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Abstract

A novel two-dimensional (2-D) direct-of-arrival (DOA) and mutual coupling

coefficients estimation algorithm for uniform rectangular arrays (URAs) is

proposed. A general mutual coupling model is first built based on banded

symmetric Toeplitz matrices, and then it is proved that the steering vector

of a URA in the presence of mutual coupling has a similar form to that of a

uniform linear array (ULA). The 2-D DOA estimation problem can be solved

using the rank-reduction method. With the obtained DOA information, we

can further estimate the mutual coupling coefficients. A better performance

is achieved by our proposed algorithm than those auxiliary sensor-based ones,

as verified by simulation results.

Keywords:

Direction of arrival estimation, mutual coupling, uniform rectangular array,

rank-reduction

∗Corresponding author
Email addresses: tjuwuhan@tju.edu.cn (Han Wu), hcp@tju.edu.cn (Chunping

Hou), dkchenhua@tju.edu.cn (Hua Chen), w.liu@sheffield.ac.uk (Wei Liu ),
wqelaine@tju.edu.cn (Qing Wang)

Preprint submitted to Signal Processing April 14, 2015



1. Introduction

Direction of arrival (DOA) estimation for two-dimensional (2-D) arrays is

an important area of array signal processing and has received much attention

in past years [1]. The well-known multiple signal classification (MUSIC) al-

gorithm can be applied directly for 2-D estimation [2], but its computational

complexity is very high due to the required 2-D spectral search. On the other

hand, the UCA-ESPRIT and 2-D Unitary ESPRIT algorithms can pair the

azimuth and elevation angles belonging to the same source automatically

without 2-D spectral searching or iterative optimization procedures [3, 4]. In

[5], a polynomial root-finding-based method was proposed using two parallel

ULAs, by decoupling the 2-D problem into two 1-D problems to reduce the

computational complexity. Another computationally efficient method was

proposed in [6], where the propagator method in [7] was employed based on

two parallel ULAs. However, this method requires pair matching between

the 2-D azimuth and elevation estimation results and may not work effec-

tively for some situations. To overcome the problem in [6], an L-shaped array

was employed instead in [8]. Based on such an L-shaped geometry, a 1-D

searching algorithm without the need of pair matching was proposed in [9].

while the subspace-based algorithm in [10] requires neither constructing the

correlation matrix of the received data nor performing singular value decom-

position (SVD) of the correlation matrix and utilizes the conjugate symmetry

property to enlarge the effective array aperture. Another computationally

efficient algorithm for URA was proposed in [11], where the complex-valued

covariance matrix and the complex-valued search vector are transformed into
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real-valued ones, and the 2-D problem is decoupled into two 1-D problems

with real-valued computations.

However, for the above algorithms and methods to work, it is normally as-

sumed that the exact array manifold is known in advance, which may not be

practical in many applications due to the effect of mutual coupling. Similar

to the 1-D case, the effect of unknown mutual coupling can cause severe per-

formance degradation in 2-D DOA estimation [12, 13]. As a result, some 2-D

array calibration algorithms have been proposed. In [14], azimuth estima-

tion is decoupled from elevation estimation and can be performed without the

knowledge of mutual coupling, while for elevation estimation, a 1-D param-

eter search is performed and the elevation-dependent mutual coupling effect

can be compensated effectively. In [15], a rank-reduction (RARE) algorithm

for UCA was proposed based on the special structure of the coupling matrix

considered in [16] and the result derived in [17]. In [18], two mutual coupling

calibration methods were provided for uniform hexagon arrays (UHAs), one

of which is also based on the method in [16], while the other is implemented

by setting some auxiliary sensors. In [19], the mutual coupling model was ex-

tended to L-shaped arrays, where the mutual coupling effect is compensated

using the outputs of properly chosen sensors and a rank-reduction propaga-

tor method is developed for joint estimation of both azimuth and elevation

angles to avoid parameter pairing and 2D spectral search. To mitigate the

effect of mutual coupling, the algorithm in [20] set the sensors on the ar-

ray boundary to be auxiliary ones. The subarray’s output and size are used

to calculate the noise subspace and steering vector. The procedure of this

algorithm is similar to the 2-D MUSIC algorithm. It obtains the DOAs
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through 2-D spectral searching by exploiting the orthogonality between the

noise subspace and steering vector.

