectangle represents an independently coded video segment, ordered by playback time on the x-axis
and transcoded bit rate on the y-axis. The source encoding was originally recorded at a higher
bit rate, but was transcoded down to produce the lower bit rate segments. For each time period,
clients choose which segment to download according to their available network bandwidth. A
sample client download path is depicted by the shaded segments and arrows. This client may have
detected a decrease in network bandwidth after downloading the first video segment, and adapted
by requesting a lower bit rate for the second and third segments.

When a client requests multimedia content using DASH, it first requests a special manifest

file from the server, called a Media Presentation Description (MPD) file. The MPD manifest

for a particular video describes how the video is segmented, and lists the available transcoded

versions for each segment. The client uses the information in the manifest file to request the segment

encodings that are most appropriate. Since this process takes place over HTTP, this results in a

flurry of independent HTTP requests, one for each segment encoding that the client requests. The

server simply responds with the requested pre-computed fragments stored on its file system. This

minimizes server-side per-request computation, while still providing each client with an encoding

that approximately meets its needs.

69

Figure 3.3 depicts an example system that uses DASH to provide bit rate scalability—that

is, the ability for clients to indicate the bit rate that best suits their capabilities and needs. By far, bit

rate scalability is the most common parameter to scale in practice, as network speeds are so variable.

The depicted system supports requests for the video at bit rates ranging from 256 kbps to 8 Mbps.

Each segment of video is transcoded 6 times in the cloud, producing representations at 256 kbps,

512 kbps, 1 Mbps, 2 Mbps, 4 Mbps, and 8 Mbps.

Advantages

Since DASH exclusively uses HTTP, it is inherently a stateless system. This makes it

very scalable with respect to the number of active clients, since servers need not track the state of

individual clients (Thang et al., 2012). Content served with DASH is easy to deploy to content

delivery networks (CDNs), since the server’s task is simply to act as a simple file server. This is

due to the fact that the more computationally expensive transcoding process takes place before the

content is served.

Another advantage of DASH is that it is codec-agnostic. DASH considers the video’s

representation to be a lower layer of abstraction, and interprets scalability as the process of selecting

from a set of pre-transcoded options. The coding parameters and format is a black box. This

provides flexibility for engineers to determine the best codec and parameters to use for their specific

client base.

Disadvantages

One disadvantage of using a system like DASH for scalability is that the scalable parameters

must be determined in advance. Clients have no way to provide input in the encoding process; they

can only select from a predetermined list of options for each segment of video. Since multi-coding

occurs before any requests are made, the range of supported coding parameter values must be

selected ahead of time. This can go wrong, for example, if a client requires a video at a bit rate

much lower than the ones represented in the pre-computed versions. In this case, the user is likely

70

to experience buffering events. More importantly, it fundamentally limits smart clients, like vision

algorithms, which are capable of providing precise request profiles—such as specifying regions of

interest—that cannot be predicted in advance.

Another disadvantage of DASH is that the computational burden of transcoding takes place

up front, by the server. If the system has real time constraints, such as if the video content is being

live-streamed, then this transcoding process must be performed in real time. Although this results in

a system that is scalable with respect to the number of clients requesting the video, it is not scalable

with respect to the number of content producers. For this reason, DASH would not scale well in a

system that has many more content producers than clients. Furthermore, smaller video distribution

systems may not have the available computational resources needed to support DASH for a large

number of clients. As the number of overall content producers increases, this trade-off will continue

to disadvantage smaller content distributors.

Finally, the fragmented representation of multimedia used by DASH contains a large

amount of redundancy, resulting in a huge overhead on the file system. Whereas data compression

focuses on eliminating redundant information, DASH takes the opposite approach. This is partially

a result of the requirement to provide non-scalable representations to all clients, and partially a

result of the decision to reduce per-request server demand. If a layered codec or per-request server

computations could be introduced, the file system overhead could be significantly reduced.

3.5 On-Demand Transcoding

The final family of approaches for solving the heterogeneous problem are on-demand

transcoding methods. Whereas scalable codecs and adaptive streaming techniques are characterized

by an independent encoding step, which takes place before the video content is served to clients,

on-demand transcoding integrates transcoding directly in the request-response lifecycle of the

content server. Thus, a single representation of the video is stored on the server and the transcoding

process takes place on-the-fly, in response to each request for the content. This has the advantage of

providing the most flexibility for clients, and can produce videos that exactly match client bandwidth

71

and decoding needs while maintaining maximum coding efficiency. The trade-off, however, is that

the server system must be capable of transcoding the video in real time.

3.5.1 Transcoding

Video transcoding is the process of converting pre-coded video content from one represen-

tation format to another. A transcoding operation may be homogeneous, meaning the video is being

transcoded to the same format as the initial format, except with different encoding parameters. This

could be used, for example, to transcode a high quality video to a lower resolution, bit rate, or frame

rate within the same coding format. Alternatively, transcoding may be heterogeneous, meaning

the destination format uses a completely different standard than the source format. This could, for

instance, prepare some video content to be used by a receiver with specific decoding capabilities,

like a DVD player.

There are three transcoding architectures proposed and implemented in the literature:

cascaded transcoding, fast transcoding, and guided transcoding (Vetro et al., 2003). These techniques

are outlined below.

3.5.2 Cascaded Transcoding

The most straightforward approach to designing a video transcoder is to simply cascade an

off-the-shelf decoder for the source format with a separate off-the-shelf encoder for the destination

format. This is called cascaded transcoding because the video content is completely decoded

into pixel space before it is completely re-encoded from scratch back to the desired compressed

representation. Cascaded transcoding has the benefit of being extremely modular and easy to

implement, since it requires no custom coding other than piping the output from the decoder directly

into the encoder. However, it comes at the cost of computational inefficiency, particularly when the

source and destination formats are very similar. With a cascaded transcoder, the encoder is forced to

re-compute prediction and other semantic elements about the video content, even if that information

was embedded in the original representation.

72

Because of the high server computational cost associated with performing a full encode

for each client request, cascaded transcoded is rarely used in practice. Use cases are limited to

situations where very few requests are expected relative to the amount of content provided.

3.5.3 Fast Transcoding

Fast transcoding is an alternative to cascaded transcoding in which the transcoder attempts

to reduce the time spent encoding by skipping or eliminating certain subroutines of the encoding

algorithm (Youn et al., 2000). Standalone video encoders normally need to analyze the source

content to generate a semantic understanding of motion and other high-level structures present in

the image data. But this process can be computationally expensive. For example, performing an

exhaustive motion search across a frame takes time, but yields a rich motion model that describes

the motion present in the frame.

Since the encoding portion of a cascaded transcoder is a standalone encoder, the semantic

coding decisions including motion search results are calculated from scratch by analyzing the

decoded, pixel-domain content. Some of this process may represent duplicated work, especially if

similar coding decisions were available as part of the originally coded stream. A fast transcoder is

a transcoder that uses a modified encoding unit that intentionally bypasses selected subroutines of

the encoding process in favor of reusing semantic information from the original encoding (Yuan

et al., 2017; Zong-Yi et al., 2013; Peixoto and Izquierdo, 2012; Deknudt et al., 2010).

For example, if both source and destination formats use similar motion compensation

algorithms for prediction, then the motion estimation model can be directly transplanted from

the source format and reused in the destination format. This way, the transcoder can skip the

computationally expensive motion search process entirely. This family of techniques are collectively

called “fast” transcoding because the goal is to speed up transcoding time by reusing semantic

information from the source, thus reducing or eliminating certain encoding tasks.

73

3.5.4 Guided Transcoding

Guided transcoding represents the most recent approach towards on-demand transcoding,

in which some of the transcoding work is pre-computed in advance to reduce the per-request

computational burden. The pre-computed work is stored on disk on the server as metadata that

is completely internal to the transcoding system. The metadata may contain, for instance, pre-

computed instructions for which coding decisions to use when transcoding to different bit rates

or transcoding to other receiver-driven parameters. When a request for the content arrives, the

guided transcoder is directed to the metadata for obtaining the correct encoding decisions instead of

deriving them by performing computationally expensive algorithmic searches. This is similar to the

way that a fast transcoder works, except that a guided transcoder uses the metadata to deduce the

optimal coding decisions instead of the source representation. The goal of guided transcoding is to

introduce an intermediate representation to cache some pre-computed results of various transcoding

procedures, thereby reducing the per-request burden.

A precursor to guided transcoding was first proposed in 2012 with H.265/HEVC as the

base content format (Van Wallendael et al., 2012). The original idea was to store one high-quality

representation of the content on the server, together with pre-computed metadata that guides the

process of transcoding the representation to other versions at significantly decreased per-request

computational complexity.

Since then, three papers have expanded on the original idea. First, (Rusert et al., 2016)

investigates ways to reduce the storage requirements of multicast approaches like DASH. The

paper notices that in most video content servers, not all content fragments are accessed equally.

For instance, older video content is less likely to be accessed, as well as higher layer streams in a

scalable, temporal encoding. The authors propose that for rarely accessed content, server disk space

can be saved with very little overall computational overhead by implementing guided transcoding.

In particular, their guided transcoding approach is to delete the stored residual coefficients from the

lower quality, infrequently accessed streams on the server. If the low quality version of a segment is

requested for which the residual coefficients have been cleaned up, the server can recompute them

74

by using the high quality version of the stream, which still exists in full on the server. This can

be interpreted as a guided transcode of the high quality stream, using the pre-computed prediction

elements as the guiding metadata. The reported experiments used H.265/HEVC as a base codec for

the guided transcoding implementation.

Second, in (De Praeter et al., 2017), the same group as (Van Wallendael et al., 2012)

extended their original 2012 work by analyzing the performance of guided transcoding when

content is transcoded down to significantly lower bit rates than the original, high-quality stream.

The paper makes the case that the prediction elements and other encoding decisions made for the

high bit rate stream are not necessarily optimal for lower bit rate streams. However, the prediction

elements calculated for a particular bit rate tend to be locally optimal—that is, prediction elements

can be reused to transcode to nearby bit rates with low compression overhead. The proposed solution

is to formulate a series of control streams for a given video, each of which contains pre-computed

prediction decisions for a different band of bit rates. When a request is made for the content at a

particular bit rate, the server simply selects the control stream assigned to that bit rate band. The

prediction decisions in that control stream are used to guide the transcode.

Finally, (Hollmann and Sjöberg, 2018) proposes a guided transcoding approach for

H.265/HEVC, in which the control streams also contain some residual information to make transcod-

ing easier. In particular, the control streams contain delta coefficients, which are the computed

difference between the quantized coefficient values from the high bit rate stream and a low bit rate

encoding of the same content. These delta coefficients can guide a transcode operation down to

the lower bit rate, because the transcoder can add the delta coefficients to the high quality residual

coefficients to reproduce the correct low quality residual coefficient values. The process of creating

a control stream is called deflation for the purposes of the paper, and the corresponding guided

transcoding operation is called inflation.

75

System A
Original
Encoder

System B
Per-Request
Transcoder

System C
Client

Decoder

S T U V

Figure 3.4: This block diagram illustrates a network distributed video coding system, as defined
by MPEG in their call for evidence (Group, 2017). The system has four interfaces, S, T , U , and
V , and three distributed nodes, A, B, and C. Video content flows from left to right, beginning at
interface S, which represents the source, and ending with interface V , which represents the client’s
decoded video. System A performs a one-time encoding of the content, System B transcodes the
video in response to each client request, and System C represents the client decoder.

3.5.5 Network Distributed Video Coding

In July 2017, the Motion Picture Experts Group (MPEG) published a technical description

of a proposed system that it calls network distributed video coding (NDVC). NDVC describes an

on-demand video transcoding architecture in which the transcoding process is distributed across

multiple nodes in a network to better handle diverse requests (Sjöberg et al., 2017). This paper was

released together with a “Call for Evidence on Transcoding for Network Distributed Video Coding”

(Group, 2017), which solicited community input about how such a system might be designed.

Together, these efforts were intended to draw attention to what MPEG sees as an important growing

industry need: a video system architecture with scope comparable to DASH that can solve the

heterogeneous client problem through distributed transcoding.

MPEG’s call for evidence presents a schematic like the one depicted in Figure 3.4 to

describe the parameters of a suitable NDVC system. Three distributed nodes, A, B, and C, are

connected by four interfaces, S, T , U , and V . Node A receives the input video content from

the source through interface S and transcodes it, producing an intermediate representation of the

data. This intermediate representation is designed to facilitate per-request transcoding by node

B, and is stored in interface T . When a client requests the video content, node B transcodes this

76

intermediate representation to formulate a standard-compliant video stream that exactly matches

the request’s specifications. The transcoded stream is transmitted across interface U to the client

device represented by node C. Finally, the client decodes the stream, displaying the reproduced

video content through interface V .

The call for evidence explicitly presents simulcast and full transcoding as diametrically

opposed architectural solutions to the heterogeneous client problem, and asks for proposed solutions

to provide a better trade-off between them. On one extreme, simulcast solutions like DASH perform

all transcoding at node A, before any client requests are made. The intermediate representation

produced by node A is a collection of fully coded output streams, which are stored on a web server’s

file system. Node B represents the adaptive streaming server, which responds to client requests by

directly reading the appropriate precoded video segments from disk. Thus, in a simulcast system,

no per-request transcoding takes place.

On the other extreme, full transcoding approaches perform all transcoding at node B, in

direct response to each user request. Node A does not alter the initial encoding at all, and the initial

stream is therefore also the intermediate representation. When a request is made for the video

content, node B transcodes the data just in time to the appropriate format as requested by the client.

A paper releasing the results from MPEG’s call for evidence is in pre-print at the time of

this dissertation’s publication (Praeter et al., 2021). All submissions for the call to evidence used a

form of guided transcoding for their NDVC system design, reinforcing its potential (Zhang et al.,

2014). Based on the results of the call, MPEG concluded that a NDVC system architecture is a

viable approach towards solving the heterogeneous client problem that exhibits real-world benefits

over existing simulcast and scalable solutions.

77

CHAPTER 4

Predictive Scalable Coding

As discussed in Chapter 2, many modern video codecs lean heavily on the hybrid predictive-

transform coding architecture to achieve data compression. At the same time, Chapter 3 explained

how scalable coding is the only class of existing techniques for adaptation that work in the compres-

sion layer.

This chapter investigates some of the challenges associated with predictive coding in a

receiver-driven, adaptive environment. These challenges are explored through the lens of imple-

menting scalable coding with a hybrid prediction-transform codec. Of the adaptation techniques

discussed in Chapter 3, scalable coding is the only approach that works in the compression layer.

Scalable codecs offer flexibility by allowing the decoder to make decisions about which subset

of content to receive, thereby affecting the availability of prior data. But this poses a challenge:

predictive-transform codecs require synchronized decoded picture buffers across the encoder and

decoder in order to benefit from predictive coding. Thus, additional system complexity is re-

quired to ensure that the decoded buffers at the encoder and decoder remain synchronized despite

receiver-driven content selection.

4.1 Prediction Drift

4.1.1 Availability of Prior Data at the Decoder

Predictive coding requires a decoder to use previously decoded frames of data to anticipate

the likelihood of future data values—the decoder uses past data to predict what future data will look

78

like. In this section, the term “frame of data” represents an abstract data unit, which may refer to an

entire video frame, a single macroblock, a coding unit, a single symbol, etc.

Often, the process of forming a prediction for the next frame of data will be directed by

the encoder through prediction syntax elements, encoded as part of the compressed data stream.

Prediction syntax elements represent instructions passed from the encoder to the decoder, which tell

the decoder how to form a prediction. This assumes that the encoder and decoder are in agreement

about the recovered values from prior signaled frames that are being used as the basis for prediction.

It also assumes that the decoder has recovered and retained the prior signaled frames. These

assumptions may not always hold true; for example, consider the following situations.

• Channel errors – A channel error during storage or transfer of the compressed bit stream

may cause one or more transferred bits to flip, resulting in incorrectly decoded values. In

this situation, prior frames may have been decoded, but are not accurate with respect to the

encoder’s expectation.

• Unreceived data – The client simply did not receive or decode the prior data. Perhaps the

client skipped to the middle of the compressed bit stream and is trying to decode the latest

data frames without having received earlier frames. The client will be unable to decode or

interpret any predictive-coded frames that are signaled by referencing previous frames.

• Deleted data – The client had previously received, decoded, and recovered earlier data

frames, but did not retain them in memory. Alternatively, perhaps a memory corruption in

the decoded picture buffer affected the integrity of the reconstructed data. In any case, the

necessary decoded prior frames are either completely unavailable or are no longer suitable

for prediction.

• Client-driven decoding – The client is making its own choices about which data to receive,

and the encoder does not know which portions of the data frames have been decoded and

which have been ignored. Thus, the encoder and decoder are not synchronized with respect

to their knowledge of prior frames.

79

In each of these situations, the decoder is unable to faithfully decode future frames that are

represented using predictive coding techniques. In particular, this dissertation investigates how

predictive coding can be adapted to work in the last situation described above, where the receiver

makes the decisions about which data elements to receive.

4.1.2 Recursive Predictive Structure

Predictive coding can be interpreted as the process of generating a recursive representation

for a given data signal (Ohm, 2005). With this characterization, the first data frame is encoded

independently (i.e. the “base case”), and is followed by a series of recursive, dependent repre-

sentations of the subsequent frames, which are defined in terms of previously coded frames. As

with all recursively-defined data, care must be taken to maintain fidelity at every iteration. This is

because any error or missing data in an early frame will propagate forward to all recursively-defined

dependent frames. Furthermore, the effect of an error is amplified the more times it is reproduced

by the recursive algorithm.

4.1.3 Prediction Loops in Hybrid Codecs

Whenever predictive coding is used by a data compression algorithm, a recursive coding

dependency called a prediction loop is introduced into the system. Prediction loops are characterized

by the recursive structure described in the previous section. They represent a feedback loop in the

encoded data such that future coded data frames are represented in relation to prior coded data

frames. Casting the task of data compression as a recursive definition problem in this way can

produce highly sophisticated human-engineered codecs. However, every prediction loop introduced

in the system is a potential point of failure. Any incomplete or missing information at the decoder

that was expected by the predictive encoder results in reconstruction error that is amplified as

decoding continues. In the worst case, such a situation can result in fatal decoding errors where

the decoder misunderstands the state of the stream and is no longer able to interpret the encoded

symbols due to the missing information.

80

The dominant structure for hybrid video codecs in use today contains two prediction

loops: one for intra- and inter-frame prediction, and one for entropy context adaptation. These two

prediction loops are illustrated in the schematic depicted by Figure 4.1, and are also described in

the sections below.

Predictive-Transform Loop

The “prediction” part of the hybrid “predictive-transform” video codec design forms the

first prediction loop. Modern hybrid coders support both inter-frame and intra-frame prediction

techniques.

• Inter-frame prediction refers to motion estimation and compensation. It is the process

of encoding motion vectors as part of the compressed representation to describe how a

decoder should copy patches of reconstructed pixels from prior video frames to produce a

prediction of the pixel values in the next video frame.

• Intra-frame prediction refers to textural-based prediction, in which the reconstructed

pixel values from a previously-coded neighboring coding block are “smeared” across the

next coding block in the same frame to form a prediction.

See Chapter 2 for a richer description of both inter-frame and intra-frame prediction.

As the decoder decodes the compressed stream and reproduces video frames, it stores each

reconstructed frame in a decoded picture buffer (DPB) for use in future prediction. Both inter- and

intra-frame prediction use the data in the DPB to predict future pixel values. The encoder must

therefore also compute and maintain this same DPB so it can express future frames in terms of prior

ones.

Note that the predictive-transform loop also represents advanced motion vector prediction

(AMVP) and other newer techniques that involve predicting the prediction syntax elements for a

frame based on prediction elements signaled as part of previous frames.

81

Predictive
Encoding

Decoded
Frame Buffer

Entropy
Encoding

Probability
Model

Transform
Encoding

Input Video
Frame

Prediction Residual
Frame

Syntax Elements

Encoded Bit Stream

Predictive
Decoding

Decoded
Frame Buffer

Entropy
Decoding

Probability
Model

Transform
Decoding

Syntax
Elements

Predicted Video
Frame

Decoded Video
Frame

Inter/Intra
Prediction
Loop

Entropy
Prediction
Loop

Inter/Intra
Prediction
Loop

Entropy
Prediction
Loop

Encoder

Decoder

Figure 4.1: This schematic outlines a simplified hybrid video codec architecture and highlights the
prediction loops embedded in the system. Two prediction loops are depicted: one for predictive-
transform coding, labeled “Inter/Intra Prediction Loop,” and one for entropy coding, labeled
“Entropy Prediction Loop.” To avoid drift in the decoded reproduction, both prediction loops must
remain synchronized across the encoder and decoder.

82

Any discrepancy between the encoder and decoder’s copy of the decoded picture buffer may

be a source of error in the decoder’s reconstruction of the compressed video frames. Furthermore,

any such error may be propagated forward by either inter-frame or intra-frame prediction. Note

that intra-frame prediction is only capable of propagating error in spatial dimensions, whereas

inter-frame prediction is only capable of propagating error in the temporal dimension.

Context-Adaptive Entropy Coding Loop

Once prediction and transform of a video frame is complete, the next step is to encode the

resulting prediction and residual syntax elements to the output bit stream. Modern video codecs

ultimately use entropy coding techniques for this. In particular, a common approach is to use a

context-adaptive binary arithmetic coding (CABAC) algorithm to break down and encode block

split decisions, motion vectors, quantized coefficients, etc as a series of binary decisions. This

process is described in more detail in Chapter 3.

Arithmetic coding algorithms use a context-adaptive probability model for encoding, which

is essentially an estimated probability density function (PDF) for the value of the next encoded

symbol. This PDF is improved, or adapted, as symbols are encoded, based on the frequency of

prior symbols. In other words, the context model used by arithmetic coding algorithms like CABAC

represents a prediction for the value of the next encoded symbol.

