277 research outputs found

    Direction finding and mutual coupling estimation for uniform rectangular arrays

    Get PDF
    A novel two-dimensional (2-D) direct-of-arrival (DOA) and mutual coupling coefficients estimation algorithm for uniform rectangular arrays (URAs) is proposed. A general mutual coupling model is first built based on banded symmetric Toeplitz matrices, and then it is proved that the steering vector of a URA in the presence of mutual coupling has a similar form to that of a uniform linear array (ULA). The 2-D DOA estimation problem can be solved using the rank-reduction method. With the obtained DOA information, we can further estimate the mutual coupling coefficients. A better performance is achieved by our proposed algorithm than those auxiliary sensor-based ones, as verified by simulation results

    Sensor Array Signal Processing via Eigenanalysis of Matrix Pencils Composed of Data Derived from Translationally Invariant Subarrays

    Get PDF
    An algorithm is developed for estimating characteristic parameters associated with a scene of radiating sources given the data derived from a pair of translationally invariant arrays, the X and Y arrays, which are displaced relative to one another. The algorithm is referred to as PR O—E SPRIT and is predicated on invoking two recent mathematical developments: (1) the SVD based solution to the Procrustes problem of optimally approximating an invariant subspace rotation and (2) the Total Least Squares method for perturbing each of the two estimates of a common subspace in a minimal fashion until the two perturbed spaces are the same. For uniform linear array scenarios, the use of forward-backward averaging (FBAVG) in conjunction with PR O—E S PR IT is shown to effect a substantial reduction in the computational burden, a significant improvement in performance, a simple scheme for estimating the number of sources and source decorrelation. These gains may be attributed to FBAVG’s judicious exploitation of the diagonal invariance operator relating the Direction of Arrival matrix of the Y array to that associated with the X array. Similar gains may be achieved in the case where the X and Y arrays are either not linear or not uniformly spaced through the use of pseudo-forward-backward averaging (PFBAVG). However, the use of PFBAVG does not effect source decorrelation and reduces the maximum number of resolvable sources by a factor of two. Simulation studies and the results of applying PR O—E S PR IT to real data demonstrate the excellent performance of the method

    Mutual Coupling in Phased Arrays: A Review

    Get PDF
    The mutual coupling between antenna elements affects the antenna parameters like terminal impedances, reflection coefficients and hence the antenna array performance in terms of radiation characteristics, output signal-to-interference noise ratio (SINR), and radar cross section (RCS). This coupling effect is also known to directly or indirectly influence the steady state and transient response, the resolution capability, interference rejection, and direction-of-arrival (DOA) estimation competence of the array. Researchers have proposed several techniques and designs for optimal performance of phased array in a given signal environment, counteracting the coupling effect. This paper presents a comprehensive review of the methods that model and mitigate the mutual coupling effect for different types of arrays. The parameters that get affected due to the presence of coupling thereby degrading the array performance are discussed. The techniques for optimization of the antenna characteristics in the presence of coupling are also included

    A room acoustics measurement system using non-invasive microphone arrays

    Get PDF
    This thesis summarises research into adaptive room correction for small rooms and pre-recorded material, for example music of films. A measurement system to predict the sound at a remote location within a room, without a microphone at that location was investigated. This would allow the sound within a room to be adaptively manipulated to ensure that all listeners received optimum sound, therefore increasing their enjoyment. The solution presented used small microphone arrays, mounted on the room's walls. A unique geometry and processing system was designed, incorporating three processing stages, temporal, spatial and spectral. The temporal processing identifies individual reflection arrival times from the recorded data. Spatial processing estimates the angles of arrival of the reflections so that the three-dimensional coordinates of the reflections' origin can be calculated. The spectral processing then estimates the frequency response of the reflection. These estimates allow a mathematical model of the room to be calculated, based on the acoustic measurements made in the actual room. The model can then be used to predict the sound at different locations within the room. A simulated model of a room was produced to allow fast development of algorithms. Measurements in real rooms were then conducted and analysed to verify the theoretical models developed and to aid further development of the system. Results from these measurements and simulations, for each processing stage are presented

