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ABSTRACT

An algorithm is developed for estimating characteristic parameters associated 
with a "scene" of radiating sources given the data derived from a pair of transla- 
tionally invariant arrays, the X and Y arrays, which are displaced relative to one 
another. The algorithm is referred to as P R O —E S P R IT  and is predicated on 
invoking two recent mathematical developments: (1) the SVD based solution to 
the Procrustes problem of optimally approximating an invariant subspace rota- 
tion and (2) the Total Least Squares method for perturbing each of the two esti- 
mates of a common subspace in a "minimal" fashion until the two perturbed 
spaces are the same. For uniform linear array scenarios, the use of forward- 
backward averaging (FBAVG) in conjunction with P R O —E S P R IT  is shown to 
effect a substantial reduction in the computational burden, a significant improve- 
ment in performance, a simple scheme for estimating the number of sources and 
source decorrelation. These gains may be attributed to FBAVG’s judicious 
exploitation of the diagonal invariance operator relating the Direction of Arrival 
matrix of the Y array to that associated with the X array. Similar gains may be 
achieved in the case where the X and Y arrays are either not linear or not uni- 
formly spaced through the use of pseudo-forward-backward averaging 
(PFBAVG). However, the use of PFBAVG does not effect source decorrelation 
and reduces the maximum number of resolvable sources by a factor of two. 
Simulation studies and the results of applying P R O —E S P R IT  to real data 
demonstrate the excellent performance of the method.
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C H A PT E R  I 
IN T R O D U C T IO N

1.1 M otivation for the New Algorithm

In recent years, a number of model-based, high resolution schemes have been 
proposed for estimating the directions of radiating sources given the signals 
received at an array of antennas. A great deal of attention has focused on linear 
arrays which only allow for estimation of the angle of a source relative to the line 
on which the antennas are placed, i.e., they only allow one to determine the radial 
direction of a source relative to a cone of ambiguity whose axis of symmetry is the 
line of the array. Algorithms such as M USIC [SCH86], Minimum Variance 
[CAP69,KAY88], etc., involve the construction of a I-D "spatial spectrum" which 
when plotted ostensibly exhibits peaks at those angles from which the signals are 
arriving. The extension of high resolution techniques to planar arrays typically 
gives rise to a 2-D "spatial spectrum" which ideally exhibits peaks at those 
azimuth and elevation angles corresponding to the actual source directions. The 
price paid for the ability to determine without ambiguity the radial direction of a 
source is the tremendous computational burden of plotting and searching a 
multi-modal, 2-D surface.

A new array signal processing algorithm, E S P R IT  [ROY86], has been 
developed which when utilized in conjunction with a special class of planar array 
geometries avoids the 2-D plot and search entirely. E S P R IT  [ROY86] is a novel 
algorithm for estimating direction-of-arrival information and other characteristic 
parameters for classifying a "scene" of radiating sources. Contrary to previous 
schemes, the applicability of E S P R IT  in a particular array scenario is dependent 
on the ability to decompose the overall array structure into at least one pair of 
translationally invariant subarrays, the X subarray and the Y subarray. As a 
consequence of the translational invariance, the respective Direction-of-Arrival 
(DOA) matrices associated with the X and Y subarrays are related through a 
diagonal unitary matrix referred to as the invariance operator [ROY89a]. The i- 
th element of the invariance operator accounts for the phase delay between 
corresponding sensors of the two arrays associated with the i-th source. These 
subarrays may or may not have sensor elements in common. For a given pair of
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translationally invariant subarrays, so-called Single Invariance E SP R IT  (SI 
E SPR IT ) [ROY88a] may be applied to estimate the angle of each source relative 
to the displacement axis between the two respective subarrays. Due to judicious 
exploitation of the identical nature of the two arrays, SI E SP R IT  is able to 
provide these source angle estimates without resorting to a search over the array 
manifold as required by MUSIC, for example. Recently, extensions of E SPR IT , 
referred to as Multiple Invariance E S P R IT  (MI E SPR IT) [ROY88b], have been 
proposed for optimally exploiting the multiple translational invariances present in 
such structures as the uniformly linear array (ULA) [ROY88b,ROY89b] and its 
two-dimensional counterpart, the rectangular grid array. A detailed description 
of this special array system here referred to as the "E SP R IT  array system" is 
found in Chapter 2.

As an example of an E S P R IT  array system, consider the SI E SP R IT  
configuration depicted in Figure 1.1(a) referred to as the Corrugated Box Array. 
The Corrugated Box Array is composed of 28 sensors having identical phase and 
gain characteristics. Consider the pairwise groupings indicated in Figure 1.1(b) 
where the black dots indicate the position of the sensors in the x-y plane. Since 
any two sensors along the perimeter are identical, this particular grouping 
represents an array of 14 matched sensor pairs or doublets, to which E S P R IT  or 
P R O —E S P R IT  may be applied to estimate the radial direction of a source 
relative to the y-axis. The X and Y arrays are depicted in the center of Figure 
1.1(b). At the same time, the pairwise groupings indicated in Figure 1.1(c) 
represent an array of 14 doublets to which P R O —E SP R IT  may be employed to 
estimate the radial direction of a source relative to the x-axis. The X and Y 
arrays for this case are depicted in the center of Figure 1.1(c). Of course, if there 
is more than one radiating source, it is essential to determine which angle 
estimate obtained from the y-axis processing goes with a particular angle estimate 
obtained from the x-axis processing. Schemes that accomplish this are presented 
in Section 5.6. However, the beauty of this procedure is that it avoids the 2-D 
plot and search typically required in such a case by each of the algorithms 
mentioned at the beginning.

Since its inception, E S P R IT  has attracted a great deal of attention. The 
attraction stems mainly from the fact that, in contrast to MUSIC [SCH86], 
E S P R IT  does not require a search in order to estimate the arrival angles of the 
various plane waves impinging upon the array. These are simply determined by 
solving for the generalized eigenvalues (GEV’s) of a matrix pencil constructed 
solely with the data extracted from the X and Y arrays. The array manifold need 
not be measured or stored. Of course, the formulation of E SP R IT  was based on 
the identical nature of the X and Y arrays comprising the E S P R IT  array system



3

Figure 1.1 (a) 28 element Corrugated Box Array. Any two adjacent sensors
are separated by a half wavelength. Sensor pairings for 
estimating source angles relative to (b) y-axis, (c) x-axis and (d) 
line y = x .
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Figure LI (continued)



5

such that E SP R IT  is not as generally applicable as is MUSIC. As a 
consequence of this attribute of E SPR IT , a certain amount of skepticism has 
also surrounded the algorithm, with the primary concern being the sensitivity of 
the algorithm to deviations from this ideal array system. However, simulations 
conducted by the original inventors of E S P R IT  have indicated that E S P R IT  is, 
in fact, more robust to imperfections in the array model/data than MUSIC 
[ROY87a] when applied to an array scenario exhibiting the E S P R IT  structure. 
We submit that this is due to a primary aspect of the E S P R IT  array system 
which may be easily overlooked: since the two arrays are identical there is an 
inherent redundancy built into the E S P R IT  array system. Furthermore, 
E SPR IT  is specifically designed to exploit this redundancy. This redundancy 
manifests itself in terms of reducing the number of sources resolvable by 
E SP R IT  to nearly half that possible with M USIC. Specifically, with no sensors 
in common between the X and Y arrays such that there is 2M sensors total and 
no coherent sources, MUSIC can be used to estimate the directions of 2M-1 
sources. In contrast, under the same conditions, E S P R IT  can only resolve M-I 
sources. However, the original manner in which E S P R IT  exploits the 
redundancy built into the E S P R IT  array system is sub-optimal in the sense that 
it does not exploit this redundancy in the fullest manner possible.

This dissertation develops a modification of E S P R IT , referred to as 
Procrustes Rotations based E SPR IT , or P R O —E S P R IT  which is, in fact, 
prem ised on exploiting the redundancy built into the E S P R IT  array system. 
We expand on the particular merits of P R O —E S P R IT  while summarizing the 
thesis contents.

As explained in Section 3.1, P R O —E S P R IT  is predicated on exploiting two 
fundamental properties of the noiseless X and Y data matrices comprising the 
E SP R IT  data pencil: (I) they have the same row space, the signal subspace, and 
(2) they have the same column space, the source subspace. Exploitation of these 
two properties allow us to reduce the E S P R IT  data pencil to an "equivalent" 
square matrix pencil having the same nonzero generalized eigenvalues (GEV’s) 
but of a dimension equal to the number of sources, D. This is developed in 
Section 3.2 for the noiseless case. We find that the composition of the equivalent 
square DxD pencil, here referred to as the core information matrix (CIM), 
includes two unitary matrices: one which performs an invariant rotation on the 
signal subspace and one which performs an invariant rotation on the source 
subspace. Although we are able to formulate asymptotically unbiased estimators 
of these two unitary matrices in Section 3.4 for the case of noisy data, the 
estimates will, of course, never be unitary in practice. Our exploitation of the 
redundancy built into the E SP R IT  array system allows us to make novel use of
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a "tool" for compensating, in part at least, for deviations from the ideal array and 
source model. We argue in Section 3.6 that if either of the two core rotation 
matrices is not unitary, as it should be, it should be replaced by the respective 
"closest" unitary matrix. The respective "closest" unitary matrix in either case is 
easily found via an SVD-based, closed form solution which has its foundations in 
the solution to the classical subspace rotation problem posed by Procrustes. 
[GOLU83a], ergo the name P R O —E S P R IT . In Section 3.7, we present an 
alternative interpretation of P R O —E S P R IT  based on the principle of Total 
Least Squares (TLS) [GOLU83b,GOLU80,ZOLT87c]. We emphasize that the 
application of the TLS concept as a way of interpreting P R O —E S P R IT  is 
fundam en ta lly  d ifferent from the way it is applied in the T L S—E S P R IT  
algorithm [ROY87b,ROY88a] discussed shortly. The motivation for using TLS is 
the following. The X array data and the Y array data provide us with two 
different estimates of the signal subspace, and two different estimates of the 
source subspace as well. Total Least Squares is utilized as a means for perturbing 
each of the two estimates of the signal subspace, say, in some "minimal" fashion 
until they are equal. The common subspace after perturbation is then taken as a 
"better" estimate of the signal subspace. A "better" estimate of the source 
subspace is obtained in the same fashion. The core informations pencil is then 
obtained by optimally rotating, via the method of Procrustes, into these optimal 
subspaces. This interpretation of P R O —E S P R IT  will further substantiate our 
claim that P R O —E S P R IT  is predicated on exploiting the redundancies inherent 
in the E S P R IT  array system.

Section 3.5 includes a discussion on the asymptotic unbiasedness of 
P R O —E S P R IT . It should be pointed out that the stand-alone algorithm 
developed in Section 3.4, without the added feature of Procrustes processing first 
introduced in Section 3,6, provides asymptotically unbiased estimates of the 
signal directions, the array manifold vectors, the optimal "signal copy" vectors, 
and the source covariance matrix. Thus, we stress that these refinements are 
introduced as a means for compensating for such troublesome array processing 
"nuisances" as

•  imperfect array data contaminated by sensor dependent phase errors
•  estimated noise correlation matrix not equal to true one
•  deviations from ideal array model:

• members of a given sensor pair not perfectly matched

• variations in the displacement vector among the sensor pairs
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Again, the ability to introduce these refinements is made possible due to the 
redundancy built into the E S P R IT  array system. With regard to the second 
item listed above, we remark that one can incorporate into P R O —E S P R IT  a 
highly successful technique developed by LeCadre [LEC89] for estimating the 
noise correlation matrix, to within a scalar multiple, from the overall signal-plus- 
noise correlation matrix which requires no a -p rio ri in fo rm ation  ab o u t th e  
noise.

P R O —E SP R IT  is not the only algorithm that attempts to exploit the 
redundancies built into the E SP R IT  array system. The original inventors have 
proposed a novel modification of E S P R IT  which is based in part on the method 
of Total Least Squares [GOLU83b]. We will here refer to the new algorithm as 
T L S—E SP R IT  [ROY87b,ROY88a], for short. Actually, the foundation of 
T L S -E SP R IT  is rather different than that for E SPR IT . The original version 
of E SP R IT  was based on the structure of a matrix pencil composed of the 
correlation matrix formed from the X array data and the cross-correlation matrix 
formed from data extracted from both the X and Y arrays. Ideally, the nonzero 
generalized eigenvalues of the "cleaned" version of this pencil are on the unit 
circle and their respective arguments are simply related on a one-to-one basis with 
the signal directions relative to the displacement axis. On the other hand, 
T L S—E S P R IT  is based on a fundamental relationship exhibited by the signal 
eigenvectors of the overall Z correlation matrix formed from the outer product of 
snapshot vectors produced by stacking the X array data on top of the Y array 
data. By approaching the problem in this alternative fashion, Roy and Kailath 
find that they may make use of TLS for dealing with deviations from the ideal 
array model which they were not able to invoke in the original version of 
E SPR IT . However, in terms of computational load and algorithm execution 
time, we find that in the case of arbitrary, 2-D E S P R IT  arrays, P R O —E S P R IT  
offers significant advantages. These advantages of P R O —E S P R IT  over 
T L S —E S P R IT  are a direct result of the fact that P R O —E S P R IT  works with 
the individual X and Y correlation matrices, as opposed to working with them 
jointly as components of the larger Z correlation matrix, i.e., the matrix formed 
by stacking the X array data on top of the Y array data. As a consequence, we 
find that for every eigenvalue decomposition (EYD) required by T L S —E S P R IT , 
P R O —E S P R IT  requires two EVD’s of half the dimension of that required by 
T L S—E SPR IT . Now, as M grows large the EVD of a 2Mx2M matrix becomes 
increasingly more computationally burdensome than the EVD of two MxM 
matrices. Over and above this is the fact that the two MxM EVD’s required by 
P R O —E S P R IT  can be performed independently, and hence, simultaneously, 
such that the computation time need only be that required to perform a single
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MxM EVD, assuming the appropriate dedicated processing hardware is available. 
The concept of parallel processing is emphasized in the summary of 
P R O —E S P R IT  delineated in Section 3.6.

In Chapter 4, we present some simplifications to P R O —E S P R IT  applicable 
in a uniform linear array (ULA) scenario. This scenario is particularly intriguing 
for the application of P R O —E SP R IT , or for any derivative of E S P R IT  for that 
matter, in light of the observation that every two adjacent sensors in the array is 
a matched sensor pair, assuming the sensors to be identical. An issue which arises 
in the estimation of the components of the invariance operator via SI E S P R IT  is 
the merits of imposing a unit modulus constraint on them. Swindlehurst et. al. 
[ROY88b,ROY89b,OTT89,SWI89j have argued and demonstrated through 
simulation that the imposition of such substantially increases the computationally 
complexity of SI E S P R IT  while only providing a modest improvement in 
performance. In the formulation of P R O —E S P R IT  presented in Chapter 4, the 
unit modulus constraint on the estimate of the invariance operator is also omitted 
for the sake of computational expediency. It is argued with the help of 
simulations that, in general, the Procrustes processing in P R O —E S P R IT  
represents a sub-optimal means of incorporating this constraint. However, in the 
version of PR O —E S P R IT  we develop for the ULA in Section 4.2, the unitary 
nature of the invariance operator is explicitly exploited by employing backward 
averaging in addition to forward averaging. The backward averaging effectively 
serves as an additional means of accounting for the unit modulus constraint 
without actually imposing it. Surprisingly, the incorporation of backward 
averaging in P R O —E S P R IT  for ULA’s also facilitates computational simplicity. 
That is, the version of P R O —E S P R IT  which employs both forward and 
backward averaging is substantially less computationally burdensome than the 
version which employs forward averaging only. Our claims and observations are 
substantiated with simulations involving real data presented in Section 4.4.