Much like the decoded picture buffer, the adaptive context model used by CABAC must be

synchronized between the encoder and the decoder. Any discrepancy between these context models

will result in a bit stream of encoded symbols that is seemingly nonsense to the decoder. This is

because the bit pattern of the encoded symbols is entirely dependent on the context model.

An error in the entropy coding prediction loop is often more serious than an error in the

predictive-transform prediction loop. Discrepancies in the decoded picture buffer simply result in

the propagation of incorrect pixel values either spatially or temporally. However, a discrepancy in

the entropy coding probability model results in the permanent divergence of encoded and decoded

symbols.

83

4.1.4 Decoder Drift

When missing or corrupt data results in mismatched predictions between an encoder and

a decoder, the decoder’s reconstructed pixel values drift away from the true source values. As

playback time elapses, motion compensation (i.e. temporal prediction) causes these reconstruction

errors to propagate forward to future frames. This behavior is called decoder drift. If left unattended,

decoder drift can quickly become noticeable as video quality rapidly decays.

Instantaneous Decoder Refresh (IDR) Points

Decoder drift is not entirely unexpected in the realm of video playback. To reduce the

potential long-term effects of drift on a video stream due to temporal propagation of reconstruction

errors, encoders will typically intentionally incorporate regular instantaneous decoder refresh (IDR)

points in an encoded video stream. An IDR point is an instant in playback time across which no

temporal prediction is allowed. Once an IDR is reached, a decoder is free to clear its decoded

picture buffer. Frames coded after an IDR are guaranteed not to reference frames that were coded

before the IDR point.

IDR points are useful for mitigating drift, but they are also helpful for decoders interested

in seeking to a particular time in the middle of the stream without having to decode starting at the

beginning. To seek to a particular playback point in the stream, a video player must simply identify

and seek to the location of the nearest IDR encoded in the bit stream before the instant at which

playback should start. The player must then decode the stream beginning from the IDR point, and

progressing forward to the desired starting point.

4.2 Challenges

As discussed in Chapter 2, predictive coding is an integral part of hybrid video codec

design. However, Chapter 3 made the case that support for scalable video coding is all but necessary

84

to address the heterogeneous client problem. This section describes the challenges associated with

integrating predictive and scalable coding in the same codec.

At face value, scalable coding and predictive coding seem to have opposing goals. On one

hand, scalable codecs are designed so that decoders can unilaterally and dynamically choose which

subset of the overall data to receive. On the other, predictive coding only works if the encoder and

decoder are in precise agreement about what prior data has been received. To illustrate this tension,

consider inter-frame (i.e. motion-based) prediction. To predict the next frame, a synchronized,

previously encoded frame must be available for reference. However, with a scalable codec, decoders

may have differing versions of the same prior frame, each with different SNR qualities, bit depths,

resolutions, etc. If there is no agreement between encoder and decoders about the prior frame,

synchronized prediction becomes difficult. And this challenge is not unique to inter-frame prediction.

The other examples of prediction loops in video coding must be addressed in a scalable environment,

too. Care must be taken to ensure that the context models used by context-adaptive arithmetic

coding are adapted and reset appropriately according to the symbols received by the decoder, and

that intra-frame prediction remains synchronized across block boundaries.

The tension between synchronized prediction and scalable decoding can be solved in two

ways: either by working around the prediction loops to ensure that the encoder and decoder remain

synchronized despite the introduction of scalable coding, or by permitting the decoder to drift away

from the prediction expected by the encoder as scalable decisions are made. These two approaches

are elaborated below.

4.2.1 Drift-Free Scalable Predictive Coding

If prediction synchronization between the encoder and decoder is to be maintained in a

receiver-driven or otherwise scalable environment, then the encoder must either track, anticipate,

or be told which subset of data was received and decoded by the client. Depending on the system

architecture and codec design, a solution might take any of the following forms.

85

Avoiding Drift by Transcoding

With a just-in-time transcoding architecture, it is possible for the encoder to deduce which

information is received by the decoder based on which subset(s) of the stream were explicitly

requested and transferred to the client. If there are multiple clients, the transcoder can maintain the

custom prediction data for each client in real time according to which data that client has received.

This approach could potentially achieve theoretically optimal rate-distortion performance,

since a full, custom transcode of the source content is performed for each client. The encoder

can maintain full knowledge of all data previously received by the decoder, and can encode future

frames accordingly. However, producing an optimal representation of the requested data for each

client comes at the cost of significantly increased per-client encoder complexity.

Avoiding Drift by Multiple Layer Prediction

With a layered codec architecture, the encoder and decoder could retain separate synchro-

nized prediction reference data for each layer. In this scheme, all layers can utilize predictive

coding; however, to stay synchronized, no layer’s prediction can incorporate data received from

another layer unless it is dependent on that layer in the codec’s dependency graph (see Figure 3.1).

This ensures that inter-layer coding dependencies are respected. Although this requires careful

dependency management and a more complex codec, this is the strategy adopted by H.265/HEVC’s

scalable extension SHVC.

Unfortunately, despite allowing prediction at each layer, theoretically optimal rate-distortion

performance is unattainable with this approach. When predictive coding is used to signal data in

the lowest layers, it cannot reference previously coded available data from higher layers to form a

prediction. Any correlation between a lower layer and a higher layer cannot be exploited by lower

layers. As a result, the predictions produced by lower layers are suboptimal when compared to what

would have been possible if higher layer data could be referenced for prediction. This problem

is exacerbated for decoders that have received most or all of the available layers. The decoder

cannot use its high quality reproduction for prediction in lower levels, and must instead maintain

86

separate low quality reproductions to reference when predicting for these levels. Therefore, the

rate-distortion performance penalty of this approach is worse when decoding at higher bit rates.

Avoiding Drift by Base Layer Prediction

Finally, an extreme case of the layered approach above is to limit predictive coding across

all layers so that only information received in the base layer can be referenced. This approach is

used, for example, by MPEG-4’s Fine Granularity Scalability (FGS) mode, which does not use

inter-frame prediction in enhancement layers at all. Another example is H.264/AVC’s scalable

extension SVC, which requires only a single decoding loop. Since all decoders are guaranteed to

receive the base layer, they will all have that data available for prediction. This simplifies decoder

architecture so that only one prediction reference buffer is needed, regardless of the number of

layers provided. Rate-distortion performance is reduced, however, for the same reason as before:

clients who choose to decode enhancement layers are not allowed to incorporate the additional

data in the prediction loop lest they desynchronize from the encoder. Predictions are therefore less

accurate than they would be if the complete available data could be referenced. Ultimately, this

means extra prediction residual data will be transferred unnecessarily.

4.2.2 Drift-Controlled Scalable Prediction

The approaches in the previous section address drift at the expense of additional com-

putational complexity at the encoder and decoder. Furthermore, the layered approaches result in

suboptimal rate-distortion performance when higher layers are incorporated in the reconstruction.

If these limitations are unsuitable, an alternate approach is to simply allow drift to be

introduced in the system as the decoder scales the stream. In an attempt to form an optimal

prediction given available data, the decoder will use the highest quality reproduction available as

its reference every time it is directed to form a prediction. In a scalable system, not all decoders

have access to the full quality reference. Prediction quality will therefore vary by decoder, yielding

reconstructions of different quality (i.e. drift).

87

Suppose original frame Fi is received by scalable decoder j, which produces reconstructed

frame Fi,j . Due to discrepancies already present in the prediction loop, Fi 6= Fi,j . Thus, the amount

of drift experienced by decoder j for frame Fi can be quantified as

Di,j = Fi − Fi,j (4.1)

As decoding continues, temporal prediction causes the drift to be propagated forward,

eventually potentially dominating the signal. Additional mechanisms can therefore be added to the

encoder to control—but not entirely eliminate—the drift experienced by decoders.

One option is that the encoder can track or estimate the maximal amount of drift that may

be experienced by decoders receiving different subsets of the stream. Drift tracking at the encoder

can be implemented by following various scalable decoding paths and measuring the resulting drift

directly. If drift gets too high along any one path, the encoder can incorporate an IDR to reset the

prediction loop for all decoders. For example, suppose a encoder will permit drift up to a certain

PSNR threshold, dthreshold. After frame i is encoded, the encoder computes di,max, the maximum

drift experienced by any of the decoder paths for frame i.

di,max = min
j

(PSNR (Di,j)) (4.2)

As long as di,max > dthreshold, encoding can continue normally. Once di,max ≤ dthreshold, an IDR is

prepared for the next possible frame which resets all decoder prediction loops.

In another approach explored by Chapter 6, the encoder can attempt to compensate for the

drift experienced by the decoder. The goal is to manage drift equally across all possible decoding

paths. As before, the encoder tracks or estimates the drift along various decoding paths. However,

the key realization for this approach is that an encoder can reduce or even eliminate drift along

any one decoding path j by subtracting Di,j from the prediction residual signal coded in the output

stream for frame Fi. In other words, if the encoder knows the exact amount of prediction drift

experienced by a decoder, it can compensate for the drift in the residual.

88

Thus, an encoder that is actively tracing various decoder paths can take turns compensating

for the drift experienced by each path by altering the residual signal accordingly. Note that this is

an optimization problem where adjusting for drift in one decoding path may adversely affect other

decoding paths. Therefore, encoders may need to prioritize certain decoding paths over others or

try to find a balance between each path. For example, an encoder might choose to prioritize the

decoding path associated with a certain bit rate by continually compensating for drift in that path.

However, other decoding paths—particularly those with significantly different coding parameters or

bit rates—will suffer in terms of rate-distortion performance.

Instead of compensating for drift equally among all decoder paths, the encoder could

identify a certain decoder path and prioritize that path over others for drift compensation. This

could be used in a situation where an encoder knows in advance to optimize for a specific range of

bit rates. The encoder would specifically track and compensate for drift in that range, resulting in

near-optimal rate-distortion performance for decoders at that target bit rate. Decoders receiving at

bit rates far away from the target range would experience more drift and lower efficiency. Reduced

efficiency and drift would be experienced at both extremes, including decoders at higher or lower

bit rates.

A final approach attempts to limit the influence of drift over time. The idea is to introduce a

decay factor a ∈ [0, 1], which is used by the decoder to dampen all prediction values. For example,

after a motion vector is applied to obtain a motion-compensated block of pixels, the decoder

multiplies the predicted intensities by a before processing the residual signal. As playback time

elapses, the influence of drift from older frames will therefore decay exponentially. By adjusting

the value of a, the amount of decay applied can be controlled. a can either be set by the encoder or

assumed by the coding format itself. However, the encoder must be aware of the decay factor so that

it can compensate for the lost information by adjusting the residual signal in response. Ultimately,

this is a heavy-handed approach that trades-off rate-distortion performance by reducing the overall

effect of prediction in order to stabilize drift.

89

4.2.3 Effect of Scalable Coding on Rate-Distortion Performance

The rate-distortion performance of a scalable codec is typically assessed by creating a

single scalable encoding of a given video and plotting the R-D curve that results from decoding

different subsets of the stream. This scalable R-D curve is then compared against a non-scalable R-D

curve for the same video. The non-scalable curve is produced by encoding multiple independent

non-scalable versions of the same video content as before at different target bit rates. For each

non-scalable encoding, a point is plotted indicating the bit rate and the achieved quality. It is

typical for a non-scalable R-D curve to outperform the scalable alternative. However, based on

which scalable technique is used, the performance of a scalable encoding can approach that of a

non-scalable coding, particularly for certain target bit rate ranges.

With the exception of the just-in-time transcoding architecture, all approaches discussed

above for designing a scalable codec with predictive coding will result in suboptimal rate-distortion

performance when compared with a non-scalable encoding at the same bit rate.

• The drift-free, layered approaches used by scalable codecs including SVC and SHVC

produce an R-D curve that is anchored with the highest rate-distortion performance at the

base layer. This is because the base layer is usually a non-scalable encoding itself. As

the number of decoded layers increases, rate-distortion performance suffers due to the

problem of artificially limited lower-layer prediction. Thus, clients receiving at high bit

rates experience the lowest rate-distortion performance.

• If drift is simply allowed by the encoder with no control mechanism, the highest bit rates

experience the best rate-distortion performance. Lower bit rate decoders suffer from

suboptimal prediction, and are therefore susceptible to drift.

• The drift-tolerant approaches allow the encoder to specify a specific bit rate to prioritize,

or optimize across all bit rates equally. Drift will always cause suboptimal rate-distortion

performance for these family of techniques, but the encoder is able to direct the effect—and

the penalty—away from certain bit rates by applying drift compensation.

90

Figure 4.2 sketches the shape of the R-D curves for each scalable approach above, assuming

that each approach is applied to the same source video content. The figure illustrates how each

technique’s R-D curve prioritizes a different range of bit rates, but no technique is everywhere

optimal.

91

Bit Rate

Q
ua

lit
y

Bit Rate

Q
ua

lit
y

Bit Rate

Q
ua

lit
y

Bit Rate

Q
ua

lit
y

(a) (b)

(c) (d)

Legend

Non-Scalable Curve

Scalable Curve

Figure 4.2: These R-D curves illustrate how different scalable approaches affect rate-distortion
performance when applied to the same video content. Each approach is compared against a non-
scalable encoded R-D curve. Subfigure (a) represents the case where the transcoder allows the
decoder to drift freely. Subfigure (b) illustrates a drift control mechanism anchored at a particular
bit rate. Subfigure (c) shows a simulcast/adaptive bitrate streaming solution. Subfigure (d) depicts a
traditional bottom-up layered coding approach.

92

CHAPTER 5

Content-Adaptive Entropy Coding

Chapter 3 outlined the three main classes of video adaptation approaches: scalable coding,

adaptive streaming, and on-demand transcoding. These strategies are computationally expensive, do

not scale well with the number of videos produced, and throw away important semantic information

about the captured scene that is embedded in the initial encoding. The discussion concluded by

citing a recent call-for-evidence published by MPEG, outlining the need for new adaptation systems.

In particular, MPEG claims that new systems should take a more flexible, distributed approach

towards adaptation.

The problem with existing strategies is that they carry out full transcoding of the initial

representation, and do not allow receivers to actively guide the process. Every time a video is

transcoded to and from pixel space using a lossy codec, quality is lost. More significantly, the

semantic predictive information embedded in the prior encoding is forgotten and recomputed by

performing a computationally demanding prediction search. This results in high computational

costs for video distributors, adapted video output that is not flexible to receiver needs, and endpoint

content that was likely transcoded so many times that it no longer semantically reflects the initial

representation.

To solve these challenges, adaptation must be fundamentally recharacterized. The flaws

exposed by existing techniques can be avoided by designing adaptation methods that sidestep full

transcoding entirely; instead, they should reuse the source encoding as much as possible. This

has two benefits: first, it greatly reduces the computational burden of re-encoding, and second, it

results in a system that adapts downward from the highest quality representation. Furthermore,

new adaptive solutions must be more flexible for the receiver than existing approaches (i.e. they

93

should be “receiver-driven”). This ensures that the diverse, sophisticated applications of the future

will be well-supported by these new adaptive techniques, even if their application needs are not yet

understood.

To that end, this chapter proposes a novel, fundamental approach towards top-down

adaptation that fits the prescription. The proposed technique adapts any data source that can be

modeled abstractly as a sequence of symbol tokens. Instead of adapting by remodeling the source

encoding, adaptation is achieved by selectively dropping some symbols from the original stream

during entropy coding. The decision of which symbols to drop is exclusively determined by a

rate controller algorithm specified by the receiver. By supplying the rate controller, receivers can

effectively pick and choose which encoded symbols to receive from the stream. There are myriad

reasons why a smart receiver may not wish to receive every symbol. For instance, perhaps not

enough network bandwidth is available to receive the whole stream, and the receiver must make

choices about which symbols to receive and which cannot be afforded. Alternatively, perhaps the

receiver is only interested in a certain subset of the encoded symbols, based on the application’s

needs. The salient point is that as receivers become more sophisticated, they can be expected to have

a much richer understanding of their available computing resources and application needs than the

provider does. Distributing these decisions to the receiver about which symbols to keep promises

to be a more flexible approach, allowing the same source content to be dynamically adapted very

differently for diverse smart applications.

We term the proposed technique content-adaptive entropy coding because it adapts the

source content to each receiver’s needs during entropy coding. For evaluation, two implementations

of content-adaptive entropy coding with video data are presented. First, content-adaptive entropy

coding is successfully applied to an H.265/HEVC coded symbol stream, demonstrating how top-

down, layered adaptation is possible with predictive-coded video data. Next, it is also applied to

a M-JPEG coded symbol stream to demonstrate how a receiver-driven approach can outperform

traditional cascaded transcoding for certain use cases.

94

5.1 Formulation

This section presents the novel content-adaptive entropy coding algorithm that embodies a

major contribution of this dissertation. The proposed scheme takes as input an arbitrary, source-

modeled sequence of abstract symbols S = (s0, s1, s2, . . .). Let si ∈ A be the ith symbol value

from the input stream S, where A represents the symbol alphabet. Ultimately, these symbols are

encoded to the compressed bit stream using a standard arithmetic coding algorithm. To produce

code words of the correct length, arithmetic coding works by assuming the encoder and decoder

share a common estimate of the probabilities of each symbol value a ∈ A. Therefore, both decoder

and encoder must maintain synchronized copies of an adaptive probability model PM : A→ [0, 1].

Before each symbol si is encoded, the model estimates the probability distribution for the symbol’s

value.

PM(a) ≈ P (a = si) (5.1)

Now, suppose an unaltered context-adaptive arithmetic entropy encoder and decoder

exists with functions for encoding and decoding symbols to and from the compressed stream.

Let C represent the compressed stream. Suppose encode(C,PM, si) encodes symbol si to the

compressed stream C using probability model PM , and decode(C,PM) decodes and returns

the next symbol from the compressed stream C using probability model PM . Since the codec is

context-adaptive, an update(PM, si) routine is also implemented which adapts the probability

model PM to incorporate the fact that symbol si has been coded. After the update routine is called

for symbol si, it is assumed that PM has been adjusted to model the estimated probabilities of the

next symbol si+1. Naturally, the encoder should only update its copy of the probability model PM

after a symbol is encoded, and the decoder should update only after one is decoded.

So far, this notation is sufficient for modeling an unaltered context-adaptive arithmetic

entropy encoder that does not support content adaptation on its own. The key to incorporating

content adaptation is to introduce a synchronized rate controller algorithm RC which is reproduced

at both the encoder and decoder. RC determines in advance whether enough bandwidth exists to

95

encode symbol si in the bit stream, returning a binary indicator value as output. RC must be executed

by the encoder before encoding symbol si, and by the decoder before decoding it. If RC determines

that enough bandwidth exists (i.e. it returns true), then the symbol si is encoded/decoded like

normal. If not enough bandwidth exists, then symbol si cannot be encoded or decoded; we say

that the symbol is dropped from the output bit stream. This is the mechanism by which content is

adapted.

Regardless of whether symbol si is encoded or dropped, the probability model PM must

be updated at both the encoder and decoder to model the probabilities of si+1. If the rate controller

determined that symbol si should be encoded, then PM can be updated like usual using the

update(PM, si) routine. However, if si was dropped, PM must be updated by both the encoder

and decoder without using knowledge of the value of si. This is because the decoder did not receive

the value of si and therefore cannot use it. To handle this case, the content-adaptive formulation of

entropy coding adds an overloaded version of the update function, update(PM). This version

of the function does not take into account the value of symbol si, but still updates the probability

model to model probabilities for the next symbol si+1.

This also highlights an important strength of content-adaptive entropy coding: even when

the decoder does not recover a symbol value, it still is aware of the fact that the symbol value exists

but is missing. Some decoders may choose to make a educated “guess” about the value of the

missing symbol, based on its probability model PM . For instance, the decoder could always fill in

the value of missing symbols using the most probable symbol (MPS). Alternatively, a stochastic

regime could be implemented where the missing symbol’s value is stochastically inferred according

to the estimated probability distribution from PM .

The rate controller algorithm RC must be careful to make its decision only based on

information available at the decoder. For instance, RC cannot use the value of si to make its decision,

since the decoder does not have access to that value yet. However, RC can use the state of the

probability model PM , since that is available at the decoder (i.e. RC(PM)). Moreover, RC can

incorporate sophisticated context awareness to help make its decision. For instance, some symbols

96

may be deemed extra important due to their semantic meaning within the larger stream. Alternatively,

a specific receiver may have a particular interest in certain symbols, and can incorporate this

information in the design of RC.

The exact RC algorithm for making symbol drop decisions may be application-specific, or

even receiver-specific. By supplying the RC algorithm to the encoder, a receiver could effectively

drive adaptation. For example, if a particular receiver needs a low bandwidth version of the content,

it could supply a suitable RC that liberally drops symbols from the source stream. Alternatively, the

video provider may design and provide a few predefined, off-the-shelf rate controller algorithms

which implement common use cases among receivers. Instead of supplying the rate controller, some

receivers may instead select a premade one from this list. This also opens the possibility of caching

the streams produced by premade rate controllers, thereby increasing server-side performance for

the most common use cases.

5.2 Budgeted Rate Controller

Clearly, designing a “good” rate controller algorithm RC that matches the receiver’s

application needs is integral to a successful implementation of content-adaptive entropy coding.

Exposing the design and implementation of such an algorithm to the receiver is an appropriate layer

of abstraction, because it gives future applications the flexibility and control needed to fully adapt

the encoded content to their unique use cases. The design of sophisticated rate controllers tailored

for specific use cases therefore is a promising avenue of future research. This dissertation initiates

the process by proposing a simple—yet powerful—formulation of a bit-budgeted rate controller.