    Cyclic Prefix-Free MC-CDMA Arrayed MIMO Communication Systems

    No full text
    The objective of this thesis is to investigate MC-CDMA MIMO systems where the antenna array geometry is taken into consideration. In most MC-CDMA systems, cyclic pre xes, which reduce the spectral e¢ ciency, are used. In order to improve the spectral efficiency, this research study is focused on cyclic pre x- free MC-CDMA MIMO architectures. Initially, space-time wireless channel models are developed by considering the spatio-temporal mechanisms of the radio channel, such as multipath propaga- tion. The spatio-temporal channel models are based on the concept of the array manifold vector, which enables the parametric modelling of the channel. The array manifold vector is extended to the multi-carrier space-time array (MC-STAR) manifold matrix which enables the use of spatio-temporal signal processing techniques. Based on the modelling, a new cyclic pre x-free MC- CDMA arrayed MIMO communication system is proposed and its performance is compared with a representative existing system. Furthermore, a MUSIC-type algorithm is then developed for the estimation of the channel parameters of the received signal. This proposed cyclic pre x-free MC-CDMA arrayed MIMO system is then extended to consider the effects of spatial diffusion in the wireless channel. Spatial diffusion is an important channel impairment which is often ignored and the failure to consider such effects leads to less than satisfactory performance. A subspace-based approach is proposed for the estimation of the channel parameters and spatial spread and reception of the desired signal. Finally, the problem of joint optimization of the transmit and receive beam- forming weights in the downlink of a cyclic pre x-free MC-CDMA arrayed MIMO communication system is investigated. A subcarrier-cooperative approach is used for the transmit beamforming so that there is greater flexibility in the allocation of channel symbols. The resulting optimization problem, with a per-antenna transmit power constraint, is solved by the Lagrange multiplier method and an iterative algorithm is proposed

    Sparse Array Architectures for Wireless Communication and Radar Applications

    Get PDF
    This thesis focuses on sparse array architectures for the next generation of wireless communication, known as fifth-generation (5G), and automotive radar direction-of-arrival (DOA) estimation. For both applications, array spatial resolution plays a critical role to better distinguish multiple users/sources. Two novel base station antenna (BSA) configurations and a new sparse MIMO radar, which both outperform their conventional counterparts, are proposed.\ua0We first develop a multi-user (MU) multiple-input multiple-output (MIMO) simulation platform which incorporates both antenna and channel effects based on standard network theory. The combined transmitter-channel-receiver is modeled by cascading Z-matrices to interrelate the port voltages/currents to one another in the linear network model. The herein formulated channel matrix includes physical antenna and channel effects and thus enables us to compute the actual port powers. This is in contrast with the assumptions of isotropic radiators without mutual coupling effects which are commonly being used in the Wireless Community.\ua0Since it is observed in our model that the sum-rate of a MU-MIMO system can be adversely affected by antenna gain pattern variations, a novel BSA configuration is proposed by combining field-of-view (FOV) sectorization, array panelization and array sparsification. A multi-panel BSA, equipped with sparse arrays in each panel, is presented with the aim of reducing the implementation complexities and maintaining or even improving the sum-rate.\ua0We also propose a capacity-driven array synthesis in the presence of mutual coupling for a MU-MIMO system. We show that the appearance of\ua0grating lobes is degrading the system capacity and cannot be disregarded in a MU communication, where space division\ua0multiple access (SDMA) is applied. With the aid of sparsity and aperiodicity, the adverse effects of grating lobes and mutual coupling\ua0are suppressed and capacity is enhanced. This is performed by proposing a two-phase optimization. In Phase I, the problem\ua0is relaxed to a convex optimization by ignoring the mutual coupling and weakening the constraints. The solution of Phase I\ua0is used as the initial guess for the genetic algorithm (GA) in phase II, where the mutual coupling is taken into account. The\ua0proposed hybrid algorithm outperforms the conventional GA with random initialization.\ua0A novel sparse MIMO radar is presented for high-resolution single snapshot DOA estimation. Both transmit and receive arrays are divided into two uniform arrays with increased inter-element spacings to generate two uniform sparse virtual arrays. Since virtual arrays are uniform, conventional spatial smoothing can be applied for temporal correlation suppression among sources. Afterwards, the spatially smoothed virtual arrays satisfy the co-primality concept to avoid DOA ambiguities. Physical antenna effects are incorporated in the received signal model and their effects on the DOA estimation performance are investigated

