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Abstract

Information Theoretical Analysis Of the Uniqueness of Iris Biometrics

Katelyn Hampel

With the rapid globalization of technology in the world, the need for a more reli-

able and secure online method of authentication is required. This can be achieved by

using each individual’s distinctive biometric identifiers, such as the face, iris, finger-

print, palmprint, etc.; however, there is a bound to the uniqueness of each identifier

and consequently, a limit to the capacity that a biometric recognition system can

sustain before false matches occur. Therefore, knowing the limitations on the max-

imum population that a biometric modality can uniquely represent is essential now

more than ever. In an effort to address the general problem, we turn to the use of

iris biometrics to measure its uniqueness.

The measure of iris uniqueness was first introduced by John Daugman in 2003

and its analysis since then remained an open research problem. Daugman defines

uniqueness as the ability to enroll more and more classes into a recognition system

while the probability of collision among the classes remains fixed and near zero. Due

to errors while collecting these datasets (such as occlusions, illumination conditions,

camera noise, motion, and out-of-focus blur) and quality degradation from any signal

processing of the iris data, even the highest in-quality datasets will not approach a

perfect zero probability of collision. Because of this, we appeal to techniques pre-

sented in information theory to analyze and find the maximum possible population

the system can support while also measuring the quality of the iris data present in



the datasets themselves.

The focus of this work is divided into two new techniques to find the maximum

population of an iris database: finding the limitations of Daugman’s widely accepted

IrisCode and proposing a new methodology leveraging the raw iris data. Firstly,

Daugman’s IrisCode is defined as binary templates representing each independent

class present in the database. Through the assumption that a one-to-one encoding

technique is available to map the IrisCode of each class to a new binary codeword

with the length determined by the degrees of freedom inferred from the distribu-

tion of distances between each pair of independent class IrisCodes, we can appeal to

Rate-Distortion Theory (limits of error-correcting codes) to establish bounds on the

maximum population the IrisCode algorithm can sustain using the minimum Ham-

ming distance (HD) between codewords as a quality metric. Our second approach

leverages an Autoregressive (AR) model to estimate each iris class’s distinctive power

spectral densities and then assume a similar one-to-one mapping of each iris class to

a unique Gaussian codeword. A Gaussian Sphere Packing Bound is invoked to realize

the maximum population of the dataset and measure the iris quality dependent on

the noise present in the data. Another bound, the Daugman-like Bound, is developed

that uses the relative entropy between models of classes as a distance metric, like

Hamming distance, to find the maximum population given a fixed recognition error

for the system. Using these two approaches, we hope to help researchers understand

the limitations present in their recognition system depending on the quality of their

iris database.
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Chapter 1

Introduction

1.0 Introduction

New methods involving automated personal identification and verification based

on biometrics, such as the face, fingerprint, palmprint, iris, etc., are implemented

to improve security [4]. Due to imperfect data collection and intensive post signal

processing of the data, biometric recognition systems often perceive characteristics

of different human subjects to be similar, as if they belong to the same individual,

leading to limits to these recognition systems implemented before false matches occur;

because of this, measuring the uniqueness of each biometric is paramount more than

ever. We turn to a single biometric to measure uniqueness with this motivation: the

iris.

Wildes [38] states that the iris as a biometric modality is the most powerful due to

the distinct patterns developed for each individual and its impermeability to change

over time. Firstly, the general structure of the iris is created due to genetics, but the

subtleties that make each unique are determined randomly during embryonic gesta-

tion. This makes the probability of two similar irises extremely low. Secondly, as

1



Chapter 1: Introduction 2

a biometric modality iris demonstrates high permanence [2]. Thirdly, unlike finger-

prints or face modalities, the iris is protected from external conditions that may harm

or affect the iris pattern.

While the iris is regarded as a high performance and high permanence biometric,

the capturing of the iris is what produces susceptibility in an iris recognition system.

As with any practical data, iris databases are not perfect and experience quality

degradation due to occlusions, illumination conditions, camera noise, motion, and

out-of-focus blurs (see [33, 8, 28] and references therein). An additional degradation

may also follow them due to imperfect signal processing applied while iris images are

transformed to meet the required input format to the recognition system. Because of

this, the theoretical uniqueness of the iris is affected.

The uniqueness of iris biometrics and methods to evaluate it have been central

themes of multiple publications [6, 39, 1, 30]; however, Daugman’s approach is per-

haps the most accepted methodology proposed thus far. Daugman defines unique-

ness as the ability of a recognition system to enroll classes and maintain a near-zero

probability of collision between classes. Because of this, the motivation of this the-

sis is composed of two parts: first, analyzing the limits of Daugman’s widely used

recognition system through measuring the uniqueness of his IrisCode, and second,

developing a new methodology utilizing the raw iris data and transforming data of

each iris class to a Gaussian distributed template, with independent and identically

distributed Gaussian components. The two models, a binary in the form of IrisCode

and a Gaussian extracted from raw iris data, allow the direct application of Chan-

nel Coding and Rate-Distortion Theory results from Information Theory [11] to the

analysis of iris uniqueness.
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2.0 Daugman’s IrisCode

Before we can describe our proposed methodologies, the work of Daugman needs to

be provided, as this serves as a stepping stone in our work. In [12], Daugman released

and patented his well-used algorithm for encoding and recognizing iris patterns that

is still used in practice today. Within this algorithm, the ability to localize, segment,

normalize, encode, and recognize iris patterns is introduced. For this thesis, we will

focus on his implementation of feature encoding and pattern recognition, with a heavy

interest in his formulation of the IrisCode.

2.0.1 Feature Encoding

Since the focus of this thesis is centered mainly around the feature encoding tech-

niques and implementation of thresholding presented by Daugman, the localization,

and normalization of the iris from an image will not be discussed (see [25] for the Li-

bor Masek’s segmentation and normalization for this thesis, which was adopted from

Daugman’s Rubber Sheet Model [16] and Wildes’ mapping algorithm [38]). Because

of this, this section will describe Daugman’s iris feature encoding using 2D wavelet de-

modulation assuming that each iris image has been segmented and normalized using

his techniques.

Starting with each isolated, normalized, and dimensionless polar iris image, the

phase information is extracted through the use of 2D Gabor wavelet filters. In brief,

’patch-wise’ regions of the polar iris image are projected onto quadrature 2D Gabor

wavelets, generating complex-valued coefficients. These coefficients represent the co-

ordinates of a phasor in the complex plane, where the sign of the real and imaginary

coefficients represents two bit values, [1,0]. This encoding process is shown in Figure

1.1, taken from [16].
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Figure 1.1: Encoding scheme of IrisCode using 2D Gabor wavelets. Complex-valued
coefficients are generated by projecting a ’patch’ of the normalized iris pattern onto
quadrature 2D Gabor wavelets. The real and imaginary resulting coefficients create
a phasor vector in the complex plane and 1-bit is allocated to both the real and
imaginary coordinates. This generates a cyclic or Gray-like code [21], where only one
bit changes per quadrature change. Image obtained from [16].

The encoding procedure, both demodulation and quantization, is described by

Daugman in [17] mathematically as

hRe =


1, if Re

∫
ρ

∫
ϕ
e−iω(θ0−ϕ)e−(r0−ρ)2/α2

e−(θ0−ϕ)2/β2
I(ρ, ϕ)ρ dρdϕ ≥ 0,

0, if Re
∫
ρ

∫
ϕ
e−iω(θ0−ϕ)e−(r0−ρ)2/α2

e−(θ0−ϕ)2/β2
I(ρ, ϕ)ρ dρdϕ < 0;

(1.1)

and

hIm =


1, if Im

∫
ρ

∫
ϕ
e−iω(θ0−ϕ)e−(r0−ρ)2/α2

e−(θ0−ϕ)2/β2
I(ρ, ϕ)ρ dρdϕ ≥ 0,

0, if Im
∫
ρ

∫
ϕ
e−iω(θ0−ϕ)e−(r0−ρ)2/α2

e−(θ0−ϕ)2/β2
I(ρ, ϕ)ρ dρdϕ < 0.

(1.2)
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From equations 1.1 and 1.2 above, I(ρ, ϕ) is the raw dimensionless phasor iris

image, where (ρ, ϕ) are the polar coordinates of each region of the iris; α and β are the

2D wavelet scale parameters; and ω is the wavelet frequency (inversely proportional

of β). The IrisCode, h, is then composed of two bits for each iris region, where

h = hRe + hIm. Because of the quadrature encoding, the bit behaves similar to cyclic

or Gray code [21], as only one bit changes between adjacent quadrants. This coding

scheme increases the reliability of the code, as only a single code bit can change

(verses two bits using a binary encoding scheme).

After the pair of code bits are found for each local iris region, the IrisCode is

composed of 2048 bits (256 bytes). Daugman also creates an equal number of masking

bits jointly to account for occlusions, boundary artifacts, and poor signal-to-noise

ratio to be used later for recognition. As equations 1.1 and 1.2 show, only the phase

information of the iris is considered when generating the IrisCode. In [17], Daugman

claims that the amplitude is not very discriminating and is highly sensitive to imaging

conditions, such as illumination, contrast, and camera gain. He also proves that when

only looking at phase information, the IrisCode is very robust against out-of-focus

iris images, and the code generated is very similar to the same properly focused iris.

Figure 1.2 shows an IrisCode generated by Daugman.

2.0.2 Recognition

Now that we have obtained a unique IrisCode to represent each iris class, Daug-

man’s methodology to pattern matching can be introduced, along with his measure

for statistical independence (uniqueness) between iris classes. Section 2.0.2.1 summa-

rizes Daugman’s approach to matching two IrisCodes through the use of Hamming

Distances. Section 2.0.2.2 briefly describes how he quantifies uniqueness in IrisCode

through the use of measuring statistical independence between IrisCodes.
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Figure 1.2: An example of a generated IrisCode shown in upper right-hand corner.
This example also shows the results of Daugman’s iris localization methodology (not
discussed in this thesis). Graphic is extracted from [14].

2.0.2.1 Pattern Matching To compare two IrisCodes, Daugman first introduces

Hamming Distance (HD) in [17] to measure the bit-wise differences between two

classes. The HD used by Daugman is described mathematically as

HD =
1

N

N∑
k=1

Xk ⊗ Yk, (1.3)

where an Exclusive OR (⊗) detects the disagreement between the two binary vectors

X and Y , each of length N . A perfect match between two IrisCodes of length 2048

bits, would result in a HD = 0, as there are no bit changes between each binary

vector/codeword.