The rate controller proposed in this section will be used by all implementations in this

chapter. It is defined by function RC = δ(b, PM), which takes the following two input parameters,

and returns a binary indicator decision:

1. A “bit budget” b ∈ R representing the highest acceptable number of bits to use when

coding the symbol.

97

2. The current state of the probability model PM which would be used by the arithmetic

coder if the symbol is ultimately encoded.

The strategy for δ(b, PM) is to use PM to identify the worst-case number of bits that could possibly

be required to encode the symbol if the least probable value is signaled. Next, the available budget b

is checked to see if it contains enough bits to encode that value. If enough bits are available, then

the symbol can be encoded; otherwise, it cannot.

The proposed bit-budgeted rate controller indicator function δ is given by

δ
(
b, PM

)
=


1 if b ≥ − log

(
PM

(
LPS(PM)

))
0 otherwise

(5.2)

where LPS is a function that extracts the least probable symbol of probability model PM , and

δ(b, PM) = 1 indicates that the symbol should be encoded in the layer. At a high level, δ(b, PM)

reduces the question of whether to encode or drop each symbol down to the act of selecting an

appropriate value of b for the symbol. In essence, a symbol is only encoded if enough bits are

available in the bit budget b to encode the least probable symbol (i.e. the most expensive symbol).

While fundamentally simple, this formulation for rate control is quite powerful. As later

experiments will show, selecting b appropriately for each symbol can successfully support targeted,

receiver-driven use cases such as region-of-interest selection. The scheme for determining the

value of b could be as simple as a fixed allotment for each symbol, or it could adjust based on an

understanding or approximation of the importance of each symbol that is being coded. In general,

higher values of b should be used for more important symbols, as this increases the chance that

they will be coded. Some streams may contain certain symbols which have maximal importance, in

the sense that their value is required at the decoder to determine the meaning or presence of future

symbols. This is an artifact of tight inter-dependence between subsequent symbols used in many

existing codecs. In essence, such symbols must be encoded to ensure that they will be received by

98

the decoder. This situation is handled by setting the bit budget for these symbols to infinity, which

forces δ(∞, PM) = 1 to be true as desired.

5.3 Layered Scalable Extension

So far, content-adaptive entropy coding has been introduced as a dynamic adaptive tech-

nique in which a smart receiver supplies or selects a rate controller algorithm, the provider generates

the adapted encoding, and the result is streamed to the receiver. This is anticipated to be the primary

use for the proposed technology. However, content-adaptive entropy coding can also be used to

produce a layered scalable codec. Recall from Chapter 3 that layered scalable codecs partition

the encoded data into a base layer and a series of enhancement layers. Content-adaptive entropy

coding elicits this behavior by treating its output stream as the base layer, and creating one or more

enhancement layers that signal the symbols which were originally dropped by the base layer’s rate

controller. In other words, the symbols that were dropped from the base layer constitute another

symbol stream which can be input to a second instance of a content-adaptive entropy coder. The

second instance therefore produces another encoded bit stream which serves as the first enhancement

layer. Any symbols dropped from this layer constitute yet another symbol stream which can be

encoded by a third instance to produce a second enhancement layer. This process can be repeated to

induce as many enhancement layers as necessary.

To formalize this idea, suppose an arbitrary input symbol stream S = (s0, s1, s2, . . .) is to

be coded into k > 0 layers, numbered from L0 to Lk−1. Each layer represents an entropy coded

bit stream of symbols encoded using a standard arithmetic coder, just as before. However, this

time, each layer maintains its own separate probability model for coding symbols. Define the

probability model for layer Lj to be PMj . To maintain dependencies across layers, PMj can

be context-adaptive, but must only incorporate knowledge of symbols coded in layers L0 to Lj ,

inclusive. This is so that a decoder which receives only layers L0 to Lj (0 < j < k − 1) could still

maintain the correct corresponding probability models PM0 through PMj . In practice, this means

that probability models at higher layers will be able to incorporate more prior symbol knowledge

99

into its estimates for coding future symbols. Thus, higher layers can be expected to achieve better

compression rates than lower layers.

5.3.1 Encoding a Symbol

Each input symbol si from source stream S is coded into at most one layer. Suppose si is

the next symbol to be coded. To determine which layer contains symbol si, every layer implements

its own rate controller algorithm. Let RCj represent the rate controller algorithm for layer Lj . Just

like in the non-layered case, the rate controller algorithms may be supplied by a smart receiver or

they may be predetermined by the encoder. To determine which layer contains symbol si, the rate

controllers are sequentially evaluated, beginning with RC0 and proceeding upwards until either a

layer’s rate controller elects to include the symbol in its bit stream, or the final rate controller RCk−1

elects not to code the symbol. Once a symbol is included in a particular layer, higher layers need

not evaluate their indicator decisions for the current symbol, because the target layer has already

been identified. If no layers elect to include the symbol, then it is dropped from the adapted layered

encoded stream.

Suppose the target layer for symbol si is determined to be layer Lj . The arithmetic coder

therefore uses probability model PMj to encode/decode symbol si to and from bit stream Lj . After

the symbol is encoded, the probability models for layers at or above Lj are updated by the encoder

to reflect the fact that si was signaled (i.e. probability models PMj , PMj+1, . . . , PMk are updated).

Decoders that receive these higher layers must update their copies of the probability models in

the same way. Additionally, the probability models for layers below Lj should also be updated

by both encoder and decoder; however, since the symbol si was not known by those lower layers,

knowledge of the symbol cannot be used to adapt their probability model contexts. Thus, the

overloaded version of the update function update(PMm) ∀ 0 ≤ m < j is used which does not

incorporate the symbol value in context adaptation.

As before, the rate controller design ultimately decides which symbols are coded in each

layer. It therefore has a large effect on the quality of reconstruction for low bit rate decoders who

100

do not receive many layers. In general, a desirable trait of scalability is to code symbols that are

fundamentally important to the source stream in lower layers, while allowing nonessential symbols

to float to higher layers. This goal is difficult to achieve not only because it requires a semantic

understanding of how important each symbol is within the stream, but also because the decision

must be made based on the knowledge available at the decoder before the symbol is recovered.

Furthermore, a good indicator function must also distribute enough symbols into each layer to cause

a noticeable bit rate change when decoding different numbers of layers.

5.3.2 Partial Decoding

Suppose an encoded stream has k layers in total. To reconstruct the complete source

symbol stream, a decoder must receive all k layered bit streams from L0 to Lk−1. Alternatively, a

lower quality reproduction may be recovered at a smaller bit rate by requesting only the bit streams

from layers L0 to Lj for some 0 ≤ j < k − 1. In this case, all symbols coded in layers j + 1 to

k will not be received, but the symbols in layers 0 to j are recoverable as long as the decoder can

interpret them without receiving any symbols from the higher layers. If symbols are approximately

evenly distributed among the layers, then changing j effectively controls a bit rate scalable trade-off

between symbol recovery rate and encoded bit rate.

5.4 System Block Diagram

Figure 5.1 depicts a block diagram of the components of a single layer. These components

include the rate controller (RC), the indicator function (I), the entropy coder (EC), the probability

model (PM), and a probability model update process (U). Two streams of symbols arrive at each

layer. One is a stream of symbols not encoded by any lower layer. The other is a stream of symbols

encoded at a lower layer. The indicator function evaluates whether or not the next unencoded

symbol should be selected for this layer. Those not chosen are passed to the next higher layer.

Those chosen are passed to the entropy coder and emitted as part of this layer as well as added to

the stream of symbols already appearing in a lower layer sent to the next higher layer. Symbols

101

RC

I

PM

EC

U

Symbols Not Encoded
In Lower Layer

Symbols Not Encoded
In Lower Layer

Symbols Selected
For This Layer

Encoded
Layer

Bitstream

Symbols Encoded
At Lower Layer

Symbols Encoded
At Lower Layer

Figure 5.1: This block diagram depicts a single layer of a multilayered content-adaptive entropy
encoder.

encoded as part of lower layers are used to update the probability model as if they were encoded at

this layer. This allows the entropy encoding efficiency to improve at each higher layer until it is as

efficient as the original representation at the highest layer.

In order for this scheme to be practical, original high-quality representations must be

designed so that the symbol rate is smoothly related to reproduction quality, and sophisticated

indicator functions must be developed that take into account symbol semantics—but never symbol

values—to appropriately sort symbols into each layer in a rate controlled manner. In this chapter,

the proposed scheme is applied to a small subset of H.265/HEVC syntax elements using a simple

indicator function to demonstrate its feasibility on existing predictive coding formats. Additionally,

it is applied to M-JPEG coded content to demonstrate a receiver-driven use case.

Figure 5.2 depicts the layer dependency graph for a layered, context-adaptive entropy

encoder with three enhancement layers. All decoders must receive layer L0, as it is the root of the

dependency tree. Enhancement layer Lj , for j ∈ {1, 2, 3}, can only be decoded by a decoder that

102

L0

LD

LQ2

LQ1 LRLT

Dependent
Enhancement
Layers

Independent
Base Layer

L3L1 L2L0

Base Layer
Series of

Enhancement Layers

Figure 5.2: This dependency graph depicts the layers of a layered entropy coder. Each layer is
dependent on the prior layer, forming a one-dimensional chain of dependent layers. No layer can be
decoded without also decoding the layers on which it depends.

also has been receiving and decoding all layers below Lj . This is because in order to decode a

symbol from layer Lj , the decoder must know the state of probability model PMj used to encode

the symbol. But since the arithmetic coder is context-adaptive, the probabilities in PMj adapt based

on previously coded symbols from layers below or equal to Lj . This creates a linear dependency

structure between layers that maximizes coding efficiency by allowing higher layers to adapt their

probability models to symbols coded in lower layers.

5.5 Features

This section highlights the major features of the proposed content-adaptive entropy coding

algorithm, and describes how it achieves receiver-driven, top-down bit rate scalable behavior.

5.5.1 Top-Down Adaptation

Most existing scalable video encoding systems produce a backwards-compatible standard-

compliant base layer stream along with a series of enhancement layers (Boyce et al., 2016; Wang

et al., 2016). In this paradigm, the base layer stream is a complete low-quality version of the video

that is fully decodable by a non-scalable decoder. To recover a higher-quality version of the video, a

decoder uses one or more enhancement layers to refine and improve the base-level reproduction.

103

Bit RateBit Rate

High
Quality

Low
Quality

Frontier Curve

Scalable Curve

TRADITIONAL
SCALABILITY

PROPOSED
SCALABILITY

Figure 5.3: A top-down approach would provide the highest coding efficiency in requests for
high-quality video.

This structure is employed by SHVC as well as its predecessor SVC (Boyce et al., 2016; Schwarz

et al., 2007).

This base/enhancement layer structure induces an inverse relationship between reproduction

quality and coding efficiency which is anchored at the base layer. In other words, decoding the base

layer alone provides the highest coding efficiency and the lowest quality reproduction. As a decoder

receives and integrates enhancement layers, the reproduction quality increases and coding efficiency

decreases. Since the base layer is a fully standard-compliant non-scalable representation, it lies

on the theoretically optimal rate-distortion frontier offered by the encoding algorithm. In contrast,

the additional enhancement layers cannot maintain this optimal coding efficiency for higher bit

rates. This is due to the fact that the presence of enhancement data when predicting future frames

is not guaranteed to be available to a decoder. Thus, coding efficiency decreases as reproduction

quality increases. This is illustrated in Figure 5.3. Note that the scalable curve (solid) is anchored at

the base layer and intersects the frontier curve (dashed) only at this point. The area between the

scalable curve and the frontier curve depicts the inefficiency incurred by introducing scalability in

the scheme.

104

The inverse relationship between quality and efficiency illustrated above prevents practical

systems from taking advantage of scalable representations. As network infrastructure continues to

improve and video playback devices with increased computing capabilities become more common,

we can expect high quality video delivery to be the more common use case with adaptation toward

lower quality representations considered an exceptional, albeit important, condition. Existing

solutions to scalability, which are most efficient for low-quality video, are therefore optimizing for

a situation that is becoming less prevalent. What is required is a shift in perspective and to consider

an initial high-quality representation as the starting point. That representation of the highest quality

endpoint along the adaptation range is where scalability mechanisms should be anchored as close as

possible to the optimal rate-distortion frontier. Adaptation to the other end of the quality spectrum

can then be created as derived subsets of the information encoded at the top.

The field of scalable video coding is ripe for a fundamental paradigm shift in which

scalability is no longer viewed as an enhancement process from low quality to high quality, but

understood instead as an adaptive degradation process from high quality to low quality. Doing

so supports myriad real-world use cases in which high-quality video is dominant and adaptation

to lower-quality representations is still required. The traditional “bottom-up” structure, which is

inherently optimized for low-quality reproductions (Li, 2001), is inappropriate for these use cases

and must therefore be replaced.

As an exemplary alternative, the proposed content-adaptive entropy coding scheme pro-

duces a scalable encoding that takes a “top-down” approach, anchoring the rate-distortion curve

at the point of highest quality and introducing coding inefficiency only at lower layers. This is

illustrated in Figure 5.3. With such an approach, scalability is recharacterized not as a base layer

accompanied by a series of enhancements, but instead as a full-quality stream separated into a series

of degradations.

This approach has a number of benefits. First, even decoders interested in low-quality

reproductions know every time a symbol is missing from the bit stream. This knowledge can be

used to form a prediction about the values of the missing symbols. In particular, this trait synergizes

105

well with entropy coding techniques such as arithmetic coding, which require the decoder to

maintain a symbol probability model. The decoder may simply query the state of the model to

receive the most probable symbol(s) and use them to form a prediction about the missing value.

Second, the proposed approach is domain-agnostic in terms of the source coding used as well as

the type of data being coded. While we present results with video data, it could equally be used

to compress voice, image, text, or any other information. Third, it is naturally structured as a

top-down solution since recovering all of the layers results in receiving all of symbols of the original

high-quality representation. As each layer is added, encoding efficiency improves. Finally, the

approach leverages the fact that the symbol dropping decision is replicated at both the encoder

and decoder to achieve scalability while keeping the decoder synchronized without requiring any

additional information to be signaled.

5.5.2 Receiver-Driven Adaptation

In addition to providing top-down adaptation, the proposed approach also can be imple-

mented as a fully receiver-driven system. The rate controller algorithm, which is synchronized

across the encoder and decoder, makes a binary decision for each symbol about whether it should

appear in the encoded bit stream. By allowing the receiver to supply this algorithm, receivers can

have per-symbol control over exactly which content is transferred. At this level of control, it is easy

to envision use cases where the receiver can request and receive exactly the subset of data it needs

for its application. For example, consider an object tracking application. Once the region of interest

has been identified, the receiver could reduce the quality of background regions in future frames in

order to focus available bandwidth towards the important regions. Alternatively, consider a motion

detection algorithm which could request only syntax elements associated with motion vectors from

the initial encoded video. Thus, the receiver wouldn’t even need to reconstruct the full video in

order to know whether significant in-scene motion has occurred. The resulting system would use

very little network bandwidth, and would require minimal receiver-side computation.

106

At the same time, for most video content, the majority of use cases will likely be

homogeneous—at least in the near future. For example, users watching the video from their

smartphone or a home entertainment system. For these use cases, one can imagine a system where

a few well-known rate controllers are enumerated and offered by the provider. Homogeneous

clients can simply select from these predefined controllers to receive their adaptation. Furthermore,

to reduce provider-side computational demand, the adapted streams for the most common rate

controllers can be cached and streamed on-demand from disk.

5.5.3 Dropped Symbol Awareness

An interesting side-effect of the proposed technique is that every decoder is aware of every

symbol encoded in the initial representation—even if a particular decoder decides not to resolve

certain symbols. Thus, clever decoders in the future may be designed to handle unresolved symbols

differently. For instance, decoder may choose to “guess” the value of an unreceived symbol using

the arithmetic coder’s estimated probability model for that symbol. If the decoder’s guess is correct,

it was essentially signaled at zero bit cost. Decoders may guess a missing symbol value by always

selecting the value modeled to have the highest probability. Alternatively, a stochastic guessing

process may be implemented such that even unlikely symbols may be occasionally selected by the

guesser.

5.5.4 Computational Efficiency

Finally, the resulting system is computationally efficient since it does not require the

provider to remodel the source content as a requisite to adaptation. By treating the initial source rep-

resentation as-is, the time-consuming source modeling is entirely avoided. Nonetheless, providers

must be able to entropy-decode and entropy-re-encode the content, requiring minimal computation.

If this requirement became a bottleneck in the long run, one could imagine a hardware implementa-

tion of the entropy encoding and decoding units used by the system that would significantly alleviate

the producer computational load.

107

HEVC
Entropy
Decoder

Source
HEVC

bitstream

HEVC
symbol
stream

Layered Entropy
Encoder

Layered
bitstreams

Layered
Entropy
Decoder

HEVC
symbol
stream

HEVC
Entropy
Encoder

Reconstructed
HEVC

bitstream

Dropped
layers

Figure 5.4: This block diagram shows the experimental setup. Note that the input and output streams
are standard-compliant H.265/HEVC bit streams, while the intermediate representation is a series
of entropy coded layers.

The layered interpretation of content-adaptive entropy coding also introduces additional

computational modules at both the encoder and decoder for managing dependencies among layers.

In particular, each layer must manage a separate probability model and bit budget state on both

the encoder and the decoder. This obviously introduces memory and complexity overhead during

encoding/decoding, as states must be adjusted for every layer each time a symbol is coded. The

overall complexity for coding s symbols into k layers is therefore O(sk) at both the encoder and

decoder.

5.6 Application to H.265/HEVC

To demonstrate the feasibility of layered content-adaptive entropy coding with real data,

we apply the technique to a standard-compliant H.265/HEVC symbol stream. The output adapted

representation is therefore a layered series of entropy-coded bit streams, each of which provides a

decoder with additional symbols from the original stream. If all symbols are received, the complete

full-quality, initial representation is recovered.

108

As discussed in Chapter 2, H.265/HEVC is a hybrid prediction-transform codec. It is

therefore organized into a source-modeling portion in which the video is represented as a stream of

semantic symbols, and an entropy coding portion where CABAC and variable-length coding (VLC)

serialize each symbol into the compressed output stream. Our approach is to modify H.265/HEVC’s

CABAC algorithm to make it output symbols into different layers according to the process described

in Section 5.3. The resulting system, illustrated in Figure 5.4, acts as an H.265/HEVC transcoder

which takes as input a pre-coded, standard-compliant H.265/HEVC bit stream, applies entropy

decoding to recover the source-modeled symbol stream, and re-applies entropy coding via the

modified CABAC to produce a series of layered bit streams. A corresponding modified decoder is

also developed which receives one or more of the layered bit streams and decodes them, recovering

an approximate symbol stream that can be entropy coded back into a standard-compliant HEVC bit

stream.

5.6.1 Implementation

For this proof-of-concept experiment, only syntax elements representing residual coefficient

level data are layered. The value of these elements are independent of other syntax elements and

thus can be distributed among layers without having to take into account dependency relationships

which are beyond the simple indicator function used (Benyaminovich et al., 2005). Furthermore,

residual coefficient data makes up a large portion of the H.265/HEVC bit stream—especially when

the encoder is set to output at high quality (Sole et al., 2012). Thus, layering residual coefficients

is easy to implement and provides enough layerable symbols to produce a meaningful scalable

encoding.

H.265/HEVC decomposes residual coefficient values into the following binary flags to be

coded by CABAC:

1. significant coeff flag: Signals whether a coefficient is nonzero.

2. coeff abs level greater1 flag: Signals whether a

known nonzero coefficient is greater than one.

109

3. coeff abs level greater2 flag: Signals whether a coefficient known to be

greater than one is greater than two.

4. coeff sign flag: Signals a coefficient’s sign using

equiprobable bins.

5. coeff abs level remaining: Signals a coefficient’s

remaining uncoded level using Exp-Golomb coding with an adaptive Rice parameter.

In certain scenarios, some of these flags are omitted or implicitly coded for a coefficient. In

particular, H.265/HEVC limits the overall number of greater-than-one and greater than-two-flags

coded in order to increase throughput (Sole et al., 2012). Furthermore, the remaining level and sign

flags are always coded in bypass mode, meaning they do not use a context model for entropy coding

and are directly inserted into the bit stream. See (Sole et al., 2012) for a more complete description

of the H.265/HEVC coefficient coding algorithm.

Two different coefficient layering schemes are presented. In the first scheme, only bits

used to code coeff abs level remaining are allowed to be placed in higher layers. In the

second, all of the following elements are layered:

• significant coeff flag

• coeff abs level greater1 flag

• coeff abs level greater2 flag

• coeff abs level remaining

In the first scheme, the rate controller allots 0.25 additional bits to each layer each time

a coeff abs level remaining value is signaled; unused allotted bits from the previous

coefficient are rolled forward. Next, the bits for coding the flag via Exp-Golomb are separated and

encoded one at a time into the layered bit streams, starting at the bottom layer and encoding upward.

Due to the structure of Exp-Golomb codes, the decoder is able to follow this process by using the

bit values decoded from one layer to know if more should be expected in the next.

110

0 2 4 6 8 10
Seconds of video

10

15

20

25

30

35

40

45

50
PS

NR
Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Figure 5.5: PSNR per frame when only remaining level coefficient bits are layered.

For the second scheme, all encoded individual coefficient level flags are layered. This has

the added benefit of stratifying more bits into layers than the first scheme. However, it requires

additional memory and complexity at both the encoder and decoder, particularly since each layer

must track separate probability models for significance flags, greater than one flags, and greater

than two flags. The rate controller allots 0.25 additional bits to each layer for each explicitly

coded coefficient. This single allotment is used to code all required flags for that coefficient. If

coeff abs level remaining must be signaled, the same process as the first scheme is used.