The auxiliary sensor-based algorithms, although effective in the presence

of mutual coupling, share the common drawback that the effective aperture

of the array is reduced. When considering mutual coupling between sensors

farther apart, a larger number of auxiliary sensors are needed, which in turn

reduces the number of sensors available for DOA estimation, since the total

number of sensors is fixed. Therefore, the performance of these algorithms

will deteriorate significantly when the size of original array is small or the

mutual coupling effect is strong.

In this paper, we construct a general mutual coupling model for URAs

using banded symmetric Toeplitz matrices and based on this model, we prove

that the steering vector of such an URA in the presence of mutual coupling

has a similar form to that of ULA using the method proposed in [21]; then,

the rank-reduction method is introduced to estimate the azimuth and ele-

vation angles, which are then used to obtain the unknown mutual coupling

coefficients. As shown in our simulation results, the proposed algorithm can

achieve a better performance than auxiliary sensor-based ones since it em-

ploys the full array aperture for DOA estimation.

The rest of this paper is organized as follows. In section 2, the signal

model in the presence of mutual coupling is introduced. The proposed DOA

and mutual coupling coefficients estimation algorithm is presented with de-

tailed analysis of the steering vector in section 3. Simulation results are given

in section 4 and conclusions are drawn in section 5.
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Fig. 1: Geometry of an URA with M ×N sensors)

Notations

(·)T, (·)H and (·)+ represent transpose, conjugate transpose and pseudo-

inverse of a matrix or vector, respectively. [·]p,q denotes the element at pth

row and qth column of a matrix, and ⊗ denotes the Kronecker product.

2. Problem Formulation with banded symmetric Toeplitz mutual

coupling matrix

Consider K far-field narrowband signals sk (t), k = 1, 2, · · · , K with iden-

tical wavelength λ impinge on an URA of M × N omnidirectional sensors

spaced by dx in the x-axis direction and dy in the y-axis direction, as shown

in Fig. 1. The direction of arrival of the kth signal is denoted by (θk, ϕk),

where θk and ϕk are the azimuth and elevation angles, respectively. The

received data vector x(t) of the array at sample t can be expressed as

x(t) = As(t) + n(t) (1)
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where x(t) = [x1(t), · · · , xN(t), xN+1(t), · · · , x2N(t), · · · , xMN(t)]
T holding

the MN received array signals, A = [a(θ1, ϕ1), a(θ2, ϕ2), · · · , a(θK , ϕK)]
T is

the array manifold matrix, s(t) = [s1(t), s2(t), · · · , sK(t)]
T is the source signal

vector and n(t) = [n1(t), · · · , nN(t), nN+1(t), · · · , n2N(t), · · · , nMN(t)]
T is the

additive white Gaussian noise vector. The steering vector a (θk, ϕk) can be

modeled as

a (θk, ϕk) = ay (θk, ϕk)⊗ ax (θk, ϕk) (2)

where

ay (θk, ϕk) = [1, βy (θk, ϕk) , · · · βy
M−1 (θk, ϕk)]

T (3)

ax (θk, ϕk) = [1, βx (θk, ϕk) , · · · βx
N−1 (θk, ϕk)]

T (4)

with

βy (θk, ϕk) = exp{j2πλ−1dy sin (θk) sin (ϕk)} (5)

βx (θk, ϕk) = exp{j2πλ−1dx cos (θk) sin (ϕk)} (6)

For simplified notation, the pair of angles (θ, ϕ) is omitted in the following

when not causing any confusion.

Considering the effect of mutual coupling, (1) should be modified as

x(t) = CAs(t) + n(t) (7)

where C denotes the mutual coupling matrix (MCM). As indicated in [16, 20,

22], the coupling between neighboring sensors with the same inter-element

spacing is almost the same, while the magnitude of mutual coupling coef-

ficients between two far apart elements would be so small that this effect

can be ignored. Therefore, the mutual coupling of ULA can be modeled

as a banded symmetric Toeplitz matrix. In [20], this model was extended
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Fig. 2: The mutual coupling model for URAs with P = n+ 1.

to URAs assuming that each sensor is only affected by the 8 immediately

surrounding sensors, and no general mutual coupling model is given. In this

section, we will build a general mutual coupling model for URAs. First, we

define a parameter P as mutual coupling length for URA, which means for

each sensor, we only consider the mutual coupling effect caused by sensors

on the 1st, 2nd, · · · , (P -1)th rectangular grid around it. This definition is

illustrated in Fig. 2 with P = n+ 1. Then the MCM can be expressed as a

block matrix

C =




















C1 C2 · · · CP

C2 C1 C2
. . .

