1,800 research outputs found

    Quanta Burst Photography

    Full text link
    Single-photon avalanche diodes (SPADs) are an emerging sensor technology capable of detecting individual incident photons, and capturing their time-of-arrival with high timing precision. While these sensors were limited to single-pixel or low-resolution devices in the past, recently, large (up to 1 MPixel) SPAD arrays have been developed. These single-photon cameras (SPCs) are capable of capturing high-speed sequences of binary single-photon images with no read noise. We present quanta burst photography, a computational photography technique that leverages SPCs as passive imaging devices for photography in challenging conditions, including ultra low-light and fast motion. Inspired by recent success of conventional burst photography, we design algorithms that align and merge binary sequences captured by SPCs into intensity images with minimal motion blur and artifacts, high signal-to-noise ratio (SNR), and high dynamic range. We theoretically analyze the SNR and dynamic range of quanta burst photography, and identify the imaging regimes where it provides significant benefits. We demonstrate, via a recently developed SPAD array, that the proposed method is able to generate high-quality images for scenes with challenging lighting, complex geometries, high dynamic range and moving objects. With the ongoing development of SPAD arrays, we envision quanta burst photography finding applications in both consumer and scientific photography.Comment: A version with better-quality images can be found on the project webpage: http://wisionlab.cs.wisc.edu/project/quanta-burst-photography

    Iris Recognition: Robust Processing, Synthesis, Performance Evaluation and Applications

    Get PDF
    The popularity of iris biometric has grown considerably over the past few years. It has resulted in the development of a large number of new iris processing and encoding algorithms. In this dissertation, we will discuss the following aspects of the iris recognition problem: iris image acquisition, iris quality, iris segmentation, iris encoding, performance enhancement and two novel applications.;The specific claimed novelties of this dissertation include: (1) a method to generate a large scale realistic database of iris images; (2) a crosspectral iris matching method for comparison of images in color range against images in Near-Infrared (NIR) range; (3) a method to evaluate iris image and video quality; (4) a robust quality-based iris segmentation method; (5) several approaches to enhance recognition performance and security of traditional iris encoding techniques; (6) a method to increase iris capture volume for acquisition of iris on the move from a distance and (7) a method to improve performance of biometric systems due to available soft data in the form of links and connections in a relevant social network

    Stan: A Probabilistic Programming Language

    Get PDF
    Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized maximum likelihood estimates are calculated using optimization methods such as the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Stan is also a platform for computing log densities and their gradients and Hessians, which can be used in alternative algorithms such as variational Bayes, expectation propagation, and marginal inference using approximate integration. To this end, Stan is set up so that the densities, gradients, and Hessians, along with intermediate quantities of the algorithm such as acceptance probabilities, are easily accessible. Stan can be called from the command line using the cmdstan package, through R using the rstan package, and through Python using the pystan package. All three interfaces support sampling and optimization-based inference with diagnostics and posterior analysis. rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter transforms, and specialized plotting

    Blind Deconvolution of Anisoplanatic Images Collected by a Partially Coherent Imaging System

    Get PDF
    Coherent imaging systems offer unique benefits to system operators in terms of resolving power, range gating, selective illumination and utility for applications where passively illuminated targets have limited emissivity or reflectivity. This research proposes a novel blind deconvolution algorithm that is based on a maximum a posteriori Bayesian estimator constructed upon a physically based statistical model for the intensity of the partially coherent light at the imaging detector. The estimator is initially constructed using a shift-invariant system model, and is later extended to the case of a shift-variant optical system by the addition of a transfer function term that quantifies optical blur for wide fields-of-view and atmospheric conditions. The estimators are evaluated using both synthetically generated imagery, as well as experimentally collected image data from an outdoor optical range. The research is extended to consider the effects of weighted frame averaging for the individual short-exposure frames collected by the imaging system. It was found that binary weighting of ensemble frames significantly increases spatial resolution