Unfortunately, the manner in which backward averaging is employed in 
P R O —E S P R IT  for ULA’s is not possible in the single invariance case when the 
replicated array structure is arbitrarily shaped. In some applications it may not 
be either possible or desirable to employ uniform structures such as the ULA or 
the rectangular grid array. For example, in order to achieve a certain resolution 
capability with a limited number of elements, one may wish to employ a pair of 
identical aperiodic arrays. In the case of linear array processing, the doublets 
comprising the two identical subarrays may be spaced aperiodically over a large 
aperture as depicted in Figure 1.2(a) in order to achieve a higher resolution 
capability. Irrespective of the ability of E S P R IT  to accurately locate sources 
separated by less than a beamwidth, its resolution capability is nevertheless
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proportional to the aperture length. This is true for any high resolution 
algorithm. Similar comments hold with regard to two-dimensional array 
processing. Again, for the purpose of achieving a higher resolution capability 
with a limited number of elements, one may place the doublets in an aperiodic 
fashion over a large planar aperture as depicted in Figure 1.2(b). Alternatively, 
one may be forced to work with a doublet configuration as in Figure 1.2(b) due to 
physical constraints [ROY89a,ROY89b].

For SI ESPRIT applications in which the individual arrays are non-uniform 
and/or nonlinear, in Chapter 5 we introduce a variant of forward-backward 
averaging (FBAVG) referred to as pseudo-forward-backward averaging 
(PFBAVG). Similar to the role of backward averaging in the case of ULA’s, 
PFBAVG serves as a generally applicable means of accounting for the 
aforementioned unit modulus constraint without actually imposing it. The 
incorporation of PFBAVG into PR O —ESPRIT also yields benefits similar to 
those achieved with backward averaging in the case of a ULA. Specifically, the 
use of PFBAVG in conjunction with PR O —ESPRIT effects a substantial 
reduction in the computational burden and, at the same time, a significant 
improvement in performance. However, in contrast to the situation with 
backward averaging in the case of the ULA, there is a penalty paid for these 
benefits. The price paid is a reduction in the maximum number of sources the 
algorithm is able to handle by a factor of two.

Another issue which arises with regard to ESPRIT has to deal with optimal 
estimation of the number of sources. Consider the single invariance case in which 
the two identical subarrays have no elements in common and the replicated array 
structure is arbitrarily shaped. In this case, neither TLS—ESPRIT or 
PRO —ESPRIT exploits the underlying invariance in the estimation of the 
number of sources. Let M be the number of elements comprising each of the two 
translationally invariant subarrays. In the covariance matrix formulation, 
TLS—ESPRIT initially works with the overall array of 2M sensors, examining 
the largest eigenvalues of the corresponding 2Mx2M covariance matrix in 
accordance with the Akaike Information Criteria (AIC) or the Minimum 
Description Length (MDL). PRO—ESPRIT initially works with the two 
subarrays individually, performing independent eigenanalyses of each of the two 
respective MxM covariance matrices. The eigenvalues of both matrices are 
examined but it is unclear how to optimally combine this information in the 
determination of the number of sources. In Section 5.5 we propose an ad-hoc 
scheme for estimating the number of sources which explicitly exploits the 
underlying invariance. The scheme is shown to provide accurate estimates of the 
number of sources.
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Of course, the incorporation of PFBAVG in PRO —ESPRIT was not 
accomplished without complication. In Section 5.4 we show that there are specific 
scenarios under which PFBAVG can lead to severe ill-conditioning problems and, 
therefore, to a pejorative effect on the performance of PRO —ESPRIT. 
Fortunately, these conditions can be averted with negligible computational effort. 
Simple schemes that can accomplish this are also presented in this section.

Finally, in Chapter 6 we investigate dividing the angular region of interest 
into partially overlapping sectors, and then processing the data obtained for each 
sector independently and in parallel. Although the scheme is developed for the 
case of the ULA, it may be easily extended to cover the case of the rectangular 
grid array. In either case, the goal is to reduce the computational burden 
incurred with such arrays comprising of hundreds, even thousands of sensors. 
Contrary to the previous outline of PRO —ESPRIT where the input to the 
algorithm is taken to be the "raw" X array data and Y array data, in the new 
scheme the "raw" data are first acted upon by a beamformer matrix. In doing so, 
the dimensionality of the input data is lowered, making the use of 
PR O —ESPRIT under such a scenario more practical. For our purposes, we 
here consider one special beamformer matrix that allows the use of fast Discrete 
Fourier Transform methods to achieve the reduction in the dimensionality of the 
input data.

Before we proceed with the development of PRO —ESPRIT, we would like 
to comment on a misconception commonly associated with ESPRIT. By 
applying ESPRIT to an array structure composed of two identical sensor arrays 
displaced relative to one another, it is not claimed that the calibration problem is 
somehow avoided. On the contrary, the calibration involved in matching 
corresponding sensors in the X and Y arrays is certainly not a trivial task. 
However, the point is that if, in fact, we go to the trouble of constructing and 
calibrating such an array, there are many benefits to be reaped as discussed above 
and as first described by the original inventors, Roy and Kailath, in 
[PAUL85,ROY86,ROY87a]. Furthermore, the inherent redundancy built into the 
ideal ESPRIT array structure can be exploited to compensate for imperfect 
calibration such that corresponding sensors in the X and Y arrays need only be 
"approximately" identical. During the course of our work we came more and 
more to regard the ESPRIT concept, the initial ESPRIT algorithm and 
corresponding array design, as a breakthrough in the field of sensor array signal 
processing much to the credit of the original inventors, Roy and Kailath. Our 
purpose here, therefore, was to advance the robustness and practical application 
of the ESPRIT concept.



12

C H A PT E R  2
T H E  E S P R IT  ST R U C TU R E  AND ARRAY G E O M E T R Y

2.1 In tro d u c tio n  to  E SPR IT

In this section we examine the basic principles and assumptions on which 
E S P R IT  is based. For this, we must first present: (l) the "ESPR IT  array 
system" and (2) the underlying signal model. The "ESPR IT array system" has 
already been briefly introduced in Chapter I. Here, however, we explain in a 
more rigorous mathematical fashion why, as a result of _ the translational 
invariance between the X and Y subarrays comprising the "E SPR IT  array 
system", the DOA matrices associated with these two subarrays are related 
through an invariance operator. Of course, the analysis depends heavily on the 
assumed signal model. For this reason, we devote a large portion of this chapter 
to the development of the underlying signal model and its complex 
representation. We begin with a discussion of the "ESPRIT array system".

Consider the array geometry illustrated in Figure 2.1. It is composed of M 
sensor pairs, called doublets, positioned in the plane z = 0. For convenience, we 
shall assume that the k-th doublet is composed of sensors Xjc , y^ k = l . . M. Let 
us fix a rectangular reference frame whose basis vectors are the unit vectors along 
the x and y-axis respectively. In this coordinate frame, the position vectors of the 
Xjc and Yy will be given by vectors Jjc and Fjc respectively. The spherical 
coordinate system is more appropriate for indicating source locations. The range 
of a source can be arbitrary, so the radial direction of a source is uniquely defined 
by its azimuth angle, 9, and its elevation angle, <f>. Both parameters are specified 
in Figure 2.1.

Sensors within a doublet must satisfy two requirements. The first 
requirement is that the two sensors comprising a doublet must possess identical 
gain and phase characteristics. However, these characteristics may differ from 
doublet to doublet. The second requirement is that the displacement vector, f 
joining the x and y sensors of a doublet must identical for all doublets. With 
these assumptions in mind, let us consider a source located at any point on the 
straight line from the origin passing through the point specified by the triple
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Figure 2.1 The generalized ESPRIT structure
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(dp , 4>p , /9=1). If we take a unit vector along this direction, then the projection 
of this vector on the x-y plane is given by the vector

•  i •i +  Vp j (2 . 1)

Up =sin(<^p )cos((9p) , vp=sin(<?>p)sin(i9p)

i and j are the unit vectors along the x and y axis respectively. In literature, up 
and Vp are often referred to as the "direction cosines" of the source with respect to 
the x-axis and y-axis respectively. Let us, arbitrarily, take the origin as our 
reference point. Clearly, because of spatial separation, there will be a a temporal 
delay in the signal arriving at this point relative to the signal arriving at any 
other point on the array. If we concentrate on the k-th doublet, the delays t\ 
and t\  at sensors Xjc and y \  respectively, corresponding to the p-th source are 
given by

Tl

x ci • r k
= C

(2.2a)

«y * A
• r k * . Ci • r

=  Tl + (2.2b)
C C

The speed of propagation of the wave in the given medium is denoted by the 
variable c. Referenced to the origin, the representation of a narrowband signal, 
u(t), received at a point on the array, is in general given by

u(t)=cr(t+T)cos(27rf0 (t+r))

For simplicity, we assumed that the phase of u(t) is zero. If it is non-zero, but 
still of low frequency content compared to f0, the final result will be the same. 
Let

M>(t)=u(t) +  ju(t) (2.3)

where u(t) is the Hilbert transform of u(t). Then 'l'(t) is the complex analytic 
representation of u(t). Under the assumption that <r(t) is a low-pass signal,

u(t)=o(t+r)sin(27rf0 (t+r))

and

where

v|/( t )=c< t-hx)ej 2 jrf̂ r ej 2 7rf̂ t =  s(t)er

s(t) =  ^ + r y 2̂  (2.4b)

The function s(t) is, by definition, the complex envelope of 'h(t). It is a trivial

j2-rf,,t (2.4a)
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task to show that the real and imaginary parts of s(t) can be obtained by 
frequency translation and low-pass filtering operations on u(t). For this reason, 
s(t) is, from now on, assumed to be the received signal.

If the pth source generates a signal s(t)=o(t) at the origin, the signals 
generated at sensors Xjc and y^ are delayed replicas of s(t), i.e.,

s£(t)=<7(t)e

j2-f Ci . f 
s£ (t)= ^(t)e  x

k JZ-T-Ci . r
e A

(2.5)

(2 .6)

The low frequency content of o(t) has also allowed the approximation 
o(t+r) — o(t) to be used in (2.5) and (2.6). From these two equations follows

that for each source there is a constant phase difference 2-^-cp . ?d among the

sensors comprising a doublet. E S P R IT  exploits this fact to estimate the radial 
directions of the radiating sources. With D sources, s£(t) and sj(t) can be 
expressed as

sk(fc)=E(Tl(t)°!(1>k) + nk(t)
I=I

(2.7)

s?(t)= E <Jl(tM 1Hl>k) + n£(t)
1=1

(2 .8)

TT x d.
where a(l,k)=exp{j2—C[ . Fjc), <^(l)=exp{j2—cj . f } and n£(t), n£(t) are, for the

A  A

time being, assumed to be arbitrary random processes. In expressing a(l,k)' as 
above we have assumed that the individual gain pattern of each antenna element 
is "broad", that is it is uniform for in the spatial interval we are interested in. 
For each sampling instant (snapshot), the data collected from X1 X2 . . . X\| and 
Yi Y2 ■ ■ ■ Yu are grouped together in the Mxl snapshot vectors

x (n )= ^!(n ) x2(n) . . . . . xM(n) T

y(n)=[yi(n) y2(n) . . . .  . yM(n)

With N snapshots, the 2N snapshot vectors are appended next to each other to 
form the MxN matrices X and Y, where

=(x(l) x (2 ) ............ x(N)J
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T-[y(i) Ti 2)
X and Y can be easily decomposed into

X =  AS +  Nx

Y =  A<*>S +  Ny =

. . . .y (N ) ]

E v f + N ,  (2.9a)
i= l

S ^ a i + N y (2.9 b)
i=l

where :

4>=diag J^ h i $ 22 • • 1 ̂ DD j , ^ ii=C

S =  Js1 s2 . . . .  . sD

sir =  [<Ti(1) ^ ( 2) ^ ( 3 ) ----- -

j2—Cos(Tf1) d
x , COs( ĵ)=Ci.f  (2.10a)

(2.10b)

• Ol(N)

a-i &2

j 2f  C; . ?: j 2f  Ci . ?;
e \  ■ e ■

-T .  ««J2— Ci . rM

(2.10c)

The delineation assumptions underlying this model are in order. First, the D<M 
DOA vectors a,, comprising the columns of A, are linearly independent. This 
requires that no two sources have the same 7 , the direction cosines with respect to 
the displacement axis. Finally, the D Nxl vectors s, must be linearly independent 
as well, i.e., no two signals can be fully correlated (coherent). A matrix pencil 
which possesses the structure exhibited in (2.9) is referred to as an E S P R IT  data 
pencil. It can be constructed from any arbitrary array geometry which satisfies 
the previously mentioned conditions. A special case is the uniform linear array, 
which is discussed in Chapter 4. We point out that we are primarily interested in 
estimation of ^ ii i=l,...,D , because the argument in the exponent of each ^ ii 
contains the information relating to the bearing of the corresponding ith source. 
The motivation behind P R O —E S P R IT  is illustrated by the following 
observation.

Y -X X =  ECf-jj-XJajsT
j = l

(2.11)

Under noise free conditions we observe that when X=Xi = ^ ii the rank of the pencil
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Y-XX drops by one. The set , . , ^pp are thus generalized eigenvalues of 
the rectangular matrix pencil {Y , X} under noise free conditions. This provides a 
means for isolating from the composite incident wave, that contribution due to a 
single source.
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C H A PT E R  3
EIGENANALYSIS OF T H E  E S P R IT  D A TA  PEN C IL

3.1 T he E SP R IT  D a ta  Pencil W ith  Noiseless D a ta

In this section, an analysis of the MxN ESPRIT data matrix pencil (Y ,X) 
under idealized, noiseless conditions is made. The eigenstructure of the singular, 
rectangular matrix pencil obtained in this case is the foundation of the 
PRO —ESPRIT algorithm. ,That is, a treatment of the noiseless case is 
necessary for an understanding of the algorithms to be presented later in this 
section for dealing with the practical case of noise corrupted sensor data. Noise 
will be introduced and accounted for noise in the next section. In the no noise 
case, the data matrices, as defined by (2.9) with Nx=O and Ny=O, are each of 
rank D, assuming D<M. We will emphasize this condition by a subscript D in 
the following manner

D
X0 = A S  =  S aSsjr

i=l
(3.1a)

Y0 =A<I>S =  X ^isaiSjr (3.1b)
i=*l

Examination of (3.1) reveals that the noiseless data matrices are quite similar in 
structure. Specifically, it is noted that they have the same D-dimensional column 
space, range{A}, which is typically referred to in the literature as the "signal 
Subspace", a term first coined by Schmidt [SCH86]. In addition to this, however, 
each matrix has the same row space, range{ST}, a D-dimensional subspace of N- 
dimensional space. This space, spanned by the D (complex) time series vectors, 
8j, i= l,...,D , associated with each of the D signal sources, is not so celebrated in 
the literature as is the signal subspace. Since this much neglected space has not 
heretofore been given a name, it will here referred to it as the "source subspace".

Exploiting these observations, a technique will be developed for reducing the 
MxN singular data matrix pencil {YD,XD} to an "equivalent" square DxD matrix 
pencil having the same nonzero generalized eigenvalues (GEV’s) as the original 
MxN pencil. The method hinges upon the use of the SVD to isolate the column
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and row spaces of each of the data matrices, providing, in fact, orthonormal bases 
for each of these spaces. A brief expansion on this assertion using intuitive 
notions is in order; the mathematical derivation will follow shortly. The D 
"largest” left singular vectors of the "clean" Y data matrix, i. e., those associated 
with the D nonzero singular values, form an orthonormal basis for the signal 
subspace. The same is true of the D "largest" left singular vectors of the "clean" 
X  data matrix. It follows, therefore, that a DxD unitary (invariant) 
transformation exists for rotating the one orthonormal basis into the other. 
Similar statements can be made regarding the right singular vectors. The D 
"largest" right singular vectors of the "clean" Y data matrix form an orthonormal 
basis for the source subspace, as do the the D "largest" right singular vectors of 
the "clean" X data matrix. Likewise, a DxD unitary transformation exists for 
rotating one of these into the other. These two unitary matrices, along with the 
two diagonal matrices containing the singular values of each of the two data 
matrices, are the sole components of the "equivalent" DxD (square) pencil. An 
eigenanalysis of this pencil will be referred to as processing at the core rotations 
level.