...
. . . . . . . . . . . .

CP C2 C1 C2 CP

. . . . . . . . . . . .
...

. . . C2 C1 C2

CP · · · C2 C1




















(8)
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where C is an MN × MN matrix and Ci(i = 1, 2, · · · , P ) are N × N sub-

matrices, where

Ci =

















ci−1,0 ci−1,1 · · · ci−1,P−1

ci−1,1 ci−1,0 ci−1,1
. . .

... ci−1,1 ci−1,0
. . . ci−1,P−1

ci−1,P−1
. . . . . . ci−1,1

...
. . . ci−1,1 ci−1,0 ci−1,1

ci−1,P−1 · · · ci−1,1 ci−1,0

















(9)

The coefficients ci,j denotes the mutual coupling from the sensor located

at (±i,±j), i ̸= 0, j ̸= 0, where (±i,±j) denotes the coordinate of the sensor

in Fig. 2. Especially, we define c0,0 = 1.

The covariance matrix of x(t) is

Rx = E[x(t)xH(t)] = CARsA
HCH + σ2I (10)

where Rs = E[s(t)sH(t)] is the signal covariance matrix. In practice, Rx can

be approximated by

Rx ≈
1

L

L∑

t=1

x(t)xH(t) (11)

where L is the number of data snapshots available. Then the eigendecompo-

sition of Rx is

Rx = EsΣsE
H
s + EnΣnE

H
n (12)

where Es and En are the signal subspace and noise subspace, respectively.

Σs = diag(λ1,λ2, · · · ,λK) and Σn = diag(λK+1,λK+2 · · · ,λMN) are diagonal

matrices, withλ1 ≥ λ2 ≥ · · · ≥ λK > λK+1 = · · · = λMN = σ2 being the

corresponding eigenvalues of Rx.
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3. The Proposed Algorithm

Since the MCM of a URA and its submatrices share the same structure

of banded symmetric Toeplitz matrix, the parameterization method for the

steering vector, which was originally proposed in [21] for a ULA, can be

extended to the URA case.

The steering vector of the URA with mutual coupling is given by

ac = Ca (13)

It is difficult to find the exact form of ac from (13) since C is a block matrix.

So we first decompose C into the following form

C = IM ⊗C1 +
P∑

i=2

Ji−1 ⊗Ci (14)

where IM is an M × M identity matrix. Ji−1 is an M × M matrix, whose

elements are

[Ji−1]p,q =







1, |p− q| = i− 1

0, otherwise
(15)

Substituting (2) and (14) into (13), the steering vector can now be expressed

as

ac =

(

IM ⊗C1 +
P∑

i=2

Ji−1 ⊗Ci

)

(ay ⊗ ax)

= (IM ⊗C1) (ay ⊗ ax) +

(
P∑

i=2

Ji−1 ⊗Ci

)

(ay ⊗ ax)

= IMay ⊗C1ax +
P∑

i=2

(Ji−1ay ⊗Ciax)

(16)

Note that ax and ay have exactly the same form as the steering vector of

a ULA, and Ci(i = 1, 2, · · · , P ) also the same form as the MCM of a ULA.

Moreover, IM and Ji−1 can be regarded as special cases of Ci.
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According to [21], we can express Ciax as

Ciax = Txαxi (17)

where

Tx =























1

βx 0

. . .

βP−1
x

...

βN−P
x

0
. . .

βN−1
x























(18)

and αx,i (i = 1, 2, · · · , P ) is a (2P − 1)-element column vector related to mu-

tual coupling coefficients.

αx,i =





















ξ1,i
...

ξP−1,i

ci−1,0 +
P−1∑

l=1

ci−1,l

(
βl
x + β−l

x

)

µ1,i

...