One concern when omitting residual data from a pre-encoded H.265/HEVC bit stream

is that any error incurred by dropping symbols at the decoder was not accounted for in the DPB

at encoding time; this error induces drift in the decoder’s reconstructed pixel samples that can

potentially be fed forward to future frames. To reduce drift, we restrict layering only to coefficient

levels in inter-coded blocks, with the underlying assumption that intra-predicted blocks are more

likely to be used by prediction units to code future frames. Note that this is a simplistic attempt

111

0 2 4 6 8 10
Seconds of video

0.5

0.6

0.7

0.8

0.9

1.0
SS

IM

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Figure 5.6: SSIM per frame when only remaining level coefficient bits are layered.

at reducing drift; we expect that more sophisticated techniques could better anticipate which

coefficients are likely to be used for future prediction, and that they would achieve better results.

However, it provides a valuable baseline of the feasibility of the proposed approach.

5.6.2 Data Set

To test the scheme, ten seconds of the 1080p, 25 fps video sequence Tractor is encoded

using the open-source libx265 H.265/HEVC encoder (MulticoreWare, 2019) with a constant quality

parameter (QP) of 17, set to produce exactly one I-frame followed by a series of P-frames. These

encoding parameters are chosen to emulate a situation where a video is captured at high quality with

hardware-level encoding complexity. The resulting H.265/HEVC encoding is used as the source bit

stream for the two layered encoding schemes presented in this section.

112

0 2 4 6 8 10
Seconds of video

10

15

20

25

30

35

40

45

50
PS

NR

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

Figure 5.7: PSNR per frame when all coefficient flags are layered.

5.6.3 Results and Discussion

While blindly layering residual coefficient flags according to a simple fixed rate controller

provides a valuable proof-of concept for top-down H.265/HEVC bit stream adaptation, the results

presented here are clearly not sufficient or ready for practical use. Figures 5.9 and 5.10 demonstrate

that neither of the two techniques tested were able to achieve a trade-off between quality and bit rate

such that increases in rate yield corresponding increases in quality. Scores with SSIM were slightly

better than PSNR, indicating that even as coefficient data is dropped, some structural information

is still recoverable through the prediction and other retained elements. Moreover, the proposed

technique did not yield enough layerable bits to reach the low end of the bit rate scale. Thus, future

attempts at layering H.265/HEVC data must find additional syntax elements that can be removed

from the bit stream without affecting decodability.

113

0 2 4 6 8 10
Seconds of video

0.5

0.6

0.7

0.8

0.9

1.0
SS

IM

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

Figure 5.8: SSIM per frame when all coefficient flags are layered.

By far, the largest antagonist of both techniques is the drift caused by decoded error being

fed forward by the decoder to future frames. Figures 5.5, 5.6, 5.7, and 5.8 illustrate how quickly

drift takes its toll; within the first two seconds of video (roughly 50 frames), all layered streams

have degraded to a near-steady state in terms of reproduction quality. Interestingly, both SSIM and

PSNR demonstrate a phenomenon where quality increases slightly after a few seconds of video.

This may be an indication that the probability models at lower layers require a longer period of time

before they are able to adapt to the statistics of the scene and accept more flags to be encoded.

Nevertheless, the results presented here show a few promising signs that the same ideas

might perform better with a more sophisticated approach. First, the rate-distortion curves for both

proposed layering schemes are, as desired, anchored at the top of the frontier curve. This was the

motivating concept behind the proposed scheme. Overall, the results validate that the idea can be

applied to H.265/HEVC. Additionally, the equally-spaced layers shown in Figure 5.8 indicate that it

114

may be possible to better control coefficient removal and achieve a more gradual degradation in

quality.

Finally, the results suggest a few key areas in which the scheme could be improved.

First, the layered residual coefficients could be coded more carefully to reduce the chance that an

important coefficient was deferred to a higher layer. Better results may be achieved by identifying

these coefficients and coding them in lower layers. Second, future proposed schemes should

attempt to apply layering to a larger set of syntax elements. Third, the rate controller process could

be more thoughtfully designed to account for drift or symbol importance in addition to simply

tracking bit rate. And finally, eliminating the effect of drift is of paramount importance. This

could hypothetically be achieved by closing the prediction loop at the encoder for every layer

produced, though it may make encoder complexity a concern (De Praeter et al., 2017). However, a

radically different approach could be to adjust the input video’s symbol stream structure to prevent

long-term prediction feedback loops within the existing coding blocks. This could be accomplished

by periodically signaling small portions of the video without using prediction such that eventually

the decoder’s entire picture is refreshed.

Overall, this work demonstrates a baseline approach towards entropy-driven, top-down

scalable video coding. Although the results achieved are not production-ready, they are important

because they represent a seminal point in the right direction for the future of video adaptation and

have the potential to spur this change. In particular, these results demonstrate that a top-down

interpretation of video coding is not only possible, but it is a fundamentally more representative

interpretation of modern video usage behavior.

5.7 Application to M-JPEG

The prior section described an initial implementation of content-adaptive layered entropy

coding as applied to an input H.265/HEVC stream. The results show that top-down adaptive

encoding can be created with modern codecs. In particular, the rate-distortion curve produced was

successfully anchored at the top. However, the trade-off between rate and distortion induced by

115

0 10 20 30 40 50 60
Bit rate (mbps)

0.70

0.75

0.80

0.85

0.90

0.95

1.00
SS

IM

Only Remaining Level Bits
All Coefficient Flags
Frontier Curve

Figure 5.9: Rate-distortion curve showing the two proposed coefficient-dropping techniques in
comparison to the frontier using SSIM as the quality metric.

the coded layers is not sufficient for practical use. Analysis of this initial experiment indicates

that the challenges faced by top-down adaptation of H.265/HEVC coded bit streams is due to the

inherent design of the codec. We identify two design decisions as particularly problematic. First,

most syntax elements of an H.265/HEVC bit stream are tightly dependent on each other. This forces

most syntax elements to be pushed to the base layer, and greatly limits the syntax elements that

are actually available to be layered. Second, H.265/HEVC is a highly predictive codec. This is

generally a favorable trait because it results in high coding efficiency, but in this case means that

any missing syntax elements at the decoder result in decoder drift that is quickly amplified.

These results do not mean that top-down adaptive coding is always ill-suited to predictive

coded data at large. We cite as future work the development of a novel predictive video codec that

is better suited to the content-adaptive entropy coding approach presented by this chapter. The

116

0 10 20 30 40 50 60
Bit rate (mbps)

20

25

30

35

40

45

PS
NR

Only Remaining Level Bits
All Coefficient Flags
Frontier Curve

Figure 5.10: Rate-distortion curve showing the two proposed coefficient-dropping techniques in
comparison to the frontier using PSNR as the quality metric.

results do indicate, however, that a different strategy is needed for adapting H.265/HEVC data in a

top-down manner. Such an alternate strategy is proposed in Chapter 6.

Nonetheless, context-adaptive entropy coding can still be successfully implemented to

provide top-down, receiver-driven adaptation of data encoded with existing video formats. The key

is to adapt video content that was originally captured using an initial encoding that is not highly

predictive and does not contain primarily inter-dependent symbols. M-JPEG is one such existing

codec.

This section presents another implementation of context-adaptive entropy coding. This

time, the technique is applied to video content encoded with M-JPEG. The results demonstrate

that the proposed adaptive approach works well when applied to a non-predictive, non-dependent

symbol stream. Furthermore, by allowing smart receivers to drive the adaptation process, we show

that the available network bandwidth can be better targeted to the receiver’s application. Ultimately,

this allows our approach to beat an equivalent non-scalable encoding in specific use cases.

117

5.7.1 Codec Selection

The main issues with the previous experiment that limited the results were that video data

encoded with H.265/HEVC is highly predictive and highly inter-dependent. Thus, this experiment

set out to demonstrate the application of top-down receiver-driven content-adaptive entropy coding

on a non-predictive codec with independent syntax elements. M-JPEG is a natural choice, both for

these qualities and for its widespread use as an initial coding format for video content produced by

high-end consumer and professional-grade digital cameras.

Ultimately, video content coded with M-JPEG is simply a sequence of independently-

coded JPEG images, each representing a separate frame of video data. No attempt is made to apply

prediction of any kind, including inter-frame and intra-frame prediction. This makes M-JPEG a

great choice for top-down adaptation.

M-JPEG pixel values are encoded by first partitioning the given frame into minimum coded

units (MCUs) of 8x8 or 16x16 pixels each. Each MCU is then transformed using the implementation

of the DCT described in Chapter 2. Next, the resulting frequency coefficients are quantized using a

predefined quantization table to apply loss in the frequency domain. They are then serialized using

zig-zag scanning, which proceeds through all quantized coefficients starting from the top-left of

the block and scanning through to the bottom-right. Finally, the scanning process yields a stream

of integers which is encoded to a bit stream with entropy coding techniques. M-JPEG supports

both Huffman entropy coding and arithmetic coding; however, due to historical reasons, almost all

prevalent JPEG codec implementations (including the ones built-in to modern web browsers) only

support reading and writing JPEGs that are coded with Huffman entropy coding. That said, the two

techniques are equivalent, and any JPEG content that uses one entropy coding method can easily be

losslessly converted to the other.

5.7.2 Implementation

The JPEG standard optionally allows for an arithmetic coding unit to be used for entropy

coding as a replacement of Huffman coding. Since this experiment is intended to evaluate content-

118

Decoded quantized
coefficients

Rate
Controller

Entropy Decoder
(Huffman or arithmetic)

Content-Adaptive
Entropy Encoder

Probability
Model

Input M-JPEG
bit stream

Adapted M-JPEG
bit stream

Decoded quantized
coefficients

Rate
Controller

Content-Adaptive
Entropy Decoder

Standard-Compliant
M-JPEG Symbol Decoder

Probability
Model

Input adapted
M-JPEG bit stream Decoded frames

Figure 5.11: This block diagram depicts the M-JPEG adaptive encoder architecture. The system
entropy-decodes an input M-JPEG bit stream, and applies content-adaptive entropy encoding to the
decoded quantized coefficients using an application-specific rate controller.

adaptive entropy coding, which is essentially a modification to arithmetic coding, it makes sense

to use the JPEG specification’s embodiment of arithmetic coding for adaptation. Thus, a modified

M-JPEG encoder and corresponding decoder has been developed where the entropy coding units

have been replaced by a modified version of JPEG’s arithmetic coding algorithm that implements

content-adaptive entropy coding. The encoder and decoder system architectures are depicted in

Figures 5.11 and 5.12, respectively. The remainder of this section details the design aspects of the

modified codec.

M-JPEG codes each video frame sequentially in display order. Each MCU of a given

video frame is independently coded, one at a time, in raster order. To code an MCU, the quantized

coefficients that constitute it are entropy coded, one at a time, in zig-zag order starting from the

top-left and ending at the bottom-right of the block. It is during this coefficient entropy coding

process that the content-adaptive modification is made.

According to the M-JPEG specification, each quantized coefficient is entropy coded as a

series of binary decisions which are ultimately serialized to the bit stream with a CABAC. The

quantized coefficient’s sign is coded as a binary decision. Next, its “category” is coded, which is

essentially the position of the first nonzero bit. Finally, the coefficient’s offset within its category

119

Decoded quantized
coefficients

Rate
Controller

Entropy Decoder
(Huffman or arithmetic)

Content-Adaptive
Entropy Encoder

Probability
Model

Input M-JPEG
bit stream

Adapted M-JPEG
bit stream

Decoded quantized
coefficients

Rate
Controller

Content-Adaptive
Entropy Decoder

Standard-Compliant
M-JPEG Symbol Decoder

Probability
Model

Input adapted
M-JPEG bit stream Decoded frames

Figure 5.12: This block diagram depicts the M-JPEG adaptive decoder architecture. The system
decodes an adapted input M-JPEG bit stream using an application-specific rate controller.

is coded. Technically, each of these decisions are independent symbols with respect to entropy

coding. However, for the purpose of this implementation, the entire quantized coefficient is treated

as an atomic symbol. In other words, adaptation decisions are made on a per-coefficient basis: each

quantized coefficient is always either fully encoded or fully dropped, based on the rate controller’s

decision. Note that a different implementation could allow for partial coefficients to be coded

by dropping some of the binary decisions that constitute them. However, other than giving even

finer-grained control to the rate controller, the benefits of such an approach on rate-distortion

performance are likely insignificant in the vast majority of use cases.

The rate controller algorithm used for this implementation of content-adaptive entropy

coding is the simple bit-budgeted controller described in Section 5.2. For each quantized coefficient

(i.e. for each encoded symbol), an appropriate value ultimately must be selected for b, the maximum

number of bits allocated to encoding the symbol. The value of b must be carefully chosen to achieve

an overall target bit rate for the video, but can also take into account local context information and

receiver-driven directives. The value of b for a given coefficient is determined as follows. First, the

receiver specifies an overall target video bit rate, which is distributed among the MCUs for each

video frame. By default, each MCU of each frame receives the same rate allocation for coding

120

its coefficients. However, the receiver has the option to specify a different distribution paradigm.

Smart receivers can use this functionality to direct bit allocation towards different regions of interest

within the frame. Each MCU therefore receives its own allocation of available bits (i.e. its “bit

budget”), and is responsible for expending those bits to code coefficients.

The array of quantized coefficient-symbols that constitute an MCU begins with a DC

frequency coefficient followed by a variable-length sequence of AC frequency coefficients. The

bit budget b is always set to infinity for the DC coefficient. That way, the DC coefficient is always

encoded (i.e. δ(∞, PM) = 1 is always true). Next, provided that the MCU has not yet expended its

bit budget, AC frequency coefficients are encoded one at a time until no more bits remain. In other

words, the b value used to encode each AC coefficient is simply the remaining bit budget for the

MCU. Once the bit budget runs out, encoding of the MCU has finished, and the algorithm proceeds

to the next MCU. If all AC coefficients are successfully encoded before the bit budget runs out, any

surplus bits are rolled over to the next MCU.

In addition to specifying the overall target bit rate for adaption, receivers may also provide

a strategy for allocating bits to coefficients. In other words, they can indicate the value of b for each

coefficient. By giving receivers full control over symbol inclusion, the resulting adaptation is truly

receiver-driven. We anticipate that in the future, smart clients will be able to use this flexibility

by developing sophisticated strategies for symbol selection that are tightly integrated with their

applications. For example, receivers interested in a particular region of interest (ROI) within the

scene can control adaptation through the presented architecture so that MCUs within the ROI are

prioritized.

In fact, this idea of ROI-directed, receiver-driven adaptation has been implemented and

evaluated using the proposed architecture. The objective of this experiment is to present a receiver-

driven use case for the proposed adaptation technique, and demonstrate how it can outperform a

non-receiver-driven alternative for special use cases. Therefore, three different smart receivers are

implemented and compared when requesting the same video content. For the baseline case, one

receiver simply requests the content at a low bit rate such that available bits should be allocated

121

Tractor Johnny Park Joy

Resolution 1920 x 1080 1280 x 720 1920 x 1080

Color Depth 24 bits 24 bits 24 bits

Frame Count 761 600 500

Table 5.1: Descriptive statistics of content used for M-JPEG content-adaptation experiment

evenly across the scene. In this case, no receiver-directed adaptation is used. A second receiver is

particularly interested in a specific region of the frame, and specifies the region with a bounding

box. That receiver therefore receives an adapted version of the content where pixels in the ROI are

given higher bit allocation, at the expense of background pixel accuracy. Finally, a third receiver

has a very specific understanding of the content it needs. It therefore requests that the available bit

budget be expended primarily within a small, free-form ROI that it specifies as a compressed bit

mask as part of its request. These three receivers are purposefully designed to demonstrate that high

specificity in a receiver’s request can yield higher compression at little or no loss of quality within

regions of interest.

5.7.3 Data Set

To demonstrate the proposed technique on a variety of content, three uncompressed public-

domain videos were selected to be source material. In all three videos, a clear subject area exists

that could feasibly be identified by a smart receiver. Sample frames from each video are reproduced

in Figure 5.13, and descriptive statistics about each are presented in Table 5.1.

5.7.4 Results and Discussion

The results presented in this section illustrate the performance of content-adaptive, receiver-

driven entropy coding when applied to M-JPEG data. Three different video content sources were

tested: Johnny, Tractor, and Park Joy (see Figure 5.13 and Table 5.1). Each video is initially

encoded using M-JPEG, and then is requested by three different types of simulated receiver.

122

Figure 5.13: Three videos depicting different scenes types are used in the M-JPEG content adaptation
experiment. Sample frames from each are reproduced above. From top: Johnny, Tractor, Park Joy.

123

1. The Baseline receiver requests adapted content at a specific target bit rate without speci-

fying any particular region of interest. The video data adapted for the Baseline receiver

therefore has a relatively homogeneous bit rate allocated to each frame and to each MCU

within a frame.

2. The Bounding Box receiver emulates a smart client that is actively performing object

tracking on the video content. Since the Bounding Box receiver is specifically concerned

with its self-identified region of interest, it is able to specify to the provider the bounding

box for the region it wants. The video data adapted in response therefore targets this region

of interest, and purposefully allocates more bits to that region.

3. Finally, the Contour receiver emulates a smart client that knows exactly which MCUs it

cares about, and specifies this information to the provider through a bit mask embedded in

its request. Thus, the adapted video content it receives can be targeted even more to the

precise areas of interest.

Figure 5.14 depicts selected frames received by the Baseline receiver. Two frames are

presented from each sample video to illustrate the difference between the highest and lowest quality

video received by the Baseline receiver. These represent the extremes of adaptation offered by the

proposed technique.

Figure 5.15 shows frames received by the Bounding Box receiver. The frames in the first

column provide a visualization of the bounding boxes used by the receiver to specify its ROI. The

second column contains frames from the lowest possible quality videos that the Bounding Box

receiver could potentially request.

Figure 5.16 is similar to Figure 5.15, except it depicts frames received by the Contour

receiver. This receiver provides its ROI as a bitmap instead of as a bounding box. Therefore, the

ROI is able to have much more detail. Sample masks supplied by the Contour receiver are shown

in Figure 5.17. The bit masks provided by the receiver are one-eighth the resolution of the source

124

video, since only one bit must be specified for each 8× 8 MCU, indicating whether the MCU is

part of the region of interest.

Figure 5.18 illustrates the rate-distortion curves achieved by the proposed method for each

content type and receiver. Full-frame PSNR is the quality metric used for these figures, even though

Bounding Box and Contour receivers direct their available bit rate towards the receiver-supplied

ROIs (as shown in Figures 5.15 and 5.16). Overall, the trade-off between bit rate and quality offered

by this approach is quite good. With end-to-end compression that includes a source modeling

component, one would normally hope to see a flat rate-distortion curve that curves downwards

only at the lower bit rates. However, the content being adapted for this experiment has already

been source-modeled. If symbols could simply be eliminated from a pre-encoded M-JPEG stream

with little to no quality loss, then those symbols would likely already have been removed by the

specification. Therefore, for a pre-coded M-JPEG stream, we expect each symbol dropped to have

an effect on the recovered quality. Indeed, this behavior is confirmed by the linear rate-distortion

curves depicted.

Finally, Figure 5.19 shows the bit rate required for each receiver to obtain the primary

content of each video at full quality. Since the Baseline receiver does not direct the adaptation

process, a full-quality version of the primary content can only be obtained if the receiver requests

full-quality content everywhere. In contrast, the Bounding Box and Contour receivers are able to

receive their specified ROIs at full-quality at much lower overall bit rates. This is because they direct

the adaptation process according to their application needs. Furthermore, the Contour receiver

outperforms the Bounding Box receiver, due to the additional specificity afforded by the bitmask-

based ROI. Overall, this result should be interpreted as evidence that receiver-driven adaptation is

able to outperform a non-receiver driven approach for targeted use cases.

125

(a) Highest bit rate, Johnny (b) Lowest bit rate, Johnny

(c) Highest bit rate, Park Joy (d) Lowest bit rate, Park Joy

(e) Highest bit rate, Tractor (f) Lowest bit rate, Tractor

Figure 5.14: This figure compares high-bit-rate and low-bit-rate frames extracted from video content
received by the Baseline receiver.

126

(a) Visualization of bounding box overlay, Johnny (b) Lowest bit rate, Johnny

(c) Visualization of bounding box overlay, Tractor (d) Lowest bit rate, Tractor

(e) Visualization of bounding box overlay, Park Joy (f) Lowest bit rate, Park Joy

Figure 5.15: This figure illustrates sample frames received by the Bounding Box receiver, as well as
an overlay depicting the requested region of interest.

127

(a) Visualization of contour overlay, Johnny (b) Lowest bit rate, Johnny

(c) Visualization of contour overlay, Tractor (d) Lowest bit rate, Tractor

(e) Visualization of contour overlay, Park Joy (f) Lowest bit rate, Park Joy

Figure 5.16: This figure illustrates sample frames received by the Contour receiver, as well as an
overlay depicting the requested region of interest.

128

(a) Visualization of contour overlay, Johnny (b) Contour mask, Johnny

(c) Visualization of contour overlay, Tractor (d) Contour mask, Tractor

(e) Visualization of contour overlay, Park Joy (f) Contour mask, Park Joy

Figure 5.17: This figure illustrates sample masks supplied by the Contour receiver.

129

(a) Full-frame rate-distortion performance for all three
receivers requesting Johnny content.

(b) Full-frame rate-distortion performance for all three
receivers requesting Tractor content.

(c) Full-frame rate-distortion performance for all three
receivers requesting Park Joy content.

Figure 5.18: This figure shows the rate-distortion performance of adapting M-JPEG content. For
Bounding Box and Contour receivers, pixels in the region of interest are prioritized by the rate
controller over those in the background, and therefore are transmitted at high quality.

130

Figure 5.19: For each receiver and content type, this figure depicts the bit rate necessary to transmit
the region of interest at full quality using content-adaptive M-JPEG.