3.2 R eduction  to  DxD Pencil V ia S im ultaneous Subspace R o ta tio n s

Consider the singular value decompositions (SVD’s) of the data matrices X  
and Y  obtained with noiseless observations, i. e., with Nx=O  and Ny=O  in (2.9), 
and with each snapshot weighted by .

=  S ^ x iuXiv Ki - U x S xV x (3.2a)
i=l

=  S <Tyiuyiv y, =  UyEy V y (3.2b)
i=l

A few comments are in order regarding the notation in (3.2). First the 
conventional SVD notation is adopted which presumes that the singular values 
are indexed in descending order. Second, the subscript D indicates that in the 
noiseless case, the data matrices are each of rank D as indicated previously. 
Third, the SVD description of the data matrices in (3.2) is such that only those 
right and left singular vectors associated with nonzero singular values are 
included. Consequently, U x, V x, and Xlx are defined as follows

U x=[uXi, . . . , uXr)] ; V x=(vXi,...,VxJ (3.3)
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—diag{'TX|, . . . )^xD}

with similar definitions for U y, V y, and Ijy . Finally, the weighting factor

is introduced so that the outer product of — X with itself is the "standard"

sample covariance matrix or, more specifically, the Maximum Likelihood (ML) 
estimate of the true covariance matrix when the data is corrupted by Gaussian 
noise. The weighting - may be also interpreted as a variance stabilizing factor.

There is, of course, an intimate relationship between the SVD of - ^ - X  and the

spectral decomposition (eigen-decomposition) of the sample covariance matrix. 
This relationship will be used shortly.

As a first step towards reducing the MxN E S P R IT  data matrix pencil to a 
DxD pencil, note that in the noiseless case

Range(Ux) =  Range(Uy) =  Range(A)

as described previously. This implies that the columns of U x are an orthonormal 
basis for the signal subspace as are the columns of U y. As a consequence, the 
projection operator U xU x is identically equal to to the projection operator 
UyU y H, the unique projection operator onto the signal subspace. From this it 
follows that Qu= U xwU y is unitary which can be seen from the following 
argument.

W . D H _ t D _ t D H _ _ D
QuQu=Uy U xU x Uy

with a similar argument to show Q uQ u 
follows that

=  Uy HUy Uy wU y=1D

=  I0 . From these observations, it also

U y= U xQu where: Q u=U xwU y (3.4)

which represents an invariant subspace rotation.
A similar development concerning the right singular vectors follows from the 

observation that in the noiseless case

Range(Vx) =  Range(Vy) =  Range(S )

This implies that the columns of V x are an orthonormal basis for the source 
subspace as are the columns of V y. Proceeding along lines similar to the above, 
it is easily shown that Qv = V xwV y is the DxD unitary matrix which performs 
the following invariant subspace rotation.

V y=V xQv where: Qy =  V xwV y (3.5)
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The utility of the above observations, (3.4) and (3.5) specifically, becomes 
apparent after substituting and factoring out as follows

(3-6)_ l _  Y — \ ___
W d- W Xn =  UyEyVy" xuxeX h

_  _ u  . -,L' __ n _  _ D H \ _  — -rU xQuEyQvV x XUxExVrDH
x

V DH
X

It is now immediately apparent that the GEV’s of the DxD matrix pencil 
(QuEyQv , Ex}, referred to here as the core information pencil (CIM) for 
reasons that will become increasingly apparent later on, are the D nonzero 
(stable) GEV’s of the MxN singular pencil {^-7—Y0, -X0}. The algorithm

based on this result is coined the Procrustes Rotations based ESPRIT  
algorithm, or PRO —ESPRIT. The reason for the reference to Procrustes will 
become apparent when noisy data are considered. PRO —ESPRIT states that 
the set ( ^ 11,4*22, . defined in (2'.10a), are the D generalized eigenvalues 
(GEV’s) of the DxD CIM (Q uE yQ v , E x}, or, equivalently, the eigenvalues 
(EV’s) of the DxD matrix E x Qu E yQ v. Ultimately methods for estimating Q u 
and Qv in practice will be presented , based on the solution to the Procrustes 
problem. Before proceeding we must make some remarks regarding the 
computation of the SVD’s of the two data matrices. These observations will have 
implications later with regard to the computation and bias of our estimators of 
the two unitary matrices, Qu and Qv.

It is stressed that all the information needed to construct the SVD of Xd ,

as described by (3.2a), can be extracted from an eigen-decomposition of the MxM 
noiseless ("clean") covariance matrix associated with the X array data, denoted 
Cxx, defined by

C „ =  JrX0Xg =  A (iSS")A " -  ARssA m (3.7)
* . H

where Rss =  J--SS is the sample source covariance matrix. This is due to the 
observation that {o%. , ux.}, i= l,...,D , are the D nonzero EV’s and corresponding 
EVEC’s, respectively, of Cxx and the fact that

v x, =  ~  TT--XdUx. i= l,... ,D  (3*8)
crXi 1N

which follows from the classical relationship between the left and right singular 
vectors of a matrix. Given the quantities defined in (3.3), the D right singular



vectors described by (3.8) can be expressed in the following collective fashion

x V n
(3-9)

Parallel statements can be made regarding the singular values and left and right 
singular vectors of Y0. Specifically, {cry. , uy.} i= l,...,D , are the D nonzero

EV’s and corresponding EVEC’s, respectively, of the "clean" Y covariance matrix, 
Cvv, as indicated by

-Y0Yg ' dmE - 2ILdh (3.10)yy ~  LT d d x
Also, the D right singular vectors associated with the D nonzero singular values 
can be computed collectively according to

(3-11)v ”= - V y hu X  "V n Jy^y

It should be noted, though, that the condition number of the correlation matrix is 
the square of the respective data matrix such that determination of the 
components of the SVD in this manner is typically not preferred due to numerical 
considerations [ZOLT87b|. Nonetheless, these relationships do lead to alternative 
formulations of P R O —E S P R IT  which do not require computation of the SVD of 
two MxN data matrices, a task which may be quite cumbersome if N is large. 
This statement is clarified with the following observation. Note that by forming 
the product V x’HV y formed with the expressions for Vx and V y in (3.9) and 
(3.11), respectively, and denoting Cxy =  A-X0Y 0 as the "clean" cross-correlation
matrix between the X and Y arrays, one can obtain

q ,  = v r v = Er iu r c w u ^ r ' (3.12)

This indicates that the unitary transformation which rotates the r ig h t singular 
vectors of the X data matrix into that of the Y data matrix can be expressed in 
terms of the left singular vectors of both matrices, along with the corresponding
nonzero singular values, and the MxM "clean" cross-correlation matrix, Cxy. The 
utility of this result has to do with the fact that, in contrast to the situation with 
the left singular vectors and the singular values, it is not possible to extract 
asymptotically unbiased estimates of the right singular vectors from the data 
matrices. Although this issue will be addressed more fully later on, it is pointed 
out here that one can only do a perfect cleaning out of the effect of noise at the 
statistical level, the covariance level, for example, and this can only be done in 
the asymptotic case and requires some a-priori knowledge of the inter-sensor noise 
correlations. In contrast, there can not be a perfect cleaning out of the noise at 
the data level even in the asymptotic case. The virtue of (3.12) is that despite the 
fact that the development of P R O —E SP R IT  was based on observations made at
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the data level, it is possible nonetheless to express Q v in terms of quantities for 
which there asymptotically unbiased estimators: E x, U x H, Cxy, Uy, and Ey. In 
addition, this observation enables one to avoid working in N-dimensional space, 
which has implications in terms of both computational load and memory space if 
N is large as indicated above. It is worth mentioning again, however, that with 
regard to numerical stability, working with the data matrices directly, as opposed 
to working with the correlation matrices as sufficient statistics, may be preferred 
due to the issue of condition number mentioned previously {ZOLT87b|. The 
problem of "conditioning" has implications in scenarios where the sources are 
highly correlated or when the SNR is low.

3.3 The Significance of the Left and Right GEVEC’s

In this section we examine the importance of the right and left generalized 
eigenvectors (GEVEC’s) of the singular data pencil Y n , —-7-—-Xr,) and their

relation to the corresponding GEVEC’s of the CIM. These will be those left and 
right GEVEC’s associated with the non-zero GEV’s ^ ii, i= l,..,D . The columns

D D
of Ux and V x will used as an orthonormal basis for the signal and source 
subspace, respectively. Define a right GEVEC of the data matrix pencil, Ti, in 
the following manner.

-Y 0-X iX 0 Ti GRange(Vx) i= l,..,D (3.13)

In order to comply with the given constraint, let Ti= V 0A where A is a Dxl 
vector, and substitute

Y 0-X iX 0 -V ^ i= U ; Q uSyQ ^-X iEx0 V xmV 0A=O (3.14)

But the columns of V x are orthonormal and U x has full rank, therefore A 13 a 
right eigenvector associated with the DxD matrix Ex Q uEyQ v. For future 
purposes, define

B — A>] (3.15)

It will become apparent as we proceed that a lot of the quantifying information 
for classifying and extracting the various signal source components can be 
extracted from B. This is the motivation for the descriptor "core".

The significance of the right GEVEC’s is determined by recalling that the 
noiseless form of the matrix in (3.2) to express the problem prescribed in (3.13) in 
the following manner.
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When Xi= ^ ii, the i-th term of the sum drops out. Assuming that the S j, 
j= l,..,D  are linearly independent, i.e, no two sources are 100% correlated, it 
follows that r; is orthogonal to the conjugate of each of the signal vectors Sj 
except the i-th one. Thisrelationshipcanbe representedby

SjT r, oe<$ij i,j—1,..,D (3.17)

where Xlj is the Kronecker delta. From this property the following relationship 
also holds.

- ^ X urj= U xS xA =A ai (3.18)

aJ8J Ti=O TiG span{sj , . . , S p } (3.16)

That is, the vector X Dr, which can be obtained by telescoping from the core 
rotations level GEVEC A to the data level via the eigen-link transformation 
UxSx is a scalar multiple of the DOA vector of the i-th source. The presence of 
the unknown multiplicative constant Ci reflects a fundamental ambiguity that 
cannot be resolved and which arises in all E S P R IT  like algorithms. Thus, we 
can only determine the relative gains and phases among the array elements in the 
direction of the D arriving waveforms. If the gain and phase characteristics of 
just one of the sensors is known, we can determine the DOA vectors for the D 
arrival directions as discussed by ROY [ROY88b].

We next consider the significance of the left GEVEC’s of the data pencil 
{_ i_ Y d , - ^ - X 0}. These vectors are defined in a manner analogous to (3.13).

I
H Y 0-X iX 0 0 Ii €  Range(Ux) 'i= l , ..,!>■ (3.19)

In order to comply with the constraint, let Ii=UxQfi where oi\ is a Dxl vector, and 
substitute in (3.19).

H DH« iU x ^Y 0-X iX 0 H DH D
=Qj U x U x Q u  X>y Q  V Xi S x (3.20)

Since the columns of Ux are orthonormal and V x is of full rank, it follows that Qri 
is a left GEVE C associated with the matrix pencil QuSyQy > S x. Note that if B 
is the matrix whose columns are the D right GEVEC’s A i—1>-->D of the core 
informations matrix as defined before, it can be easily shown that the columns of 
(BhS x)-1 are the Qri that we seek. That is
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( B h S x )  1 “  Ia U  a 2 , • • • , « r . (3.21)

The point is that only the right GEVEC’s need to be computed since the left ones 
can be derived from the above relationship.

The significance of Xi i= l,..,D  is determined by recalling the noiseless form 
of the matrix pencil in (2.19) to rewrite the problem in (3.19) in the following 
manner:

E  ( ^ i i -  ̂ j )a j s j
j- l

:0 IiG S p an la1, . . ,a D} (3.22)

Again, if Xi= t̂ ii, the i-th term of the sum drops out. Take for example I1. It 
follows therefore that I1Oca1= P 1O1, where P 1 is the projection operator onto the 
span of Ia 1,.. ,a ()}. In other words, I1 produces an array pattern exhibiting a null 
in each of the directions U2 through uD and has no projection on to the noise 
subspace. This is the so called "optimal signal copy vector"
that is a weight vector steered in the direction of U1 which minimizes the 

contribution due to the noise while constraint to have a null in each of the other 
source directions. This may be useful in cases when the remaining sources are 
some undesirable interference. Collectively, the left GEVEC’s satisfy the 
following relationship.

lHaj OcXiJ i,i= l,..,D  (3.23)

Let L=Il1,.., 1D] =  U xEx B . Pre-multiplication of X 11 by L produces the 
signal source matrix S to within a diagonal matrix as mathematically described 
below.

L hX d= B -1Ex 1U xwAS=Aa S (3.24)

or individually,
, H  Ht t DH H v O m  TIi X0=OfjUx X 0=Oi ExVx =ftsj (3.25)

where Aa is a DxD diagonal matrix. So we have that lHX r, is a scalar multiple of
T

Si , the Nxl vector containing the N samples of the narrowband signal associated 
with the i-th wavefront. Once again, the presence of the unknown factor ft 
reflects a fundamental ambiguity that cannot be resolved.

It should be noted that the left and right GEVEC’s of the rectangular data 
pencil as defined before are normalized according to the same convention a the 
left and right GEVEC’s of a square matrix. For example, the left and right 
GEVEC’s of the core informations matrix, a; and $  i= l,..,D  respectively, are 
normalized as follows.
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The eigen-links between the left and right GEVEC’s of {——Y n , - ^ - X 1,]- and

those of the DxD core informations pencil is given by Ij=UxOrj and Ti = V xPl 
respectively. In the noiseless case, it is not hard to see that the following 
expressions must hold

I r ^ r Y 1Ti =<(.„ I r ^ r X0T1- I  (3.27)

which follow from the relationship between Otl and above.
From before,

Ii = 7Zi {^i P i^ i}  > ■^^-^•Dri= Ci(:,!i)i= Ij*'»D (3.28)

where r/j and £  are unknown multiplicative constants. Let 7j=a |'[I—P|]aj such 
that (3.24) can be written as

I X = X = 7Z iW  i= l,..,D  (3.29)
* T

This indicates that Ci=7Zi 7i8i • Invoking the normalization criteria described 
before, it follows that

l" - ^ - X nri = ^ i= I i—1,..,D (3.30)

That is, although without any prior information we cannot determine the 
unknown multiplicative constants, we know that their product is unity. This 
information combined with previous results lead us to a means for decomposing 
the incident wavefield based on the following result.

_ k x J,n i r x 0-e ,» if1«z-* i* r (*-31)

This result indicates that we are able to isolate from the composite wavefield that 
contribution due to a single source without ambiguity. An alternative expression 
for decomposing the incident wavefield in terms of eigen-information derived from 
the core rotations level.

y X W * " > t C x 0- » i .r  • ' (*•»>
This exemplifies the process of telescoping from the core rotations level to the 
data level via eigen-link transformations derived at the covariance level.