To accommodate for occlusions, such as eyelashes, eyelids, reflections, or other

noise, Daugman modifies equation 1.3 to include the binary masks generated at the

same time as the IrisCodes to account for such distortions/artifacts. To measure

the distance between two IrisCodes (given as {codeA, codeB}) without considering
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these artifacts, each classes’ IrisCode is XOR’ed (⊗) to find dissimilarities, then the

corresponding mask binary vectors ({maskA,maskB}) are AND’ed (∩) with this re-

sulting binary vector to prevent occlusions being involved in iris comparisons. This

is described mathematically as follows

HD =
∥(codeA⊗ codeB) ∩maskA ∩maskB∥

∥maskA ∩maskB∥
. (1.4)

The denominator represents the total number of bits that mattered in iris comparison;

therefore, the resulting HD is a fractional HD of the entire IrisCode (as all 2048 bits

may not contain pure iris patterns). The norm (∥ ∥) of both the numerator and

denominator are taken in equation 1.4 to measure the dissimilarity between the two

iris classes and give the resulting fractional HD.

Because the difference between phase bits in the IrisCodes of two different indi-

viduals has an equal probability of being a 1 or 0, the HD distribution is centered

around HD = 0.5. Daugman proves this in [17] by plotting the relative frequencies of

the imposter HDs, shown in Figure 1.3, and the lowest HD observed was HD = 0.334.

The fitted binomial in this figure will be discussed in the next section, Section 2.0.2.2.

Presented in [17] is the ability of the IrisCode to be invariant to the following:

iris orientation, caused by head-tilt or camera tilt/angles during acquisition; location

and size of the iris within the image, dependent on the distance between camera

and subject; and the size of the pupil within the iris (as this affects the size of the

iris, compresses or expands the iris depending on dilation of the pupil). Daugman

addresses the location and size of the iris/pupil with his rubber sheet model, as this

provides a solid mapping from the Cartesian iris image I(x, y) to the dimensionless

polar coordinate system I(r, θ). For the concern of this thesis, we are focused on the

orientation of the iris image within the image plane.
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Figure 1.3: Histogram plot of Hamming Distances obtained from 9.1 million com-
parisons between different pairs of irises acquired from iris images from a license
database. The solid curve is a resulting binomial probability distribution discussed
in the next section, Section 2.0.2.2. Figure obtained from [17].

To address this, Daugman cyclically scrolls one of the IrisCodes with respect to

the other IrisCode, as scrolling in the polar domain is the same as rotation in the

Cartesian plane. Matching is performed between two IrisCodes multiple times while

shifting one IrisCode by k bits up to ±7 bits. The smallest HD is retained from

the matched rotations. The resulting histogram is skewed and biased to a lower

mean (HD = 0.458), which is due to the extreme sampling during the experiment.

Although this histogram is not centered at HD = 0.5, the lowest HD obtained is 0.33

and shows that less than a third of the skewed IrisCodes disagree (the same results

presented for the non-skewed IrisCode imposter distribution). These results prove
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Figure 1.4: Biased and skewed histogram of Hamming Distances found from cyclically
shifted IrisCodes. The mean-value shifts from HD = 0.5, in Figure 1.3, to HD =
0.458 due to extreme sampling. Figure obtained from [17].

that the IrisCode is rotationally invariant and can compensate for acquisition errors,

which prove detrimental to many recognition systems and do not affect the deciding

threshold for his proposed recognition discussed in Section 2.0.2.2. Figure 1.4 shows

the results discussed above.

2.0.2.2 Measure of Uniqueness/Statistical Independence In [14, 16, 17],

Daugman proposed measuring uniqueness of the iris through the use of analyzing

the distribution of imposter match scores, shown in Figure 1.3. From this figure,

we can see that the observed mean of the Hamming Distance relative frequencies is
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mean = 0.499 with a standard deviation of σ = 0.0317. Due to the shape of this

distribution, it can be fitted closely with a fractional binomial probability density

function (pdf) given as

f(x) =
N∑

m=0

N !

m! (N −m)!
pm(1− p)(N−m)δ(x−m), (1.5)

where N = p(1−p)/σ2 = 249, p = 0.5, x is the HD (fraction of IrisCode bits between

two different iris classes that disagree during comparison), and δ(·) is the Dirac delta

function. The fitted distribution is shown in Figure 1.3 by the solid curve.

The shape of this tightly fitted pdf describes the amount of difference between pair-

wise matchings of different IrisCodes. It can be represented through N independent

Bernoulli Trials (with N = 249 and p = 0.5). From this observation, Daugman then

extrapolates a discrimination entropy by concluding that each iris contains N bits of

information (or N = 249 bits of information).

To formulate his discrimination entropy, Daugman assumes typical iris and pupil

diameters of riris = 11mm and rpupil = 5mm. The information measure is found

through dividing the N degrees-of-freedom by the area of the iris and is shown in [12]

as

N

iris area
=

N

πr2iris − πr2pupil
≈ 3.2bits/mm2. (1.6)

This measure of informational density describes the variability among different iris

patterns, in that the likelihood of another iris containing the same information as a

portion of the comparative iris is equivalent to N Bernoulli Trials.

For this thesis, we will not focus on his measure of discrimination entropy to

measure iris uniqueness and instead look at how Daugman derived a threshold based
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on this new fitted fractional binomial distribution. From [17], assume that f0(x) is

computed similar to the binomial pdf in Figure 1.3. The cumulative of f0(x), F0(x),

is a probability of getting a false match when the acceptance threshold is x :

F0(x) =

∫ x

0

f0(x)dx (1.7)

or

f0(x) =
d

dx
F0(x). (1.8)

Then, looking at the left-hand tail, the probability of not making a false match after a

single test is 1−F0(x), and equivalently after n tests, measuring different orientations

of the IrisCode similar to Figure 1.4, is [1− F0(x)]
n. Thus, the probability of a false

match after n tests using the threshold x is

Fn(x) = 1− [1− F0(x)]
n. (1.9)

The equivalent probability density fn(x) is given as

fn(x) =
d

dx
Fn(x) = nf0(x)[1− F0(x)]

n−1. (1.10)

Figure 1.5 shows the binomial probability distribution given in Figure 1.4 with

the found cumulatives from equation 1.10. Here we can see that a HD ≤ 0.32, or that

two IrisCodes disagree, is extremely improbable, about 1 in 26 million. Therefore, in

order to recognize IrisCodes from the same class (genuines) with zero collisions/high

confidence, a loose threshold of HD ≤ 0.32 is set. Table 1.1 gives the probabilities of

a false match given a specific HD, extracted from Figure 1.5.

Finally, Daugman analyzes how the population of an iris database affects total
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Figure 1.5: Figure shows fitted binomial from Figure 1.4 with the found cumulatives,
from equation 1.10, for the left-tail Hamming Distances. Figure is obtained from [17].

recognition error in a verification scenario (one-to-many), based off of the false match

rates for one-to-one matching (demonstrated above in Table 1.1). The probability of

making at least one false match, PN , while searching a database of N classes is given

as

PN = 1− (1− P1)
N , (1.11)

where P1 is the probability of making a false match in single comparisons.

In [17], he analyzes the effects that the population, N , has on the total recognition

error, PN . Because of this, Daugman concludes that when searching a database of

size N (identification scenario), the search threshold, HD, needs to be adaptive given

a fixed desired recognition error. For example, if a search database contains 1 million
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Table 1.1: Cumulatives from Figure 1.5 giving false match probabilities for various
HDs. Table extracted from [17].

HD criterion Odds of false match

0.26 1 in 1013

0.27 1 in 1012

0.28 1 in 1011

0.29 1 in 13 billion
0.30 1 in 1.5 billion
0.31 1 in 185 million
0.32 1 in 26 million
0.33 1 in 4 million
0.34 1 in 690,000
0.35 1 in 133,000
0.36 1 in 28,000
0.37 1 in 6750
0.38 1 in 1780
0.39 1 in 520
0.40 1 in 170

iris classes, then in order to maintain a recognition error, let us say PN < 10−6, then

the threshold/HD will need to be adjusted downwards from 0.32 to 0.27.
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3.0 Outline of Thesis

Building upon Daugman’s methodology presented above, this thesis consists of

four chapters. Chapter 2 leverages the use of Rate-Distortion theory through the

use of error-correcting bounds on a binary codeword. Here we assume a one-to-one

mapping from Daugman’s IrisCode to a binary codeword is available, and present

upper bounds, along with a lower bound, to characterise the uniqueness of IrisCode

in terms of the maximal population that the IrisCode algorithm can sustain given

that iris data are constrained to have a specific level of quality. In Chapter 3, we

present a new methodology to measure uniqueness by assuming a Gaussian model

for each unwrapped and vectorized iris image and then finding the unique estimated

power spectral density of each iris class through the use of an Autoregressive model.

We then presume that a mapping is available to map each class iris data to a unique

Gaussian codeword, based off of the fitted degrees of freedom of each databases’

distance metrics relative frequencies. Given these assumptions, the uniqueness of

iris biometrics for this case can be analysed using the Channel Coding Theorem for

Gaussian models, a well established result from Information Theory. Finally, Chapter

4 describes possible directions the form of this work can take.



Chapter 2

Measuring Iris Uniqueness Given

Daugman’s IrisCode

1.0 Introduction

This chapter focuses on understanding the performance limits of Daugman’s iris

recognition system using the IrisCode (see [12, 17, 14, 16, 15]). From his previ-

ous work, discussed in the above Section 2.0, he proposed that an individual iris’s

information can be represented by 249 (or 245 in [15]) bits based on the fitted de-

grees of freedom of a fractional binomial. In combination with this, he also analyzed

that while one-to-one (or verification) matching performance is excellent using the

IrisCode; however, when it comes to one-to-many (or identification) performance,

the size of the iris dataset widely affects the recognition error given a fixed/desired

false match rate based on Hamming Distances. Because he gives an estimate of the

maximum population his dataset can obtain based on the imposter distributions (see

equation 1.11), the analysis of image quality is not discussed, nor are the effects it

has on choosing a proper Hamming distance threshold. Because of this, we turn to

15
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Rate-Distortion theory Sphere-Packing Bounds on error-correcting codes to find the

upper and lower limits to Daugman’s IrisCode while also analyzing image quality.

In Section 2.0, we present the development of a new Hamming distance, d, such

that there are no overlaps between the iris classes. Using this new distance, the

Hamming, Elias-Bassalygo, and Plotkin upper bounds are derived, along with the

Gilbert-Varshamov lower bound. We discuss the limits of Daugman’s IrisCode in

Section 2.5, while also giving an example of the actual maximum population achiev-

able with zero collision and the bounds given population using a smaller codeword

length, n = 16. Finally, a summary of the performance of these bounds is given in

Section 3.0.

2.0 Development of Bounds

The following derivation assumes a one-to-one mapping available from Daugman’s

IrisCode of 2048 bits to a binary codeword of length n = 245 for each iris class. This

codeword length is dependent on the imposter binomial’s fitted degrees of freedom,

shown in Figure 1.3 (however, for this work, we use the latest fitted binomial from [15]

that uses n = 245 degrees-of-freedom). Now that we have a unique binary codeword to

represent each iris class present in the system, we can turn to Rate-Distortion Theory

[11] (or, more specifically, bounds on error-correcting codes) to find the limitations of

Daugman’s algorithm given a fixed Hamming distance (HD) between two codewords

using sphere-packing bounds.