µP−1,i





















(19)

where ξn,i = ci−1,0 +
n−1∑

l=1

ci−1,lβ
−l
x +

P−1∑

l=1

ci−1,lβ
l
x (n = 1, 2, · · · , P ) and µn,i =

ci−1,0 +
P−1∑

l=1

ci−1,lβ
−l
x +

P−1−n∑

l=1

ci−1,lβ
l
x (n = 1, 2, · · · , P ).
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Define ηn as an n-element column vector of ones

ηn =



1, 1, · · · , 1, 1
︸ ︷︷ ︸

n





T

(20)

When i = 1

αx,1 = η2P−1 + F′c′0 (21)

where

[F′]p,q =







β−q
x + βq

x, q + 1 ≤ p ≤ 2P − q − 1

βq
x, p < q + 1

β−q
x , p > 2P − q − 1

(22)

c′0 = [c0,1, c0,2, · · · , c0,P−1]
T (23)

When i > 1

αx,i = Fci−1 (24)

where

F = [η2P−1,F
′] (25)

ci−1 = [ci−1,0, ci−1,1, · · · , ci−1,P−1]
T (26)

Similar to (17), we also have

IMay = Tyαy1 (27)

Ji−1ay = Tyαyi (28)
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where

Ty =























1

βy 0

. . .

βP−1
y

...

βM−P
y

0
. . .

βM−1
y























(29)

and αy,i (i = 1, 2, · · · , P ) is a (2P − 1)-element column vector independent

of the mutual coupling coefficients. When i = 1

αy,1 = η2P−1 (30)

When i > 1, the pth element of αy,i is

[αy,i]p =







β
−(i−1)
y + βi−1

y , i ≤ p ≤ 2P − i

βi−1
y , p < i

β
−(i−1)
y , p > 2P − i

(31)

Substituting (17), (27) and (28), (16) can be further modified as

ac = Tyαy1 ⊗Txαx1 +
P∑

i=2

(Tyαyi ⊗Txαxi)

= (Ty ⊗Tx) (αy1 ⊗αx1) +
P∑

i=2

(Ty ⊗Tx) (αyi ⊗αxi)

= Tα1 +
P∑

i=2

Tαi

= Tα

(32)

where T = Ty ⊗Tx, αi = αy,i ⊗αx,i (i = 1, 2, · · · , P ), α = α1 +
P∑

i=2

αi
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Now we can see that the steering vector of a URA in the presence of

mutual coupling has a similar form as that of a ULA, which indicates that the

DOA estimation methods developed in [21] based on ULAs can be extended

to the URA case. In the next subsections we will show how to perform this

extension and also use the estimated DOA information to obtain the mutual

coupling coefficients.

3.1. DOA estimation

According to the subspace principle, the noise subspace is orthogonal to

the steering vectors, i.e.

aH
c EnE

H
n ac = 0. (33)

From (32), we have derived the result ac = Tα. Then substituting it into

(33), we can obtain the following result directly

αHTHEnE
H
nTα = 0. (34)

Now define a (2P − 1)2 × (2P − 1)2 matrix M (θ, ϕ)

M (θ, ϕ)
∆
= THEnE

H
nT (35)

Note that if

(2P − 1)2 ≤ MN −K (36)

then, in general, M (θ, ϕ) is of full rank because in this case, the column rank

of En is not less than (2P − 1)2. Therefore, (34) holds true only if M (θ, ϕ)

drops rank so that

rank{M (θ, ϕ)} < (2P − 1)2 (37)

Since the covariance matrix of x(t) is obtained from a finite number of sam-

ples, the reduction of the rank of M (θ, ϕ) can roughly be replaced by the
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minimum of the determinant of M (θ, ϕ), which indicates that (θ, ϕ) coin-

cides with one of the signal’s DOAs, i.e., (θ, ϕ) = (θk, ϕk) , k = 1, 2, · · · , K.

Therefore, the DOA estimation results can be found from the K highest

peaks of the following function

P (θ, ϕ) =
1

det {M (θ, ϕ)}
, (38)

where det {·} denotes the determinant of a matrix.

3.2. Mutual coupling coefficients estimation

With the estimated DOA information from (38), we can then proceed to

estimate the mutual coupling coefficients. Using the kth pair of estimated

DOAs, i.e.,
(

θ̂k, ϕ̂k

)

, we have

E
H

nT(θ̂k, ϕ̂k)α(θ̂k, ϕ̂k) = 0. (39)

From (21), (24), (30), α can be expressed as

α = η(2P−1)2 + η2P−1 ⊗ F′c′0 +
P∑

i=2

αy,i ⊗ Fci−1 (40)

or

α = η(2P−1)2 +Gc (41)

where

G = [η2P−1 ⊗ F′, [αy,2, · · · ,αy,P ]⊗ F] (42)

c = [c′0, c1, · · · , cP−1]
T

(43)

Substituting (41) into (39)

EH
nT

(

η(2P−1)2 +Gc
)

= 0 (44)