- -.-K' . . .  • ,
These results can further be used to extract elements of the sample 

covariance matrix R ss from the E S P R IT  data pencil. The elements of R ss will 
give estimates of the source powers and their correlation. From the properties of 
the left GEVEC’s, of the data pencil, it follows that
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~ l "x „x ;:l - l "c (i l = aa - I s s hA I=A r mA; (3.33)

where is an unknown DxD core rotations matrix defined before. Telescoping 
to the core rotations level via the relationships L =U xEx̂ 1B and Cxx=U xEx2U x 
gives

-i-L ''X [,X ;:L=-i-B -‘B " = I - (B hB )"1 (3.34)

We can use these results to get rid of the ambiguity due to the presence of in 
(3.33). For this, consider the following result. '

^ r Hx " ) ^ X , , r ii ;X 11} x “li. | | a ill2»ir»i (3.35)

where f||| os the standard 2-norm. We again telescope to the core rotations level 
via the appropriate eigen-links to express the above result in the following form.

(«"E “ a i)(/j"5:™/3iHlaill2a ir» ' 1=1,..,D (3.36)

Assume for a moment that the magnitude of the DOA vectors is known and 
consider dividing both sides of (3.36) by ||a j | |2 and N, to obtain

T-J I  T *

■ ssii — jq 8 > 8 ‘ ■ otIj
( f f O i )

Hail!1
1=1,..,D (3.37)

where R 38 is the sample covariance matrix. It is easily verified invoking the 
relations between right and left GEVEC’s that (c^ E x O';), i= l,..,D  are the 
diagonal elements of (B B)-1 . Hence, define

' AhEx2A) V/2
( • i= l,,.,D (3.38)

such that the diagonal elements of

IR m I=A p - I ( B hB )-1Ap (3.39)
A

agree exactly with those of R 38. The off diagonal elements of the two matrices 
differ by some scalar of unity magnitude. So this is one method for estimating 
the source powers and cross correlations to within some unknown phase. The 
only drawback of this method is that it requires prior knowledge of the DOA 
vectors. A schematic representation of the eigen-links between the data level and 
core rotations level is shown in Figure 3.1.
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Figure 3.1 Schematic representation of the eigen-links between the data 
level and the core rotations level.
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3.4 Estim ation o f the Core R otations Pencil with Noisy D ata

The discussion in this subsection centers around the topic of noise corrupting 
the sampled data and the measures that can be taken to counteract its effect. 
Although P R O —E S P R IT  was based on the properties governing the column and 
row spaces of the X  and bold Y  matrix pencils , it was finally concluded that 
having clean estimates of the auto and cross-correlation matrices of X  and Y  was 
sufficient to construct the core rotations matrix pencil (Q uSyQv , S x}. As the 
first step of the "cleaning" procedure , define Z and its associated correlation 
matrix R zk. in the following manner ,

Z =
X
Y (3.40)

The noise is additive , therefore asymptotically R zz can be expressed as

R zz =  C zz +  X^inRjTn (3.41)

where Gzz can be partitioned into

(3.42)

C xx , C vv and C xv are the "clean" quantities that are required to derive the core 
information matrix pencil. Depending on the a-priori information about the noise 
correlation matrix R nn , a different cleaning procedure must be followed

ZZaccordingly. In the first case , suppose that R nn is a predetermined matrix but
ZZ

Xmin 1S unknown. Asymptotically , C zz should be of rank 2M-D so in considering 
its eigenvalue decomposition , the eigenvalue X=O should have a multiplicity also 
2M-D. Let ej be an eigenvector of C zz corresponding to X=0. Thus C zzCj =  0. By 
simple manipulations , it can be shown that

K*zz®i == ^min^nn^i (3.43)

In words , (3.43) says that if a generalized eigenvalue decomposition (GEV) of the 
matrix pencil (Rzz , R nn} is performed , then the smallest 2M-D eigenvalues

ZZ
should be equal to Xm,n. Of course this is an asymptotic result. With a finite 
number of snapshots , the arithmetic mean of the smallest 2M-D eigenvalues ofA 2Z 7?7X
the above pencil provides a reasonably good estimate of Xmin. Knowing R nn and 
Xmin , C zz is obtained from (3.41).

ZZFrequently however , there is no knowledge concerning the structure of R nn. 
A technique to estimate it was recently presented by LeCadre [LEC89]. The 
method is based on ARMA model of the sensor noises in the spatial domain , as
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ZZ
opposed to the temporal domain. Once an estimate of R nn is obtained , the 
procedure described for the first case can be utilized to predict Amin and 
ultimately C zz

3 J> On th e  A sym pto tic  U nbiasedness of P R O -E S P R IT

From the discussion so far , it follows that P R O —E S P R IT  can provide 
asymptotically unbiased estimates (a.u.e’s) for the following components of the 
core rotations and E S P R IT  data pencil.

• a. u. e. of "clean" X-Y cross-correlation matrix Cxy
• a. u. e.’s of "clean" eigendata: U x, E x, U y, and Ey
• a. u. e.’s of unitary matrices Q u and Qv
• a. u. e.’s of core information pencil eigendata: ^ ii, a u and $ ,  i= l,...,D .
• a. u. e.’s of array manifold vectors a,, i= l,...,D , each to within a scalar 

multiple.
• a. u. e.’s of optimum signal copy vectors: Ii, i= l,...,D .
• a. u. e. of source covariance matrix, R ss, to within a diagonal unitary matrix

The Ii’s are defined as the left generalized eigenvectors of the MxN pencil 
{_£_Yd , X D} and R ss is the source covariance matrix. A detailed discussion

on these quantities and a procedure on how they can be derived from the 
corresponding quantities of the core information pencil can be found in 
[ZOLT89a]. The major items missing from the above list are the source time 
series vectors, Si , i= l,...,D , i. e., the message signals associated with each source, 
and the right singular vectors of the noiseless X and Y data matrices, vx. and vy.,
respectively, i= l,...,D . Of course, their omission from the above list is due to a 
fundamental limitation: noise at the data level cannot be "cleaned out" entirely 
even in the asymptotic case. Perfect "cleaning" is only theoretically possible at 
the statistical level, as is the case with the X and Y correlation matrices, for 
example, and only in the case of an infinite number of snapshots at that. Thus, 
the estimates of the message signals obtained via P R O —E S P R IT  are, in fact, 
biased even in the case of an infinite number of snapshots. All that can be said is 
that, for each source, the asymptotic error in the P R O —E S P R IT  estimate of the 
associated message signal is orthogonal to the message signal.
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3.8 Invocation of Solution to Procrustes Problem: PR O —ESPRIT  

The procedures outlined previously allow one to obtain asymptotically
D f ) /s A H A I *

unbiased estimates (a.u.e.’s) of U x and U y such that Q u =  U x U y is
asymptotically equal to the unitary matrix obtained under noiseless conditions 
which performs an invariant subspace rotation on the signal subspace. In 
practice, however, U x Uy will not be unitary due to a finite number of snapshots, 
imperfections in the array data, etc. The logical alternative is to consider the 

"best" unitary matrix which approximates U x U y. Actually, for use in 
P R O —E SP R IT , one desires the "best" unitary matrix which rotates U x into U y. 
This criterion is referred to in the literature as the Procrustes problem 
[GOLU83a,BARN80]. Hence, the algorithm which incorporates the Procrustes 
processing option is referred to as the Procrustes Rotations based E S P R IT  
algorithm or P R O —E SP R IT . Not surprisingly, the "best" Q u satisfies both 
criteria which are described below.

A DHa I) A D A f>
(i) Min IIUx U y -  Q uIIf (ii) Min ||U y -  U xQ u| |f (3.44)

HS ub jecttoQ uQu = L
The minimizing Qu in both cases is obtained by taking the SYD of the DxD 
matrix U x U y and forcing all the  ̂ singular values to be unity 
[GOLU83a,BARN80|. Mathematically, if U x U y =  UiEiVf is the SVD, then Qu

H *

=  UjV j is the unitary matrix which satisfies both of the criterion in (3.17).
A similar procedure is followed with respect to the estimate of the unitary 

transformation, Qv, which rotates the r ig h t singular vectors of the X data matrix 
into that of the Y data matrix. It was found in Section HI that this matrix can 
be expressed in terms of the left singular vectors of both matrices, along with the 
corresponding nonzero singular values, and the MxM "clean" X-Y cross-correlation 
matrix, Cxy, quantities for which there are asymptotically unbiased estimators. 
However, Qy will never be unitary in practice. As in the case of Qu, the closest 
unitary matrix approximating Qy is obtained by taking the respective^ VD and 
forcing all the singular values to be unity. Mathematically, if Q y =  S x U x Cxy 
UySy =  UrErVf is the SYD, then Qy=UrV r is the unitary matrix which 
satisfies criterion similar to (3.17). It should be noted that despite Q u and Qv 
being unitary , the matrix Ex QuE yQ y is not unitary , therefore there is no 
guarantee that the roots will have unity magnitude. However , simulations have 
demonstrated that the Procrustes operation pushes the roots closer to the unit 
circle.



A flow chart summarizing the P R O —E S P R IT  algorithm is shown in Figure 
3.1. It is worth noting the parallel fashion in which we can perform the essential 
operations of the algorithm In order to reduce the execution time.

3.7 T o ta l Leaat Squares In te rp re ta tio n  of P R O —E S P R IT

In this section we present an interesting interpretation of the 
P R O —E SP R IT  algorithm, which is based on the concept of Total Least Squares 
(TLS) [GOLU80,ZOLT89e]. The idea behind this approach is simple. The X 
array data and the Y array data provide us with two different estimates of the 
signal subspace, and two different estimates of the source subspace as well. Total 
Least Squares is utilized as a means for perturbing each of the two estimates of 
the signal subspace, say, in some "minimal" fashion until they are equal. The 
common subspace after perturbation is then taken as a "better" estimate of the 
signal subspace. A "better" estimate of the source subspace is obtained in the 
same fashion. The CIM is then obtained by rotating into these optimal 
subspaces. Here, we only go as far as deriving the structure of the CEM and its 
components. The equivalency between this CIM matrix and the one developed in 
Section 3.2 was established by Hua in [HUA88b].

A natural concern which may have arisen during the development of 
P R O —E SP R IT  in Section 3.2 has to deal with the fact that no justification was 
given for defining the left and right GEV’s of the data matrix pencil Y d ,

X d } in terms of the right and left singular vectors of — -X, as signified by

the dependence of the expressions in (3.18) and (3.21) on U x and V x. We could 
have just as well worked with the left and right singular vectors of Yd .

However, the question arises as to whether the singular vector information from 
either data matrix should be given preference. To remedy this dilemma we make 
use of the TLS technique as a means of determining the "best" set of D 
orthonormal vectors which approximate range{A}, the signal subspace, and the 
best set of D orthonormal vectors which approximate range{SH}, the source 
subspace. These are placed as the columns of U 0 and V 0, respectively. We will 
argue shortly Jthat the appropriate vectors comprising U 0 are the D left singular 
vectors of [Ux | Uy] associated with the D largest singular values. Similarly, the 
appropriate vectors comprising V 0 are the D left singular vectors of [Vx|V y] 
associated with the D largest singular values. We will substantiate these claims 
below and address some computational issues as well. Before we proceed with 
this, let us consider the structure of the CIM dictated by this approach.



EVD of CEVD of C

smallest GEV of (R lx , R nn}

fast estimate of X

smallest GEV of {R.

fast estimate of X

estimate number of sources: D

estimate "clean" X eigendata

form Uform U

estimate "clean" Y eigendata

estimate R l 1n via LeCadre algorithm

partition: R

Figure 3.2 A summary of PR O —ESPRIT
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"closest” unitary matrix:

SVD: Q 11 - U 1L 1V 1

"closest" unitary matrix:

angle estimates: =arg{4>ji}/(27rd\) i= l

source covariance matrix: R,

correction matrix: A

correction factors: J £ J =JllLx f t  JJ2 /JJai JJ2

array manifold vectors:

signal copy vectors:

Figure 3.2 (continued)
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Given Ug and Vg via TLS processing, we proceed similar to the original
development to find the best set of DxD unitary matrices, 
invoking the solution to the Procrustes problem, such that

Q u, q ; ,  Q u.q ,

_  _ D
Uy « UoQii y >  v 0dq

uxD« U 0Q xu V x « V 0uQ X
y

That is, we find the "best" unitary matrix approximating each of the following 
DxD matrices: U 0HUy, V 0HV y, U 0 U x, and. V 0 V x. The reduction to the 
core rotations level is then accomplished by substitution into the E S P R IT  data 
pencil estimate in the following manner.

V n

- d„ d - DtUyEyVy -  XUxdE X h (3.45)

«  U D
O x q ; e xdq

xH
V V

PH
O

The DxD pencil {Q; E yQ ^  Qu ^xQ y”} is then the C M  pencil in the TLS 
interpretation of P R O —E S P R IT . The implication is that the estimates of 4*,;, 
defined by (2.9), are then found as the GE’s of this pencil. However, it has been 
shown by Hua [HUA88b ] that the GE’s of this pencil are practically identical to 
the GE’s of the matrix pencil derived in (3.6). Besides establishing the fact that if 
P R O —E S P R IT  is approached via the TLS principle it actually reduces to the 
algorithm developed in Section 3.2, this result by Hua also goes to substantiate 
our previous claim that P R O —E S P R IT  exploits the inherent redundancies in 
the array system to the fullest.

We now present the process of estimating the signal and source subspaces via 
the TLS principle. We begin with the estimation of the signal subspace. For our 
purposes here, we make use of Total Least Squares (TLS) as a technique for 
solving the following type of problem:

Minimize: ] | [AA | AB] || p

subject to: range{B+AB} C  range{A+AA}

where A is mxn and B is mxk, with m >n. This problem is derived from the 
problem of solving the over-determined linear system of equations AX=B. 
Consider the situation with the left singular vectors. In the asymptotic case, the 
columns of U x form an orthonormal basis for the samejsubspace as that spanned 
by the prthonormal basis comprising the columns of U y, the signal subspace. In 
the practical case, where the number of snapshots may not be that large, it seems
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logical to exploit th is  redundancy  to find the "best" estimate of the signal 
subspace. To this end, we pose the following problem which is similar in form to 
the above TLS problem.

Minimize: || [AUx J AUy]||F

subject to: range{Ux+AUx} =  range{Uy+AUy}

That is, we wish to find the perturbing matrices AUx and AUy of minimum 
Frobinius norm such that the range space of the perturbed matrix U x +AUx is 
exactly equal to the range space of the perturbed matrix Uy+AUy. The common 
D-dimensional range space of the two perturbed matrices should then be a better 
estimate of the signal subspace. In actuality, we do not need to compute the 
perturbing matrices AUx and AUy, if we are, in fact, only interested in the 
common range space. Invoking the TLS solution developed by Golub and Van 
Loan [GOLU80], we find that the common range space is that spanned by the D 
left singular vectors of [Ux|U y] associated with the D largest singular values, as 
indicated previously. These can also be found as the D "largest" EVEC’s of the 
MxM matrix UxU x +  UyUy •

We proceed similarly to again exploit the inherent redundancy in the 
E S P R IT  data pencil to obtain a better estimate of range{SH}, the source 
subspace. Following the exact same argument and sequence of steps as above, we 
find that the appropriate vectors comprising V 0 are the D left singular vectors of 
[Vx I V y] associated with the D largest singular values. Alternatively, this may be 
achieved through the following sequence of steps. Compute the eigen- 
decomposition of the 2Dx2D matrix

[Vx|V°]H[V°|V°] = V E 2V h (3.46)

Of course, it follows that the columns of V  in (3.46) are the right singular vectors 
of [Vx I V y] and the elements of E (not squared) are the corresponding singular 
values. If we let E0 be a diagonal matrix comprised of the D largest singular 
values derived from the eigen-decomposition above and V 0 be comprised of the 
corresponding right singular vectors, then the D associated left singular vectors 
may be computed from the relationship between the left and right singular 
vectors of a matrix in the following manner.