To begin, let us create an idealized space. Assume that all enrolled iris classes’

codeword acts as a ’ground truth’ for each iris class and can be represented by a

point in 2n codespace on an n-dimensional lattice. For illustrative purposes and

understanding, let us consider that only two iris classes are enrolled in the recognition
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system, Class A and Class B. Next, let us consider a query iris codeword is submitted

to the recognition system and is also represented as a point; let us say this query

codeword belongs to Class A, and the HD between the actual iris codeword and the

query codeword is denoted as ϵ and represents the distortions and noise present in

the query codeword (distance between genuine classes). With this relationship, we

can now claim that the actual codeword and query codeword lie within a hyper-

dimensional sphere of radius r, where r and ϵ are related as

r = ⌊ϵ× n⌋, bits.

Now, let us add a query iris codeword that belongs to Class B into the system for

recognition. This query codeword will now lie within the hyper-dimensional sphere

of radius r for Class B. Given these two spheres, we can show in Figure 2.1 that

for two iris classes to be distinguishable while matching, the spheres cannot overlap,

as this would introduce false matches. Because of this, the centers of both classes’

hyper-dimensional spheres have to be spaced at least r× 2 + 1 = ⌊ϵ× n⌋ × 2 + 1 = d

bits apart, where d is the new required HD between two hyper-dimensional spheres.

Applying this simple thought experiment to an entire recognition system, we can

apply the following upper bounds and lower bounds from Rate-Distortion Theory

to obtain a confidence band on the maximum population Daugman’s IrisCode can

support given our new minimum HD d.

2.1 Hamming Bound

To begin our theoretical analysis of the maximum population of Daugman’s IrisCode,

along with our newly derived minimum Hamming Distance d, we turn to the loose

upper bound on error-correcting codes: the Hamming Bound. From [24, 29, 34], the
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Figure 2.1: Illustration of required minimum Hamming Distance, d, between enroll-
ment iris codewords for two classes A and B. The radius r is dependent on the
Hamming Distance between the true class codeword (EA/EB) and the query class
codeword (QA/QB), denoted by ϵ, and the length of the binary codewords, n. There-
fore, d = 2×⌊ϵ×n⌋+1, where r = ⌊ϵ×n⌋, is the needed minimum Hamming Distance
between enrolled iris codewords for zero false matches.

Hamming bound is as follows

A(n, r) ≤ 2n∑r
i=0

(
n
i

) , (2.1)

where A(n, r) is the maximum population dependent on n, which is the length of

the iris codeword, and the radius of the sphere, r = ⌊ϵ × n⌋, bits. In Section 2.5,

we will look at the resulting upper bound values on the maximum population for the

IrisCode.
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2.2 Elias-Bassalygo Bound

Since the Hamming Bound above is a loose upper bound for all Hamming Dis-

tances, we provide a tighter upper bound for lower values of Hamming Distance:

the Elias-Bassalygo Bound. In the original publication [5], Bassalygo formulates the

bound given the condition 1 ≤ d ≤ n/2 as

A(n, d) ≤

 n 2n+1(
n

J(n, d)

)
 , (2.2)

where J(n, r) is the following Johnson Bound

J(n, d) =

⌊
n−

√
n(n− 2d)

2

⌋
.

Given our new found minimum Hamming Distance, d from above, we can reformulate

equation 2.2 in relation to the radius r of the hyper-dimensional spheres describing

each iris class without overlap. Substituting d = 2 × r + 1 into equation 2.2, the

following Elias-Bassalygo upper bound, given the constraint r ≤ (n−2)/4, is described

as

A(n, r) ≤

 n 2n+1(
n

J(n, r)

)
 , (2.3)

where J(n, r) is the following

J(n, r) =

⌊
n

2

(
1−

√
1− 2(2r + 1)

n

)⌋
.
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2.3 Plotkin Bound

Another tighter upper bound on the maximum population of the IrisCode im-

plemented is the Plotkin Bound. The Plotkin bound compensates for the higher

Hamming Distances in which the Elias-Bassalygo bound is not applicable. From [27],

the bound takes these several forms

1. If d is even and 2d > n, then

A(n, d) ≤ 2

⌊
d

2d− n

⌋
. (2.4)

2. If d is odd and 2d+ 1 > n, then

A(n, d) ≤ 2

⌊
d+ 1

2d+ 1− n

⌋
. (2.5)

3. If d is even and 2d = n, then

A(2d, d) ≤ 4d. (2.6)

4. If d is odd and 2d+ 1 = n, then

A(2d+ 1, d) ≤ 4d+ 4. (2.7)

Since d = 2×r+1 is always an odd number, we only look at the bounds presented

in equations 2.5 and 2.7 and can be reformulated substituting our values for d. Given

r ≥ (n− 3)/4, the Plotkin Bound on maximum population given in equation 2.5 is

A(n, r) ≤ 2

⌊
2r + 2

4r + 3− n

⌋
. (2.8)
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Similarly, if 4r + 3 = n, then equation 2.7 can be rewritten in terms of r as

A(n, r) = A(4r + 3, r) ≤ 8r + 8. (2.9)

2.4 Gilbert-Varshamov Bound

The last bound implemented to find the maximum population attainable by Daug-

man’s IrisCode is the tight lower bound called the Gilbert-Varshamov Bound. From

[19, 24, 36], the Gilbert-Varshamov Bound is constructed by assuming that all code-

word hyper-dimensional spheres are present and overlapping in a 2n codespace. From

this, a class is selected at random and any neighboring classes that are of distance

d − 1 or less are removed from the space. From the remaining classes, this process

is repeated until no more neighboring spheres overlap (all greater than a distance of

d − 1). The remaining set of classes ensures that each classes’ codeword will have a

minimum distance d. The bound is described mathematically as

A(n, r) ⩾

⌈
2n∑2r

i=0

(
n
i

)⌉. (2.10)

2.5 Findings of Bounds

This section discusses our findings of the Hamming, Elias-Bassalygo, Plotkin, and

Gilbert-Varshamov Bounds derived in Section 2.0. In Daugman’s work, he chooses the

optimal Hamming Distance that is sustainable in an iris database from the threshold

(ϵ) of the imposter distribution, shown in Figure 1.3 from Section 2.0, to evaluate

the maximum population his recognition system can sustain. Looking at favorable

conditions only, where the same camera, distance, lighting, and setup were used [17],

the optimal threshold is chosen where there is a guarantee of no collisions between
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IrisCodes from the imposter distribution at ϵ = 0.32. For the analysis of IrisCodes,

we look at a range of Hamming Distance thresholds, from ϵ = 0.12 to ϵ = 0.36, and a

codeword length of n = 245 for all bounds. A graphical representation of the bounds

is shown in Figure 2.2. A subset of ϵ values are extracted from Figure 2.2 and is

shown in Table 2.1 for the upper and lower bounds.

Firstly, looking at Figure 2.2, there is a clear disconnect between the Elias-

Bassalygo and Plotkin Bounds. This is due to the constraint on each bound from

equations 2.2 and 2.5. Let us first look at the Elias-Bassalygo bound; here, the bound

is only applicable where r ≤ (n − 2)/4. If n = 245, then the Elias-Bassalygo bound

can be applied for r ≤ 60.75 (or ϵ ≈ 0.25 bits). The Plotkin bound bridges this

gap with a constraint of r ≥ (n − 3)/4 = 60.5 (or ϵ ≈ 0.25 bits). From the figure,

the Elias-Bassalygo bound gives a tighter upper bound constraint on the maximum

achievable population supported by Daugman’s IrisCode then compared to the Ham-

ming bound, for threshold values ϵ ≤ 0.25. The Plotkin bound also gives a tighter

maximum population for thresholds ϵ ≥ 0.25 compared to the Hamming bound; how-

ever, the bound eventually converges with the Gilbert-Varshamov bound at ϵ ≈ 0.34,

as seen in Table 2.1.

From Table 2.1, it is clear that the IrisCode cannot enroll many iris classes when

the threshold ϵ is set at or above 0.28, let alone at Daugman’s threshold of 0.32.

Decreasing this threshold increases the maximum population considerably. If a new

threshold range of ϵ = 0.2 to ϵ = 0.12 is chosen, then the recognition system, according

to the Elias-Bassalygo bound, can support a maximum population of 3.82 × 1021

and 1.26 × 1036 classes with zero collisions between the enrolled classes. While the

Hamming bound gives a large maximum population, the more realistic and attainable

populations are given by the Elias-Bassalygo bound with a maximum population of

6.98×1014 and 5.30×1034, respectively. Concomitantly, the Gilbert-Varshamov lower
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bound gives the minimum, maximum population sustainable as 952 and 3.84× 1016.

These larger maximum populations are dependent only if the query and enrollment

data submitted into the recognition system are of the same extremely high-quality.

Although a threshold of ϵ ≤ 0.20 seems challenging, this new lower threshold

is achievable due to advancements in technology. State-of-the-art image acquisition

cameras (including those in our cell phones) take multi-view video sequences of an ob-

ject and then interpolate them in a single view capture of the highest possible quality.

In addition, given a video of an iris, various signal processing, and machine learning

approaches can be applied to ensure high quality of IrisCode templates [40]. As the

quality of the enrollment and query iris images submitted to the system is increased,

the imposter distribution becomes more centered around HD = 0.5 (standard de-

viation decreases), and a lower threshold is obtained as the false match probability

(the cumulative in the right tail of the imposter distribution) becomes increasingly

tiny and improbable. By finding the maximum population achievable by the system

given these bounds, we also measure the quality of the iris images present within the

system (both enrollment and query data). In conclusion, the maximum population

of the system is directly dependent on the quality of the iris images.

2.6 Actual vs. bound population for n = 16

To solidify the trends present in the theoretical bounds for maximum population,

we perform an exhaustive search on all binary codewords of length n = 16 to find

the empirical maximum population. This smaller codeword length is chosen due to

the computational complexity and time required to run an extensive search on all

possible codewords of length n = 245 in a codespace of 2245. The remainder of this

section demonstrates that the maximum population of the IrisCode will fall between
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Figure 2.2: Hamming, Elias-Bassalygo, and Plotkin upper bounds and Gilbert-
Varshamov lower bound for code length 245 and varying Hamming Distance, ϵ.

the upper and lower bounds presented above.

To begin, an exhaustive search algorithm was implemented where all codewords of

length n = 16 were generated using MatLab. Like the development of the Gilbert-

Varshamov bound, a single codeword is chosen from the codespace, and the neigh-

boring codewords that are equal to or lie below the threshold ϵ are removed from the

space. This continues until all codewords are spaced by a distance of ⌊ϵ× n⌋ × 2 + 1

apart, ensuring no collisions. The actual maximum population is given in Table 2.2

along with the Hamming, Elias-Bassalygo, Plotkin upper bounds, and the Gilbert-

Varshamov lower bound for codewords of length n = 16.