    Information Theoretical Analysis of the Uniqueness of Iris Biometrics

    Get PDF
    With the rapid globalization of technology in the world, the need for a more reliable and secure online method of authentication is required. This can be achieved by using each individual’s distinctive biometric identifiers, such as the face, iris, fingerprint, palmprint, etc.; however, there is a bound to the uniqueness of each identifier and consequently, a limit to the capacity that a biometric recognition system can sustain before false matches occur. Therefore, knowing the limitations on the maximum population that a biometric modality can uniquely represent is essential now more than ever. In an effort to address the general problem, we turn to the use of iris biometrics to measure its uniqueness. The measure of iris uniqueness was first introduced by John Daugman in 2003 and its analysis since then remained an open research problem. Daugman defines uniqueness as the ability to enroll more and more classes into a recognition system while the probability of collision among the classes remains fixed and near zero. Due to errors while collecting these datasets (such as occlusions, illumination conditions, camera noise, motion, and out-of-focus blur) and quality degradation from any signal processing of the iris data, even the highest in-quality datasets will not approach a perfect zero probability of collision. Because of this, we appeal to techniques presented in information theory to analyze and find the maximum possible population the system can support while also measuring the quality of the iris data present in the datasets themselves. The focus of this work is divided into two new techniques to find the maximum population of an iris database: finding the limitations of Daugman\u27s widely accepted IrisCode and proposing a new methodology leveraging the raw iris data. Firstly, Daugman\u27s IrisCode is defined as binary templates representing each independent class present in the database. Through the assumption that a one-to-one encoding technique is available to map the IrisCode of each class to a new binary codeword with the length determined by the degrees of freedom inferred from the distribution of distances between each pair of independent class IrisCodes, we can appeal to Rate-Distortion Theory (limits of error-correcting codes) to establish bounds on the maximum population the IrisCode algorithm can sustain using the minimum Hamming distance (HD) between codewords as a quality metric. Our second approach leverages an Autoregressive (AR) model to estimate each iris class\u27s distinctive power spectral densities and then assume a similar one-to-one mapping of each iris class to a unique Gaussian codeword. A Gaussian Sphere Packing Bound is invoked to realize the maximum population of the dataset and measure the iris quality dependent on the noise present in the data. Another bound, the Daugman-like Bound, is developed that uses the relative entropy between models of classes as a distance metric, like Hamming distance, to find the maximum population given a fixed recognition error for the system. Using these two approaches, we hope to help researchers understand the limitations present in their recognition system depending on the quality of their iris database

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Studies and simulations of the DigiCipher system

    Get PDF
    During this period the development of simulators for the various high definition television (HDTV) systems proposed to the FCC was continued. The FCC has indicated that it wants the various proposers to collaborate on a single system. Based on all available information this system will look very much like the advanced digital television (ADTV) system with major contributions only from the DigiCipher system. The results of our simulations of the DigiCipher system are described. This simulator was tested using test sequences from the MPEG committee. The results are extrapolated to HDTV video sequences. Once again, some caveats are in order. The sequences used for testing the simulator and generating the results are those used for testing the MPEG algorithm. The sequences are of much lower resolution than the HDTV sequences would be, and therefore the extrapolations are not totally accurate. One would expect to get significantly higher compression in terms of bits per pixel with sequences that are of higher resolution. However, the simulator itself is a valid one, and should HDTV sequences become available, they could be used directly with the simulator. A brief overview of the DigiCipher system is given. Some coding results obtained using the simulator are looked at. These results are compared to those obtained using the ADTV system. These results are evaluated in the context of the CCSDS specifications and make some suggestions as to how the DigiCipher system could be implemented in the NASA network. Simulations such as the ones reported can be biased depending on the particular source sequence used. In order to get more complete information about the system one needs to obtain a reasonable set of models which mirror the various kinds of sources encountered during video coding. A set of models which can be used to effectively model the various possible scenarios is provided. As this is somewhat tangential to the other work reported, the results are included as an appendix