14



Define F
∆
= EH

nTG, Z
∆
= −EH

nTη(2P−1)2 and construct two matrices F̄
∆
=

[FT
1 ,F

T
2 , · · ·F

T
K ]

T and Z̄
∆
= [ZT

1 ,Z
T
2 , · · ·Z

T
K ]

T, where Fk and Zk denote the F

and Z obtained using the kth pair of estimated DOAs. Then the unknown

mutual coupling coefficients can be obtained by

c = F̄+Z̄. (45)

Now the paired angle parameter
(

θ̂k, ϕ̂k

)

as well as the mutual coupling

coefficients have been estimated. The proposed algorithm mentioned above

is summarized with the flow chart shown in Fig. 3.

3.3. Computational complexity analysis

To estimate the sample covariance matrix, a computational complex-

ity of O
(
(MN)2L

)
is needed. The eigendecomposition operation has a

computational complexity of O
(
(MN)3

)
. For 2-D spectral searching, at

each DOA sampling point, the matrix T, M, and det{M} should be calcu-

lated, which are associated with a complexity of O (MN), O(MN(MN −

K)(2P − 1)2+(MN − K)(2P − 1)4), and O
(
(MN)3

)
, respectively. There-

fore, the complexity for the whole 2-D spectral searching process isO(n(MN+

MN(MN−K)(2P − 1)2+(MN−K)(2P − 1)4+(MN)3)), where n =
(
360◦

∆

)2

is the number of sampling points, with ∆ being the scanning interval, which

is also the accuracy of estimated angles. As an example, for ∆ = 0.1◦,

we have n = 36002. To reduce the computational complexity, we have

adopted the two-level searching method in [20] in our simulations. In the

first round of searching, we find each pair of angles (θk, ϕk) with an interval

of ∆ = 1◦. In the second round, we search in the range of (θk − 1◦, ϕk − 1◦)

15
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Fig. 3: The flow chart of the proposed algorithm.

to (θk + 1◦, ϕk + 1◦) with an interval of 0.1◦. As a result, the number of sam-

pling points is reduced significantly without affecting much of the estimation

accuracy.
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Now we analyze the complexity for mutual coupling estimation. To

obtain F̄ and Z̄, the total computational complexity is O(K(MN(MN −

K)(2P − 1)2+(MN−K)(2P − 1)3)). The pseudo inverse of F̄ costsO(K3(MN −K)3).

It needs O(K(MN−K)(2P−1)) to calculate the coefficients in the last step.

4. Simulation Results

In this section, simulation results are provided to demonstrate the perfor-

mance of the proposed algorithm. For all simulations, 4 uncorrelated signals

with the same frequency and power of σ2
s from the directions (θ1 = 28◦, ϕ1 = 41◦),

(θ2 = 40◦, ϕ2 = 20◦), (θ3 = 54◦, ϕ3 = 66◦) and (θ4 = 74◦, ϕ4 = 35◦) are con-

sidered. The URA has M = 10 rows and N = 10 columns. Both dx and dy

are half wavelength. The power of additive white Gaussian noise is σ2
n and

the signal-to-noise ratio (SNR) is defined as SNR = 10log10(σ
2
s/σ

2
n). We use

root mean square error (RMSE) to evaluate the effectiveness of our algorithm

and 100 Monte Carlo simulations are performed to obain the averaged result.

The RMSE of estimated angles is defined as

RMSE =

√
√
√
√ 1

NmcK

Nmc∑

i=1

K∑

k=1

∣
∣
∣

(

θ̂ik, ϕ̂ik

)

− (θk, ϕk)
∣
∣
∣

2

(46)

where Nmc denotes the number of Monte Carlo simulations, and
(

θ̂ik, ϕ̂ik

)

is the estimated (θk, ϕk) in the ith Monte Carlo simulation. The RMSE of

estimated coefficients is defined as

RMSE =

√
√
√
√ 1

Nmc ∥c∥
2
2

Nmc∑

i=1

∥ĉi − c∥22 (47)

where c is defined in (43), and ĉi is the estimated c in the ith Monte Carlo

simulation. ∥·∥2 denotes the Euclidean norm.
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Fig. 4: RMSE of estimated angles versus SNR.

In the first three sets of simulations, we set P = 2, i.e. there are 3

mutual coupling coefficients to estimate and the following values are used

c0,1 = c1,0 = 0.3527 + 0.4854j and c1,1 = 0.0927− 0.2853j.