Table 2.2 demonstrates that when the threshold is larger, ϵ = 0.26 to ϵ = 0.36,

the theoretical population converges to the actual population found. For the smaller

threshold values, ϵ = 0.22 to ϵ = 0.12, the theoretical population closest to the actual

population is given by the Hamming bound of 94 to 3855 classes, respectively. While

these results are somewhat contradictory to our upper theoretical trends presented
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Table 2.1: Hamming (HB), Elias-Bassalygo (EBB), Plotkin (PB), and Gilbert-
Varshamov (G-VB) bounds for code length n = 245 and varying Hamming Distance,
ϵ.

ϵ r, bits d, bits HB EBB PB GVB

0.12 29 59 1.26× 1036 5.30× 1034 N/A 3.84× 1016

0.14 34 69 9.09× 1031 3.57× 1029 N/A 8.87× 1011

0.16 39 79 1.52× 1028 2.48× 1024 N/A 1.52× 108

0.18 44 89 5.42× 1024 2.71× 1019 N/A 1.62× 105

0.20 49 99 3.82× 1021 6.98× 1014 N/A 952
0.22 53 107 1.81× 1019 1.37× 1011 N/A 50
0.24 58 117 3.84× 1016 3.04× 106 N/A 5
0.26 63 127 1.42× 1014 N/A 24 2
0.28 68 137 8.87× 1011 N/A 8 2
0.30 73 147 9.14× 109 N/A 4 2
0.32 78 157 1.52× 108 N/A 4 2
0.34 83 167 3.98× 106 N/A 2 2
0.36 88 177 1.62× 105 N/A 2 2

in Figure 2.2, this is due to the small codeword length affecting the Elias-Bassalygo

bound. The performance of the Elias-Bassalygo bound increases as n is increased

asymptotically. Looking at the lower Gilbert-Varshamov bound, the values provided

are quite low and loose.

In closing, the bounds given for the smaller codeword length, n = 16, prove

that our actual achievable population is constrained by the upper Hamming and

the lower Gilbert-Varshamov bounds. Although the Elias-Bassalygo bound did not

produce excellent results, this is due to the minimal codeword length chosen n. As n

increases, the bound will asymptotically become tighter to the maximum realizable

population. This small demonstration also validates that for ϵ ≥ 0.26, the IrisCode

cannot sustain a large population and that if the threshold ϵ is shifted to the right,

then larger maximum populations are obtainable.
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Table 2.2: Empirically found values of maximal population (Actual) compared against
the Hamming (HB), Elias-Bassalygo (EBB), Plotkin (PB), and Gilbert-Varshamov
(GVB) bounds for code length n = 16.

ϵ d, bits HB EBB PB Actual GVB

0.12 3 3855 131072 N/A 2048 479
0.14 5 478 3744 N/A 256 27
0.16 5 478 3744 N/A 256 27
0.18 5 478 3744 N/A 256 27
0.20 7 94 480 N/A 32 5
0.22 7 94 480 N/A 32 5
0.24 7 94 480 N/A 32 5
0.26 9 26 N/A 6 4 2
0.28 9 26 N/A 6 4 2
0.30 9 26 N/A 6 4 2
0.32 11 9 N/A 2 2 2
0.34 11 9 N/A 2 2 2
0.36 11 9 N/A 2 2 2

3.0 Summary

This chapter introduces the application of Rate-Distortion Sphere-Packing bounds

to find the maximum population of an iris recognition system given Daugman’s

IrisCode. Given that there exists a one-to-one mapping for each iris class into a

binary codeword of length n = 245, each class and its tolerable variations (noise)

can be represented by a hyper-dimensional sphere in 2245 space. From Section 2.0,

a new minimum normalized Hamming Distance d between each iris classes’ hyper-

dimensional spheres was developed dependent on the threshold ϵ of the imposter

Hamming distance distribution for the entire system and the length of the codeword

n. The sphere-packing bounds presented in Rate-Distortion Theory are derived us-

ing the new HD d to find the maximum population sustainable by the system while

ensuring no collisions between classes occur.
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The findings presented in Section 2.5 show that the Hamming bound provides a

loose upper limit on the maximum population, while the combination of the Elias-

Bassalygo and Plotkin bounds provide a tighter fit for all threshold, ϵ, distances.

The Gilbert-Varshamov lower bound gives insight into what the lowest maximum

population is achievable. Daugman’s optimal threshold of ϵ = 0.32 shows that his

proposed recognition system cannot handle a large population without false matches

occurring. Because of this, the threshold can be shifted to the right, ϵ ≤ 0.20.

By increasing the quality of the enrollment and query iris data provided for the

recognition system through modern imaging acquisition technologies. In conclusion,

the application of the Hamming, Elias-Bassalygo, and Plotkin upper bounds, along

with the Gilbert-Varshamov lower bound, provides researchers a confidence interval

of maximum populations in which their iris recognition system can support given the

use of Daugman’s IrisCode and also a measure of the quality present in the iris images

used themselves.



Chapter 3

Measuring Iris Uniqueness Based

on Autoregressive Model

1.0 Introduction

As a motivator from Chapter 2, this chapter presents a more generalized approach

to measuring iris uniqueness through the use of an iris database’s raw data. Similar to

Chapter 2 we assume that a one-to-one mapping of each iris class is available, except

now we leverage Gaussian codewords verses binary. To start each iris class’s power

spectral densities are estimated through the use of an Auto-regressive model. Once

found, they are implemented in two distance metrics, an asymptotic log-likelihood test

and relative entropy. From these distance metric values, we proceed to find the ’best-

of-fit’ chi-square distributions of their relative frequencies to obtain the degrees of

freedom and variance. We base the length of each Gaussian codeword from the fitted

degrees of freedom for each metric and then develop a Gaussian Sphere packing bound.

We can also leverage these found parameters to develop a similar Daugman-like bound

based on a fixed error of enrollment. Through the use of these two developed bounds,

28
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we find the limits on maximum population of two databases: Chinese Academy of

Sciences’ Institute of Automation (CASIA) CASIA-IrisV3 Interval and University of

BATH (BATH) Iris Image Database.

The remainder of this chapter is organized as follows. Section 2.0 presents assump-

tions and developments of the Auto-regressive model, derivation of the Log-Likelihood

and relative entropy metrics, and formulation of the Gaussian Sphere-Packing and

Daugman-like Bounds. Section 3.0 provides the implementation of the theory on the

two databases. Finally, Section 4.0 gives final conclusions on both bounds presented

in this chapter.

2.0 Theory, Model, and Analysis

In this section, we will lay the foundation and assumptions to our methodology

for measuring iris uniqueness.

2.1 AR model for vectorized iris images

The autoregressive (AR) model is an example of a stationary random process

used to ’forecast’ values in time-series data, widely used in weather forecasting. The

basic principles of estimation for this model use a linear combination of past values

and a stochastic term to introduce variability. We turn to a simple autoregressive

model to describe each iris class due to two outstanding properties: it is driven by

white Gaussian noise passed into a linear shift-invariant filter, and the model captures

dependencies among each iris image per class. Let us begin by making the following

assumption. Let there be M enrolled iris classes present in the system, and each class

contains N vectorized iris images. Let Xn
1 (m), . . . , Xn

N(m) be N vectorized iris images

of iris class m, m = 1, . . . ,M, with superscript n indicating the length of each vector.



Chapter 3: Measuring Iris Uniqueness Based on Autoregressive Model 30

Note that in our analysis we treat all vectors as column vectors. Utilizing the theory

presented in [31], each entry in an iris class, Xn
i (m), is related through the following

AR equation

Xt =

p∑
i=1

αiXt−i +Wt, (3.1)

where t is a single value in the vectorized iris image, αi is the estimated coefficient

of the model, Wt is a sample of white Gaussian noise process with mean zero and

variance σ2
W , and p is the parameter that determines the order of the model.

Since we would like to later make use of the frequency domain, using the z-

transform, we can easily derive the spectral equations of the linear difference equation

as follows

X(z)

(
1 +

p∑
i=1

αiz
−i

)
= W (z) (3.2)

Rewriting 3.2 for X(z), we obtain

X(z) =
W (z)

1 +
∑p

i=1 αiz−i
(3.3)

and substituting z = exp(j2πfi), where we use f to denote frequency, the transfer

function can be written as follows

H(f) =
1

1 +
∑p

i=1 αi exp (−j2πfi)
. (3.4)

By knowing the transfer function of the model and the power spectrum of the

driving process (which is in our case a white Gaussian noise process with zero mean

and variance σ2
W ), we can write an equation of the power spectral density (PSD) of
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the data Xt as

SX(f) = σ2
W |H(f)|2, (3.5)

where SX(f) is the notation for the PSD on the output of the linear filter.

To estimate our PSDs, we turn to using Burg’s Maximum Entropy Method for

estimation given in [9] and the following is a brief discussion of the implementation,

without mathematical derivations. Here Burg minimizes the sum of forward, f l
t , and

backward, blt, prediction errors, through the use of a recursive algorithm, to obtain

reflection coefficients

kl =
−2
∑T−1

t=l f l−1
t bl−1

t∑T−1
t=l (f

l−1
t )2 + (bl−1

t )2
. (3.6)

The Levinson-Durbin algorithm is then implemented using the found reflection coef-

ficients, kl, to estimate the coefficients given below,

αl
k = αl−1

k + klα
l−1 k = 1, 2, . . . , l − 1

αl
l = kl,

(3.7)

where α0
0 = 1, l = 1, 2, . . . , p, and αp

k gives the estimated AR coefficients αk. These

AR coefficients are substituted in the transfer function, equation 3.4, to find the PSD

estimates for each iris class in equation 3.5. For derivations and a more comprehensive

explanation, please refer to [9].

We also turn to the use of Akaike Information Criterion (AIC) to find the optimal

order, p, in our AR model. Akaike Information Criterion, is a popular stochastic

method for evaluating how well the model’s estimated output fits the original data

[32]. It measures the trade-off between ‘goodness-of-fit’ of the model and the model

complexity, where too low of a model order causes poor fit into the data, but small

complexity, while the choice of a high model order results in a good fit into the data,
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but also has high complexity. Akaike derives AIC in [3] as follows,

AIC = 2p− 2 log(L̂), (3.8)

where p is the model order and L̂ is the maximum likelihood over estimated parameter

space.

Finally since the AR model is driven by a Gaussian process and is linear, we can

make the following realization that each iris vector, Xn
i (m), is also Gaussian:

Xn
i (m) ∼ N (µ(m),K(m)), (3.9)

where µ(m) is the mean (in our analysis we adjust it to be 0) and K(m) is the

covariance matrix of the entries of the i-th vectorized iris image of the m-th class.

Thus, each iris class is fitted with a unique AR model.