V° =  Iv J v ^ v dEb1 (3.47)

We note that even with TLS processing, we do not obtain a.u.e.’s of the right 
singular vectors of the noiseless data matrices. This is in contrast to the case with 
the left singular vectors where a.u.e.’s are obtained even without the TLS
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processing. In light of this, we develop the TLS-based procedure for estimating 
V 0 a little further to insure ourselves that the estimates of Q l and Q l are 
nonetheless asymptotically unbiased. Invoking the orthonormality of V x and V y 
in the expansion of the left hand side of (3.46) gives

[V ^|V °]"[V jV y] (3.48)

where Qv =  V x V y. From previous analysis, we know that an asymptotically 
unbiased estimate of the unitary matrix Q y = V x wV y obtained in the noiseless 
case is given by Qy =  Ilx Ux Cxy U yIly . Hence, E0 and V0 used in (3.47) 
are constructed from the D largest eigenvalues and corresponding eigenvectors, 
respectively, of the 2Dx2D matrix on the right hand side of (3.48) with this 
expression substituted for Q v. Consider

Q
X
V

DH
V Vv x Y <

A DH A D A D

v* (VjVylVoiV « (llQvlVpiy (3.49)
A . D - i  A d h ,  A n r> i

where we again substitute Qv =  Ilx U x C xy UyS y • The appropriate Q v to 
be substituted into the P R O —E S P R IT —TLS core rotations pencil is then the 
"best" unitary matrix, invoking the solution to the Procrustes problem, 
approximating the far right hand side of (3.49). Likewise, the appropriate Q£ to 
be substituted into the P R O —E S P R IT —TLS core rotations pencil is the "best" 
unitary matrix approximating Q v =  [Qv |I] V0Ep1.
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C H A PT E R  4
PR O -E S P R IT  AND T H E  U N IFO RM  LIN EA R A RRA Y

4.1 T he L inear A rray  G eom etry  and  th e  F-B  D a ta  Pencils

Of all array geometries and designs, perhaps the one with the most 
redundancy built into it is the uniformly-spaced array composed of identical 
sensors. An array of this sort will be referred to as a uniform  linear a rra y  
where it is understood that the uniformity is in both spacing and element pattern. 
In fact, bothered by a perception of inefficiency with the uniform array, many 
have sought to design so-called non-redundant or minimum redundancy arrays 
[BEDR86,PILL86]. However, it would seem more judicious to use the uniform 
linear array structure to our advantage by exploiting the inherent redundancy to 
compensate as much as possible for any imperfections in the array data and any 
inadequacy in the array model, as elaborated upon in chapter 3, and to reduce 
computation as well. The uniformly-spaced array geometry is particularly 
intriguing for the application of E SP R IT , or any of its numerous derivatives 
such as P R O —E SPR IT , since it is inherently composed of a number of so-called 
doublets or matched sensor pairs, assuming the sensors to be identical. 
Specifically, every two adjacent sensors in the array is a doublet such that a 
uniform linear array of M sensors is composed of M-I doublets. This is an 
observation which has recently captured the interest of a number of those 
pursuing applications of E S P R IT  [PAUL85,ZOLT87c,SPEI87,VAN87]. 
Following the lead of Ouibrahim [QUIB86,QUIB87] and Hua [HUA88a] the data 
derived from a uniform linear array will be used to construct a matrix pencil 
having the structure required by P R O —E S P R IT . The impetus for constructing 
pencils in the manner described by these gentlemen has its foundations in the 
concept of forward-backward spatial smoothing [QUIB87,QUIB88,HUA88aj. 
Thus this pencil will be referred to , as the forward-backward data pencil , or the 
F-B data pencil, for short.

The reasons for working with the F-B data pencil in the uniform linear array 
case are many. The first and foremost is that it facilitates a significant reduction 
in the computation required by P R O —E SP R IT . This reduction in computation 
is due to the fact that the X data matrix and (the conjugate of the) Y data
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matrix comprising the F-B data pencil are related through simple unitary 
transformations such that the SVD of one can be obtained from the other via 
simple, known transformations. These relationships, which will be derived 
shortly, can be exploited by P R O —E S P R IT  since it works with the X and Y 
data matrices ’Individually". A good reason for considering the application of 
P R O —E S P R IT  in the uniform linear array case has to deal with the fact that 
the GEV’s of an E S P R IT  data pencil are estimates of quantities which should lie 
on the unit circle, the ^ , i= l,...,D , as defined by (2.8). In the development of 
P R O —E S P R IT , this constraint was not incorporated due to the fact that it did 
not lead to a closed-form solution. Instead, it was indicated that the Procrustes- 
based processing served as a sub-optimal, closed-form means for accommodating 
this constraint. In the case of a uniform linear array scenario, it is found that the 
process of forward-backward averaging serves as an additional means of 
accounting for this constraint. A brief argument will be provided for this shortly. 
In addition, there are the usual benefits associated with F-B averaging: it
effectively increases the number of data vectors over which the average is 
obtained and it also serves to effectively decorrelate highly-correlated or coherent 
signals [QUIB87,QUIB88,HUA88a,SHAN85]. Now these points will be validated.

4.2 Construction and Analysis of the F-B D ata Pencils

Denote Xj(n) as the output signal from the i-th sensor of the uniform linear 
array, i= l,...,M , recorded at the n-th snapshot, n= l,...,N . The F-B data pencil 
is constructed in the manner prescribed by Ouibrahim [QUIB88] and Hua 
[HUA88a] by effectively breaking the array up into subarrays of L<M contiguous 
elements. There are M-L-Hl such subarrays in the array defined such that two 
adjacent subarrays have L-I sensors in common. The F-B data pencil is then 
constructed via the following the following three steps.
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C O N ST R U C T IO N  O F F-B D A TA  PE N C IL

(I) for each snapshot, form the following two Lx(M-L) matrices:
Xi (n) x2 (n) xM_L(n) 
x2 (n) x3 (n) xM_L+1(n)

Di (n)

xL ^ )  xLh-I(n) xM -I(n)

D2(n) =

x2(n)
xs(n)

x3(n) 
X4 (n)

xM-LH-I (n ) 

xM-L+2(n )

xLh-I (n ) xLh-2 (n ) xM(n )

(2) concatenate the matrices constructed in (I) as follows to form the 
forward data pencil (F-pencil) of dimension Lx[N(M-L)].

Xf = [d ,(1) ,D j (2) , • • • ,D 1(N)] ; Yp = [d 2(1) ,D 2(2) , • ■ • ,D 2(N)]

(3) construct the Lx[2N(M-L)] F-B data pencil from the F-data pencil in (2) 
as follows

X fb -  [x F I IYf ] ; Y fb =  [y f I i x ; ]  (4.1)

where I is the reverse permutation matrix of appropriate dimensions defined by

0 0 
0 0

0 I
1 0

I
. 0

(4.2)

-T
Note that I satisfies I = I  and I I = I  which indicates that it is is a unitary 
matrix equal to its own transpose. A comment on the bounds on the choice of L 
is made at a later point. Now, a detailed description of the elements of the F-B 
data pencil in the noiseless case, and hence a verification of its E S P R IT
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structure, can be found in Ouibrahim’s dissertation [QUIB87]. Before applying 
P R O —E SP R IT  to the F-B data pencil , a brief analysis of this pencil will 
demonstrate why backward averaging, in fact, serves to "partially" account for 
the fact that the 4*,} are on the unit circle.

It is easy to show that in the noiseless case the forward data pencil, or F data 
pencil, for short, constructed in step (2) above has the following structure.

A1SL0F Ai. 4>Se (4.3)

where Al is the array manifold associated with each identical subarray composed 
of L identical sensors

I i I

$11 4*22 $DD

$?1 4>|s :i $DD
:

* i r ‘ •ffe1 $DD

(4.4)

and Sp — S I 4>S | • • • | 4>M L 1Sj, a Dx[N(M-L)] matrix. Recall that the D
rows of S are the complex envelopes associated with each of the D signals as 
defined previously. Therefore, Xfb as constructed in (4.1), or step (3), can be 
expressed as

IjAlSf IIAtV s Sf I 4>L"2S (4.5)

where we have used the pseudo-centro-symmetric property [BRES86] 
Al =  I  A l 4>l_1 which follows from the Vandermonde structure of A l and the 
fact that the 4>j[ are on the unit circle such that 4>_1 =  4>*. Likewise ,

^ fb =  |̂ Al4>Sf I A1V  1Sf ] =  A l^Is f I 4^ 2Sf ] (4-6)

Comparing the far right-hand-side (RHS) of (4.6) with that of (4.5), it can be 
concluded that the F-B data pencil, (XfbYfb), obtained in the noiseless case, 
does indeed possess the E S P R IT  structure. However, it is apparent that the
whole argument hinged on the property A l =  I A l 4>l-1 which only holds if the 

i= l,...,D , lay on the unit circle. If the 4>j} do not lie on the unit circle, the 
F-B data pencil does not possess the desired E S P R IT  structure. In contrast, the 
F-pencil exhibits the E S P R IT  structure whether the 4»̂  lie on the unit circle or 
not. This development then serves as a "loose" argument for why the use of 
backward averaging in a uniform linear array scenario serves as a simple means 
for "sub-optimally" complying with the constraint that the 4>-,j lie on the unit
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circle in the application of P R O -E S iiR IT  (or any "ESPRIT-like” algorithm for 
that matter). It is stressed, though that it does not guarantee us that the roots 
will lie on the unit circle.

Now , some observations pertaining to the similarity in structure of Xfb and 
Y fb which will serve to reduce the computation associated with an eigenanalysis 
of the F-B data pencil via P R O —E SPR IT . To this end, observe that Xfb and 
Y fb, as constructed in (4.1), or step (3) above, contain exactly the same 
information; they are related through a simple permutation as follows:

Yfb = I X ? b J  (4.7)

where J  is a block reverse permutation matrix defined by

(4.8)

where Nr=N(M-L); the integer subscripts serve to indicate the dimension of the 
respective square matrix. It is easy to verify that similar to the case with the 
reverse permutation matrix I, J  is unitary and equal to its own transpose. As a 
consequence of the relationship in (4.7), it is not too surprising to find that the 
respective SVD’s of X fb and Yfb are related through simple transformations. 
The appropriate transformations can be arrived at by a simple development. To 
this end, let X fb = U xSxV , denote the SVD of Xfb and substitute this into
(4-7).

YFB= { |U * )S ,{ V J  1} (4.9)

where it is important to recognize the difference between hermitian transpose 
denoted by subscript H and regular transpose without conjugation denoted by 
subscript T. Since the product of two unitary matrices is unitary, it follows that 
I  U x is a unitary matrix as is V x J. Let Yfb =  UySyVy denote the SVD of 
Y fb . It follows from the property that an SVD is unique that the following 
relationships hold.

U y = I U *  S y = S x V y = J  V^ (4.K))

It is emphasized that these relationships hold whether noise is present or not and 
are not based on any type of asymptotic argument. However, they only hold for 
the F-B data pencil; they do not hold for the F data pencil, which is constructed 
based on forward averaging only. These relationships are now exploited as 
promised.
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4.3 PRO-ESPRIT Bigenanalysis o f  the F-B D ata Pencils

An eigenanalysis of the F-B data pencil via P R O —E SPR IT , according to 
the algorithm outlined in chapter 3, requires, initially at least, an estimate of the 
noiseless or "clean" F-B cross-correlation matrix Cjr| =  -ArXp8 Yp8 and,
ostensibly, EVD’s (eigenvalue decompositions) of "cleaned" estimates of the F-B 
auto-correlation matrices C fb =  A -X fb X fb and C *=-ArYps Y fb where
N '= N(M-L), as defined previously. However, it is obvious from the preceding 
development that an EVD of is not necessary since its eigen-information is 
simply related to that of C fb in accordance with the respective relationships 
between the singular values and left singular vectors of Y fb and Xfb in (4.10). 
This reduces the problem at hand to estimating C f^ and the EVD of C fb . To 
this end, let us assume the additive noise to be "spatially white" such that the 
expected power of the noise at each sensor, denoted o f, is equal. This assumption 
will be relaxed at a later point. As might be expected, the initial "cleaning" step 
required by P R O —E S P R IT  is greatly simplified under this condition. 
Accordingly, the following observations are in order. It easily proved that the 
"spatial whiteness" of the noise is preserved by the process of forward-backward 
averaging [QUIB87,QUIB88,HUA88a], such that

^lim R fb =  Iim -A-XfbX fb =  C fb +  o f l  (4.11)
N large N large

Also, as observed by Roy et al [ROY86] and Ouibrahim [QUIB86,QUIB87], note 
that

lim t t S - l i m  ^ X raY r e - C & + < 7 | r  (4.12)

where T is a matrix having all ones along the first sub-diagonal below the main 
diagonal and zeros everywhere else. (4.11) indicates, of course, that 
asymptotically the eigenvectors of R fb are the same as those of C fb, and that the 
respective eigenvalues differ only by the additive amount o f which may be 
computed as the smallest eigenvalue of R fb , denoted XmJll, assuming D<L. Thus,

a XX
an EVD of R fb provides all the information necessary to construct the EVD of
a XX
C fb required by P R O —E S P R IT . In addition, (4.12) and the above observations 
lead us to the following simplistic scheme for estimating the "clean" cross- 
correlation matrix.

C fb =  A -X fbY fb — XminT (4.13)

After all this, an outline to the P R O —E S P R IT  eigenanalysis of the F-B data
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pencil can be presented. The steps are delineated below.

P R O -E S P R IT  FOlR U N IFO RM  ARRAY (W H ITE NOISE)
a . A

(I.) form Xfb and Y fb.
JlXX

(2.) form LxL R fb == Xfb X fb and LxL R fb
A XX A XX A

(3.) EVD of RpB: RpgUx. — Xx. Ux.) 1̂ =1,...,L. 

(4.) estimate number of sources, D.

_  i -v- Y  — r F

(5.) with Xmin 

(6.) form:

1 S  Xx., "clean" R ^ : CpgL-D
w xy \ xx rJtvpn A m;n I .

i=*D+l

u “ =
—xx i/ a -Ixx i/_\ ■ !<L _ \  . \Mn

[uX], . . . ,UXd J >

aD -I
£ x U v Cpn I U

BH a xy
fx Cpg

a_ D *

X

diag{(XXi-Xmin)% . . . ,(XXD-Xmitt)^}
a a ^ ̂  ~ a [) * a

(7.) form DxD Q u =  U x I Ux and DxD Qv
C 1-

(8.) SVD of Qu and Qv: Qu =U1E1Vf1 and Qv =UrErVf1 
(9.) form Qu =U 1Vf1 and Qv =UrVf1.

(IO.)DxDEVD: £ x "1Qu £ xQ? =  B $B _1.