5.8 Takeaways

This chapter presented a fundamental, entropy-based adaptation approach that is receiver-

driven and prioritizes the initial encoding as the ground truth. A major strength of this approach is

its generalizability: since it operates on an abstract symbol stream, it can be applied to any content

source to achieve receiver-driven adaptation. And since it operates directly on the initial encoded

symbols, it provides top-down adaptation for clients who have the available bandwidth to receive

the full stream. Finally, by avoiding recomputation of the content’s source modeling, it minimizes

provider-side computation.

The application of content-adaptive entropy coding to H.265/HEVC coded data showed

that modern predictive video codecs are not well-suited to top-down adaptation as currently defined.

This does not mean that predictive coding itself is fundamentally opposed to top-down adaptation.

However, it does suggest that there is room for development of new predictive codecs for video

that provide a more flexible representation of their content. This is a major insight afforded by

the work presented in this chapter. Development of a new video codec that can compete with the

131

state-of-the-art stands to be a major, time consuming challenge. We therefore leave this task to

future work.

Finally, the series of M-JPEG experiments presented in this chapter demonstrate a success-

ful application of content-adaptive entropy coding. By allowing receivers to drive the process of

adaptation, they are able to tailor the data they receive according to their diverse needs. A myriad

of future work could be devoted to applications of this technology. One idea is an application of

multiple description coding (MDC), where different receivers request the same video content with

slightly different rate controllers. If each rate controller produces an adapted stream that prioritizes

different subsets of the source stream, these disparate adapted streams could be combined together

to recover a higher version of the original.

Ultimately, this work represents the initial steps towards development of myriad new

applications for content-adaptive entropy coding. We look forward to the realization of many of

these ideas as future work.

5.9 Future Work

This chapter introduced a novel, fundamental approach for content-agnostic adaptation that

works in the entropy layer. To demonstrate its merit, the technique is applied to video data encoded

with two well-known, commercial video codecs: H.265/HEVC and M-JPEG. These experiments

evidence how symbol dropping is a compelling approach for adaptation, both for its flexibility to

work with myriad content types and for the computational elegance of adapting without re-modeling

the source content. The research presented by this dissertation is best understood as the seminal,

foundational work toward entropy-based content adaptation. In that respect, much work is still

needed to explore how this strategy interacts with real-world data before it is ready to be applied

to production environments. The remainder of this chapter provides a “roadmap” of future work,

detailing some of the most immediate tasks that must be completed in pursuit of wider adoption of

entropy-based content adaptation techniques for real-world data.

132

5.9.1 Drift Management for Predictive Codecs

Decoder drift was a major factor in the H.265/HEVC symbol dropping experiment. While

we anticipated that some drift would occur—especially for the lowest bandwidth receivers—the

significance of drift on the recovered signal exceeded expectations. Nonetheless, highly predictive

codecs are rapidly gaining market share at the time of publication of this dissertation. All new

codecs, including H.265/HEVC, H.266/VVC, VP9, and AV1, aim to achieve higher compression

rates for high-bandwidth video primarily by increasing the sophistication of prediction. Therefore, in

the near and medium-term future, entropy-based content adaptation will only be widely applicable to

pre-encoded video data if methods can be developed to better support these highly predictive codecs.

Since drift is the major obstacle, research is needed for ways to avoid, mitigate, or compensate drift

that occurs from symbol dropping.

Below, three possible approaches for mitigating the drift problem are presented as future

work opportunities. Frame-based drift avoidance would eliminate drift by only applying symbol

dropping to frames that will not be used for reference in future prediction. Drift tracking would

incorporate a pixel-space decoder which tracks the regions of a frame where drift has occurred.

Finally, statistical block-wise IDRs would stochastically rewrite regions of pixels so that non-

predictive coding is used, thereby eliminating any drift that may have built up in those regions.

Frame-Based Drift Avoidance

Fundamentally, decoder drift only occurs when—unbeknownst to the encoder—an imper-

fectly reconstructed frame is used as reference by the decoder to predict a future frame. Therefore,

every symbol dropped by the entropy-based rate controller which should have helped form a frame

that is later used for prediction contributes to decoder drift. One possible strategy for eliminating

decoder drift is therefore to target symbol dropping only towards frames which will not be used for

reference in later prediction. Modern video codecs classify encoded frames as I-frames, P-frames,

and B-frames, based on how they are used for prediction (see Chapter 2). In H.265/HEVC, I-frames

and P-frames are eligible to be used in future prediction; B-frames are not eligible. Therefore,

133

B B B I B B B B B B P B B B

I P B B B B B B B B B B B B

Display Order

Coding Order

Figure 5.20: A sequence of video frames for layered entropy coding are depicted in coding order
and display order. In both orders, frames to the left are coded or displayed earlier than frames to
the right. The I-frame and P-frame are coded in the base layer, ensuring that all decoders will have
them available for prediction. The B-frames are predicted using the temporally nearest of these
two frames, and the produced syntax elements are layered. To prevent decoder drift, the layered
B-frames are never used for future prediction. The arrows associated with the display ordering
indicate coding dependencies between frames.

temporal-based (i.e. motion compensated) decoder drift could be eliminated by simply restricting

symbol dropping only to the symbols that signal a B-frame.

Targeting symbol dropping only to B-frames will not eliminate drift entirely. In particular,

any intra-frame (i.e. texture-based) prediction used to encode the B-frames will still incur decoder

drift. For example, suppose the rate controller drops symbols while adapting a coding unit which

is part of a B-frame. Thus, the decoder’s pixel-domain reconstruction of that coding unit will

be imperfect, reflecting the missing symbols. Now, suppose a neighboring adjacent coding unit

within the same B-frame is formulated using intra-frame prediction. If the coding unit specifies an

intra-coding mode that causes its prediction to be extrapolated from the imperfectly reconstructed

neighboring block, then the pixel value errors from that block will be carried forward to the next

one. This is decoder drift. However, since B-frames are guaranteed to never be referenced for

134

future prediction, any drift which occurs during signaling of these frames will never carry forward

temporally.

Given this analysis, the proposed approach can be expected to result in an adapted version

of the video in which all I-frames and P-frames are perfectly reconstructed at the decoder, and only

B-frames are adapted to hit the target bit rate. Depending on how many symbols are dropped from

the B-frames, this will likely result in a noticeable difference in perceived quality between decoded

I-frames, P-frames, and B-frames. Moreover, another challenge is that B-frames are typically easiest

for an encoder to signal, since they have the most reference content available at the decoder to

use for prediction. In other words, they generally represent the smallest proportion of the overall

encoded bit stream, when compared with I-frames and P-frames. Thus, limiting symbol dropping

only to B-frames would greatly limit the percentage of coded symbols which could be dropped

feasibly to achieve adaptation.

These issues—namely, that only B-frames will exhibit a perceived decrease in reconstructed

quality, and that the number of symbols eligible to be dropped will be small—can be mitigated if

the original H.265/HEVC encoder can be controlled. For instance, suppose the initial encoding is

organized in a way such that a single I-frame is followed by a single P-frame, and then both are

followed by a long stream of B-frames which all predict back to the initial I-frame and P-frame.

In such a scenario, most of the encoded frames are B-frames, which would be eligible for symbol

dropping without incurring inter-frame decoder drift. Thus, perceived quality on a frame-by-frame

basis would appear to be roughly even across each sequence of B frames. At the same time, more

symbols overall would be eligible to be dropped. However, as playback time passes, later frames in

the B-frame sequence would have a harder time predicting from the old I-frame and P-frame, due to

large temporal displacement. Some level of coding efficiency loss would therefore occur, especially

for later B-frames in a sequence. Eventually, a new I-frame and P-frame would need to be signaled

to provide new content that can be used as the basis for prediction. Ultimately, such an approach

could fix the limitations described above, but is only an option if the initial encoder can be tuned

135

appropriately to produce a standard-compliant H.265/HEVC stream where frames are coded using

the necessary I-P-B-B-B-B-B sequence.

Drift Tracking

Instead of carefully avoiding decoder drift by further limiting the subset of layered symbols,

another approach is to accept the drift and deploy a mitigation strategy to minimize its effect in the

long term. Thus, one idea is to layer the residual coefficient symbols as described earlier in this

chapter for the original H.265/HEVC experiment. However, each time a symbol is dropped, the

layered encoder marks the resulting pixel block as “dirty,” indicating that the corresponding partial

decoder has an imperfect reconstruction of those pixels. Various layers of sophistication could

be used here; the simplest approach would be to simply incorporate a bit field for each encoded

layer and each frame. Anytime a symbol is dropped, the corresponding block would be marked as

dirty. Similarly, anytime a dirty block of pixels are referenced for prediction, the predicted block

must also be marked as dirty. This would allow for a decoder to track which blocks of pixels have

experienced decoder drift.

A more sophisticated approach is for the layered encoder to track the precise amount

of drift experienced by a decoder at each layer. This requires the layered encoder to maintain

a separate DPB for each decoded layer, representing the imperfect reconstructions available for

prediction when decoding each layer. Each time a prediction is created, the layered encoder must

generate each decoder’s imperfect prediction. By subtracting the decoded prediction from the

original prediction, the exact amount of drift incurred is computed. Since drift tracking may be

computationally and memory intensive for the layered encoder—especially for encodings with

many layers—a simplification of this approach is to simply track the drift occurring at a single layer.

For instance, decoders recovering only the base layer can be expected to incur the most drift, since

the most symbols are dropped. Therefore, tracking the precise drift at the base layer gives an upper

bound for the overall drift occurring by any decoder in the system.

136

Once a layered encoder is aware of the amount of drift, a mitigation strategy must be

deployed to compensate for the drift or eliminate it once its amplitude exceeds a threshold. Drift

compensation might work by having the layered encoder strategically recompute the residual for

select pixel blocks in order to account for the accumulated drift experienced by lower-layer decoders

at these locations. If the exact drift amount is known for decoders of each layer, then separate,

unique drift compensation amounts could be computed for each decoder according to how much

drift has occurred. This would have the effect of suddenly correcting the reconstruction of blocks

for which drift has gotten too high.

If the exact amount of drift is not known, but instead the presence of drift is being tracked at

each coding unit (i.e. the bit field strategy given above), then an IDR could be inserted dynamically

by the layered encoder once a predefined percentage of the overall frame has been affected by

drift. Inserting an IDR would require the layered encoder to know the full quality pixel-space

reconstruction at that point, and would therefore require the presence of a full decoder which

could be deployed to recover the pixel-space ground truth values when an IDR is determined to be

necessary.

Block-Wise IDRs

Blocks of pixels represented in the encoded bit stream without using predictive coding

are by definition immune to drift. This key insight motivates the final strategy proposed in this

section for drift management. Instead of expending resources tracking and compensating for drift,

the idea is to simply expect drift to occur and focus on limiting its effect by strategically coding

blocks without prediction. A layered encoder could forcefully refresh selected blocks of pixels by

encoding them in the base layer using non-predictive coding techniques. Once a block of pixels is

selected to be refreshed, the layered encoder first queries an accompanying full decoder’s complete

pixel reconstruction to obtain the block’s true pixel values. Next, the block of true pixel values is

coded using lossless non-predictive coding instead of whatever coding mode was originally selected

for the block. In H.265/HEVC, blocks of pixels can be signaled without prediction using IPCM

137

mode. Blocks signaled in this way will be received at full quality by all decoders, regardless of

layer or existing drift in their DPBs. Thus, the proposed technique identifies certain blocks to be

coded in the base layer in IPCM mode, thereby “stamping out” existing drift in the encompassed

region of the frame for all decoders.

With this approach, layered encoders can control how much drift is allowed to propagate

based on what percentage of blocks in each frame are switched to non-predictive IPCM mode.

Presumably, blocks in each frame are selected either at random or according to a predetermined

repeating pattern so as to eventually refresh all blocks after enough frames pass. Since IPCM mode

generally costs more bits to encode the same pixel data when compared to predictive coding, there

will be a bit rate overhead associated with stamping out drift. Thus, layered encoders must trade

off between producing an adaptation with higher bit rate and higher drift, or an adaptation with

lower bit rate and lower drift. This trade off should be optimized to maximize overall rate-distortion

performance.

5.9.2 Novel Predictive Codec Design

Existing widespread video codecs are highly predictive and designed primarily to minimize

compressed bit rate, particularly for large resolution content. As evidenced in this chapter, adapting

highly predictive video to heterogeneous requests is challenging. In the long term, entropy-based

content adaptation might work best with video data coded specifically with content adaptation in

mind. Therefore, one important future work item identified by this dissertation is to design a new

generation of video codecs that uses predictive coding to form a compact representation, but also

provides a flexible representation to better support top-down adaptation. The sections below suggest

a few speculative techniques which could help achieve this ambitious goal.

Limited Prediction Basis

An adaptation-friendly predictive codec must carefully manage the data dependencies

caused by the recursive structure of predictive coding. Predictive coding requires that a set of known

138

previously signaled data is available for reference. To support predictive coding and adaptation at

the same time, one strategy is to initially signal a small amount of data—perhaps a few blocks of

pixels or a frame—to all receivers. This data is intended to be used heavily in future prediction.

To avoid prediction drift, receivers are not allowed to adapt this content, and must receive it in

full. Next, subsequent frames are represented in the compressed stream by referencing the small

initial content basis. Receivers may adapt any aspect of these frames (including prediction syntax

elements, as suggested below), since they are guaranteed to not be referenced in future prediction.

Prediction Adaptation

Another idea for novel codec design is to explicitly support prediction adaptation. In

the ideal case, the prediction instructions for a given non-reference frame should be adaptable by

smart receivers. For instance, the codec should support requests that specify a desired resolution

for the encoded frame partitioning regime, or a desired precision for the encoded motion vectors.

The encoded prediction syntax should be designed to be amenable to this type of adaptation. For

natural video, prediction is generally an intrinsic trait of the scene. In other words, the motion

vectors and frame partitioning information reflect underlying physical characteristics of the captured

environment that are invariant to bit rate or other parameters of compression. Thus, each scene has

an intrinsic ground truth prediction which should be adaptable on a per-receiver basis.

5.9.3 Convergence of Layered Probability Models

The layered extension of entropy-based content adaptation allows each layer to adapt its

own probability model based on the symbol values successfully encoded by the layer itself and the

symbols encoded in lower layers. Symbols encoded in higher layers cannot be used to inform a

given layer’s probability model, however, since those symbols are not necessarily available by a

partial decoder. Assuming a statistically consistent symbol source, a context-adaptive probability

model will eventually converge on the correct probability distribution, once enough symbols have

been encoded. Since the highest layers are aware of a higher quantity of encoded symbols, they

139

are able to adapt their models more quickly to the content source. However, all layers’ models

will eventually converge, once enough symbols are encoded in the lower layers. This opens up

interesting research questions about the nature of layer convergence and its effect on rate-distortion

performance. This section describes some of the expected behavior while leaving a more complete

analysis to future work.

Effect on Compression Performance

Entropy coding yields an optimal lossless compressed representation if an accurate proba-

bility model is used that correctly reflects the content source. For probability models that adapt to

the source as symbols are encoded, this means early symbols are coded at lower efficiency, and later

symbols are coded at near-optimal efficiency once the model has converged. For layered entropy

coding, each layer’s probability model converges to the optimal distribution at a different rate.

In general, higher layers, which see a higher percentage of symbols, will converge more quickly.

Lower layers see a lower percentage of symbols, and therefore take longer to converge. Eventually

all layers will converge if the source statistics remain constant.

This suggests interesting research questions about how to optimize for compression per-

formance given certain known source content traits. For example, suppose a particular symbol

source is known to produce symbols according to a consistent probability distribution. One layering

strategy for such a situation is to initially encode all symbols to the base layer. Base layer symbols

will be received by every decoder, allowing all layers to adapt their probability models to the content.

Once the rate controllers detect that an accurate probability distribution has been obtained, they can

begin adapting the content by encoding symbols in higher layers. Assuming the source probabilities

do not change, this will result in optimal coding for all symbols in all layers. The penalty of such

an approach is that initially, symbols cannot be adapted and must be received in the base layer to

provide the initial basis for probability model convergence.

Real-world video content is rarely statistically consistent for long. Scene transitions, new

objects entering the field of view, camera panning, etc. all result in changes to the underlying source

140

distribution. As these changes happen, probability models need to constantly adapt to the new

distribution. Therefore, one important area of research will be to explore strategies for layering

symbols as source distributions change. For example, suppose a rate controller is able to detect

content changes that manifest as changes to the underlying source probability distribution. Would it

be preferable to immediately divert symbols to the base layer, in order to allow all layers to adapt

their models to the new distribution? Or is it best to continue adapting symbols to different layers,

with the expectation that eventually the coding efficiency of symbols encoded in lower layers will

catch up? The answers to these questions depend on how stable the underlying source content

is—that is, how likely it is to suddenly change its distribution—as well as how important adaptation

is relative to compression performance.

Analysis on Real Data

Many of the anticipated behaviors described in the previous section could be demonstrated

by generating a stochastic “fake” data source to produce symbols according to a hidden distribution.

Next, layered entropy encoding could be used to encode the symbol stream with adaptive probability

models in each layer. Finally, this experimental architecture could be used to empirically test sudden

changes to the source distribution, different layering adaptation strategies, etc. However, ultimately

these strategies should be tested on real-world data. M-JPEG data in particular is well-suited as

a content domain for these experiments. For example, video content exhibiting a scene transition

between two separate, relatively stable scenes could be used as the source. Next, the M-JPEG

quantized coefficients that constitute the scene could be layered, allowing each layer’s probability

model to adapt separately to the content. Finally, strategies for scene transition detection and

distribution adaptation can be assessed. The entropy-based layering encoding can be compared

against a non-layered baseline, where a single probability model is able to adapt freely to every

encoded symbol. We anticipate that clever model adaptation strategies can induce near-optimal

compression performance, even when symbols are layered.

141

5.9.4 Application to Other Content Domains

Finally, this dissertation did not explore applications of entropy-based adaptation outside

the domain of digital video. One of the most exciting traits of the proposed approach is that it is

content-agnostic and can be used to adapt data from any content domain. While we leave to future

work the task of applying entropy-based content adaptation to new domains, this section speculates

about interesting possible applications that could benefit from such an approach.

One-Dimensional Digital Signals

One interesting application of entropy-based content adaptation is time domain, one

dimensional, digitally sampled signals such as audio, temperature, voltage, or brightness data. This

format is particularly amenable to symbol dropping because missing samples can be interpolated

by the decoder and do not affect interpretation of future data. Suppose an arithmetic encoder is

configured to directly encode samples to a compressed bit stream using a sophisticated context-

adaptive probability model. Such a system could easily be modified to encode the samples into

different layers according to indicator decisions made by a rate controller. Partial decoders which do

not receive all layers can simply interpolate missing samples that were not coded in the layers they

receive. Furthermore, more sophisticated rate controllers than the simple “bit budget” controller

implemented in this chapter are possible. For instance, one idea is to implement a rate controller

that keeps a memory of recent sample values, and elects to drop samples when the signal remains

relatively constant and the missing values could be easily interpolated. Whether such a scheme

could outperform a simple predictive or differential coding strategy is unknown, and would be an

important research question.

“Frameless” Video

Typically, pixels in a video are spatially grouped into macroblocks and encoded as quantized

frequency coefficients. However, each pixel can instead be interpreted as a one dimensional signal

which is sampled over time. Thus, the ideas described in the prior section could be equally applied

142

to video data as well. The envisioned video codec works by entropy coding pixel intensities or

prediction residual values directly from pixel space, without applying a frequency transform first.

Thus, the rate controller is making symbol dropping decisions for individual pixel values instead

of for quantized frequency coefficients. Each frame is therefore coded as a sparse matrix of pixel

values, where some pixel values are present and others are dropped based on the rate controller’s

indicator decisions. In other words, pixel value updates appear to be “frameless” to the decoder, in

the sense that they are not synchronized across every frame.

The proposed paradigm raises interesting questions about how a suitable rate controller

could decide whether a pixel’s value should be encoded or dropped in order to save bits at minimal

quality loss. For instance, natural video often contains large regions of relatively unchanging

background pixels. In these background regions, pixel intensity values may not need to be updated

very often. Thus, a clever rate controller may be programmed to detect background regions and

drop most pixel values in those regions. Dropped pixel values at the decoder might be simply

extrapolated from prior pixel values in time, or interpolated between nearby pixel values in space.

And if the codec supports prediction, the interpolation or extrapolation process for missing pixel

values could be anticipated by an encoder in order to avoid drift. On the other hand, pixels in

regions where motion is occurring will likely need to be updated in every frame. Motion can easily

be detected by a rate controller if they have non-zero motion vectors or rapidly changing pixel

intensities. For these regions, a smart rate controller could elect to encode all pixel values, ensuring

that the content in these areas will be correctly recovered by the decoder.

143

CHAPTER 6

Drift-Controlled Residual Requantization

Chapter 5 presented a novel, fundamental approach where adaptation is cast as a symbol

dropping problem during entropy coding. The primary strength of this strategy is its generalizability;

it can be used to adapt any abstract symbol stream, regardless of content type. The key to obtaining

a “good” adaptation for a given stream lies in designing an appropriate rate controller algorithm for

the use case.

However, as evidenced by Chapter 5, applying layered entropy coding to the symbols

produced by a standard hybrid video codec is challenging, due to friction between the hybrid and

entropy prediction loops, as well as the tight inter-dependence between sequential symbols. Since

the prediction loops are not unified, any symbol produced by H.265/HEVC’s hybrid coder that is not

included in the base layer contributes to drift in decoders that do not receive it. The drift produced

by dropping symbols eventually dominates the reproduction, especially in low bit rate decoders, due

to error propagation from temporal prediction. As evidenced, drift can be mitigated by incorporating

more frequent IDR points or eliminated completely by switching to a non-predictive coding strategy.