2.2 Classical Approach to the Estimation of maximum Pop-

ulation

Given probability models for the data of each individual class and for the class

dependencies, an optimal approach to the analysis of iris uniqueness is to state the

problem of matching a query iris image Y n to one of M iris classes as an M -ary detec-

tion problem [35]. A direct performance analysis for this problem requires forming a

(M − 1) dimensional vector of likelihood ratios and evaluating their joint probability

density under the assumption that the query data belong to one of M distinct iris

classes. Mathematically, performance analysis for this problem becomes quickly in-

tractable, since the expression for the joint probability density function of the vector

of likelihood ratios is not straightforward to develop. Furthermore, it is hard to im-



Chapter 3: Measuring Iris Uniqueness Based on Autoregressive Model 33

plement in practice. Seeking for an alternative solution, one may turn to an analysis

of M(M−1)/2 binary detection problems, an approach that is often used in practice.

By applying the Union bound [7], the probability of error in an M-ary problem can

be upper bounded by a sum of binary error probabilities.

Denote by P (error) the average probability of error in anM -ary detection problem

and by P (error|Class m) the conditional probability of error, given that data are

generated by Class m, m = 1, . . . ,M. Assuming equal prior probability for each class

m, the average probability of error is given as

P (error) =
1

M

M∑
m=1

P (error|Hm). (3.10)

After expanding P (error|Hm) as P (
⋃M

k=1, k ̸=m Hk|Hm) and applying the Union bound,

the equation above yields

P (error) ≤ 1

M

M∑
m=1

M∑
k=1, k ̸=m

P (Hk|Hm), (3.11)

where P (Hk|Hm) is the error in a binary detection problem for the pair of classes k

and m.

The bound (3.11) establishes a link between the total probability of recognition

error and the number of iris classes M and thus presents a basis for the analysis of the

maximum population of iris biometrics. In spite of being much simplified compared

to the original M -ary detection problem, the bound does not yield a general explicit

relationship between P (error) and M and becomes hard to evaluate in practice due

to a complex nature of practical data.

To take our analysis of the maximum iris population further, in the following

subsections, we will first develop an expression for the log-likelihood ratio statistic
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and analyze its probability distribution. Then we will return to the bound on P (error)

and suggest two alternative approaches that yield an explicit relationship not only

between P (error) and M, but also involves the quality of iris data (see [22] for the

definitions and standards on iris quality for iris biometrics).

2.3 Log-likelihood Ratio

Given an iris dataset composed of M iris classes, with data of each class being

vectorized and then fitted with an AR description, as outlined in Sec. 2.1, the origin

of a query vector Y n can be tested using classical detection theory approaches. Since

we have a probability model for data of each class, however parameters of the models

are estimated from data, we appeal to Generalized Likelihood Ratio Test (GLRT) [35]

to find which of M classes is the origin of vector Y n. While our peers may find this ap-

proach outdated (too classical compared to modern deep learning based approaches),

unlike deep learning approaches, this model guarantees an insightful performance

analysis, which is a powerful justification within the scope of this work.

Given M(M − 1)/2 pairwise binary detection problems to solve, we form a log-

likelihood statistic for every pair. For testing the hypothesis “class m is the true

class” versus “class k is the true class,” it is given as

Λ(m, k) =
N∑
j=1

ln
f(Y n

j |Hm)

f(Y n
j |Hk)

, (3.12)

where f(Y n
i |Hm) is the conditional probability density function of the j-th copy of

vectorized iris data Y n, conditioned on class m. After involving the model in (3.9),
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the log-likelihood statistic becomes

Λ(m, k) = −1

2

N∑
j=1

Y nT
j

(
K−1(m)−K−1(k)

)
Y n
j − N

2
ln det

(
K(m)K−1(k)

)
. (3.13)

The test statistic Λ(m, k) is then compared to a threshold to conclude on which class

“generated” the vector Y n. We tentatively set the value of the threshold to zero, since

no prior information about the frequency of use of any two classes is available to us,

and thus the binary test to perform is given as

Λ(m, k)
Hk

≶
Hm

0. (3.14)

Alternatively, we can vary the value of the threshold in the right hand side of the

inequality and analyze P (Hk|Hm) as a function of the threshold.

2.4 Asymptotic Case of Log-likelihood Ratio

When the number of entries in a vectorized iris image is large, that is n is large,

(3.13) can be replaced by an asymptotic expression involving the power spectral

density of the ARmodel. It can be easily demonstrated that Λ(m, k) in the asymptotic

case can be written as

Λ(m, k) = −
n−1∑
i=0

{(
1

Sm(fi)
− 1

Sk(fi)

) N∑
j=1

|yj(fi)|2+N ln

(
Sm(fi)

Sk(fi)

)}
= −

n−1∑
i=0

λ(fi),

(3.15)

where yn is the Fourier transform of Y n, Sm(fi) is the i-th sample of the power

spectral density of the m-th class (for an insightful explanation of the result see p.

36 of Kay [23]), and λ(fi) is the i-th component of the log-likelihood ratio statistic.
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2.5 Analysis of Error Probability, continued

Given a binary detection problem involving two classes, Class m and Class k, an

error will occur in two cases: Case 1: Y n originated from Class m, but Λ(m, k) < 0;

and Case 2: Y n originated from Class k, but Λ(m, k) > 0. The first case describes

P (Hk|Hm), while the second case describes P (Hm|Hk). Both conditional probabilities

of error can be expressed in terms of the conditional probability density function of

Λ(m, k), assuming one or the other class is the true class.

Consider P (Hk|Hm) = P (Λ(m, k) < 0|Class m). In (3.15), random vector yn is

complex Gaussian under either hypothesis, since yn is a linear transformation of a

Gaussian vector. To find the conditional probability of error P (Hk|Hm), we need

a closed form expression for the conditional probability density function (p.d.f.) of

Λ(m, k) under Hm.

Assuming that yn is from Class m implies that y(fi) ∼ CN (0, Sm(fi)), where CN

denotes “complex normal,”

y(fi)

(
1

Sm(fi)
− 1

Sk(fi)

)1/2

∼ CN
(
0, Sm(fi)

(
1

Sm(fi)
− 1

Sk(fi)

))

and

λ(fi) =

(
1

Sm(fi)
− 1

Sk(fi)

) N∑
j=1

|yj(fi)|2+N ln

(
Sm(fi)

Sk(fi)

)
is a N -Erlang random variable with the p.d.f.

fλ(fi)(x) =
1

(σ2
i )

N

(x− ai)
N−1

(N − 1)!
exp

{
−(x− ai)

σ2
i

}
, x > ai (3.16)

where ai = N ln(Sm(fi)/Sk(fi)) and σ2
i = 1− Sm(fi)/Sk(fi).

The entries λ(fi) in the test statistic Λ(m, k) are independent, but not identically
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distributed. Therefore, a closed form expression for the conditional pdf of Λ(m, k),

assuming that the data are generated by Class m, is not straightforward to find. At

this point, we can take our analysis further by involving the Chernoff bound [35] on

P (Hk|Hm). Instead, equipped with the form of the p.d.f. for λ(fi), the well developed

theory of error correction codes [11, 24], and a deep insight into Daugman’s analysis

of IrisCode [15, 13], we reverse the direction of our analysis. In the following two

subsections, we analyze the uniqueness of iris biometrics from a perspective of the

sphere packing argument [11] and by developing a Daugman like bound [15]. Both

provide an explicit relationship of P (error) on the number of classesM and an average

quality of iris data in a considered iris dataset.

2.6 Analysis of iris uniqueness using sphere packing argu-

ment

As justified in Sec. 2.5, the log-likelihood ratio test statistic is a sum of weighted

exponential random variables. While no method for direct evaluation of its p.d.f. is

known, a plot of the relative frequency of the log-likelihood statistic can be approx-

imated by a chi-square p.d.f. formed by adding K iid squared complex Gaussian

random variables each with zero mean and variance P. The parameter K is the num-

ber of degrees of freedom of the fitted chi-square p.d.f. Since K and P are unknown,

they must be estimated from empirical data.

The fitted chi-square p.d.f. allows us to interpret the problem of finding the

maximum iris population as a Gaussian sphere packing result. Suppose an encoding

strategy is available to map ideal iris images (iris images with no noise or distortions)

of M distinct iris classes into unique Gaussian codewords, each of length K. Each

codeword is drawn i.i.d. from a Gaussian distribution with zero mean and variance
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P. Suppose further that an iris image of one of M classes (for example, of Class m)

submitted for authentication or recognition is modeled as a noisy version of the ideal

codeword of Class m. The noise is zero mean Gaussian with variance N in each of K

dimensions. Thus, for a given Class m the iris image submitted for authentication is

mapped into a point within a K-dimensional sphere with radius
√
KN around the

codeword of Classm. Since the Gaussian sphere containing codewords ofM classes has

radius
√

K(P +N), the maximum number of classes, assuming that the distortion

of iris images submitted for authentication is bounded, can be obtained by dividing

the volume of a K dimensional sphere containing all codewords by the volume of the

small sphere representing noise in the data of particular iris class. Thus,

M ≤
(
1 +

P

N

)K/2

. (3.17)

See [11] for a more insightful description.

2.7 A Daugman-like approach to the analysis of iris unique-

ness

Similar to the sphere packing argument presented in the previous section, Daugman-

like analysis of iris uniqueness is based on the assumption that data of iris classes are

mapped into a space in which each iris class is presented by an independent Gaussian

codeword of length K with zero mean and variance P, where K and P are defined

above. This mapping ensures that the asymptotic pairwise log-likelihood ratios (here

interpreted as a distance between two codewords) are independent chi-square dis-

tributed random variables with K degrees of freedom. The asymptotic log-likelihood

ratio can be also replaced with an estimate of the relative entropy between the p.d.f.s
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of two iris classes. This leads to a new interpretation of the distance measure as

a means to also measure the quality of iris data. Its introduction allows a rate-

distortion interpretation of the problem of finding the maximum iris population that

an iris recognition system can sustain, similar to how error-correction bounds in cod-

ing theory relate the maximum population of binary code to the minimum Hamming

distance between codewords [24]. To be specific, the introduction of such metric will

lead to a new performance bound that relates the size of iris population covered by

the recognition algorithm and the quality of iris biometric data, while ensuring a

small probability of recognition error.

At this point of our analysis, in addition to the asymptotic log-likelihood ratio

statistic we introduce the relative entropy between the probability density functions

of two classes m and k. The relative entropy is defined as the expected value of the

log-likelihood ratio in (3.15)

d(m, k) = E [Λ(m, k)] =
n−1∑
i=0

{
Sm(fi)

Sk(fi)
− ln

Sm(fi)

Sk(fi)
− 1

}
, (3.18)

where E is the notation for the expected value operator. Since the power spectral

densities of different iris classes are not known to us, they are first estimated from

available class data and then plugged in the expression for the relative entropy in

place of the true unknown power spectral densities.