Sifting through this algorithm, the major computational tasks are found to 
be the LxL EVD in step (3), the two DxD SVD’s in step (8), and the DxD EVD in

2step (10). Note that L < M  and is typically chosen to be L = - M .  Comparing
O

with a P R O —E S P R IT  eigenanalysis of a general E S P R IT  data pencil, the
a yy

primary reduction in computation is due to the fact that an EVD of R fb is not 
required. It is stressed that this reduction in computation is only valid when 
backward averaging is employed. To bring home the point, note that it is 
perfectly valid to set L equal to M-I in the procedure for constructing the F-B 
data pencil, i. e., the relationships in (4.10) hold even in the case of L =M -I. 
Thus, it is required that L <  M—I. It is also required that L ^  D + l; the 
additional one allows the estimation of'of.  This implies that with M uniformly- 
spaced sensors, P R O —E S P R IT  as outlined above can handle M-2 sources. 
Another reduction in computation realized in the uniform linear array scenario is 
the avoidance of the initial "cleaning" step required by P R O —E SPR IT . This 
simplification resulted due to the fact an EVD of R fb is "as good" as an EVD of 
of Cp0 and provides the necessary information to "clean out" the noise in C fb as 
well.
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4.4 S im ulations and  Discussion

The first simulation example is offered as testament to the power of 
P R O —E S P R IT  as it involves a scenario whose characteristics are: sources 
separated by less than a beamwidth , low signal to noise ratios as well as small 
number of snapshots plus high correlation coefficient amongst the sources. The 
array that was used was a uniformly spaced linear array of 15 sensors (M = 15) 
and the noise was spatially white. The number of sources was 3 (D=3) and they 
were located at the following angles with respect to the normal to the line of the 
array: O1 =6.5° , i92=10.3° and O3= - 9°. For an array of this size , the 3 dB 
beamwidth is approximately 8.7°. Therefore , the first and second sources 
separated by almost half a 3 dB. The third source is approximately 2 
beamwidths away from the first source. The individual signal powers and the 
correlations amongst them are described by the 3x3 source covariance matrix , 
R 88. With the noise power normalized to unity , i.e. <r£=l , the true covariance 
matrix for the scenario under consideration was as follows.

R SS

3 2 l' 
2 4 I 
I I 5

4

With these parameters , we tested the performance of the version of 
P R O —E S P R IT  developed in this chapter as a function of the number of 
snapshots. Specifically , we let the number of snapshots (N) be equal to N =  3, 
N =  5, N =IO  and N =  15. The results of one hundred independent trials are 
plotted in Figures 4.1(a), 4.1(b), 4.1(c) and 4.1(d) respectively. In each 
independent run, the F-B data pencil was constructed according to the procedure 
outlined before , with the subarray length (L) equal to L=IO , i.e. 2/3 of the 
overall array. For each of the four cases , the sample mean and variance was 
computed and listed in the corresponding figure. Observe that even with 3 
snapshots , that is the case when the number of snapshots was the minimum 
number that could be used , the algorithm performed quite well , and the two 
sources that were separated by less than half of a beamwidth were resolved. The 
sample mean of the angle estimate for each of the 3 sources was off by 0.1° for 
the first source and 0.3° for the second and third. The variance of the estimates 
decreases quite fast as the number of snapshots is increased from N = 3 to N =  15. 
Before going on to the next simulations we would like to comment on the 
following observation. If the plots presented thus far are examined more closely, 
it becomes apparent that there exists some dependency amongst the roots, that is 
more obvious for the ones whose magnitude is not identically equal to one. For 
example, in Figure 4.1(a), if one draws a straight line from the origin to any of
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v- ' " ' .

the roots, then this line must also intersect one other root. This is not a 
coincidence but has a mathematical justification. Analysis of this phenomenon is 
postponed until Chapter 5 because it re-appears there as well. We emphasize, 
however, that this is a result of simultaneous F-B averaging and Procrustes 
processing and it is not observed is either of these processes is avoided.

The effects of Procrustes processing , that is the replacement of each of the 
two estimated core rotations matrices by their respective unitary matrices is 
clearly illustrated by the results of our next simulation example which are 
displayed in Figure 4.2. The specific array and source scenario simulated in this 
Case again consisted of 3 sources , a uniformly spaced linear array of 15 sensors 
and spatially white noise. The DGA’s in this case where: O1 = —9.0° , #2= 6-0° and 
#3=12.3°. The number of snapshots was now N =  8 , and since the simplified 
version of P R O —E S P R IT  was used , the length of each subarray consisted of 
ten sensors. The noise power was again normalized to unity and the source 
covariance matrix was

RSS
1.0 0.2 0.0
0.2 1.0 0.0
0.0 0.0 1.0

Thus , the signal to noise ratio was 0 dB for each of the three sources. Once more 
, the results of 100 independent runs are shown. Figure 4.2(a) shows the outcome 
of the estimator with out the Procrustes processing option , while 4.2(b) shows 
the outcome of the estimator with the Procrustes processing option. A 
comparison of these two plots illustrates the tendency of Procrustes processing to 
place the GEV’s of the core rotations pencil on the unit circle. This simulation , 
therefore , serves to substantiate the earlier claim that Procrustes processing 
serves as a sub-optimal , closed form means for accommodating the constraint 
that the GEV’s of the core informations pencil lie on the unit circle.

The purpose of the next simulations is to compare the variance of the 
estimated directions of arrival against the Crame-Rao lower bound (CRLB). 
Obtaining explicit expressions for the variance of the estimated eigendata via 
P R O —E S P R IT  is an impossible task because of the series of eigenvalue and 
singular value decompositions that are involved. Some work has been done in 
this area that examines the asymptotic case of infinitely many snapshots. This 
has partially enabled the asymptotic analysis of MUSIC and T L S—E S P R IT . 
However the results cannot be applied to P R O —E S P R IT  for the reason that 
P R O —E SPR IT , unlike the former methods, also works with the eigenvalues of 
the sample X and Y correlation matrices. Also of relevance here is the work done 
by Hua and Sarkar in [HUA88b] in which they consider first order perturbations



47

away from the clean data. The basic conclusion there is that, if the perturbations 
are small, then all five algorithms they investigated, including PRO —ESPRIT  
and TLS—ESPRIT, are equivalent, giving estimates of similar bias and 
variance. For these reasons we shall here compare the CRLB with the sample 
variance of the estimates. The scenario we were working with was the following. 
Three signals were arriving from directions O1 = —2.2°, O2 =7.1° and 03=15.6°. The 
array consisted of 15 sensors, uniformly spaced on a line and separated by half a 
wavelength. The F-B averaging version of PRO —ESPRIT was used, with each 
subarray containing 10 elements. In the first simulation, we compare the variance 
of the estimates of O1 versus the associated CRLB, as the number of snapshots 
changed. The signal to noise ratio of each source was held fixed at 4 dB and all 
three sources were uncorrelated from each other. The sample variance was 
obtained from 200 independent runs of our algorithm. The results are plotted in 
Figure 4.3(a). The most notable feature of this plot is the initial big rate of 
decrease of the sample variance as the number of snapshots increased. This is 
attributed to the fact that the noise subtraction process at the covariance level 
becomes more and more accurate as the number of snapshots increases. In other 
words, the sample noise correlation matrix approaches more closely the assumed 
true noise correlation matrix, which in this case was a multiple of the Identity. In 
the second simulation the results of which are presented in Figure 4.5(b) the 
parameter that was varied was the SNR ratio of each source. The power of all 
three sources was changed equally, while the number of snapshots was held fixed 
at nine. The variance indicated was that of the estimates of O1 . The same 
pattern is observed here as well, with the sample variance initially falling at a fast 
rate, and, although not visible on the graph, after 25 dB it approaches the CRLB 
quite closely. Finally, we consider the sample variance of our estimates as a 
function of the subarray length but with a fixed number of elements. What was 
done was the following. The number of sensors was held fixed at 15. Then, the 
subarray length was varied, and for each length, the number of subarrays was 
adjusted so that both forward and backward matrices incorporated the maximum 
number of possible data. The same three DOA’s were assumed as above, while 
the number of snapshots and SNR of each source was held fixed at 9 and 5.2 dB 
respectively. In Figure 4.4 we plot the results for the sample variance of Oi . 
Observe that the curve obtains its minimum when the size of the subarray is 2/3 
of the total array size. This ratio was also cited by Hua in [HUA88a] as the 
optimal ratio that minimizes the CRLB when the noise perturbation is assumed 
small.

So far we have been testing our algorithms against simulated data. In the 
following simulations we will be using real data that were kindly provided by Dr.
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Kaveh at the University of Minnesota. Their source is a linear acoustic array of 
eight uniformly spaced ultra sound sensors. The frequency of the received sound 
wave is 40KHz. Assuming that the speed of propagation of the sound waves was 
330 meters per second, this implies that the wavelength of the signals was about 
X=0.825cm. Unlike the typical case when the sensor separation is X/2, in this 
case the separation was 2.13X. For this particular separation, sources in the 
region (9=—13.6° to 13.6° are resolved without any angular, but there is 
ambiguity for signals received from outside of this region. For example, to the 
array, a source at #=13.6° and a source at 0=—13.6° appear the same. This 
ambiguity problem is discussed further in the simulations section of Chapter5. 
The 3dB beamwidth for this array is given by the inverse sine of !/(8x2.13), i.e., 
3.4°. It is assumed that the source of the sound waves was far from the receivers 
so that the plane wave equation was obeyed by each one of them. To compensate 
for array imperfections, the received raw data were calibrated before being 
processed. The calibration process involved the determination of the array 
response at 0.5° intervals, and the use of this information to compensate for the 
deviations away from the ideal array model.

The first case we consider involved two signals coming from O1 =5° and 
O2-Z 0. Note that the source separation is less than the 3dB beamwidth. The 
total number of snapshots we were provided with was N=IOO. The two sources 
were uncorrelated, however, the noise was non-white, with unknown correlation 
matrix. Since the array is linear, to get the E S P R IT  structure we must break 
the array into overlapping subarrays, hoping that calibration has ensured 
identical phase and gain responses by all eight sensors. Knowing that there are 
two sources, the subarray size must be no less than three. In this case we chose to 
use the F-B version of P R O —E SPR IT . Of interest is the fact both the AIC and 
the MDL criteria fail to estimate correctly the number of sources when applied to 
this as well as to the next set of data. First we consider the angle estimates as a  
function of the subarray length, with all 100 snapshots being used. The results 
are summarized in Table 4.1(a). It is seen that with a subarray of length 3, the 
estimates are well off their actual value, especially the one for O2. The estimates 
improve as the subarray length begins to increase, and as seen, the least total 
absolute error between the estimates and their actual values is achieved when the 
subarray length is six. This is in accordance with our earlier claim that the 
optimal subarray length is approximately 2/3 of the overall array length. In 
Table 4.2(b) we present tabulate the estimates and the absolute error as a for a 
fixed subarray of length five, and changing number of snapshots. The thing to 
note here is that the estimates show little, if no improvement as the number of 
snapshots goes from 10 to 100. This is in accordance with the results of the first
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simulation claiming that as a function of the number of snapshots, 
P R O —E S P R IT  achieves its top performance at a small such number, and the 
effect of other parameters such as SNR then predominates. The next scenario was 
slightly different. It involved three signals coming from O1 = —10°, Oi = S 0 and 
O3 = Z 0 . Tables 4.2(a) and 4.2(b) tabulate the estimates and the total absolute 
error as a function of the subarray length and as a function of the number of 
snapshots respectively. For this case we used P R O —E S P R IT  without the F-B 
option. For some inexplicable reason, with the use of F-B averaging 
P R O —E S P R IT  failed to resolve Oi  and O3 , so we chose not to use it at all. The 
AIC and MDL criteria fail again to estimate the true number of sources. All 
three sources were uncorrelated with unknown power, and the noise was was 
given as spatially and temporally white. The results here are less consistent 
compared to the previous ones. For example, subarrays of length four result into 
better estimates than subarrays of length five, while the opposite would be 
expected. A similar inconsistency is observed in the estimates with changing 
snapshot numbers and subarray length fixed at six.
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Figure 4.1 The performance of PRO—ESPRIT when applied in a uniform
linear array scenario consisting of 15 sensors, three sources at 
O1 =5.5°, 10.3° and 03« - 0°. The dashed curve represents the
unit circle. The results of 100 independent trials are shown.
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Figure 4.2 Comparison of PRO —ESPRIT performance for Procrustes 
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off'. The scenario consisted of a uniform linear array of 15 
sensors and three sources; at 0°, 0j»12.3°. The
results of 100 independent trials are plotted.
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Table 4.1 Performance of P R O —E S P R IT  with real data. There are two 
sources located at 3° and 5°. The estimates are listed as a 
function of the subarray length and the number of snapshots. 
F-B averaging was used.

Subarray length 9i 02
Absolute
error

3 4.25 -0.63 4.38

4 4.29 2.33 1.42

5 4.95 3.45 0.5

6 4.82 3.25 0.43

7 4.63 3.16 0.53

(a)

No. of snapshots Q1 92
Absolute

error

10 4.81 3.29 0.48

30 4.93 3.35 0.42

50 5.02 3.44 0.46

70 5.03 3.41 0.44

90 4.95 3.46 0.51

100 4.95 3.46 0.51

Cb)
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Table 4.2 The number of sources is now three, at 3°, 5° and —10°. The 
estimates are listed as a function of the subarray length and the 
number of snapshots. Only Forward averaging was used.

Subarray length
01 0 2 CD

 > Absolute
Error

4 -10.11 4.32 2.01 1.78

5 -10.29 4.02 1.88 2.39

6 -10.51 4.12 3.07 1.46

7 -10.62 5.28 1.07 2.83

(a)

No. of snapshots
x n

01
XN

02 03
Absolute

error

10 -10.14 4.33 -5.13 8.94

30 -10.43 4.09 -1.54 5.88

50 -10.45 9.45 2.56 5.34

70 -10.64 4.10 1.09 3.45

90 -10.69 3.95 0.32 4.42

100 -10.51 4.12 3.07 1.46

<b)
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C H A P T E R S
P R O -E S P R IT  AND PSEU D O  F-B A V ERA G IN G

5.1 Pseudo-Forward-Backward Averaging (PFBAVG)

The motivation behind the development of PFBAVG here is the 
computation reduction and performance improvement achieved when 
conventional FBAVG [GOLU83a,WAX85] is employed in the case of 
P R O —E SP R IT  applied in a uniform linear array (ULA) scenario [ZOLT89a]. 
Unfortunately, conventional FBAVG is not generally applicable for arbitrary 
array geometries. However, similar benefits may be reaped by exploiting the fact 
that the elements of the invariance operator $  in (3.1) lie on the unit circle. To 
this end, we introduce an entity referred to as the FB data pencil, denoted 
(Xre , Y re}. The two components of this pencil, X fb and Y re, are constructed 
from the X and Y data matrices defined in Chapter 2 according to the following 
prescription:

X re = X :  Y [y  : X*] (5.1)

Two questions immediately arise. First, does the FB data pencil satisfy the 
requirements necessary for meaningful application of P R O —ESPR IT? Second, 
what is the advantage of working with the FB data pencil? These two questions 
are answered in succession below.

The applicability of P R O —E S P R IT  in the case of the FB data pencil is 
demonstrated under noiseless conditions. W ith Nx =  O and N y =  O in (2.9a) 
and (2.9b), respectively, X = A S  and Y  =  A4>S. Substituting these expressions 
for X  and Y  in (5.1) yields

X 2D
FB

-I r i S O
A*<f>*S* =  A:A*4>*L J O S

(5.2a)

* X * rA<f>S • A  4> 4>S A  : A*<f>*

where in (5.2b) we have exploited the fact that 4*4*

4> O 
O 4»

S O 

P  S*
(5.2b)

I. The super-script 2D is
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intended to indicate that these are the noiseless forms of the matrices in which 
case each is of rank 2D. Now, consider the pencil difference Y re — XXre:

Y
2D
FB [a  : A***]

4» — XI 0 
0 $  — Xl

S 0

P s *.
(5.3)

For the moment, assume the Mx2D matrix [ A i A  <f> ] to be of full rank equal to 
the number of columns equal to 2D. Cases where this is not true will be dealt 
with in Section 5.3. Observing (5.3), it is noted that when X =  4>;i, an entry from 
each of the block matrices 4>—XI is nullified reducing the rank of Y re — XXre 
from 2D to 2D-2. Therefore, under noiseless conditions, each tJlkk, k= l,...,D , is a 
GEV of the pencil (X re , Y fb) as desired. However, in contrast to the situation 
with the noiseless pencil {X , Y  }, each ^ kk, k= l,...,D , is a GEV of multiplicity 
two, as opposed to multiplicity one. The implications of this will be addressed 
shortly. A comparison of (5.2a) with (5.2b) also reveals that the respective

2D 2T >
column and row spaces of X re and Y fb are identical, a 2D-dimensional subspace 
in each case. These observations certify the applicability of P R O —E S P R IT .