In the future, new predictive codecs may be designed that are better suited to context-adaptive

entropy coding. But in the meantime, the end result is the same: much of the compression savings

offered by predictive coding are lost by entropy-based adaptation.

This chapter takes a different, content-specific approach that integrates directly into the

prediction loop of hybrid codecs. Instead of using a non-predictive codec or deploying drift

mitigation strategies, as was investigated in Chapter 5, this chapter proposes a codec-specific

method of tracking and compensating for drift by the encoder at request time. The proposed

transcoding approach is similar to guided transcoding, but without the use of transcode-guiding

144

metadata. The key idea is to reuse the original prediction directly from the source encoding, and

adapt the residual signal according to the client’s needs. To prevent drift, the encoder implements a

drift tracking mechanism which computes the drift incurred whenever the residual is adapted. The

drift is recorded and compensated when predicting for future frames.

For encoded H.265/HEVC streams, a this strategy results in a much smoother rate-distortion

curve and better overall performance than the content-adaptive entropy approach did. Although

the transcoding operation still does not produce an optimal rate-distortion trade-off, transcoding

complexity is reduced to the equivalent of a decoder, which greatly improves the system’s ability to

scale with the number of requests made.

6.1 Introduction

The system proposed in this chapter is a homogeneous H.265/HEVC fast transcoder.

Instead of completely decoding the encoded video to pixel space and re-encoding it from scratch,

as a cascaded transcoder would, fast transcoders attempt to re-use parts of the original encoding

to speed up transcoding time. The proposed fast encoder directly reuses the complete, unaltered

prediction instructions from the source encoding, and recomputes the residual to meet the requested

target bit rate. Reusing the prediction is beneficial because it speeds up transcoding time by

bypassing computationally expensive prediction searches. It also means that the original semantic

model for the scene content is retained, even in lower-quality streams.

The transcoder begins with a full decoder to obtain the complete pixel-space reconstruction

of the source video. This is important so that decoder drift can be tracked and compensated. The

prediction syntax elements from the source encoding are passed through unaltered to the output bit

stream, while the residual syntax elements are recomputed for the output bit stream to hit the target

bit rate. However, every modification is tracked in pixel space so that the true reconstruction error

is known by the transcoder. The transcoder therefore contains a second picture buffer to store the

degraded reconstructed frames. When the prediction data for future frames is read from the source

bitstream, the transcoder uses it to make two versions of the prediction: one using the true decoded

145

picture buffer, and one using the degraded decoded picture buffer. The former represents the source

prediction, and the latter represents the transcoded prediction. Since both prediction signals are

known, the transcoder is able to compensate for the prediction error at the decoder by recomputing

the residual signal in the output bitstream.

Since the transcoder is already recomputing the residual signal to account for drift from

prior frames, it can also requantize the adjusted residual to hit the lower target bit rate. In this way,

by requantizing and recomputing the residual signal, the proposed fast transcoder is able to account

for drift and change the output bit rate at the same time. The trade-off for these benefits is that the

transcoder is required to contain a full decoder and an extra decoded picture buffer (DPB). This

adds memory and complexity requirements that are absent in drift-prone solutions, but results in a

much higher quality reconstruction.

A major guiding principle of this approach is to reuse the entire, unaltered prediction

signal directly from the source instead of recomputing or altering it during transcoding. In contrast,

full cascaded transcoding algorithms contain a complete encoder and therefore have to perform

the computationally expensive task of searching for the optimal prediction signal. Additionally,

remaining faithful to the original prediction signal ensures that any beneficial semantic understanding

of the captured scene embedded in the prediction will be passed along to the transcoded version of

the video. This is particularly important for codecs that have expressive, sophisticated prediction

syntax, such as HEVC.

6.2 Hierarchy of Syntax Elements in H.265/HEVC

H.265/HEVC is a hybrid prediction-transform video codec. This means each frame is

encoded in the bit stream in two parts: a set of prediction instructions and a set of prediction

residual quantized coefficients. The prediction and residual data are represented by a series of

syntax elements and encoded to the bit stream using entropy encoding techniques. To reconstruct

the frame, the decoder decodes these syntax elements and uses them to create a prediction plane

146

and a prediction residual plane for the frame. The frame reconstruction is then produced by adding

together the pixel values of the prediction and residual planes.

The technique proposed by this chapter involves separating the prediction and residual

signals during transcoding, so that the residual data can be recomputed to achieve a lower target bit

rate. Thus, the sections below describe the high-level H.265/HEVC syntax for coding partitioning,

prediction and residual information.

6.2.1 Partitioning Syntax Elements

H.265/HEVC performs prediction and residual calculation on small blocks of pixels at

a time. Thus, the first step in signaling a frame is to partition the frame into small coding units

(CUs) that can be more easily predicted and transformed. First, the encoder and decoder split the

frame into a grid of square coding tree units (CTUs). The encoded stream specifies whether the

base CTU size should be 16x16, 32x32, or 64x64 pixels. Next, each CTU is split independently

into smaller CUs using a quadtree structure. The CU quadtree structure for a given CTU is directed

in the encoded stream by a series of dependent binary split decisions. Each split decision indicates

whether a specific CU should be recursively split. A CU of size 8x8 is no longer allowed to be split,

making 8x8 the minimum CU size. Encoders control how small the CUs are by choosing when to

split them.

6.2.2 Prediction Syntax Elements

Once partitioning information has been signaled, the prediction for a frame is described on

a per-CU basis. Prediction syntax elements are grouped by the following categories:

• Prediction Mode – Each CU is predicted using either inter-frame or intra-frame prediction.

The prediction mode is signaled as a single binary decision for each CU. I-frame CUs do

not require a prediction mode decision, since only intra-frame prediction is possible.

• Prediction Unit Structure – A CU block may be further split into smaller rectangular

regions called prediction units (PUs) for prediction. PUs enable more precise prediction

147

along non-square boundaries. 8 different PU shapes are supported. The chosen shape for a

particular CU is encoded as a sequence of binary decisions in the bit stream.

• Advanced Motion Vector Prediction (AVMP) – For each inter-coded PU, a motion vec-

tor is specified using a separate prediction loop, called Advanced Motion Vector Prediction

(AMVP). The encoder and decoder deterministically formulate a list of candidate motion

vectors to serve as the prediction for the block’s eventual motion vector. The best candidate

is specified in the bit stream as an integer index, and is used as the predicted motion vector.

Finally, x- and y-direction offsets are coded in the bit stream for correcting the predicted

motion vector coordinates.

• Merge Mode – As an alternate to signaling complete motion vector data with AMVP,

inter-coded PUs may instead directly re-use motion prediction information from previously

signaled temporally or spatially adjacent PUs. This saves bits in the encoded stream,

particularly in regions of homogeneous motion where all motion prediction is roughly the

same. The technique is called merge mode, and is indicated by a binary decision before the

motion vector is specified. If merge mode is selected, an integer is also coded to indicate

which nearby PU should supply the motion prediction information.

• Reference Frame – For each inter-coded PU, the correct reference frame to use for

prediction must be indicated in the stream. This is coded as an integer, representing the

index of the reference frame to use within the DPB.

• Intra Prediction Mode – For each intra-coded PU, an integer is encoded in the stream to

indicate which intra prediction mode to use for predicting based on pixels from neighboring

previously reconstructed blocks. H.265/HEVC has 35 intra prediction coding modes.

6.2.3 Residual Syntax Elements

After the prediction has been formed for the pixels in a given CU, the prediction residual

for that CU is signaled in the encoded stream as a series of transformed, quantized frequency

148

coefficients. The residual information indicates the error incurred by the prediction, such that adding

the prediction and the residual together reconstructs the pixel values. Residual syntax elements are

grouped in the following categories:

• Transform Unit Structure – Just like with prediction, CUs may be partitioned into smaller

blocks for frequency transform. The supported transform unit (TU) sizes are 32x32, 16x16,

8x8, and 4x4, and are specified using a quadtree structure with root at the CU level. Each

residual quadtree (RQT) split decision is encoded as a binary decision in the bit stream.

Note that all TUs must be square, due to the fact that the 2-dimensional DCT and DST

must operate on square matrices. DST is only allowed for 4x4 TUs.

• QP Value Offset – After the frequency transform is applied to the prediction residual

pixels, the resulting frequency coefficients are quantized. The amount of quantization

is controlled by a quantization parameter (QP) value between 0 and 51, where higher

numbers indicate higher quality. While a global QP value is specified in the encoded bit

stream for each frame, each CU has the option of specifying a QP offset so that quality can

be adjusted on a per-coding-unit basis.

• Quantized Coefficient – Finally, the quantized residual coefficients for the TU are encoded

in zig-zag order, starting from the top-left-most coefficient and snaking around to the

bottom-right-most coefficient. By placing the coefficients in zig-zag order, the earliest

coefficients represent the lowest frequency components. The exact encoding of quantized

coefficients is explained in greater detail in Chapter 5.

6.3 Overview of Approach

The proposed architecture is a homogeneous H.265/HEVC transcoder with decoder-like

complexity. The transcoder adjusts the source stream to meet the target transcoded bit rate while

accounting for decoder drift by recomputing and requantizing the residual data for each encoded

frame. The following subsections outline the required components and operation procedures.

149

Decoder A

Decoder B
Transcoding
Apparatus

Entropy
Encoder

Decoded picture sets and
prediction syntax elements

Reconstructed frames
and prediction syntax

elements

Transfer or
storage

Encoded H.265/HEVC source
stream

Transcoded H.265/HEVC
output stream

Requantized, drift-
compensated residual

syntax elements

Figure 6.1: This block diagram depicts the components contained by the proposed bit rate fast
transcoder. Decoder A represents a full H.265/HEVC decoder which decodes the source stream.
The transcoding apparatus and entropy encoder blocks control transcoding and formulation of the
output bit stream, respectively. Decoder B represents the endpoint client-side decoder and is a full
H.265/HEVC decoder.

6.3.1 System Components

Figure 6.1 depicts the components envisioned for this system. Four connected components

are included in the schematic: Decoder A, a transcoding apparatus, an entropy encoder, and client

Decoder B. These components are briefly described below.

1. Decoder A – Decoder A is responsible for decoding the input source stream, producing

the reconstructed pixel-space frames as well as the decoded syntax elements that were

used to recover the frames. Since Decoder A must expose the entropy-decoded syntax

elements to the rest of the system, most hardware-based decoder implementations are not

suitable for this step.

2. Transcoding Apparatus – The transcoding apparatus modifies the syntax elements from

the source stream by requantizing the residual to hit the desired bit rate target. To com-

150

pensate for drift, this component contains a second prediction-transform loop—including

a separate decoded picture buffer—which is independent from the one encapsulated by

Decoder A.

3. Entropy Encoder – Ultimately, the transcoded syntax elements are re-encoded using an

entropy encoder such that another fully-compliant H.265/HEVC bit stream is produced as

output. The entropy encoder component consists of a CABAC with independent context

models and a static variable length coding (VLC) unit.

4. Decoder B – The transcoded stream produced by the entropy encoder is stored or trans-

ferred to the client, represented by Decoder B. Decoder B decodes the stream to recover a

reproduction of the video at the requested lower bit rate. No drift occurs at Decoder B due

to drift compensation performed by the transcoding apparatus.

6.3.2 Operation Procedure

The transcoding procedure contains two decoders, Decoder A and Decoder B, separated

by a transcoding apparatus and an entropy encoder. The procedure is driven by Decoder A, which

decodes the input source stream one syntax element at a time. Decoder A produces the complete,

original, pixel-space reconstruction of each frame, and exposes the syntax elements it decodes to

be used by the rest of the system. Since off-the-shelf hardware decoders do not typically expose

the decoded syntax elements, Decoder A is likely to be software-based. Decoder A’s operation is

independent from and unaffected by later changes made to the stream by other components of the

system.

Some of the syntax elements produced by Decoder A are forwarded directly to the output

stream without alteration. This includes all syntax elements associated with frame prediction and

parameter sets. But the residual signal is entirely recomputed by the transcoder apparatus in order to

hit the lower target bit rate. As a result, Decoder A and Decoder B recover different pixel values for

each frame. As explained in Chapter 5, any difference in the reconstructed frame between Decoder

151

A and Decoder B would normally introduce drift at Decoder B, due to the discrepancy between the

prediction loops. The transcoder apparatus is therefore designed to track and compensate for these

differences when computing each frame’s residual. This process is described next.

For the ith encoded frame Fi, let FA be the pixel values recovered by Decoder A and let

FB be the pixels recovered by Decoder B. FB is represented in the transcoded stream using the

same prediction syntax elements that were originally used to code FA. Let the prediction plane

produced by Decoder A be PA, and let PB be the prediction plane produced by Decoder B using the

same prediction syntax elements. In the steady state, the reference pictures stored in the DPBs of

Decoder A and Decoder B are different, due to the fact that Decoder B receives frames at a lower

bit rate. Therefore, PA and PB will differ even though the prediction syntax elements used to form

them are the same.

To prevent drift, the transcoding apparatus maintains a copy of Decoder B’s DPB and

uses it together with the prediction syntax elements to calculate PB. The prediction error E is the

difference between Decoder B’s prediction and the true reconstructed frame supplied by Decoder A.

E = FA − PB (6.1)

Since Decoder B’s DPB was used to formulate PB , this means E includes both the original residual

data for frame FA plus any drift incurred due to imperfect reference frames at Decoder B. Therefore,

introduceDB to represent the drift incurred by Decoder B due to imperfect prediction. The following

equation describes the components of E:

E = RA +DB (6.2)

Substituting Equation 6.2 into Equation 6.1 and solving for DB yields

DB = FA −RA − PB (6.3)

152

But since FA −RA = PA, this simplifies to

DB = PA − PB (6.4)

Thus, the transcoding apparatus can easily calculate the drift incurred by Decoder B due to imperfect

prediction by computing the difference between Decoder A’s prediction and Decoder B’s.

Once the transcoding apparatus has computed Decoder B’s prediction error E via Equation

6.1, it transforms and quantizes E using the appropriate QP value required to hit the target lower bit

rate. This is termed requantization, since the component of the signal represented byRA in Equation

6.2 was previously quantized in the initial encoding, and now is quantized again after factoring in

the drift component DB . It is assumed that the new QP value is selected by an external rate control

algorithm to achieve the requested bit rate. To reduce transcoding time, the same residual quadtree

and other structural information from the original encoding are simply re-used during requantization

of E. Requantization is implemented by applying the standard transform and quantization routines

from an H.265/HEVC encoder to the computed E plane.

Additionally, the transcoder must also recover the complete reconstructed frame FB as

produced by Decoder B so that FB can be added to the transcoder’s DPB for reference in future pre-

diction. Thus, the transformed and quantized coefficients are de-quantized and inverse-transformed

to recover Decoder B’s recovered version of the prediction residual, RB. Finally, the transcoder

computes FB = PB +RB and incorporates FB in its DPB.

In summary, the transcoder apparatus calculates the new residual in pixel space, producing

a set of transformed, quantized coefficients which are sent to the entropy encoder to be multiplexed

into the output bit stream. The final transcoding unit is an entropy encoder, which consists of

a CABAC encoder with associated contexts as well as a variable-length coding (VLC) unit. As

Decoder A process syntax elements, those associated with the video, sequence, and picture parameter

sets (VPS, SPS, and PPS, respectively); prediction formation; and stream structure (i.e. NAL unit

headers) are forwarded directly to the entropy coding unit. When it is time to encode residual

153

Full
H.265/HEVC

Decoder

Decoded
Picture Buffer

Entropy
Encoder

Prediction
Calculator

DCT

IDCT

QP

QP
-1+

–

Encoded H.265/HEVC
source stream

Transcoded H.265/HEVC
output stream

Prediction and parameter
set syntax elements

Reconstructed frame

Predicted frame

Recovered prediction
residual frame

Transcoded frame

Prediction error

Prediction
syntax elements

Quantized
residual frequency

coefficients

Reference
frames

In-Loop
Filtering

Figure 6.2: This block diagram depicts the complete proposed fast bit rate transcoder, which
reuses the prediction directly from the source bitstream and therefore avoids performing the
computationally expensive prediction search algorithm.

data, the entropy encoder switches its source to use the coefficients produced by the transcoding

apparatus. The bit stream produced by the entropy coding unit is fully standard-compliant and can

be decoded by any non-scalable H.265/HEVC decoder like the one represented by Decoder B.

6.3.3 Block Diagram

A complete block diagram depicting the proposed hybrid transcoder is shown in Figure

6.2.

154

6.4 Benefits of Proposed Approach

This section describes the high-level objectives achieved by the proposed approach, and

compares them to alternate approaches.

6.4.1 Drift Compensation

Chapter 5 described the tension between layered coding and predictive coding. When the

bit rate of a predictive-coded video is scaled, the encoder must either compensate for the missing

information at the decoder during prediction, or allow decoder drift to be introduced in the system.

By performing per-request drift compensation, the proposed approach is able to maintain the rate-

distortion performance benefits afforded by predictive coding, while simultaneously ensuring that

drift does not occur—all while allowing the decoder to dynamically scale the encoded bit rate. Thus,

the positive traits of scalable coding and predictive coding are simultaneously achieved.

6.4.2 Decoder and Client Complexity

Another major benefit of the proposed approach is that the output bit stream is fully

standard-compliant, and can be decoded by a hardware-based, non-scalable H.265/HEVC decoder.

Other scalable approaches, including the layered approach taken by SHVC, require explicit decoder

support and increased decoding complexity to receive and incorporate enhancement layers. This

limitation is simply not tenable in an environment where high-quality video is dominant and should

be prioritized for maximum compatibility.

Furthermore, by using the proposed approach, a receiver is able to tailor the transmitted

bit stream exactly to its unique bit rate needs. Simulcast and layered approaches for generating

a scalable encoding rely on pre-selecting a few discrete bit rates which are explicitly support.

Decoders are allowed to select from the available rate options, but cannot ask for an encoding

at a rate in between two neighboring options. On the other hand, the proposed approach allows

receivers to request an encoding at any bit rate, and a suitable stream will be produced on-the-fly.

155

Furthermore, smart receivers can even change the requested bit rate dynamically during transfer.

This could be used, for instance, in a situation where the receiver’s network bandwidth noticeably

fluctuates.

6.4.3 Encoder and Server Complexity

The benefits described above are made possible because the source bit stream is transcoded

on-the-fly in response to a client’s request. This obviously introduces a server load that scales

linearly with the number of requests. The final section of this chapter discusses possible mitigation

strategies for reducing the server load, including batching similar simultaneous requests and lazily

caching the transcoded results for common requests. However, there will ultimately always be a

server complexity overhead with all scalable approaches that use just-in-time transcoding.

Nonetheless, certain design decisions in the proposed approach result in reduced per-request

server load when compared to a full cascaded transcoder. Most notably, the decision to reuse the

same prediction syntax elements as the source eliminates the need to perform a prediction search.

Overall, the per-request transcoding operation requires a full H.265/HEVC decode with the addition

of an extra DPB, a residual requantizer, and an entropy encoder.

6.5 Justification for Prediction Reuse

With the proposed system architecture, all decoders receive identical prediction syntax

elements, regardless of the bit rate that they requested. Among others, the following prediction

attributes are universally sent to all decoders invariant of requested bit rate (see Section 6.2.2 for full

details): frame partitioning structure, inter/intra prediction coding decisions, motion vectors, and

intra coding modes. Since it is used in all output streams, the prediction structure has the potential

to greatly affect coding efficiency across the entire bit rate spectrum. It is therefore important to use

a “good” prediction. Otherwise, if an inaccurate or suboptimal prediction is used, coding efficiency

would suffer across all requested bit rates.

156

But what constitutes a “good” prediction? Classically, the best prediction is the one that

allows the encoder to maximize quality while hitting the target bit rate. This problem statement is

quantifiable and compression-oriented, but it reflects the historical tendency to over-focus on rate-

distortion performance. In the face of diversifying, heterogeneous clients, no longer is rate-distortion

performance the only trade-off worth optimizing. This dissertation claims that client flexibility

is of increasing importance in a diverse world of heterogeneous receivers. Coded prediction data

conveys semantic information about the scene such as structural and motion information. In the

future, modern smart clients may be interested in receiving this data at high quality, for sophisticated

application-level goals. Therefore, this data should be included in response to all requests even if it

affects rate-distortion performance.

The system architecture described in this chapter simply reuses the prediction syntax

elements as-is from the source encoding of the input video. This is justified by the assumption that

the original encoded prediction was captured by the source device, and therefore represents the

ground truth of the scene. However, if for some reason the source prediction structure is unreliable,

one could easily imagine a simple modification to the proposed system where a prediction search is

performed as a one-time operation before any transcoding is performed. Although this prediction

parameter search would be computationally expensive, it would be a one-time operation for each

uploaded video and would not be performed per-request. The rest of the proposed system could

then use the new prediction structure instead of the original one for transcoding.

6.5.1 Stream Composition

The proposed technique hits the requested target bit rate by requantization—that is, by

reducing the precision of the quantized, residual frequency coefficients in order to save bits until the

desired rate is reached. This enforces a lower bound on the achievable transcoded bit rate, since no

prediction or parameter set information can be modified. The lowest possible bit rate achievable by

the proposed technique would be to completely remove all residual information from the transcoded

stream, and retain only the prediction and parameter set information (i.e. the encoding would have

157

6%

0.0 Mbps 1.45 Mbps 4.7 Mbps 5.0 Mbps

65%

Residual

29%

Prediction
Parameter

Sets

Figure 6.3: This figure depicts the average proportions of a 10s, 1080p H.265/HEVC stream
encoded with x265 on profile “veryslow” at 5 Mbps. Each bit in the encoded stream is labeled
either prediction, residual, or parameter set based on its purpose. Thus, the values presented here
represent the average across the entire video segment. Five different sample videos were encoded
and their results averaged to produce this figure.

an empty residual). Note that this would result in a reconstruction of very low quality, consisting

entirely of structural prediction data. It could be used, however, by clients who are requesting the

stream primarily for the embedded motion or structural data.