    Energy efficient hardware acceleration of multimedia processing tools

    Get PDF
    The world of mobile devices is experiencing an ongoing trend of feature enhancement and generalpurpose multimedia platform convergence. This trend poses many grand challenges, the most pressing being their limited battery life as a consequence of delivering computationally demanding features. The envisaged mobile application features can be considered to be accelerated by a set of underpinning hardware blocks Based on the survey that this thesis presents on modem video compression standards and their associated enabling technologies, it is concluded that tight energy and throughput constraints can still be effectively tackled at algorithmic level in order to design re-usable optimised hardware acceleration cores. To prove these conclusions, the work m this thesis is focused on two of the basic enabling technologies that support mobile video applications, namely the Shape Adaptive Discrete Cosine Transform (SA-DCT) and its inverse, the SA-IDCT. The hardware architectures presented in this work have been designed with energy efficiency in mind. This goal is achieved by employing high level techniques such as redundant computation elimination, parallelism and low switching computation structures. Both architectures compare favourably against the relevant pnor art in the literature. The SA-DCT/IDCT technologies are instances of a more general computation - namely, both are Constant Matrix Multiplication (CMM) operations. Thus, this thesis also proposes an algorithm for the efficient hardware design of any general CMM-based enabling technology. The proposed algorithm leverages the effective solution search capability of genetic programming. A bonus feature of the proposed modelling approach is that it is further amenable to hardware acceleration. Another bonus feature is an early exit mechanism that achieves large search space reductions .Results show an improvement on state of the art algorithms with future potential for even greater savings