The advantage of working with the F-B data pencil arises from the fact that 
X fb and Y fb satisfy the following relationship:

Y r e = X ^ r  (5.4)

where T  is a 2Nx2N block reverse permutation matrix defined by

(5.5)

The fact that one component of the FB data pencil may be constructed from the 
other is not surprising since each contains the same information. In light of the 
relationship in (5.4), it turns out that an SVD of X fb is sufficient to construct the 
SVD of Y re. To justify this assertion, consider the SVD of X fb: X fb =  UxExV x. 
Substituting into (5.4) yields

Y re =  (U x) Ex {fV*}” (5.6)

Note that T in (5.5) is a symmetric, unitary matrix, i.e., it satisfies T =  Ft and 
rTr  =  1. Thus, the matrix product FVx is unitary. If Y re =  U yEyV y represents 
the SVD of Y re, it is deduced from uniqueness considerations that the following 
relationships hold:

U v = U *  , Ev =  Ex , v v =  r v *  (5.7)

O  N x N I n x N

I n x N O n x N

Note that these relationships hold regardless of whether noise is present or not. 
These relationships may be exploited to construct a 2Dx2D core information
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matrix solely from the SVD of X fb. We elaborate on this point.
2DConsider the SVD of the noiseless matrix X re in (5.2a):

X i S = U ^ v r  M )

Note that this SVD representation only includes the 2D nonzero singular values of 
X re such that S x is a 2Dx2D diagonal matrix. It follows from the argument 
above that the SVD of the noiseless Y re in (5.2b) may be expressed as follows:

=  { u j y  e ® { r v r f  (5.9)
° D 2D

Now, since the range space of X re is the same as that of Y re, it follows that

Range{Ux°} =  Range{Ux’*} =  Rangej |a  ; A * $ * ] [  (5.10)

Hence, U xu may be rotated into (Ux )* via a 2Dx2D unitary matrbc as follows:

{ u j y  =  U xu Q u Where: Q u =  {V?}"  (U ")*  (2Dx2D) (5.11)
•2D a H ,2D'i *

, 2 D H
In addition, since the range space of X re is the same as that of Y re , it follows 
that

Range(Yx ) =  RangejF V XD*} =  Range
Sh O 
O St

(5.12)

Hence, V x° may be rotated into T V XD* via a 2Dx2D unitary matrix as follows:

r V ' f  - v “ Q v where: Qv =  {V®}“ r {V*}* (2Dx2D) (5.13)

The cumulative effect of these observations is that the pencil difference 
Y re — XXre may be expressed in the following form:

Y ao_XX2d
*  FB a a FB (u?}*ET {rv®*}" -  x u ^ v2 D 2 D - - 2 D  H 

X

- U x ( Q uE x Q ; - X E ® } v “ h (5.14)

where Q u and Q v are given by (5.11) and (5.13), respectively. From (5.14), it is 
deduced that each 4»^ k =  I,..D, is an EV of the 2Dx2D core information matrix 
(CIM)

* 2r, =  ( E j r 1Q ^ Q v  (5.15)

of multiplicity 2. Note that all the information required to construct may be
op

obtained from an SYD of the Mx2N matrix X re. However, this does not save 
computation since the SVD of an Mx2N matrix requires more computation than
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the SVD of two MxN matrices. Also, in the case of noisy data, it is not possible 
to obtain unbiased estimates of the right singular vectors of X re. Hence, we now 
present alternative means for extracting the information necessary to construct 
the 2Dx2D CIM vIx2d defined by (5.15).

We first note that the information necessary to construct U x' and E XD may 
be gleaned from an EVD of the MxM noiseless FB correlation matrix

2D >2E) H
C fb =  - i-X reX re . This matrix may be expressed in terms of the MxM noiseless 
correlation matrices C xx and C vv as follows:

- X X  _  I  -JD 2D H

' - ' F B  f b ^ f b 2N LX d I Y '1* |{ C ^ + C ^ , }  (5.16)

The expression on the far RHS of (5.16) is referred to as a pseudo-forward- 
backward average. Second, computation of the right singular vectors of X re may 
be avoided if the classical relationship between the left and right singular vectors 
of a matrix is invoked. Invoking such, we find that V x’ =  X re U x-(E x }-1 which 
leads to the following alternative expression for Qv defined in (5.13):

Qv -  ( S n - 1 ( u r r  c £  { u ? r  {e ? } - 1 (5.17)
Here C fb =  ^ - X reY re and may be expressed in terms of the noiseless cross- 
correlation matrix C xv as follows:

C
XY
FB

I Y 2Dy 2DH 
2 N -A-FB FB ! ( C xv +  C x, .} (5.18)

Note that C re is a symmetric matrix, i. e., C re = C re. This property will be
XY

invoked at a later point. Note, though, that C re is not Hermitian in general.
Construction of an estimate of the 2Dx2D ClM vIx20, therefore, requires an 

estimate of the following three quantities: C xx, C yy, and C xv. In the case of 
noisy data, these quantities may be estimated by a partitioning of the "cleaned" 
2Mx2M Z correlation matrix formed in accordance with the following prescription

(5.19)

Here R zz -^-ZZh where Z
N

X
Y

Also, R lln is an estimate of the normalized

noise covariance matrix associated with the overall Z array. Finally, Xinin is the 
smallest GEV of the pencil (R zzjR 011). Inverse iteration may be employed in 
order to obtain a "fast" estimate of X”n; only a "rough" estimate of X“n is



required. If an estimate of R ^  is not available a-priori via experimental
A

measurements or parametric modeling, it may be extracted from R zz via the 
method of LeCadre [LEC89].

With the estimates Gxx, C v̂  and Cxt obtained in this fashion, the 2Dx2D
CIM 'JLri is constructed from C re =  1/^{CXT +  C xy) and the rank 2D truncated

 ̂xx * L-*
EVD of the MxM matrix C re =  '/2(C xx -I- C yv). This procedure requires a single 
MxM EVD to construct the 2Dx2D CIM vPjr,, whereas P R O —E S P R IT  without 
PFBAVG requires two MxM EVD’s to construct the DxD CIM vF0. Both 
procedures also require the initial coarse "cleaning" of the Z correlation matrix 
[ZOLT89a] described by (5.19). The price paid for the reduction in computation 
achieved via PFBAVG is an attendant reduction in the maximum number of 
sources the algorithm is able to handle. Specifically, as a consequence of the dual 
multiplicity of each of the GEV’s, the maximum number of sources 
P R O -E S P R IT  with PFBAVG can handle is M/2  -I. Recall that the total 
number of sensors is 2M. Without PFBAVG, P R O —E S P R IT  is able to handle 
up to M-I sources.

It would also appear that there is an additional trade-off due to the fact the 
CEM 'ILd constructed in the case of PFBAVG is 2Dx2D. With no PFBAVG, the 
CIM vFd is DxD. If we are only interested in the directions of each source, it 
suffices to construct the characteristic equation of vF2d and compute the associated 
roots. I vF2d — XII is a polynomial of order 2D. Ideally, this polynomial has D 
double roots, with each root lying on the unit circle. This property may be 
exploited to reduce the problem to that of solving a polynomial of order D having 
exactly the same roots in the ideal case. We first refine the estimate of vF2d to 
incorporate Procrustes processing.

5.2 P ro cru stes  Processing and  I ts  Effects

In the prescription for constructing vF2d according to (5.15), Q u and Qv are 
constructed according to (5.11) and (5.17), respectively, which we repeat here:

r D1X

■ {u “ }H {U-}* (5.20)

(5.21)

comprise the 2D "largest" EVEC’s of
- *„  .XX I  „  ^

C fb =  — (C xx +  C vy). In the case of noisy data, these expressions provide 
2

asymptotically unbiased estimates of the unitary matrices obtained under
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noiseless conditions. However, in the practical case of a finite number of 
snapshots, these matrices will not be unitary. In accordance with the original 
development of PRO-ESPRIT in [ZOLT89a], an improvement in performance can 
be achieved if we replace each of the two matrices Q u and Q v by the respective 
"closest" unitary matrix, in a Frobenius norm sense. If Q  is a square matrix, and 
Q =  UEV h is its SVD, the "closest" unitary matrix to Q  is Q  =  UVh [GOLU83]. 
Now, it is easily ascertained that Q u defined by (5.20) satisfies the following 
property: Q lQ u =  (Q uQ u)*. Q v in (5.21) satisfies the same property: Q vQv 
=  (QvQv)*. The following theorem is relevant.

T heorem  I .  If Q denotes the closest unitary matrix, in a Frobenius norm sense, 
to a matrix Q satisfying QQ =  (Q  Q ) , then Q is symmetric, i. e., Q =  Q .

Proof: Since QQ =  (Q hQ)*, it follows that each eigenvector of Q hQ  is the 
conjugate of the respective eigenvector of QQ . Now, the eigenvectors of Q Q  
are the left singular vectors of Q, while the eigenvectors of Q Q are the right 
singular vectors of Q. Thus, the SVD of Q may be expressed in the following 
form:

Q =  UEVh =  U E(U *)h =  UEUt
SS T

and the closest unitary matrix according to Procrustes theorem is Q  =  UU 
which satisfies Q =  Q .  Q.E.D.

Let Q 11 and Q v denote the closest unitary matrices to Q u and Qv, respectively. 
It follows from this theorem and from observations made previously that 
Q u =  Q 11 and Qv =  Q v. In addition, the above theorem also indicates that to 
determine the "closest" unitary matrix to either Q u or Q v, we need only compute 
the corresponding left singular vectors. A full SVD of either matrix is not 
required. This has implications with regard to the computational load. From 
this point onward, we will assume that Procrustes processing has been 
incorporated into the construction of the CIM, vJZ2d.

H

After Procrustes processing, the CIM is given by vIr20 =  (E x )- 1Q liExQv*
Al A

where Q u is a symmetric, unitary matrix as is Q v. The following theorem is 
relevant.

T heorem  2 . Let Q 1 and Q 2 each be a complex-valued, unitary matrix, of the 
same dimension, with each exhibiting symmetry as well, i. e.,

Q iQ i = Q iQ i  = I  and Q 1 = Q 1 ; Q 2Q^ =  Q ^Q 2 = I  and Q 2 =  q £

Also, let E be a nonsingular matrix. If Xi is an eigenvalue of the matrix
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■

S 1 Q 1 E Q 2, th e n ---- is an eigenvalue of E 1 Q 1 E Q^ as well.
X* >-

The proof of this theorem is provided in Appendix A. Recall that in the ideal 
noiseless case, each eigenvalue (EV) of ^20 is of multiplicity two and lies on the 
unit circle. In the case of noisy data, Theorem 2 indicates that the only thing we 
can say is that if Aj is an EV of ^ 20, l/X* is an EV as well. Note that the fact 
that Q 1 and Q2 are both symmetric as well as unitary was important in proving 
this theorem. Similar statements cannot be made with regard to the DxD CIM 
obtained from PRO-ESPRIT without PFBAVG. Now, invoking this theorem, we 
make two pertinent observations. First, if Xj is a root of the characteristic 
polynomial of ^ 2c,, | vKd — Al | , l / \ *  is a root as well. Note that | ^20 — XI | is 
a polynomial of even order, 2D, such that it has an odd number of coefficients. 
Let a  be a complex scalar such that the coefficient of the D-th power of X in the 
polynomial a  J — XI | is real. It follows from the property of the roots that 
the coefficients of a  | 4,2D — Xl | exhibit conjugate symmetry about the D-th or 
center coefficient. This property will be stated mathematically shortly. The 
proof of this conjugate centro-symmetry property is straightforward and, hence, 
omitted. A second consequence of Theorem 2 is that the EV’s of ^ 2d may be 
grouped into those which lie on the unit circle and those which occur in reciprocal 
magnitude pairs. Each of these two groups contains an even number of EV’s. By 
a reciprocal magnitude pair, we mean that the polar angle of both is the same 
while the magnitude of one is the reciprocal of that of the other. This suggests a 
procedure wherein we compute the 2D EV’s of v̂ 20, group them into D pairs, and 
then take the geometric mean of each pair as the estimate of ^icJc. For the EV 
pairs which lie on the unit circle, however, this procedure involves some 
subjective pairing. This may lead to trouble if the sources are closely-spaced. As 
an alternative, we develop a procedure which reduces the problem to that of 
solving for the roots of a D-th order polynomial that does not involve subjective 
decisions. The appropriate procedure is developed below.

Let c(X) denote the characteristic polynomial of 'l'2D, normalized such that 
the center coefficient is real, i. e., c(X) =  a. | ^ 2d — XI | , a polynomial of order 2D. 
Further, let the coefficients of c(X) be denoted, c(n), n = 0,...,2D. Note that a  is 
defined such that c(D) is a real number. In this notation, then,

a  I ^ 2d — XII == c(0) +  c(l)X +  c(2)X2 +  * * * +  c(2d) X*0 (5.22)

Let’s examine the form of c(X) under ideal noiseless conditions. In this case, each 
d’kk, k= l,...,D , is a double root of c(X) such that
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C(X) =* (X—4>n ) (X—4>22) . . . .  (X -^ dd) I =  b2(X) (5.23)

where b(X) is the D-th order polynomial with single roots at 4»^, k= l,...,D . The 
coefficients of b(X) are denoted b(n), n = 0,...,D, such that

b(X) = A /a (X —4>u ) (X 4>22) . . . .  (X—4V,) (5.24)

-  b(0) +  b(l)X +  b(2)X2 +  • • • +  b(o) Xr>

Simple algebra tells us the sequence c(n), n = 0,...,2D, is the linear convolution of 
the sequence b(n), n = 0,...,D, with itself, i. e., c(n)=b(n)*b(n). Ideally, the 
sequence b(n) can be recovered from the sequence c(n) via simple deconvolution in 
accordance with the following recursion

b(D) =  V c(2d) (5.25)

b (D -n ) =  c(2d -  n) -  £  b (D -i)b (D- n + i ) |  n=l,...,D .
2b(D) ( i=0 J

Two issues arise with regard to the procedure above. First, there are two 
valid square roots of c(2d) differing only by a factor of e*V This sign ambiguity 
arises due to the fact that c(X) =  b2(X). Fortunately, this ambiguity is of no 
consequence since the roots of b(X) are the same as the roots of -b(X). Thus, 
either square root suffices. The second issue is that the recursion formula in 
(5.25) only uses the last D +l coefficients of c(X), i. e., c(n), n= D ,D + l,...,2D. 
Nevertheless, this formula is exact in the ideal noiseless case. In the practical 
situation involving noisy data, though, it would seem that this recursion formula 
does not optimally use all available information. However, even in the case of 
noisy data, the normalized characteristic polynomial a  | 4v> — Xl | obtained after 
Procrustes processing is such that its coefficients exhibit conjugate centro- 
symmetry, i. e., c(n) =  c (2D—n), n = 0,...,2D. Thus, all of the information is, in 
fact, contained in the D +l coefficients, c(n), n==D,D+l...,2D. These coefficients 
may be, computed in a computationally efficient recursive fashion as described 
below.