Figure 6.3 depicts the composition of an average H.265/HEVC stream produced by the

x265 encoder at 5 Mbps. The encoded bits associated with prediction signaling account for 29% of

the overall stream, those associated with residual signaling account for 65%, and those associated

with parameter sets account for 6%. Requantizing such a stream can therefore achieve a minimum

bit rate of 5 Mbps× 35% = 1.75 Mbps and a maximum bit rate of 5 Mbps.

However, most non-scalable H.265/HEVC encoders—including x265 and HM—determine

stream composition based on the target bit rate. In other words, not all streams produced by these

encoders are composed of 29% prediction bits, 65% residual bits, and 6% parameter set bits. In

fact, when encoding at lower bit rates, x265 tends to use a higher percentage of the stream to signal

prediction, and a comparably lower percentage to signal residual. As the target bit rate increases,

x265 starts to allocate a higher proportion of the stream to signal the residual. This is illustrated

by Figure 6.4, which depicts the bit stream proportions when sample video “Jellyfish” is encoded

multiple times using x265 on “veryslow” profile at various bit rates.

Ultimately, the proportion of the bit stream that gets allocated to signaling prediction versus

residual data is an encoding decision, and may vary greatly from stream to stream. Encoders that

are configured to perform exhaustive prediction search will be time consuming, but will produce an

158

avg_psnr avg_qp
32.050589 6.29
32.047115 8.14

32.04528 10.32
32.040278 13.41
32.014301 18.79
31.947145 24.47
31.799208 30.41
30.975274 42.2
30.377583 46.64
28.673166 51

0 20000 40000 60000 80000 100000 120000

100000

80000

60000

40000

20000

10000

Achieved Bitrate (kbps)

Ta
rg

et
 E

nc
od

ed
 B

itr
at

e
(k

bp
s)

Prediction Signal (kbps) Residual Signal (kbps) Other (kbps)

0 1000 2000 3000 4000 5000 6000

5000

1000

500

250

Achieved Bitrate (kbps)

Ta
rg

et
 E

nc
od

ed
 B

itr
at

e
(k

bp
s)

Prediction Signal (kbps) Residual Signal (kbps) Other (kbps)

avg_psnr avg_qp
32.050589 6.29
32.047115 8.14

32.04528 10.32
32.040278 13.41
32.014301 18.79
31.947145 24.47
31.799208 30.41
30.975274 42.2
30.377583 46.64
28.673166 51

0 20000 40000 60000 80000 100000 120000

100000

80000

60000

40000

20000

10000

Achieved Bitrate (kbps)

Ta
rg

et
 E

nc
od

ed
 B

itr
at

e
(k

bp
s)

Prediction Signal (kbps) Residual Signal (kbps) Other (kbps)

0 1000 2000 3000 4000 5000 6000

5000

1000

500

250

Achieved Bitrate (kbps)

Ta
rg

et
 E

nc
od

ed
 B

itr
at

e
(k

bp
s)

Prediction Signal (kbps) Residual Signal (kbps) Other (kbps)

Figure 6.4: Proportion of bitstream allotted to prediction and residual signal when “Jellyfish” sample
video is encoded using x265 H.265/HEVC encoder on “veryslow” profile at various bit rates.

output stream with high-quality prediction and structural information. On the other hand, encoders

configured to take shortcuts by making quick decisions about prediction modes may not produce

optimal prediction. These decisions ultimately affect the stream composition and reconstruction

quality. In summary, prediction quality is a function of encoder complexity.

159

6.5.2 Source Encoding as Ground Truth

The motion vectors, spatial texture patterns, and frame partitioning information that consti-

tute the prediction for an encoded H.265/HEVC stream represents a rich semantic understanding

of the dynamics of the content. Someday, we envision that smart clients could be tuned to make

high-level inferences about what is happening in the scene using prediction data alone.

Modern consumer-grade digital capture devices such as smartphones and digital video

cameras record video using on-chip hardware encoders. These CCD or CMOS sensor chips produce

pre-encoded H.264/AVC or H.265/HEVC content as the initial representation of the video data. In

the future, hardware encoding will continue to become more common, meaning consumer-captured

digital video data will likely spend its entire life cycle in compressed form. On the opposite side,

decoding also increasingly takes place in hardware, as physically close to the display apparatus as

possible. This suggests that the encoded representation of a consumer-recorded video is, in fact,

the primary representation. Under this interpretation, the decompressed, pixel-space representation

is merely an alternate rendering of the true, compressed-domain content. Furthermore, the initial

encoding captured and produced by the source represents the ground truth for the video content, and

all transcode operations for the rest of the video’s life cycle represent degradations of that original

encoding. Therefore, it is imperative when performing homogeneous transcoding to preserve the

quality of the prediction as much as possible. The original prediction represents important semantic

information captured by the source about the scene.

Since the prediction information embedded in a compressed video reflects scene semantics,

it should be relatively invariant to changes in encoded bit rate. In other words, the motion, pattern,

and structural information within a scene are fixed regardless of an encoder’s compression rate.

This is further justification for reusing the original prediction captured in a scene whenever possible.

However, when encoding content to very low bit rates, encoders in practice tend to use simpler

predictive structures in order to spend less bits overall on prediction. Since predictive structure is a

function of the scene, not the bit rate, this suggests that the ideal lower quality prediction for a low

160

target bit rate can be deduced based on the higher quality prediction. The exploration of this idea is

left to future work.

Finally, reusing the initial, highest-quality prediction for lower bit rate requests yields

another benefit: it naturally results in a top-down scalable rate-distortion curve. Recall that a

top-down scalable encoding is one that optimizes requests at high bit rates and allows rate-distortion

performance to drop at lower bit rates. A top-down solution is increasingly desirable as the

proportion of high bit rate requests continues to increase globally. By using the prediction originally

associated with a high bit rate encoding, requests at high bit rates will result in near-optimal rate-

distortion performance. Requests for lower bit rates will result in sub-optimal performance, since

the prediction used will be overly precise for the requested bit rate.

6.6 Application to H.265/HEVC

Residual requantization is a content-specific approach designed to induce top-down,

receiver-driven video adaptation for video content that was initially encoded using a tightly inter-

dependent, predictive codec. To evaluate residual requantization, this section presents the results of

an experiment where the technique has been applied to data initially encoded as a H.265/HEVC

stream. Thus, the algorithm, results, and conclusions presented here are specific to H.265/HEVC

coded content.

6.6.1 Residual Requantization of H.265/HEVC Data Streams

A residual requantization apparatus was designed as a modification of the HM reference

implementation of H.265/HEVC. The module is essentially a homogeneous transcoder, such that

pre-encoded H.265/HEVC data is provided as input, and a modified (but still standard-compliant!)

H.265/HEVC stream is generated as output. The idea is to enable receivers to control the residual

requantization process in order to specify the bit rate that they need on a per-frame basis (i.e.

adaptation is receiver-driven). Furthermore, receivers with enough bandwidth to receive the entire

161

Decoded Syntax
Elements

H.265/HEVC
Decoder

Residual
Requantization

Decoded Picture Buffer

Input H.265/HEVC
bit stream

Adapted H.265/HEVC
bit stream

H.265/HEVC
Entropy Encoder

Drift
Compensation

Decoded Picture Requantized ResidualDrift-Compensated
Residual

Figure 6.5: This block diagram depicts the high-level components of the proposed residual requanti-
zation transcoder.

stream should receiver the initial encoding (i.e. adaptation is top-down). Both of these ideals are

realized by the implementation.

Figure 6.5 illustrates a system block diagram for the implemented transcoder. The initial

H.265/HEVC bit stream is immediately decoded by a full H.265/HEVC decoder. During the

decoding process, the decoder exposes the syntax elements it produces for each frame for the rest of

the transcoder to use. Next, the decoded syntax elements associated with the residual signal are

recomputed to hit a target bit rate supplied by the receiver for the given frame and to compensate

for any pre-existing decoder drift that had been tracked by the drift estimator. The recomputed

residual is then multiplexed back into the initial stream, entropy-encoded, and sent to the decoder.

Finally, the drift estimator incorporates any drift produced by the requantization process back into

its estimation for prediction of future frames.

The resulting system can be expected to exhibit the following behavior:

162

• Drift-Compensation – The drift compensation mechanism ensures that decoder drift does

not affect prediction of future frames. Thus, reconstruction quality should not decrease

over time.

• Receiver-Driven Bit Rate Adaptation – Receivers are able to request and receive the

exact bit rate that matches their application needs and available network bandwidth. This

can be specified on a per-frame basis.

• Top-Down Adaptation – Since the original prediction and structural information is di-

rectly re-used by the transcoder, adapted streams provide as much original information as

possible. Receivers with high available bandwidth can receive the full stream as originally

encoded.

6.6.2 Data Set

The results presented in this section were generated using the free, public-domain Sunflower

video content. This content consists of 500 frames captured at 30 frames per second, with a

resolution of 1920 × 1080 and 24 bits per color pixel. The initial H.265/HEVC “ground truth”

encoding used for all experiments in this section was generated using ffmpeg’s version of libx265

(Tomar, 2006; MulticoreWare, 2019) on the veryslow profile. A sample frame from the source

Sunflower video is reproduced in Figure 6.6.

6.6.3 Results and Discussion

To evaluate residual requantization as an adaptive approach, it was applied to an input

H.265/HEVC encoding of the Sunflower content described above. Receiver-driven adaptation was

simulated by requantizing the content multiple times at various different bit rates. Next, the results

were compared to a baseline adaptive approach where the source content is simply transcoded

to lower bit rates using an off-the-shelf cascaded transcoder. In particular, ffmpeg was used for

163

Figure 6.6: This figure depicts a sample full-quality frame from the video content used for the
H.265/HEVC residual requantization experiment.

the baseline approach with its implementation of the libx265 library (MulticoreWare, 2019). The

default encoding profile was used for all baseline adaptive cascaded transcoding operations.

Comparing content adapted with ffmpeg’s cascaded transcoder against content adapted

with residual quantization provides a valuable benchmark for the rate-distortion performance of the

proposed approach. However, note that there are a few benefits unique to residual requantization.

First, it is a computationally faster approach than cascaded transcoding, because it does not

recompute the prediction used to encode the content. Second, it offers top-down adaptation

since receivers with high available bandwidth will ultimately receive an encoded stream that is quite

similar to the initial encoding. Conversely, the baseline cascaded approach always throws away the

prediction information from the original encoding, meaning no clients will receive this valuable

representation of the captured content.

At the same time, one advantage of the baseline approach is that since it recomputes the

prediction from scratch every time, it is able to achieve better rate-distortion performance at the low

end of the bit rate spectrum. This is because the original ground-truth prediction is overly specific

for low bit rates, and takes up too many bits in the encoded stream.

164

Figure 6.7 depicts sample high quality and low quality frames from both adaptation

approaches. Clearly, both approaches are able to adapt content down to lower bit rates where quality

loss becomes visually perceptible.

Figure 6.8 depicts per-frame bit rates for three different adaptations of the source content:

one at 9.76 Mbps, one at 4.71 Mbps, and one at 3.57 Mbps. All of these adaptations were created

by residual requantization. This figure indicates that the drift compensation mechanism integrated

in residual requantization works correctly, and that drift is not a significant issue in the results. In

all three adaptations, the quality is initially higher, and dampens slightly over time. This might be

due to the fact that initially, the encoder and decoder picture buffers are exactly synchronized (i.e.

both are empty). As frames are transmitted, the encoder and decoder DPBs begin to drift. Although

the effect of drift is compensated, its presence may cause this slight quality performance dip.

Finally, Figure 6.9 compares the rate-distortion performance of residual requantization

against that of the baseline cascaded transcoding approach. This graph illustrates a few interesting

points. First, it demonstrates how residual requantization outperforms ffmpeg at high bit rates. This

is by design, and provides strong evidence that top-down adaptation does indeed prioritize requests

at the high end of the bit rate spectrum. Second, note that the default encoding profile of ffmpeg

struggles to reach the highest range of video qualities. This is because it throws away the prediction

from the initial encoding, which was quite precise, and instead tries to compute a new prediction on

demand. Had the ffmpeg profile been set to compute a slow, multi-pass prediction, it might have

been able to reach these higher bit rates. But that would be a silly approach: to throw away a good

initial prediction and then spend extra time recomputing it.

Third, ffmpeg clearly outperforms residual requantization at the lowest band of bit rates. In

fact, residual requantization is unable to reach the lowest bit rates at all, due to the high portion of its

bit stream expended to signal the initial prediction information. This is known and expected behavior.

However, signaling the original prediction could have secondary advantages over recomputing

the prediction from scratch. For instance, providing the initial prediction gives receivers semantic

165

information about the captured scene that could be useful, such as enabling cheap optical flow

inference from the embedded motion vectors.

(a) A sample high bit rate frame produced by libx265
through cascaded transcoding

(b) A sample high bit rate frame produced by drift-
controlled residual requantization

(c) A sample low bit rate frame produced by libx265
through cascaded transcoding

(d) A sample low bit rate frame produced by drift-
controlled residual requantization

Figure 6.7: This figure provides a visual comparison of sample frames produced by cascaded
transcoding as well as the proposed residual requantization approach. Figures (a) and (b) depict
high bit rate frames produced by the two techniques. Figures (c) and (d) depict low bit rate frames
by both approaches.

6.7 Future Work

The experimental results presented in this chapter evidence that residual requantization is a

viable domain-specific method for achieving top-down receiver-driven content adaptation. Nonethe-

less, this section identifies two avenues of inquiry for future work. First, residual requantization

by itself is only able to maintain high rate-distortion performance at the high end of the bit rate

spectrum. We therefore propose that by introducing prediction adaptation techniques, residual

166

Figure 6.8: This figure illustrates the quality achieved for each frame of video adapted with residual
requantization.

Figure 6.9: This figure depicts the rate-distortion performance achieved by residual requantization
in comparison to cascaded transcoding with ffmpeg.

167

requantization can more effectively adapt to lower bit rates. And second, an untapped potential

application for residual requantization is multiple description coding. We therefore propose an

adaptation strategy where multiple independent low quality versions of the same video are created

so that they can be combined together to produce a higher quality version of the content.

6.7.1 Prediction Adaptation

Since residual requantization does not modify the original prediction, it cannot adapt the

compressed bit rate to be lower than the proportion of the original bit stream associated with the

residual signal. Depending on how the source content was encoded, the prediction signal sometimes

may account for a larger proportion of the overall bit stream than the residual. Thus, there may be

situations in practice where a receiver wishes to adapt the source encoding below the minimum

amount afforded by the prediction/residual composition of the original representation. To fulfill

these requests, the prediction must be altered to accommodate the lower bit rate. For example,

the frame partitioning structure might be made coarser or the motion vectors might be modified

to use merge mode instead of AMVP. As presented, the basic residual requantization algorithm

explored in this chapter does not adapt the prediction at all, and is therefore unable to accommodate

these requests at lower bandwidth. This limitation is illustrated in Figure 6.9, where residual

transcoding is unable to reach the lowest bit rates. As future work, we propose an extension to

residual requantization where the prediction from the original encoding is adapted to meet lower

bit rate targets, but remains true to the original captured content as much as possible. We term this

proposed technique prediction degradation.

The idea behind prediction degradation is to adapt the originally encoded prediction

instructions so that a receiver-driven target bit rate can be achieved. If the target bit rate is low, the

prediction instructions should be made coarse enough to meet it. As much as possible, the adapted

prediction should retain the structural details and semantic understanding of the original scene (i.e.

it should remain “top-down”). A simple approach could be to identify certain motion vectors to

be switched from AMVP mode to the less costly merge or skip mode. Good candidates for merge

168

mode could be identified based on detection of homogeneous motion across a region of the frame.

Once a motion vector is switched to skip mode, the residual signal is recomputed and requantized

like normal. Another idea is to adapt the partitioning structure used to code a particular CTU. Low

bandwidth clients may not be able to afford the full detail provided by the quadtree of the original

encoding. Instead, the quadtree could be pruned to save space in the adapted stream.

Machine Learning Approach

The easy availability of ground-truth solution data for this problem coupled with the

hypothesized coherence between the original prediction signal and its lower-bit-rate counterpart

make it an excellent candidate for a machine learning approach. To this end, a series of prediction

adaptation models would be trained to estimate the ideal adapted prediction coding parameters for a

given block of source pixels. Each model would be designed to generate an adapted prediction for a

specific lower bit rate target. For a given block and a given target bit rate, the model would predict

the ideal adapted prediction mode (i.e. inter vs intra), prediction block sizes, and intra mode (i.e.

angle) or motion vector (i.e. dx, dy). As input, the model would be given a patch of the reference

pixels surrounding the block, the desired reconstruction for that block, and the prediction coding

parameters originally used for the block in the source encoding. As output, it would produce an

estimate for the correct prediction coding parameters for the block.

A large dataset for the proposed model could be generated by independently transcoding

source video content to lower bit rates using cascaded transcoding. The prediction instructions

embedded in the transcoded video would then be extracted and considered as the ground truth for

the target bit rate. This process would be repeated on a variety of content representing different

scene dynamics, frame rates, source bit rates, target bit rates, etc. Ultimately, a large corpus of video

data would be produced. One suggestion is to organize the dataset as a collection of block-wise

samples, each representing the adaptation decisions made by a cascaded transcoder for a particular

block at a particular target bit rate. Each sample has the form (r0, r1, R0, B0, P0, P1), where r0 is the

bit rate of the original encoding, r1 is the target lower bit rate used by the cascaded transcoder, R0

169

contains the reference pixel values originally used to predict the given block, B0 contains the true

reconstructed pixel values for the block, P0 represents the prediction instructions used to code the

block in the original encoding, and P1 represents the adapted prediction instructions produced by

the cascaded transcoder to code the block at target bit rate r1. For samples where r0 ≈ r1, one could

expect that P0 ≈ P1. However, if r0 and r1 are further apart, P1 should begin to change, indicating

that the prediction was adapted by the cascaded transcoder. Given enough samples, a sufficiently

sophisticated model might be able to accurately predict P1 given input values of (r0, r1, R0, B0, P0)

for a specific block. The trained model could then be used to accurately and quickly adapt a video’s

prediction according to the receiver-driven target bit rate.

6.7.2 Multiple Description Coding

The intended use case for residual requantization is to better support receiver-driven, top-

down adaptation. However, video adaptation is not the only application that could benefit from such

an approach. One exciting example is multiple description coding. Multiple description coding

is a well-known existing technique whereby video content is coded into multiple independent

representations called descriptions. A decoder can use any individual description to approximate

the original content. However, decoders that receive more than one description can combine them to

reproduce a better approximation of the content. In general, the reproduction quality increases with

the number of descriptions that a decoder receives and incorporates. Multiple description coding is

very similar to layered coding (i.e. descriptions correspond to layers), with the caveat that every

description must be independently decodable to produce an approximation of the content. Layered

coding, on the other hand, maintains a dependency hierarchy between layers such that enhancement

layers are not useful by themselves.

Residual requantization works by recomputing the residual signal to hit a receiver-specified

lower bit rate target, while accounting for decoder drift. The implementation presented in this

chapter lowers the compressed bit rate by increasing the quality parameter (QP) value evenly for

all blocks in a frame. This results in a roughly even decrease in perceived quality across the entire

170

Description A Description B Description C

Combined
Reconstruction

Figure 6.10: This figure depicts a possible application of residual requantization to achieve mul-
tiple description coding. The same video frame is depicted from three independent descriptions
(descriptions A, B, and C). Square coding blocks are superimposed over each frame. White coding
blocks were requantized at a higher QP value, and gray coding blocks were requantized at the same
QP value as the original encoding. A decoder receiving all three descriptions can combine the gray
coding blocks to produce a higher quality reconstruction.

frame, once the computed residual has been requantized with the higher QP value. However, residual

requantization also is able to target loss to certain spatial regions, color channels, or frequencies of

the residual signal. For example, instead of applying loss evenly, suppose loss is selectively applied

to a small subset of the pixel blocks. For each encoded block of pixels, the transcoder determines

whether loss should be applied according to a deterministic pattern. For blocks that incur loss, the

QP value is increased before requantization is performed. For blocks that do not incur loss, no

change is made to the QP value. The compressed bit rate can therefore be controlled based on how

many blocks are requantized to a higher QP value.

This strategy can be used to generate multiple descriptions for the source content. The key

is for the transcoder to vary the deterministic pattern used to identify which pixel blocks should

incur loss when creating each description. Thus, each description is assigned a different pattern of

171

high quality and low quality blocks. If a decoder is aware of the deterministic algorithm used to

select high quality and low quality blocks, then it knows which blocks were coded at the original

quality in each description. Thus, it could combine multiple descriptions by unifying the high

quality blocks from each description together in a single reconstruction. The unified reconstruction

would have a higher overall quality than any of the individual descriptions. An example decoder

recombination procedure is depicted in Figure 6.10.

Instead of targeting loss to certain blocks, an alternate strategy is to target loss to certain

spatial frequency bands. This could be implemented by assigning a different custom quantization

matrix to each description before applying residual requantization. Each description’s custom

quantization matrix would prioritize a different frequency coefficient or frequency band. Thus, a

decoder that could identify the high-quality frequency bands from each description could extract

them to produce a more accurate combined reconstruction of the overall signal.

Finally, note that in each of the proposed implementations of multiple description coding,

the encoded descriptions represent fully standard compliant H.265/HEVC bit streams. Thus, the

system is fully backwards-compatible in support of decoders that are not equipped to combine

multiple descriptions together.