    Ein Beitrag zur effizienten Richtungsschätzung mittels Antennenarrays

    Get PDF
    Sicherlich gibt es nicht den einen Algorithmus zur Schätzung der Einfallsrichtung elektromagnetischer Wellen. Statt dessen existieren Algorithmen, die darauf optimiert sind Hunderte Pfade zu finden, mit uniformen linearen oder kreisförmigen Antennen-Arrays genutzt zu werden oder möglichst schnell zu sein. Die vorliegende Dissertation befasst sich mit letzterer Art. Wir beschränken uns jedoch nicht auf den reinen Algorithmus zur Richtungsschätzung (RS), sondern gehen das Problem in verschiedener Hinsicht an. Die erste Herangehensweise befasst sich mit der Beschreibung der Array-Mannigfaltigkeit (AM). Bisherige Interpolationsverfahren der AM berücksichtigen nicht inhärent Polarisation. Daher wird separat für jede Polarisation einzeln interpoliert. Wir übernehmen den Ansatz, eine diskrete zweidimensionale Fouriertransformation (FT) zur Interpolation zu nutzen. Jedoch verschieben wir das Problem in den Raum der Quaternionen. Dort wenden wir eine zweidimensionale diskrete quaternionische FT an. Somit können beide Polarisationszustände als eine einzige Größe betrachtet werden. Das sich ergebende Signalmodell ist im Wesentlichen kompatibel mit dem herkömmlichen komplexwertigen Modell. Unsere zweite Herangehensweise zielt auf die fundamentale Eignung eines Antennen-Arrays für die RS ab. Zu diesem Zweck nutzen wir die deterministische Cramér-Rao-Schranke (Cramér-Rao Lower Bound, CRLB). Wir leiten drei verschiedene CRLBs ab, die Polarisationszustände entweder gar nicht oder als gewünschte oder störende Parameter betrachten. Darüber hinaus zeigen wir auf, wie Antennen-Arrays schon während der Design-Phase auf RS optimiert werden können. Der eigentliche Algorithmus zur RS stellt die letzte Herangehensweise dar. Mittels einer MUSIC-basierte Kostenfunktion leiten wir effiziente Schätzer ab. Hierfür kommt eine modifizierte Levenberg- bzw. Levenberg-Marquardt-Suche zum Einsatz. Da die eigentliche Kostenfunktion hier nicht angewendet werden kann, ersetzen wir diese durch vier verschiedene Funktionen, die sich lokal ähnlich verhalten. Diese Funktionen beruhen auf einer Linearisierung eines Kroneckerproduktes zweier polarimetrischer Array-Steering-Vektoren. Dabei stellt sich heraus, dass zumindest eine der Funktionen in der Regel zu sehr schneller Konvergenz führt, sodass ein echtzeitfähiger Algorithmus entsteht.It is save to say that there is no such thing as the direction finding (DF) algorithm. Rather, there are algorithms that are tuned to resolve hundreds of paths, algorithms that are designed for uniform linear arrays or uniform circular arrays, and algorithms that strive for efficiency. The doctoral thesis at hand deals with the latter type of algorithms. However, the approach taken does not only incorporate the actual DF algorithm but approaches the problem from different perspectives. The first perspective concerns the description of the array manifold. Current interpolation schemes have no notion of polarization. Hence, the array manifold interpolation is performed separately for each state of polarization. In this thesis, we adopted the idea of interpolation via a 2-D discrete Fourier transform. However, we transform the problem into the quaternionic domain. Here, a 2-D discrete quaternionic Fourier transform is applied. Hence, both states of polarization can be viewed as a single quantity. The resulting interpolation is applied to a signal model which is essentially compatible to conventional complex model. The second perspective in this thesis is to look at the fundamental DF capability of an antenna array. For that, we use the deterministic Cramér-Rao Lower Bound (CRLB). We point out the differences between not considering polarimetric parameters and taking them as desired parameters or nuisance parameters. Such differences lead to three different CRLBs. Moreover, insight is given how a CRLB can be used to optimize an antenna array already during the design process to improve its DF performance. The actual DF algorithm constitutes the third perspective that is considered in this thesis. A MUSIC-based cost function is used to derive efficient estimators. To this end, a modified Levenberg search and Levenberg-Marquardt search are employed. Since the original cost function is not eligible to be used in this framework, we replace it by four different functions that locally show the same behavior. These functions are based on a linearization of Kronecker products of two polarimetric array steering vectors. It turns out that at least one of these functions usually exhibits very fast convergence leading to real-time capable algorithms
    corecore