    Automatic video segmentation employing object/camera modeling techniques

    Get PDF
    Practically established video compression and storage techniques still process video sequences as rectangular images without further semantic structure. However, humans watching a video sequence immediately recognize acting objects as semantic units. This semantic object separation is currently not reflected in the technical system, making it difficult to manipulate the video at the object level. The realization of object-based manipulation will introduce many new possibilities for working with videos like composing new scenes from pre-existing video objects or enabling user-interaction with the scene. Moreover, object-based video compression, as defined in the MPEG-4 standard, can provide high compression ratios because the foreground objects can be sent independently from the background. In the case that the scene background is static, the background views can even be combined into a large panoramic sprite image, from which the current camera view is extracted. This results in a higher compression ratio since the sprite image for each scene only has to be sent once. A prerequisite for employing object-based video processing is automatic (or at least user-assisted semi-automatic) segmentation of the input video into semantic units, the video objects. This segmentation is a difficult problem because the computer does not have the vast amount of pre-knowledge that humans subconsciously use for object detection. Thus, even the simple definition of the desired output of a segmentation system is difficult. The subject of this thesis is to provide algorithms for segmentation that are applicable to common video material and that are computationally efficient. The thesis is conceptually separated into three parts. In Part I, an automatic segmentation system for general video content is described in detail. Part II introduces object models as a tool to incorporate userdefined knowledge about the objects to be extracted into the segmentation process. Part III concentrates on the modeling of camera motion in order to relate the observed camera motion to real-world camera parameters. The segmentation system that is described in Part I is based on a background-subtraction technique. The pure background image that is required for this technique is synthesized from the input video itself. Sequences that contain rotational camera motion can also be processed since the camera motion is estimated and the input images are aligned into a panoramic scene-background. This approach is fully compatible to the MPEG-4 video-encoding framework, such that the segmentation system can be easily combined with an object-based MPEG-4 video codec. After an introduction to the theory of projective geometry in Chapter 2, which is required for the derivation of camera-motion models, the estimation of camera motion is discussed in Chapters 3 and 4. It is important that the camera-motion estimation is not influenced by foreground object motion. At the same time, the estimation should provide accurate motion parameters such that all input frames can be combined seamlessly into a background image. The core motion estimation is based on a feature-based approach where the motion parameters are determined with a robust-estimation algorithm (RANSAC) in order to distinguish the camera motion from simultaneously visible object motion. Our experiments showed that the robustness of the original RANSAC algorithm in practice does not reach the theoretically predicted performance. An analysis of the problem has revealed that this is caused by numerical instabilities that can be significantly reduced by a modification that we describe in Chapter 4. The synthetization of static-background images is discussed in Chapter 5. In particular, we present a new algorithm for the removal of the foreground objects from the background image such that a pure scene background remains. The proposed algorithm is optimized to synthesize the background even for difficult scenes in which the background is only visible for short periods of time. The problem is solved by clustering the image content for each region over time, such that each cluster comprises static content. Furthermore, it is exploited that the times, in which foreground objects appear in an image region, are similar to the corresponding times of neighboring image areas. The reconstructed background could be used directly as the sprite image in an MPEG-4 video coder. However, we have discovered that the counterintuitive approach of splitting the background into several independent parts can reduce the overall amount of data. In the case of general camera motion, the construction of a single sprite image is even impossible. In Chapter 6, a multi-sprite partitioning algorithm is presented, which separates the video sequence into a number of segments, for which independent sprites are synthesized. The partitioning is computed in such a way that the total area of the resulting sprites is minimized, while simultaneously satisfying additional constraints. These include a limited sprite-buffer size at the decoder, and the restriction that the image resolution in the sprite should never fall below the input-image resolution. The described multisprite approach is fully compatible to the MPEG-4 standard, but provides three advantages. First, any arbitrary rotational camera motion can be processed. Second, the coding-cost for transmitting the sprite images is lower, and finally, the quality of the decoded sprite images is better than in previously proposed sprite-generation algorithms. Segmentation masks for the foreground objects are computed with a change-detection algorithm that compares the pure background image with the input images. A special effect that occurs in the change detection is the problem of image misregistration. Since the change detection compares co-located image pixels in the camera-motion compensated images, a small error in the motion estimation can introduce segmentation errors because non-corresponding pixels are compared. We approach this problem in Chapter 7 by integrating risk-maps into the segmentation algorithm that identify pixels for which misregistration would probably result in errors. For these image areas, the change-detection algorithm is modified to disregard the difference values for the pixels marked in the risk-map. This modification significantly reduces the number of false object detections in fine-textured image areas. The algorithmic building-blocks described above can be combined into a segmentation system in various ways, depending on whether camera motion has to be considered or whether real-time execution is required. These different systems and example applications are discussed in Chapter 8. Part II of the thesis extends the described segmentation system to consider object models in the analysis. Object models allow the user to specify which objects should be extracted from the video. In Chapters 9 and 10, a