172

CHAPTER 7

Future Work: Syntax Element API

The residual requantization algorithm presented in the previous section supports requests

for extremely precise bit rate targets, and it fulfills these requests in real time. This is a significant

improvement over multiple coding and scalable coding, both of which require an offline transcoding

step and yield video transcoded only approximately to the desired bit rate. Nonetheless, fast

transcoding can be challenging to scale to many concurrent users, largely due to its high per-request

computational cost.

This final section of the dissertation proposes as future work the idea to explore fully-

decentralized video adaptation, in which the client is provided the necessary interface to receive the

video in real time at any desired bit rate, but in which the client is responsible for performing nearly

all computation. The proposed system would work by entropy decoding the source bit stream on

the server to recover the syntax elements that constitute the video. These syntax elements are then

exposed as-is to smart clients, through a simple HTTP API. Receivers that desire the full-quality

video and have the available bandwidth are free to request all syntax elements from the provider

to reconstruct the original data. Receivers that do not need the full reconstruction or that do not

have the required bandwidth are able to request only the subsets of syntax elements that are most

important to their application’s goals. This approach offers receivers the most flexibility, as they

are directly given access to individual elements of the original video stream and are able to select

the elements which are the most relevant. This also represents the most distributed solution, as

computation is completely deferred to receivers instead of performed by the provider.

173

7.1 Challenges

Implementing a distributed, receiver-driven video transcoder poses numerous challenges.

The envisioned system could allow clients to request individual syntax elements from the source

encoding. However, the syntax elements used by modern standards like H.265/HEVC are tightly

coupled with each other and are often implicitly specified. For example, suppose a receiver is

interested in receiving only the motion vector syntax elements for a given frame. While this sounds

like a simple, reasonable request, the interdependence of symbosl in the quadtree partitioning

structure complicates matters; each coding unit (CU) is a different size, and some CUs use intra-

frame prediction instead of inter-frame prediction (i.e. motion vectors). A server could respond

to such a request by simply listing the frame’s motion vectors as they were reconstructed from

the source bit stream, but unless the client already knows the quadtree structure and block-wise

prediction modes for that frame, it will be unable to match the received motion vectors with their

respective prediction blocks. Thus, just to interpret a list of motion vectors, the client is also

required to request the quadtree structure and the inter/intra coding decisions for each block in the

frame. Clearly, the syntax elements defined in H.265/HEVC were not designed to be independently

consumed.

To solve this problem, an intermediate representation for the syntax elements must be

carefully constructed, so that they can be individually received and understood by the client without

needing the entire stream to be transferred as necessary context. This proposed representation

will be informed by—and indeed similar to—H.265/HEVC. However, the syntax elements will be

designed so that they are less interdependent. For example, to solve the motion vector problem

explained above, one solution is for the server to maximally sample the motion vectors in the frame,

and respond with the maximum possible number of motion vectors that could be represented in a

frame (see Figure 7.1). Nonexistent motion vectors can be represented by a special symbol, so as to

distinguish the case where the zero motion vector is used from the case where no motion vector is

174

64px 64px

32px 8px16px8px

(a) A simplified CTU quadtree depicting
CU-level motion vectors

64px 64px

32px 8px16px8px

(b) The same CTU quadtree with maximally
sampled CTU-level motion vectors

Figure 7.1: Clients that do not have the quadtree information for a particular CTU can still interpret
motion information if it is maximally sampled.

computed. The result is that the client receives an immediately understandable representation of the

motion in the frame, without requiring additional context or side information.

Crucially, this technique relies on having a pre-known, implicit syntax element addressing

scheme shared by both the server and the client. For the motion vector example, the implicit

addressing scheme is the address space obtained by maximally sampling the motion vectors in the

frame. To ensure the client can request and interpret any piece of the H.265/HEVC stream, similar

implicit address spaces must be developed for the other syntax elements used by H.265/HEVC.

This will allow clients to request by address the syntax elements either individually or as block. In

response, servers can extract and provide single syntax elements or a group of them.

Another significant research question is how to manage the sheer number of syntax elements

specified by an H.265/HEVC video stream. To reduce the bit cost of representing these syntax

elements, a standard-compliant H.265/HEVC bit stream employs two techniques: it implicitly

specifies syntax elements whose value can be inferred by prior syntax elements, and it entropy

codes the ones which cannot be inferred. However, an important facet of the proposed system is to

unravel the interdependence between syntax elements; this means the system will not be able to

take advantage of syntax element values that can be inferred. And entropy coding relies on a shared

175

adaptive probability model between the encoder and the decoder; this shared probability model

achieves compression by adjusting the bit costs of future symbols based on prior encoded values.

However, since the proposed model assumes clients are smart and independent, each client will be

receiving different subsets of the source video. Thus, each client must have its own personal entropy

probability model shared with the server which reflects only the data that that client has received.

This means the server will have to track separate probability models for each client. Luckily, the

probability model tables are quite small for H.265/HEVC, and this will require only a few bytes

stored in the server session memory for each client.

Finally, the proposed model of video transfer is structured around two-way communication

between the server and the client. The client requests the exact syntax elements it wants, and the

server sends them, entropy coded, in the response. High data transfer levels might be a concern in

this bidirectional system. One strategy for alleviating this problem may be to identify and index

a few common syntax element “packages” that clients typically request, and then allow clients to

subscribe to one or more of these packages by simply indicating which packages they need. This

would result in a more typical one-directional information flow where the server is simply sending

the client data, and the client is simply consuming it. It also has the secondary benefit of allowing

the server to batch similar clients together that have the same common requests.

7.2 Anticipated Impact

The project outlined above, including designing and implementing the proposed system,

could yield numerous practical and theoretical benefits. The system would enable real-time live

video sharing with minimal server computational demand, allowing consumer-level computers to

become video distribution servers that support fully scalable requests. A distributed computational

approach is key to this vision, allowing most of the transcoding algorithm to be performed by the

client device.

Moreover, the practicality of fully receiver-driven video distribution could be evaluated.

The upward direction of consumer device capability coupled with an increase in the number of

176

interesting and clever AI algorithms that operate on multimedia data indicate that the time is ripe to

reevaluate existing supporting infrastructure and architecture. A key aspect of this future work is

to continue questioning the conventional approach by asking if a more flexible video distribution

system may be preferable for certain, increasingly common use cases.

177

CHAPTER 8

Conclusion

The work that embodies this dissertation set out to explore novel video adaptation strategies

that (1) preserve the initial representation as the ground truth, (2) respond gracefully to hetero-

geneous receiver-driven application needs, and (3) prioritize compression performance of high

bandwidth requests. In pursuit of this goal, we proposed three new methods for video adaptation.

First, we presented a fundamental, content agnostic entropy-based approach in which adaptation

is cast as a symbol dropping problem. To evaluate the technique, we applied it to video originally

coded with H.265/HEVC and video coded with M-JPEG. The results of these experiments showed

that the highly predictive nature and heavy inter-dependence of H.265/HEVC syntax elements pose

a challenge to the symbol dropping approach. On the other hand, adaptation with non-predictive

M-JPEG yields a smooth trade-off between bit rate and reproduction quality. Furthermore, by

providing a sophisticated rate controller algorithm, receivers are able to precisely target available

bandwidth toward dynamically specified regions of interest within the video frame.

Next, we demonstrated a domain-specific adaptation technique called residual requantiza-

tion. Residual requantization works by allowing receivers to specify a target bit rate. To achieve

this target, the residual signal from the original encoding is requantized using a different QP value.

A compensation mechanism is also incorporated during residual requantization to ensure that any

decoder drift experienced does not propagate forward. All prediction instructions are directly reused

from the source encoding, ensuring that any embedded semantic information originally captured

about the scene is preserved in the adaptation. This approach is applied to H.265/HEVC coded

content and compared against a state-of-the-art cascaded transcoder. The results confirm that a

top-down approach yields better rate-distortion performance at the high end of the bit rate spectrum.

178

Finally, we proposed a speculative fully receiver-driven system in which a video’s syntax

elements from its initial encoding are exposed through an HTTP API. Receivers wishing to recreate

the content can request the syntax elements through an expressive query language. Syntax elements

can be requested individually or in groups. In the future, this approach could allow smart receivers

to save bandwidth by picking and choosing exactly the syntax elements that are most relevant to

their application needs.

As the world eagerly awaits the next few decades of advances in video technology, it is

easy to imagine a future in which video sensors, displays, and applications continue to diversify

and become more sophisticated. As these exciting new technologies begin to materialize, we must

continuously reevaluate the systems on which they are built, ensuring that they are still up to the

challenge of supporting the new use cases we design for them. To that end, flexibility will certainly

remain a top priority for video compression, representation, and adaptation. The results presented

in this dissertation are encouraging, and the techniques that were evaluated have the potential to

adapt existing video content for the next generation of sophisticated, diverse systems. Ultimately,

this work should be interpreted as an initial step towards a new future of more flexible, general-use

video representation and adaptation strategies.

179

BIBLIOGRAPHY

Ahmed, N. (1991). How i came up with the discrete cosine transform. Digital Signal Processing,
1(1):4–5.

Amon, P., Haoyu Li, Hutter, A., Renzi, D., and Battista, S. (2008). Scalable video coding and
transcoding. In 2008 IEEE International Conference on Automation, Quality and Testing,
Robotics, volume 1, pages 336–341.

Benyaminovich, S., Hadar, O., and Kaminsky, E. (2005). Optimal transrating via dct coefficients
modification and dropping. In ITRE 2005. 3rd International Conference on Information
Technology: Research and Education, 2005., pages 100–104. IEEE.

Bocharov, J. A. (2009). Smooth streaming technical overview. CM-IPTV0560, Oct, 20:18.

Boyce, J. M., Ye, Y., Chen, J., and Ramasubramonian, A. K. (2016). Overview of shvc: Scalable
extensions of the high efficiency video coding standard. IEEE Transactions on Circuits and
Systems for Video Technology, 26(1):20–34.

Burt, P. J. and Adelson, E. H. (1987). The laplacian pyramid as a compact image code. In Readings
in computer vision, pages 671–679. Elsevier.

Chen, J., Koc, U.-V., and Liu, K. R. (2001). Design of digital video coding systems: a complete
compressed domain approach. CRC Press.

Cisco (2017). Cisco visual networking index: Forecast and methodology. Technical report, Cisco.

De Praeter, J., Van Wallendael, G., Slowack, J., and Lambert, P. (2017). Video encoder architecture
for low-delay live-streaming events. IEEE Transactions on Multimedia, 19(10):2252–2266.

Deknudt, C., Corlay, P., Bacquet, A.-S., Zwingelstein-Colin, M., and Coudoux, F.-X. (2010).
Reduced complexity h. 264/avc transrating based on frequency selectivity for high-definition
streams. IEEE Transactions on Consumer Electronics, 56(4):2430–2437.

Ding, W. and Liu, B. (1996). Rate control of mpeg video coding and recording by rate-quantization
modeling. IEEE transactions on circuits and systems for video technology, 6(1):12–20.

Fang, Z., Wang, S., Xu, S., Wu, S., Wang, Z., and Zeng, W. (2006). Multiwavelet video compression
based on block motion compensation. In Wavelet Active Media Technology And Information
Processing: (In 2 Volumes), pages 847–853. World Scientific.

Fecheyr-Lippens, A. (2010). A review of http live streaming. Internet Citation, pages 1–37.

Group, M. P. E. (2017). Call for evidence on transcoding for network distributed video coding.
Technical Report ISO/IEC JTC1/SC29/WG11 MPEG2017/N17058, Moving Picture Experts
Group (MPEG).

Hollmann, C. and Sjöberg, R. (2018). Guided transcoding using deflation and inflation. In
Proceedings of the 23rd Packet Video Workshop, pages 19–24.

180

Jdidia, S. B., Belghith, F., Jridi, M., and Masmoudi, N. (2021). A multicriteria optimization of the
discrete sine transform for versatile video coding standard. Signal, Image and Video Processing,
pages 1–9.

Jensen, A. and la Cour-Harbo, A. (2001). Ripples in mathematics: the discrete wavelet transform.
Springer Science & Business Media.

Kekre, H., Thepade, S. D., and Maloo, A. (2010). Query by image content using color-texture
features extracted from haar wavelet pyramid. IJCA Journal Special Issue on CASCT, pages
53–60.

Li, W. (2001). Overview of fine granularity scalability in mpeg-4 video standard. IEEE Transactions
on circuits and systems for video technology, 11(3):301–317.

Marcellin, M. W., Gormish, M. J., Bilgin, A., and Boliek, M. P. (2000). An overview of jpeg-2000.
In Proceedings DCC 2000. Data Compression Conference, pages 523–541. IEEE.

Mayer, C., Crysandt, H., and Ohm, J.-R. (2002). Bit plane quantization for scalable video coding.
In Visual Communications and Image Processing 2002, volume 4671, pages 1142–1152.
International Society for Optics and Photonics.

Müller, C., Lederer, S., and Timmerer, C. (2012). An evaluation of dynamic adaptive streaming
over http in vehicular environments. In Proceedings of the 4th Workshop on Mobile Video,
pages 37–42.

MulticoreWare (2019). x265.

Ohm, J.-R. (2005). Advances in scalable video coding. Proceedings of the IEEE, 93(1):42–56.

Ohno, Y. (2000). Cie fundamentals for color measurements. In NIP & Digital Fabrication
Conference, pages 540–545. Society for Imaging Science and Technology.

Pedzisz, M. (2013). Beyond bt. 709. In SMPTE 2013 Annual Technical Conference & Exhibition,
pages 1–13. SMPTE.

Peixoto, E. and Izquierdo, E. (2012). A complexity-scalable transcoder from h. 264/avc to the new
hevc codec. In 2012 19th IEEE International Conference on Image Processing, pages 737–740.
IEEE.

Praeter, J. D., Hollmann, C., Sjoberg, R., Wallendael, G. V., and Lambert, P. (2021). Network-
distributed video coding.

Radha, H. M., Van der Schaar, M., and Chen, Y. (2001). The mpeg-4 fine-grained scalable
video coding method for multimedia streaming over ip. IEEE Transactions on multimedia,
3(1):53–68.

Rao, K. R., Kim, D. N., and Hwang, J. J. (2010). Fast Fourier transform: algorithms and
applications. Springer.

181

Rose, K. and Regunathan, S. L. (2001). Toward optimality in scalable predictive coding. IEEE
Transactions on Image processing, 10(7):965–976.

Rusert, T., Andersson, K., Yu, R., and Nordgren, H. (2016). Guided just-in-time transcoding for
cloud-based video platforms. In 2016 IEEE International Conference on Image Processing
(ICIP), pages 1489–1493. IEEE.

Schwarz, H., Marpe, D., and Wiegand, T. (2007). Overview of the scalable video coding extension
of the h.264/avc standard. To appear in IEEE Transactions on Circuits and Systems for Video
Technology, page 1.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal,
27(3):379–423.

Sjöberg, R., Ducloux, X., Park, K., and Mekuria, R. (2017). Requirements for network distributed
video coding (version 5). Technical Report ISO/IEC JTC1/SC29/WG11 MPEG2017/N17063,
The Moving Picture Experts Group (MPEG).

Sodagar, I. (2011). The mpeg-dash standard for multimedia streaming over the internet. IEEE
MultiMedia, 18(4):62–67.

Sole, J., Joshi, R., Nguyen, N., Ji, T., Karczewicz, M., Clare, G., Henry, F., and Duenas, A. (2012).
Transform coefficient coding in hevc. IEEE Transactions on Circuits and Systems for Video
Technology, 22(12):1765–1777.

Szedo, G. (2006). Color-space converter: Rgb to ycrcb. Xilinx Corp.

Tan, K. H. and Ghanbari, M. (1995). Layered image coding using the dct pyramid. IEEE transactions
on image processing, 4(4):512–516.

Thang, T. C., Ho, Q.-D., Kang, J. W., and Pham, A. T. (2012). Adaptive streaming of audiovisual
content using mpeg dash. IEEE Transactions on Consumer Electronics, 58(1):78–85.

Tomar, S. (2006). Converting video formats with ffmpeg. Linux Journal, 2006(146):10.

Van Wallendael, G., De Cock, J., and Van de Walle, R. (2012). Fast transcoding for video delivery by
means of a control stream. In 2012 19th IEEE International Conference on Image Processing,
pages 733–736. IEEE.

Vetro, A., Christopoulos, C., and Sun, H. (2003). Video transcoding architectures and techniques:
an overview. IEEE Signal processing magazine, 20(2):18–29.

Wallace, G. K. (1992). The jpeg still picture compression standard. IEEE transactions on consumer
electronics, 38(1):xviii–xxxiv.

Wang, C.-C., Chang, Y.-S., and Huang, K.-N. (2016). Efficient coding tree unit (ctu) decision
method for scalable high-efficiency video coding (shvc) encoder. In Recent Advances in Image
and Video Coding. IntechOpen.

182

Wang, Q., Xiong, Z., Wu, F., and Li, S. (2002). Optimal rate allocation for progressive fine
granularity scalable video coding. IEEE Signal Processing Letters, 9(2):33–39.

Winkler, S., Kunt, M., and van den Branden Lambrecht, C. J. (2001). Vision and video: models
and applications. In Vision Models and Applications to Image and Video Processing, pages
201–229. Springer.

Wu, F., Li, S., and Zhang, Y.-Q. (2000). Dct-prediction based progressive fine granularity scal-
able coding. In Proceedings 2000 International Conference on Image Processing (Cat. No.
00CH37101), volume 3, pages 556–559. IEEE.

Youn, J., Xin, J., and Sun, M.-T. (2000). Fast video transcoding architectures for networked
multimedia applications. In 2000 IEEE International Symposium on Circuits and Systems
(ISCAS), volume 4, pages 25–28. IEEE.

Yuan, H., Guo, C., Liu, J., Wang, X., and Kwong, S. (2017). Motion-homogeneous-based fast
transcoding method from h. 264/avc to hevc. IEEE Transactions on Multimedia, 19(7):1416–
1430.

Zhang, X., Li, Y., Li, J., Zhao, K., and Zhang, T. (2014). Proximate control stream assisted
video transcoding for heterogeneous content delivery network. In 2014 IEEE International
Conference on Image Processing (ICIP), pages 2552–2555. IEEE.

Zong-Yi, C., Chi-Teng, T., and Pao-Chi, C. (2013). Fast inter prediction for h. 264 to hevc
transcoding. In 3rd International Conference on Multimedia Technology (ICMT-13), pages
1294–1301. Atlantis Press.

183

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	Trend 1: Diverse Receivers
	Trend 2: Tightly Integrated Compression
	Growing Tension

	Problem Definition
	Existing Approaches
	Approach 1: Scalable Coding
	Approach 2: Adaptive Streaming
	Approach 3: Full Transcoding
	System Model Diagram
	Limitations

	Proposed Approach
	System Model Diagram
	Contributions

	Thesis Statement
	Dissertation Overview

	Hybrid Video Coding
	The Bandwidth Challenge
	Transform Coding
	Discrete Cosine Transform
	Quantization
	Color Space Transform
	Chroma Subsampling

	Predictive Coding
	Differential Coding: A Precursor to Motion-Compensated Prediction
	Inter-Frame, Motion-Compensated Prediction
	Intra-Frame Prediction
	Frame Partitioning

	Entropy Coding
	Shannon's Source Coding Theorem
	Arithmetic Coding

	A Complete Hybrid Coding Model
	Digital Video Coding Formats
	Assessing Coding Performance
	Peak Signal-to-Noise Ratio (PSNR)
	Structural Similarity Index (SSIM)
	Rate-Distortion Theory

	Existing Adaptation Strategies
	The Heterogeneous Client Problem
	Taxonomy
	Scalable Codecs
	Scalable Dimensions
	Layered Coding
	Other Scalable Approaches
	Scalable Extensions to Widely-Used Formats
	Limited Support for Scalable Decoding

	Simulcast / Adaptive Streaming
	Adaptive Bitrate Streaming
	Dynamic Adaptive Streaming over HTTP (DASH)

	On-Demand Transcoding
	Transcoding
	Cascaded Transcoding
	Fast Transcoding
	Guided Transcoding
	Network Distributed Video Coding

	Predictive Scalable Coding
	Prediction Drift
	Availability of Prior Data at the Decoder
	Recursive Predictive Structure
	Prediction Loops in Hybrid Codecs
	Decoder Drift

	Challenges
	Drift-Free Scalable Predictive Coding
	Drift-Controlled Scalable Prediction
	Effect of Scalable Coding on Rate-Distortion Performance

	Content-Adaptive Entropy Coding
	Formulation
	Budgeted Rate Controller
	Layered Scalable Extension
	Encoding a Symbol
	Partial Decoding

	System Block Diagram
	Features
	Top-Down Adaptation
	Receiver-Driven Adaptation
	Dropped Symbol Awareness
	Computational Efficiency

	Application to H.265/HEVC
	Implementation
	Data Set
	Results and Discussion

	Application to M-JPEG
	Codec Selection
	Implementation
	Data Set
	Results and Discussion

	Takeaways
	Future Work
	Drift Management for Predictive Codecs
	Novel Predictive Codec Design
	Convergence of Layered Probability Models
	Application to Other Content Domains

	Drift-Controlled Residual Requantization
	Introduction
	Hierarchy of Syntax Elements in H.265/HEVC
	Partitioning Syntax Elements
	Prediction Syntax Elements
	Residual Syntax Elements

	Overview of Approach
	System Components
	Operation Procedure
	Block Diagram

	Benefits of Proposed Approach
	Drift Compensation
	Decoder and Client Complexity
	Encoder and Server Complexity

	Justification for Prediction Reuse
	Stream Composition
	Source Encoding as Ground Truth

	Application to H.265/HEVC
	Residual Requantization of H.265/HEVC Data Streams
	Data Set
	Results and Discussion

	Future Work
	Prediction Adaptation
	Multiple Description Coding

	Future Work: Syntax Element API
	Challenges
	Anticipated Impact

	Conclusion
	BIBLIOGRAPHY