With estimated relative entropy as a distance metric, the bound on the maximum

population of enrolled iris population is straightforward to develop. We follow an

argument similar to Daugman’s that the imposter distance between a pair of distinct

iris classes can be fitted with a chi-square pdf with K degrees of freedom. Then the
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error to enroll can be mathematically described as

P (error to enroll) = 1− P

(
M⋂

m=1

d(m,M + 1) > T

)
, (3.19)

where d(m,M + 1) is the distance between a previously successfully enrolled class m

and a new (not yet enrolled) class M+1. Since pairwise distances between iris classes

are independent identically distributed chi-square random variables, (3.19) can be

rewritten as

P (error to enroll) = 1− {1− P (d(m,M + 1) ≤ T )}M ≤ δ, (3.20)

Inverting the inequality for M results in

M ≤ log(1− δ)

log {1− FMR(T )}
, (3.21)

where P (d(m,M + 1) ≤ T ) is replaced with FMR(T ), abbreviation for False Match

Rate as a function of the distance between two codewords T.

3.0 Illustration

The following section describes our application of the theory presented above to

find the maximum population of two datasets. The flow of our methodology is shown

in figure 3.1.

3.1 Data

Chinese Academy of Sciences’ Institute of Automation (CASIA) CASIA-IrisV3

Interval [10] and University of Bath (BATH) Iris Image Database [26] are used to
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Figure 3.1: A block diagram of the proposed methodology.

demonstrate our proposed methodology. Although any database may be used to

demonstrate our methodology, we choose these databases due to their high-quality

of iris images available and the differences in iris texture; where the BATH database

is composed of European irises with high texture located throughout the iris, and

CASIA-IrisV3 Interval is composed of Asian irises with very fine texture located

closely towards the pupil. The CASIA-IrisV3 Interval contains 2,639 near infared

(NIR) illuminated images, each having a resolution of 320x280 pixels, and a total

of 249 subjects (498 classes with each subject’s left and right eye being independent

classes). The BATH database contains 32,000 NIR iris images with 800 subjects,

however a smaller portion of this dataset is used as the larger dataset is no longer

publicly available. Therefore, the smaller ’sample’ BATH dataset contains 1,000

images, each with resolution 960x1280 pixels, and 25 subjects or 50 independent

classes (with each subject having 20 images for both the left and right eye).

Through using high-quality data, we hope to obtain the best measure of iris

uniqueness possible. Because the collection of iris images is not perfect, the iris

classes with large errors (such as occlusions, illumination errors, blur, motion, etc.)

present throughout the class are discarded for both datasets to ensure that we are
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(a) Example excluded image from CASIA
dataset.

(b) Example excluded image from BATH
dataset.

Figure 3.2: Example iris images from CASIA (3.2a) and BATH (3.2b). 3.2a shows
both upper occlusion, from eyelashes, and lower occlusion, from eyelid. 3.2b shows
dominate eyelash occlusion.

measuring uniqueness based off of iris texture alone. For the first step of data re-

duction, each class is manually inspected for errors that consume over half of the

iris texture, mainly looking at occlusions such as eyelashes and eyelids. Figure 3.2

shows an example iris class from each database that had major occlusions present

throughout its images collected.

After excluding these classes, further data reduction is performed on each dataset

to ensure that there are an equal number of images per iris class to reduce bias.

For the BATH database, this is not a concern as 20 images were collected for each

iris class, however for CASIA-IrisV3 Interval, the number of images per class varied,

from as low as 4 to as high as 20. To ensure that we had enough images and classes

for analysis, we eliminated classes that had less than 10 images and for the classes

that had greater than 10, we only extracted 10 images randomly from that class.

Through this simple reduction procedure, we are left with 21 classes in the CASIA-

IrisV3 Interval database, with each class containing 10 images, and 40 classes for

the BATH database, with 20 images per class. Tables 3.1 and 3.2 summarize the

reduction of data for each database. This smaller set of data for each database is

used to demonstrate our methodology.
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Table 3.1: Data reduction performed on CASIA-IrisV3 Interval Database.

Original Reduced
Independent Classes 498 21
NIR Images per Class 4-20 10
Resolution (pixels) 320x240 320x240

Table 3.2: Data reduction performed on smaller BATH Database.

Original Reduced
Independent Classes 50 40
NIR Images per Class 20 20
Resolution (pixels) 960x1280 960x1280

3.2 Libor Masek Segmentation and Preprocessing Steps

To obtain the correct format of our data to implement in the AR model, we

turn to Libor Masek’s open-source iris recognition algorithm [25]. Although this

algorithm is simplistic, it is a widely accepted program that is easy to understand

and produces robust results. While Masek proposes an end-to-end iris recognition

system, we only want to utilize his developed tools of segmentation, normalization,

and his method of Log-Gabor filtering. To begin, Masek’s segmentation code is tuned

to each database, changing the iris and pupil search radius and sensitivity parameters,

and each iris image contained in both subset databases are segmented. From here,

we use Masek’s normalization method to unwrap the segmented irises from polar

coordinates, ’doughnut’ shape, to a fixed dimension, in our case 20x240 pixels. For a

more detailed description of Masek’s implementation please see [25].

Once each iris image is correctly segmented and normalized, we crop each normal-

ized image by 50% and retain the texture that is closest to the pupil. This further

data reduction is preformed as another check to be certain that we are measuring the
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irises’ uniqueness through texture and discards any additionally missed occlusions

from masking during segmentation. After cropping, the resulting normalized image

size for each iris is 10x240 pixels. The next step of preprocessing the data is filtering

each now cropped normalized image with a 1-D Log-Gabor filter. The same filter

implementation is used from Masek’s codes, and in Section 3.3.1 the affects of the

filter’s center frequency and bandwidth on the cropped normalized iris images are

analyzed. Figure 3.3 shows the processing steps of a single iris image.

Figure 3.3: Example segmentation and pre-processing steps of a single BATH iris
image before ZigZag vectorization is preformed.

Once the Log-Gabor filtered iris image is obtained, the complex-valued image is

unwrapped using what we call ZigZag vectorization. This method first unwraps the

real-valued filtered image into a one dimensional vector by applying a diagonal scan

from the top left corner of the image to its bottom right corner, as seen in Figure

3.4. The same unwrapping is applied to the imaginary-valued filtered image. Once

both the real-valued and imaginary-valued filtered images are vectorized from a 2D

matrix to a 1D vector, the imaginary-valued 1D image is concatenated onto the end

of the real-valued 1D image (for our data the total vector length is 4,800 pixels).

This ZigZag vectorization method was adapted to preserve the spatial correlation of

the iris patterns while transitioning the 2D image to a 1D representation. ZigZag

was introduced in [20] and previously effectively used in combination with Discrete

Cosine Transform to accomplish lossy compression. It was also adopted in application
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to biometrics as fingerprint [37] and hand (palm print) biometrics [18] to unwrap 2D

DCT filtered images to a 1D vector. This helped in reducing the variance in our

AR coefficients and eliminating induced periodicity in the power spectral density

incorporated due to spatial distortion of the iris patterns in horizontal (row-based)

or vertical (column-based) vectorization. Section 3.3.3 later demonstrates how the

ZigZag vectorization reduces the total percent error in the log-likelihood statistic,

equation 3.15, verses the widely used row-by-row vectorization method.

Figure 3.4: An illustration of the ZigZag vectorization of iris images as adapted in
this work

3.3 Estimation of Power Spectra

As stated in Sec. 2.1, to ensure a workable model that can be used to ana-

lyze performance of iris biometrics, we turn to an Auto Regressive (AR) model for

the vectorized iris data. The analysis of maximal population is based on a success-

ful implementation of (3.15) and (3.18) which in turn rely upon estimates of the

power spectral densities obtained from data of iris classes. These estimates are found

through 1.) finding the optimal order for the AR model given our iris data, 3.3.1 and

2.) using Burg’s Maximum Entropy Method to find high quality spectral estimates

for each iris class, 3.3.2. Sections 3.3.3 and 3.3.4 show the justifications for choosing

our method of vectorization and the use of the AR model to obtain estimates for each

iris class.



Chapter 3: Measuring Iris Uniqueness Based on Autoregressive Model 46

3.3.1 Finding Optimal Model Order

Estimating the appropriate model order is essential in the performance of the AR

model. Having a large order ensures a better fit into data, however it also increases

complexity of the implementation and can lead to overfitting of noise. To achieve a

balance between approximation and estimation error we involve Akaike Information

Criterion (AIC) in conjunction with the AR method in Matlab to find the optimal

model order of estimated power spectra.

Figure 3.5: Subset of CASIA-IrisV3 Interval dataset that is used to see if texture had
an affect on optimal AR model order. Subjects are chosen by varying texture, with
Subject 199R having very fine texture to Subject 104L having very rough texture.
Only the Real-Valued Gabor Filtered Irises are shown here, due to the high similarities
between the real-value and imaginary-value portions of the complex image.

To begin, a subset of iris classes were extracted from each dataset based on varying

texture levels, from very fine to rough texture, to see if the structure of the iris

affects model order. Figures 3.5 and 3.6 show the hand selected iris classes from

both the CAISA-IrisV3 Interval and BATH datasets. Upon initial run of finding the

optimal order for each dataset, the Average AIC plots for each dataset showed a stair-

steppingg’ behavior, shown in Figure 3.7. These plots were not useful in determining

the correct order to fit our iris data due to their varying nature. Because of this,

we explore Masek’s 1-D Log-Gabor filter parameters of center frequency, f0, and

bandwidth, σ, and their affect on the performance of AIC for each set.
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Figure 3.6: Subset of BATH dataset that is used to see if texture had an affect on
optimal AR model order. Subjects are chosen by varying texture, with Subject 13L
having very fine texture to Subject 17R having very rough texture. Only the Real-
Valued Gabor Filtered Irises are shown here, due to the high similarities between the
real-value and imaginary-value portions of the complex image.

In Masek’s open-soured iris recognition algorithm, [25], he implements a simple

Log-Gabor Filter for the use of edge detection/enhancement in the normalized iris

image. While he uses multiple resolutions of Log-Gabor Filters, due to his encoding

method similar to Daugman’s [17], we are only interested in one resolution. Because

of this, we simply implement the following Log-Gabor transfer function on each raw

normalized iris,

G(f) = exp

{
−1

2

(
log(f/f0)

log(σ/f0)

)2
}
, (3.22)

where f0 is the center frequency and σ is the bandwidth of the filter. Each normalized

image is filtered using the same f0 and σ throughout the entire dataset for consistency,

and then the filtered images power spectral densities are estimated using Burg’s AR

method to find the ‘best of fit’ model order.

To begin to understand the affects of the Log-Gabor parameters on the AIC for

each iris class, extensive search simulations are designed to look at the impact of the

center frequency and bandwidth on the quality of the images themselves. Since the
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(a) CASIA-IrisV3 Interval - Subject 104L (b) BATH - Subject 2R

Figure 3.7: Plots of initial average AIC values for a single class for both datasets
using original Masek Log-Gabor Filter parameters of f0 = 1/18 and σ = 0.5. Both
plots show the unwanted stair-stepping behavior occurring across all classes average
AIC plots.