graph-based object model is presented in which the features of the main object regions are summarized in the graph nodes, and the spatial relations between these regions are expressed with the graph edges. The segmentation algorithm is extended by an object-detection algorithm that searches the input image for the user-defined object model. We provide two objectdetection algorithms. The first one is specific for cartoon sequences and uses an efficient sub-graph matching algorithm, whereas the second processes natural video sequences. With the object-model extension, the segmentation system can be controlled to extract individual objects, even if the input sequence comprises many objects. Chapter 11 proposes an alternative approach to incorporate object models into a segmentation algorithm. The chapter describes a semi-automatic segmentation algorithm, in which the user coarsely marks the object and the computer refines this to the exact object boundary. Afterwards, the object is tracked automatically through the sequence. In this algorithm, the object model is defined as the texture along the object contour. This texture is extracted in the first frame and then used during the object tracking to localize the original object. The core of the algorithm uses a graph representation of the image and a newly developed algorithm for computing shortest circular-paths in planar graphs. The proposed algorithm is faster than the currently known algorithms for this problem, and it can also be applied to many alternative problems like shape matching. Part III of the thesis elaborates on different techniques to derive information about the physical 3-D world from the camera motion. In the segmentation system, we employ camera-motion estimation, but the obtained parameters have no direct physical meaning. Chapter 12 discusses an extension to the camera-motion estimation to factorize the motion parameters into physically meaningful parameters (rotation angles, focal-length) using camera autocalibration techniques. The speciality of the algorithm is that it can process camera motion that spans several sprites by employing the above multi-sprite technique. Consequently, the algorithm can be applied to arbitrary rotational camera motion. For the analysis of video sequences, it is often required to determine and follow the position of the objects. Clearly, the object position in image coordinates provides little information if the viewing direction of the camera is not known. Chapter 13 provides a new algorithm to deduce the transformation between the image coordinates and the real-world coordinates for the special application of sport-video analysis. In sport videos, the camera view can be derived from markings on the playing field. For this reason, we employ a model of the playing field that describes the arrangement of lines. After detecting significant lines in the input image, a combinatorial search is carried out to establish correspondences between lines in the input image and lines in the model. The algorithm requires no information about the specific color of the playing field and it is very robust to occlusions or poor lighting conditions. Moreover, the algorithm is generic in the sense that it can be applied to any type of sport by simply exchanging the model of the playing field. In Chapter 14, we again consider panoramic background images and particularly focus ib their visualization. Apart from the planar backgroundsprites discussed previously, a frequently-used visualization technique for panoramic images are projections onto a cylinder surface which is unwrapped into a rectangular image. However, the disadvantage of this approach is that the viewer has no good orientation in the panoramic image because he looks into all directions at the same time. In order to provide a more intuitive presentation of wide-angle views, we have developed a visualization technique specialized for the case of indoor environments. We present an algorithm to determine the 3-D shape of the room in which the image was captured, or, more generally, to compute a complete floor plan if several panoramic images captured in each of the rooms are provided. Based on the obtained 3-D geometry, a graphical model of the rooms is constructed, where the walls are displayed with textures that are extracted from the panoramic images. This representation enables to conduct virtual walk-throughs in the reconstructed room and therefore, provides a better orientation for the user. Summarizing, we can conclude that all segmentation techniques employ some definition of foreground objects. These definitions are either explicit, using object models like in Part II of this thesis, or they are implicitly defined like in the background synthetization in Part I. The results of this thesis show that implicit descriptions, which extract their definition from video content, work well when the sequence is long enough to extract this information reliably. However, high-level semantics are difficult to integrate into the segmentation approaches that are based on implicit models. Intead, those semantics should be added as postprocessing steps. On the other hand, explicit object models apply semantic pre-knowledge at early stages of the segmentation. Moreover, they can be applied to short video sequences or even still pictures since no background model has to be extracted from the video. The definition of a general object-modeling technique that is widely applicable and that also enables an accurate segmentation remains an important yet challenging problem for further research

    Flexible distribution of complexity by hybrid predictive-distributed video coding

    Get PDF
    There is currently limited flexibility for distributing complexity in a video coding system. While rate-distortion-complexity (RDC) optimization techniques have been proposed for conventional predictive video coding with encoder-side motion estimation, they fail to offer true flexible distribution of complexity between encoder and decoder since the encoder is assumed to have always more computational resources available than the decoder. On the other hand, distributed video coding solutions with decoder-side motion estimation have been proposed, but hardly any RDC optimized systems have been developed. To offer more flexibility for video applications involving multi-tasking or battery-constrained devices, in this paper, we propose a codec combining predictive video coding concepts and techniques from distributed video coding and show the flexibility of this method in distributing complexity. We propose several modes to code frames, and provide complexity analysis illustrating encoder and decoder computational complexity for each mode. Rate distortion results for each mode indicate that the coding efficiency is similar. We describe a method to choose which mode to use for coding each inter frame, taking into account encoder and decoder complexity constraints, and illustrate how complexity is distributed more flexibly
    corecore