4.1. Performance versus SNR

First, the performance of the proposed algorithm is studied with a varying

SNR from -5dB to 15dB. The number of data samples is 500. The results are

shown in Fig. 4, where for comparison, those obtained by the algorithm in

[20], 2-D MUSIC with unknown mutual coupling, 2-D MUSIC with known

mutual coupling, and CRB (Cramer-Rao bound) in [20] are also provided.

It can be seen that the 2-D MUSIC with known mutual coupling provides

the best result, while our proposed algorithm has reached a better result

than the one in [20]. As expected, the 2-D MUSIC with unknown mutual

coupling does not work in this context. The RMSE curve of the estimated

mutual coupling coefficients are shown in Fig. 5, where the algorithm in [20]
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Fig. 5: RMSE of estimated mutual coupling coefficients versus SNR.

and our proposed one have an almost identical performance and both have

worked effectively.

4.2. Performance versus snapshots

In this set of simulations, we fix the SNR to 0dB and study the perfor-

mance of the algorithms with a varying snapshot number from 100 to 1000.

The RMSE result for angle estimation is shown in Fig. 6, while the result for

mutual coupling coefficients estimation is shown in Fig. 7. Similar observa-

tions can be made as in the varying SNR case in Section 4.1. Our proposed

algorithm has a better performance than the one in [20] for DOA estimation

and almost the same performance for mutual coupling coefficients estimation.
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Fig. 6: RMSE of estimated angles versus snapshots.

100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

snapshots

R
M

S
E

 

 

algorithm in [20]
proposed algorithm
CRB

Fig. 7: RMSE of estimated mutual coupling coefficients versus snapshots.

4.3. Performance versus size of array

Now we study the effect of array size change on the performance. M and

N are assigned the same value and vary from 6 to 15. The SNR is fixed at

20
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Fig. 8: RMSE of estimated angles versus number of rows(columns).

0dB and the number of snapshot is 500. Fig. 8 shows the RMSE of estimated

angles obtained by the algorithm in [20] and the proposed one. It can be seen

that the superiority of our proposed algorithm is more significant when the

size of array is small.

4.4. Performance under strong mutual coupling

Finally, we consider a scenario with strong mutual coupling and the length

is chosen to be P = 3, i.e. each sensor is affected by 24 surrounding sensors

and eight mutual coupling coefficients are needed, which are c0,1 = c1,0 =

0.7527 + 0.4854j, c1,1 = 0.5211 + 0.3250j, c0,2 = c2,0 = 0.2825 + 0.2801j,

c1,2 = c2,1 = 0.1477 + 0.1475j, c2,2 = 0.0927− 0.1253j. The SNR varies from

0dB to 15dB and the number of snapshots is 500. The results are shown

in Fig. 9 and Fig. 10. Comparing Fig. 9 and Fig. 10 with Fig. 4 and

Fig. 5, respectively, we can see that the improvement in angle estimation by

our proposed algorithm is much larger, while for mutual coupling coefficients
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Fig. 9: RMSE of estimated angles versus SNR with P=3.
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Fig. 10: RMSE of estimated mutual coupling coefficients versus SNR with P=3.

estimation, it is now clearly visible.
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4.5. The running time comparison

All the simulations in this paper are performed by MATLAB 7.8.0 on a

personal computer with Intel Core i5 760 CPU and 2GB memory. As an

indicator of the computational complexity of the algorithms, the running

time for each algorithm studied in the first set of simulations is provided in

Table.1. We can see that the proposed algorithm has the longest running

time. However, it is still comparable to the algorithm in [20] and the 2-D

MUSIC.

Proposed algorithm Algorithm in [20] 2-D MUSIC

5771.1368s 2320.5360s 3074.9745s

Table 1: The running time for each algorithm.

5. Conclusion

In this paper, a novel 2-D DOA and mutual coupling coefficients esti-

mation algorithm for URAs has been proposed. We started by creating a

general mutual coupling model based on banded symmetric Toeplitz matri-

ces, and then proved that the steering vector of a URA in the presence of

mutual coupling has a similar form to that of a ULA. The 2-D DOA esti-

mation problem can be solved using the rank-reduction method. Different

from auxiliary sensor based algorithms, where the effective array aperture is

reduced due to the use of auxiliary sensors, our proposed algorithm can keep

the original array aperture and achieve a better performance in both DOA

and mutual coupling coefficients estimation, especially when the array size

is small or the mutual coupling effect is strong.
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