(a) CASIA - Subject 104L (b) BATH - Subject 2R

Figure 3.8: Reference normalized and cropped iris image for analyzing Gabor filter
performance.

Log-Gabor Filters behave as edge detectors, starting the simulations we are looking at

both the quality of enhancement the filter was performing on the images themselves

(enhancing the texture within the iris itself) and the overall impact on the AIC curves

to find the optimal order of the AR model. For each dataset, the simulations are

performed on the subset of irises already extracted by varying texture, Figures 3.5 and

3.6, however, for simplicity, the following results plotted are of one iris class from each

dataset: Subject 104L for CASIA-IrisV3 Interval and Subject 2R for BATH. Figure

3.8 shows the normalized and cropped iris images from Libor Masek’s algorithm for

each iris class.

Picking a Resolution: Based off of the ’Decidability Studies’ conduced by Masek

in [25], where the correlation of different center frequency values (resolutions) are
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analyzed to find the most independent values for his encoding process, the center

frequency values chosen for our study are varied by factors of 1/9, as these produced

the highest decidability scores. Odd values of the bandwidth are chosen, from 0.1

to 0.9, to also analyze the performance on iris quality. Figure 3.9 and 3.10 shows

an example of one iris for each dataset and the varying image quality as f0 and σ

change. From the figures, we can see that as the bandwidth of the filter increases,

the edges of the iris becomes sharper and sharper to the point in which it becomes

unrecognizable as a normalized iris image. We can also observe that as the center

frequency increases, the normalized iris image becomes more pixelized and blurry.

Due to the texture degregation, the AIC plots analyzed are only the bandwidths of

0.1, 0.3, and 0.5, along with a lower center frequency of 1/9. These results are shown

in Figures 3.11 and 3.12 for both datasets. From both figures, we can see that as

the bandwidth increases, the stair-stepping behavior diminishes. Because of this and

the visible iris image quality, our initial pick for center frequency and bandwidth is

f0 = 1/9 and σ = 0.5.

Analyzing lower center frequencies: To make sure we have have the best choice

for center frequency and bandwidth, we perform another extensive search keeping our

bandwidth fixed, σ = 0.5, and varying our center frequency around f0 = 1/9. For the

purpose of illustration, the figures shown only display center frequencies of f0 = 1/3,

f0 = 1/6, f0 = 1/9, and f0 = 1/12 to show the impact that center frequency plays in

the best fit of our AR model. Figures 3.13 and 3.14 show the new filtered normalized

iris images. We can see from both figures that the iris texture goes from extremely

sharp to more blurry as the center frequency is increased. Figures 3.15 and 3.16 show

the newly plotted average AIC values for each chosen center frequency. These plots

confirm that a center frequency of f0 = 1/9 and a bandwidth of σ = 0.5 produce the

richest filtered iris image, along with the most stable average AIC plots.
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(a) f0 = 1/9

(b) f0 = 1/18

(c) f0 = 1/27

(d) f0 = 1/36

Figure 3.9: Varying center frequencies, f0, of CASIA-IrisV3 Interval sample subject
104L. As bandwidth, σ, of Log-Gabor filter is varied, along with center frequency,
the normalized iris image’s edges become sharper and sharper. Optimal initial center
frequency and bandwidth is f0 = 1/9 and σ = 0.5 by inspection.
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(a) f0 = 1/9

(b) f0 = 1/18

(c) f0 = 1/27

(d) f0 = 1/36

Figure 3.10: Varying center frequencies, f0, of BATH sample subject 2R. As band-
width, σ, of Log-Gabor filter is varied, along with center frequency, the normalized
iris image’s edges become sharper and sharper. Optimal initial center frequency and
bandwidth is f0 = 1/9 and σ = 0.5 by inspection.
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Figure 3.11: Average AIC plots for CASIA-IrisV3 Interval subject 104L given a center
frequency of f0 = 1/9 and varying bandwidths of σ = 0.1, σ = 0.3, and σ = 0.5.

Figure 3.12: Average AIC plots for BATH subject 2R given a center frequency of
f0 = 1/9 and varying bandwidths of σ = 0.1, σ = 0.3, and σ = 0.5.
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Figure 3.13: Log-Gabor Filtered iris image for subject 104L from CASIA-IrisV3 In-
terval with varying center frequencies of f0 = 1/3, f0 = 1/6, f0 = 1/9, and f0 = 1/12
and a fixed bandwidth of σ = 0.5.

Figure 3.14: Log-Gabor Filtered iris image for subject 2R from BATH with varying
center frequencies of f0 = 1/3, f0 = 1/6, f0 = 1/9, and f0 = 1/12 and a fixed
bandwidth of σ = 0.5.
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Figure 3.15: Average AIC plots for CASIA-IrisV3 Interval subject 104L given a vary-
ing center frequency of f0 = 1/3, f0 = 1/6, f0 = 1/9, and f0 = 1/12, with a fixed
bandwidth of σ = 0.5.

Figure 3.16: Average AIC plots for BATH subject 2R given a varying center frequency
of f0 = 1/3, f0 = 1/6, f0 = 1/9, and f0 = 1/12, with a fixed bandwidth of σ = 0.5.
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Figure 3.17: Average AIC plots for subset of varying textured irises from CASIA-
IrisV3 Interval with fixed Log-Gabor Filter parameters of f0 = 1/9 and σ = 0.5.
Plots demonstrate that varying texture of the iris does not affect the optimal model
order of 100. Subject 19L and 53R have the same average AIC plots and overlap (as
seen in the figure).

Choosing Optimal Order: After finding the center frequency and bandwidth that

minimizes the stair-stepping affect and has the richest filtered iris texture, the optimal

order can be approximated from the resulting average AIC plots. Figures 3.17 and

3.18 show the AIC plots for both datasets’ subset of different texturized iris images,

from Figures 3.5 and 3.6. The resulting plots demonstrate that the optimal order for

both datasets is 100, where the average AIC values converge. We can also conclude

that each class can be parameterized by the same model order, regardless of iris

texture, and that choosing a higher order leads to the same performance as an order

of 100. For the remainder of the work, a model order of 100 will be used in finding

the estimated power spectral densities for each class.
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Figure 3.18: Average AIC plots for subset of varying textured irises from BATH with
fixed Log-Gabor Filter parameters of f0 = 1/9 and σ = 0.5. Plots demonstrate that
varying texture of the iris does not affect the optimal model order of 100.

3.3.2 AR Implementation

Burg’s Maximum Entropy Method [9] is implemented to estimate high-quality

spectral densities for each iris subject through the use of MatLab’s Signal Processing

Toolbox function pburg (with the found optimal order from 3.3.1 as the model order

input). An estimated sample from each database is shown in Figure 3.19. After

the PSDs are estimated for each image in each class, the data within each class is

partitioned into two categories: query and enrollment. To begin, each class’s number

of PSDs are divided by 50% (n/2), half going to enrollment and the other half to

query. This leaves 5 images for query and enrollment in the CASIA-IrisV3 Interval

dataset per class and 10 images for query and enrollment in the BATH dataset per

class. To find the enrollment PSD, all n/2 (5 or 10) PSDs are simply averaged. The

query PSDs are also an average of the available data by taking the average of each
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(a) CASIA IrisV3 Interval (b) BATH

Figure 3.19: Estimated Power Spectral Densities for both datasets through the use
of MatLab’s pburg method.

independent combination of PSDs, n/2Cn/2−1. These estimates are used in (3.15) and

(3.18), where Sm and Sk represent the enrollment PSDs for class m and k and yj

represents the query PSDs, to empirically find the maximum population given the

sphere packing bound and Daugman-like bound, shown in 3.5 and 3.6.

3.3.3 Justification of ZigZag Iris Unwrapping Methodology

While other methods look at the normalized iris row by row, and unwrap by

using the method shown in Figure 3.20, this looses spatial dependencies between

the rows themselves and contributes discontinuities between each row concatenation.

Because of this, we choose the zigzag method of unwrapping to keep the spatial

correlation between the textures in the iris. Keeping these dependencies also decreases

the total probability of error when using our log-likelihood measure. To test this, we

unwrap our normalized iris images using both our zigzag vectorization and row-by-row

presented in Figure 3.20. Using the complete BATH dataset, we ran two independent

experiments, finding the likelihoods using the zigzag vectorization and using the row-

by-row vectorization. From here, the total probability of error is analyzed by finding
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Figure 3.20: Row-by-row vectorization.

all Type I and Type II errors and dividing by the total number of likelihoods found.

From these experiments, we find that using the zigzag vectorization the total percent

error is 8.4% and by using the row-by-row vectorization, the total percent error is

48.2%.

3.3.4 Proving Shift-Invariance of AR Model on Estimated Power Spectral

Densities

An advantage to using the Autoregressive model, to find the power spectral density

estimates for each iris image, is that it provides shift-invariance. Shift-invariance is

important due to the positioning of the iris in the image itself and can compensate

for tilting of the head when the image is taken or when the iris is segmented (as the

location of unwrapping the iris image would be different between a tilted head vs.

untilted head). Because of this, we want to justify that the model is shift-invariant.

To achieve this, we look at the subset of iris images from the BATH dataset that

varies by texture. From here, we unwrap the images using the zigzag vectorization

and shift the values by 1, 10, and 100 and compare these estimated PSDs against

the original estimated PSDs. Figure 3.21 shows the newly estimated PSDs against

the original from a single iris image from subject 2R in the BATH dataset. We can

see that as the shift is increased, this only has a slight affect on the magnitude of

the PSDs while the shape remains the same. The maximum total error between the
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shifted PSD and original PSD is 9.3956×10−4 and occurs from the shift of 100. From

this small experiment, we can see that the AR model is indeed shift-invariant and

makes our methodology more robust to slight variations when the iris is captured.

3.4 Fitting Relative Frequency Distributions

For both bounds presented in this chapter, equations 3.17 and 3.21, the empirical

values for K and P must be found for both databases. We achieve this by fitting the

imposter relative frequencies, where the estimated PSDs Sm and Sk are from different

classes, with the following chi-square probability distribution,

f(x;K) =


x(K−2)/2

2K/2Γ(K/2)

1

PK/2
exp

(
− x

2P

)
, x > 0

0, otherwise

(3.23)

where K is the degrees of freedom, P is the variance of the zero mean Gaussian

distributions, and x is our distance metric values, from zero to maximum value for

both log-likelihood and relative entropy values. To find the best-of-fit chi-square

distribution for our histograms, we perform an extensive search algorithm to find

the degrees of freedom and variance that produces the minimum least square error

between the fitted distribution and the original histogram. Figure 3.22 shows the

best-of-fit chi-square distributions for both the CASIA-IrisV3 Interval and BATH

databases using the relative entropy metric from equation 3.18. Here we can see that

both databases have an optimal degrees of freedom of K = 4 and seperate variances

of PCASIA = 252 amd PBATH = 383. Figure 3.23 displays the best-of-fit distributions

for both databases using the log-likelihood values found from equation 3.15. From

these distributions, we can see that CASIA-IrisV3 Interval has an optimal degree

of freedom of K = 4 and variance PCASIA = 106, while the BATH database has a
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(b) Shifted by 10
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(c) Shifted by 100

Figure 3.21: Estimated power spectral densities of on iris image from the BATH
shifted by 1, 10, and 100 pixels compared again the original estimate.
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(a) CASIA IrisV3 Interval (b) BATH

Figure 3.22: Relative Entropy Imposter distributions for both datasets with best-of-
fit chi-square distributions. CASIA-IrisV3 Interval having K = 4 degrees of freedom
and a fitted variance of P = 252, shown in (a), and BATH having K = 4 degrees of
freedom and a fitted variance of P = 383, shown in (b).

different degree of freedom of K = 3 and a variance of PBATH = 216 that produces

the best fit. From these found K and P values, we can now find the bounds on

maximum population for each dataset using equation 3.17 for the Gaussian Sphere

Packing bound, shown in Section 3.5, and equation 3.21 for the Daugman-like bound,

shown in Section 3.6.

3.5 Sphere Packing Bound

This section describes the illustration of our developed Sphere-Packing Bound

from Section 2.6 to evaluate the maximum population of our two databases, CASIA-

IrisV3 Interval and BATH. Here, the maximum population sustainable, M , is de-

pendent on the variance of the gaussian in-which the codewords are drawn, P , the

length of the codeword, K, and the noise variance for each class, N . Using our results

from the previous section, Section 3.4, we can use our best-of-fit degrees of freedom,

K, and variance, P , from both the log-likelihood metric and relative entropy values
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(a) CASIA IrisV3 Interval (b) BATH

Figure 3.23: Likelihood Imposter distributions for both datasets with best-of-fit chi-
square distributions. CASIA-IrisV3 Interval having K = 4 degrees of freedom and a
fitted variance of P = 106, shown in (a), and BATH having K = 3 degrees of freedom
and a fitted variance of P = 216, shown in (b).

obtained between models. As for the noise variance, N , it is varied to reflect possible

variance values (from little to extremely noisy images), as there is no simple method

in which to find the noise present. Figure 3.24 shows the resulting bound, dependent

on increasing noise variance, for CASIA-IrisV3 Interval (a) and BATH (b) databases

using the fitted log-likelihood histogram values. Figure 3.25 shows similar plots of

the Sphere-Packing Bound, except uses the fitted relative entropy histogram values.

Table 3.3 gives a subset of empirical maximum populations dependent on a given

noise variance present in an iris class.

Looking at the subset of values presented in Table 3.3, given the absolute lowest

value for noise variance, N , the CAISIA-IrisV3 Interval can support a maximum

population of M = 6.40× 104 classes for relative entropy and M = 1.15× 104 classes

for likelihoods, while the BATH database can sustain M = 1.48 × 105 classes for

relative entropy and M = 3.2× 103 classes. Intuitively, since the BATH database is

of higher quality than the CASIA-IrisV3 Interval database, the maximum population
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(a) CASIA˙IrisV3 Interval (b) BATH

Figure 3.24: Sphere Packing Bound for (a) CASIA-IrisV3 Interval and (b) BATH
using the log-likelihood metric.

supported by BATH is significantly higher than that of CASIA-IrisV3 Interval for

the relative entropy fitted values. While increasing the noise present in the classes

themselves, the capacity of the database decreases exponentially. Because of this

decaying maximum population in relation to noise variance, we can directly correlate

the maximum supported population of the database on the images quality (noise)

present within the database itself. Because of this, the bound is also provide a

measurement of image quality, as image quality decreases (noise variance increases)

the maximum population attainable also decreases at a rapid rate.

This bound is also very sensitive on the one-to-one mapping of the iris images

themselves, which is demonstrated in the likelihood bounds for both databases. Since

the best-fitted degrees of freedom, K, for the BATH database is one degree lower than

the CASIA-IrisV3 Interval database, the maximum population is lower by a power

of ten. Fundamentally this makes sense, as the length of the Gaussian codeword in

which each iris is mapped is dependent on the degrees of freedom fitted from the

relative frequencies of each distance metric. Although this bound is not perfect, it

still gives researchers an attainable bound to analyze their iris databases.
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(a) CASIA˙IrisV3 Interval (b) BATH

Figure 3.25: Sphere Packing Bound for (a) CASIA-IrisV3 Interval and (b) BATH
using the relative entropy metric.

Table 3.3: Select Sphere Packing Bound Values based on Noise Variance (N) from
Figure 3.24 and Figure 3.25.

Relative Entropy Likelihoods
Noise V ariance (N) MCASIA MBATH MCASIA MBATH

1 6.40× 104 1.48× 105 1.15× 104 3.2× 103

10 686 1.54× 103 134 107
50 36 74 9 12
100 12 23 4 5
200 5 8 2 2
300 3 5 2 2
400 2 3 2 2
500 2 3 2 2

3.6 Daugman-like Bound

Once again using the best-of-fit chi-square distributions from Section 3.4, the

maximum population of both databases can be evaluated through the use of our de-

veloped Daugman-like bound given in equation 3.21. The maximum population, M ,

is dependent on a fixed recognition error of the system, δ, and the false match rate

(FMR) given a certain relative entropy threshold, T . Similar to Daugman [17], the
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fixed recognition errors are varied at 50%, 10%, 1%, and .1%. To find the FMR,

the cumulatives of the fitted chi-square distribution (χ2
K(T )) for each database, from

equation 3.23, are obtained given the relative entropy values from Figure 3.22. Fig-

ure 3.26 shows the resulting bound for CASIA-IrisV3 Interval and BATH databases

given varying fixed recognition errors. Table 3.4 displays a subset of the maximum

population for each recognition error with increasing relative entropy.

Looking at Table 3.4, the most desirable case would be with a relative entropy

of T = 1 and a recognition error of δ = 0.001, where we have very clean (no noise)

data and our recognition error for the system is extremely low. From this singular

case, we can see that the maximum supported population for CASIA-IrisV3 Interval

is M = 2.43 × 107 and for BATH is M = 1.30 × 108. These results follow with our

observations of the Sphere-Packing bound population, in Section 3.5, where the BATH

database is able to sustain more classes than CASIA-IrisV3 Interval (approx. 20%

more capacity) due to its high image quality. This bound also shows the dependance

of image quality on maximum population and as the relative entropy between two

p.d.f.s of the iris models increases, the maximum population of classes for the database

decreases exponentially. While this low relative entropy seems unattainable, due to

current developments in modern cameras and imaging techniques, a low threshold is

feasible by ensuring that enrollment and authentication data is of the highest quality

using these modern devices.

4.0 Summary

This chapter introduces a new methodology for finding the capacity of an iris

database utilizing its raw data. This methodology leverages two derived distance

metrics, an asymptotic log-likelihood test and the relative entropy between classes’
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(a) Bound for CASIA (b) Bound for BATH

Figure 3.26: Daugman-like Bound for (a) CASIA and (b) BATH datasets.

Table 3.4: Subset of Daugman-like bound maximum population values with fixed
recognition errors (δ) and varying relative entropy metric (T ).

δ = 0.5 δ = 0.1 δ = 0.01 δ = 0.001

T MCASIA MBATH MCASIA MBATH MCASIA MBATH MCASIA MBATH

1 1.68× 1010 8.97× 1010 2.56× 109 1.36× 1010 2.44× 108 1.33× 109 2.43× 107 1.30× 108

10 5.73× 106 3.02× 107 8.71× 105 4.50× 106 8.31× 104 4.38× 105 8.27× 103 4.36× 104

50 1.21× 104 6.12× 104 1.84× 103 2.30× 103 175 886 17 88

100 902 4.32× 103 137 657 13 62 2 6

200 77 335 11 50 2 4 2 2

400 8 31 2 4 2 2 2 2

600 2 8 2 2 2 2 2 2

800 2 3 2 2 2 2 2 2

1000 2 2 2 2 2 2 2 2



Chapter 3: Measuring Iris Uniqueness Based on Autoregressive Model 67

estimated power spectral densities using an Auto-regressive model. Once the distance

between each combination of classes is found, the relative frequencies (histograms)

are fitted with chi-square distributions to establish a one-to-one mapping utilizing

their fitted degrees of freedom and variance. This mapping to a unique Gaussian

codeword for each class allows for the derivation of a Gaussian Sphere-Packing bound

and a Daugman-like bound to evaluate an iris database’s capacity and measure image

quality.

From the bounds presented in Section 3.5 and 3.6, we conclude that the maxi-

mum population is dependent on the image quality present in each database. This is

proved through the observation that the BATH database has a higher capacity than

the CASIA-IrisV3 Interval due to the higher quality of images present. With more

advanced acquisition techniques and state-of-the art signal processing techniques to

improving data quality, the upper bounds presented are feasible for researchers. In

conclusion, this proposed methodology allows researchers to find the sustainable max-

imum population of their iris database and measure their image quality.



Chapter 4

Proposed Future Work

While this thesis presents two new methodologies to find iris uniqueness, there

are additional investigations to be performed within the work itself and future explo-

rations for an extension of this work. This section provides ideas for future work for

researchers motivated to continue measuring biometric uniqueness.

Implementation of a one-to-one mapping: The next direction of future work

would be to implement a one-to-one mapping in both Chapters 2 and 3. In both works,

we represent a single iris based on the fitted imposter distributions degrees-of-freedom;

however, we do not implement this step practically to find the actual supported

maximum population. To achieve this, new and classical channel encoding techniques,

such as auto-encoders or a neural network, should be explored and implemented in

our methodologies.

Types of vectorization: In the second methodology presented, in Chapter 3, we

implemented a ZigZag vectorization to unwrap our iris data from 2D to 1D vector. We

also analyzed the effects that traditional row-by-row vectorization had on performance

in Section 3.3.3. Because only two types of vectorization were explored, other methods

should be analyzed and the performance of measuring uniqueness should be evaluated.
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Looking at different codes: While Chapter 2 focuses on Daugman’s encoding

technique to generate his IrisCode, the research of different encoding techniques used

in practice today was not explored. Other encoding algorithms are likely to produce

a different number of degrees of freedom. Because of this, the theory presented in

Chapter 2 can be applied to current iris encoding techniques.

Looking at measuring uniqueness of different biometrics: The method-

ology presented in Chapter3 may apply to different biometrics, such as the face,

fingerprint, palm print, etc. Because of this, the procedure presented in Chapter 3

can be implemented on different databases. When measuring the uniqueness of dif-

ferent biometrics, the extension would be to combine the biometric modalities that

provide the most unique information for each subject and use these modalities in a

multi-modal biometric recognition system.

Extension into security: Since the motivator for measuring the uniqueness of a

biometric is security-related, this provides a natural extension into biometric security.

All the future work ideas presented above have security implications. For example,

when providing a one-to-one encoding for each iris, we can also include encryption,

such that each person has their unique identifier, and use this newly developed code

for identification.
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Related Publications
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