Let c'(n), n = 0,l,...,2D, denote the coefficients of | vIv -X I  | , i. e., without 
normalization by a. That is,
I 4V, — XII — c'(0) +  C1(I)X +  c'(2)X2 +  • • • +  c'(2d) X"l . The D +l values c'(n), 

n=D ,D +l,...,2D, may be computed in a recursive fashion according to the well- 
known Leverrier-Souriau-Faddeeva-Frame formulas:
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(5.26)

S d =  S ĉ 1 ̂ 2 0 + c'(d+ 1 )I  ; c'(d) =  ~ t r{ S , , 'l '. , l,}

Ostensibly, the input to the deconvolution recursion in (5.25) is c(n), 
n = D ,D-I-I,...,2D, not c'(n), n=D ,D +l,...,2D, as computed by the above recursion. 
However, by definition, c(n) =  ac'(n), n = 0,l,...,2D. In the deconvolution 
recursion described by (5.25), a scaling of each of the coefficients c(n), n = 0,..,D, 
by the amount a  results in a corresponding scaling of each of the coefficients b(n), 
n = 0,..,D, by the amount Oc .̂ As the roots of b(X) are the same as those of 
a^b(X), it is not necessary to determine the normalizing factor a. Thus, the 
deconvolution recursion in (5.25) may be executed with the sequence c'(n), 
n = D ,D-I-I,...,2D, provided by the recursion in (5.26). The quantities 4»^, 
k = l , 2,...,D, are then estimated as the singles roots of the D-th order polynomial 
b(X) thus formed.

c'(2d) =  I; S1 =  I ; c'(2d—I) =  - ^ ( S 1 '1',,,}

S2 =  S1 ̂ 20 +  c'(2d—1)1 ; c'(2d—2) =  ~ t r { S 2 4ld}

5.3 Inco rpora tion  of A rray  M anifold M odification

The conclusion that each 4»^, k= l,...,D , is a GEV of the noiseless pencil 
(X ^  , Y fb) of multiplicity 2 was deduced from observing (5.3). This conclusion
was based on the assumption that the Mx2D matrix [A i A  4> ] was of full
column rank equal to 2D <  M. The fact that 2D must be less than M gives rise
to the reduction in the number of resolvable sources by a factor of two, the
penalty paid for the incorporation of PFBAVG as discussed previously. Let us
assume that D is indeed less than M/2  as required. For the algorithm to work

£correctly, we further require that each column of A  be linearly independent of 
the columns of A. We here make the practical assumption that the columns of A  
itself, and hence, A , are linearly independent. Scenarios exist, however, in 
which the former condition may not hold. We illustrate the problem with an 
example.

Consider the elements comprising both the X and Y arrays to be isotropic. 
Further, consider the plane containing the X and Y arrays to be defined as the x- 
y plane in a 3D coordinate system; the z axis is perpendicular to the plane of the 
array. The i-th element of the X array is located at (x; , y,), i= l,...,M , such that
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the corresponding element of the Y array is located at (xj+i*d , y i+ j'd ), 
i= l,...,M . Finally, let the angular positions of the sources (<9k , <j\), k= l,...,D , be 
defined with respect to the spherical coordinate system, (#k is the angle measured 
with respect to the x-axis in the x-y plane and (j>k is the angle measured down 
from the z-axis.) Under these conditions, the i,k element of A, denoted Ajjc, may 
be expressed as

Sirn̂ it + yisintffc sin^k]
Aik =  e x (5.27)

The i,k element of A*, A ik, is thus
2 TT 2 jp

- j — -{xicos0k Sin^if + yvsin0k sin<£k]  j --—{XjCos(0k+18O 0) sin<£k + y;siii(0k +180 ° )sin<£k}
A ik =  e x =  e x (5.28)

where we have invoked simple trigonometric identities. (5,28) implies that the 
DOA vector for a source located at (#k +  180 * , <j>k) is the conjugate of the DOA 
vector for a source located at (#k , ^k). Consider the case of D= 2 sources with 
source I located at (^1 , <j>{) and source 2 located at (#2 > ^ 2 ) =  ($1 +  180° , ^1). 
Under these conditions, [A : A  4* ] has the following form:

A  *A  4> H - *
^ l l a I t ^ Z a I (5.29)

It is obvious that this matrix is only of rank 2, not 4 as required in the use of 
PFBAVG. Hence, the incorporation of PFBAVG in this case will have a 
pejorative effect on the performance of P R O —E SPR IT . A similar breakdown 
occurs in the case of a source located directly at boresite, i. e., =  0 ° , since the
corresponding DOA vector, , is purely real. However, there is a simple means 
for averting this type of breakdown phenomenon.

A simple procedure for eliminating such is to pre-multiply both the X and Y 
data matrices, X  and Y, by the same MxM comp lex-valued matrix. That is, 
execute P R O —E S P R IT  with PFBAVG using the modified data matrices VX 
and VY, where V  is an MxM matrix composed of strictly complex elements. The 
net effect of this is to modify the array manifold. The applicability of PFBAVG 
modified P R O —E S P R IT  in the case of so-called v-modified data matrices is seen 
from the following sequence of observations. The v-modified FB data pencil has 
the following structure:

X vfb V X  ; V*Y* . Y v
y A F VY : V*X* (5.30)

In the noiseless case, X  =  AS and Y  =  A 4PS. With these noiseless forms of X 
and Y  substituted into (5.30), the pencil difference Y 3̂ — XXvs is easily 
manipulated into the following form
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r 2 .  .1 4>—XI O S 0
YJe -  XXJe -  [v a : V*A*<t> J O 4>—Xl P  s*.

(5.31)

For PFBAVG modified P R O —E S P R IT  to work correctly, we now require the 
columns of VA to be linearly independent of the columns of V  A  . We note that 
if V is a purely real matrix, [VA I V*A*4>*] =  V[A : A* 4»*] such that v- 
modification has no effect on the possibility of the aforementioned breakdown 
phenomenon. Consider again the previous example involving D= 2  sources with 
one located at (^1 , <j>i) and the other located at (^1 +  180" , Under these 
conditions, [VA : V*A*<t>*[ is of the following form

VA : V*A*<f>*] =  [ v ai , V a t ^ n V V  , 4>22V *a i] (5.32)

which is observed to be of rank 4 as required, assuming that V  is not purely real. 
Similar comments can be made with regard to the case of a source located 
directly at boresite. The question arises, however, as to how to select V. This 
problem will be addressed shortly. We first present the appropriate modifications 
to PFBAVG modified P R O —E S P R IT  when the array manifold is transformed 
by the matrix V.

The initial step of PFBAVG modified P R O —E S P R IT  is the same 
regardless of whether array manifold modification is employed or not: the coarse 
"cleaning" of the Z correlation matrix described by (5.19). This step provides 
estimates of Cxx, C yy, and C xy. With X  and Y  replaced by VX and VY in both 
(5.16) and (5.18), we find that the v-modified FB X correlation matrix, denoted 
C £ v, and the v-modified FB X-Y correlation matrix, denoted C reT, are

A A A
estimated from C xx, C w, and C xy according to

* XXV __ I
re -  % V  C xxV h +  V* C WVT

-xrv _  i 
FB 2 V C xyV h +  V* C xyV t

(5.33)

(5.34)

When the array manifold is transformed by the matrix V, the only change to the
a XXV * ^ XY V

procedure developed previously is that C fb takes on the role of C fb and C re 
takes on the role of C fb .

With regard to the selection of V, we chose to work with the simplest form 
possible: an MxM diagonal matrix with each element of the diagonal lying on the 
unit circle as described below.
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V =  diag{ ejVl , ejv'2 , • • • , ejVM } (5.35)

As long as each of the phase angles Vi, is distinct, the array manifold
will be sufficiently altered so as to avert the possibility of breakdown under the 
previously cited worst case conditions. One possibility is to choose the phase 
angles such that the diagonal elements of V  are uniformly-spaced around the unit 
circle, encompassing the entire perimeter. Another possibility is to obtain each Vi, 
i= l,...,M , from a random number generator emulating a random variable 
uniformly distributed over the interval (0, 2i r ) .  Simulations have proven that 
both of these options provide V  matrices which work quite well in worst case 
scenarios. The additional computational burden is negligible; V  is constructed a- 
priori. An alternative is to select the phase angles in a data dependent fashion so 
as to improve the condition number associated with the 2D signal eigenvalues of
A XX Y a ^
Gfb relative to that of Gpfr A suitable procedure for accomplishing such is 
described below.

With V  diagonal and unitary as described by (5.35), it follows that the 
diagonal elements of C fb are the same as those of Gfb. This stipulates that the

A XX Y AS XOv.

trace of C fb is equal to the trace of Gfb. This, in turn, implies that the sum ofA xx V /s XX
the EV’s of Gfb is equal to the sum of the EV’s of Gfb. A third criterion for the 
selection of the phase angles Vi, i= l,2 ,...,M , is the minimization of the Frobenius 
norm of Gfb , H G fb ||F. This criterion is best motivated by considering the 
asymptotic case.

* *  X X Y
In the asymptotic case, C fb is of rank 2D; C fb is thus of rank 2D as well.

A X X V
The Frobenius norm of C fb is then the square root of the sum of the squares of 
its 2D nonzero EV’s. As a consequence of the above observations, the sum of the 
2D nonzero EV’s remains constant as we vary the phase angles in an attempt to 
decrease the value of ||G re | |F. This motivates consideration of the following 
constrained optimization problem.

.  2D „
Minimize || C ^ vIIf =  ^ X f 2 (5.36)
y l> v -2 .* - iV M

2D
subject to: ^X Jr =  c =  constant 

i= i
a x x  Y

where XJr, i=  1,2,...,2D, are the 2D nonzero EV’s of C fb . The stipulation of the 
constraint is, in actuality, not necessary as it is already incorporated in the

A XX V
formation of C fb . It is included for purposes of illustration. Overlooking, for

2D
the moment, the dependence of XJr on Vi, i==l,2,...,M, the minimum of ^ X i

i=i
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x; \  V _ ^
A2D “  2D Of course, thissubject to XJr =  constant is Xj

optimum condition is not attainable, in general, due to the functional dependence 
on Vj, i = l , 2,...,M. However, this nevertheless illustrates the general effect of 
choosing the phase angles to minimize ||Cre ||p : it serves to decrease some of the 
largest of the 2D signal EV’s while increasing some of the smallest. The net effect 
is to enhance the separation between the signal subspace and the (M-2D)- 
dimensional nullspace, the eigenspace associated with the eigenvalue zero.

A y

The solution to the optimization in (5.36) with C re and V  defined by (5.33) 
and (5.35), respectively, is not a trivial undertaking. For the sake of 
computational simplicity, a suboptimal scheme is proposed which achieves the 
same desired effect. To this end, let Cy denote the i,j element of C fb . Recall

I i e S vIi?
M
E
i=l

M
s  K i  I

j=l
(5.37)

For the sake of simplicity, consider the minimization of | Cy | \  the 2-norm of

the i-th row, with respect to the phase angles Vjc, k = l , 2,...,M. Keep in mind that 
Cjri is fixed. Let Xy and /ijj denote the magnitude and phase of the i,j element of 
C xx, respectively. Likewise, yy and //y denote the magnitude and phase of the 
i,j element of C yy. In accordance with (5.4), Cy may be expressed as 

v  _  I > i . j  J K -V j) I - K j  J ( V j - V i )

cy -  TjrxUe e +  J yUe e

Thus,

+  “ P  +  Y xUJrI1Jcoa (2(vi -V j )+/4,j + ^ ,i )
M
E K i l
j=l

M
1E
j- i

(5.38)

(5.39)

M . j t
By definition, Xy -5: 0 and yy >  0 such that I cu  I i-3 minimized if

j-i

v. _ Vj =  - K i + ^ u ) +  y k y j==l,...,M; j / i (5.40)

where ky is any odd integer. Thus, the minimization of the 2-norm of the i-th
a xx V

row of C re , subject to Cy fixed, uniquely determines the values of Vj, j= l,...,M , 
jj^i, relative to vj. Now, the square of the Frobenius norm is equal to the sum of 
the 2-norms of each of the rows. A suboptimal procedure is to build up an

a xx V
overdetermined system of equations in accordance with (5.11). Since C re is

Hermitian, we need only consider the -i-M(M—I) equations associated with those
2
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elements above (or below) the main diagonal. It can be shown (see Appendix B) 
that the least square error solution to this overdetermined system of equations 
yields the following simple expression for determining the phase angles:

▼i 2 +  j K s i= l,..,M (5.41)

That is, Vj is simply the negative of the average of the average of corresponding 
angles associated with the elements of the i-th rows of C xx and C vv, respectively,

7T
plus some integer multiple of —. The computation involved in evaluating (5.41)

z
adds negligible contribution to the overall load. Simulations are presented in 
Section 5.6 which show that determination of the phase angles according to (5.41) 
yields the best performance out of the three methods proposed.

5.4 Estim ation of Number of Sources Via Invariance Exploitation

One can estimate the number of sources, D, via a number of techniques 
including AIC and MDL [WAX85]. Exploitation of the invariance in the case of 
an array composed of two translationally invariant subarrays allows for the 
formulation of an alternative ad-hoc procedure for estimating the number of 
sources unique to PFBAVG modified P R O —E SPR IT . In short, the new 
procedure is based on determining that partition of the EV’s and EVEC’s of
A XX V
C fb for which the formation of Qv according to (5.21) is "closest" to being 
unitary. The reason a test on the unitary nature of Qv is chosen rather than a 
test on the unitary nature of Q u formed according to (5.20) is due to the 
following observation. In the case of uncorrelated sources, it is easily shown that 
C yv =  C xx such that

pXXT
' - ' F B V C xxV  + V C , R e(V C xxV w) (5.42)

Thus, in the case of uncorrelated sources the EVEC’s of C ^ v are real-valued 
such that Q u =  Ujfw U jf = U jfx U f  = I  regardless of the value of D, i. e., for 
any partition of the EV’s and EVEC’s. Recall that each source makes a rank two 
contribution to C f̂ v. As a consequence, both the designated signal subspace and 
the designated noise subspace for each partition should contain an even number 
of entries.

Let D denote the estimate of the number of sources. In light of the above 
observation, we restrict our attention to a test on the unitary nature of Q v(d),
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Ak

formed in accordance with (5.21), over the range of permissible values of D. The
a a x x  v

new procedure for determining D is as follows. First, compute an EVD of C Ht 
and order the EV’s in descending order. Let UJ* be composed of the 2D EVEC’s 
associated with the 2D largest EV’s, D =  1,2, ... , I. Correspondingly, isLa a
the 2D x 2D diagonal matrix composed of the square roots of the corresponding 
2D largest EV’s, D =  1,2, ... , ——I. D is the solution to

Minimize f(6) =  w(d) || Qv(d) — Q v(d) | |f (5.43)
D€ !i,2, • • • ,-y--i}

where: Q v(d) -  £ *  ' U f  |{ C „ .  +  6 » . }  U ?  E f '

and Qv (d) is the closest unitary matrix to Qv (d)

The reasons for the inclusion of the weighting function w(d) will be discussed 
shortly. In accordance with Procrustes’ Theorem, if the SVD of Qv(d) is 
Qv(d) =  UEVH,the "closest" unitary matrix is Qv (d) =  UVH. Hence,

Il Q v (D) -  Q v (D)II *  =  E 1 -  ° i ( 6 ) J  ( 5 - 4 4 )
i= l v

where Cri(D), i = l ,2,...,2D, are the 2D singular values of Qv(d). Thus, the 
procedure for determining D in (5.43) may be alternatively expressed as

Minimize f(b) =  w(d) E  f1 _  aI (°)) (5.45)
De {1,2, • • -,-J--I) ■

A Ak

where Oi(D), i =  1,2,...,2D, are the 2D singular values of

Qv(D) =  E f u f i ( C ^ c L ) U y s f

One can simply use this procedure in and of itself to estimate the number of 
sources. Alternatively, one can use this procedure in conjunction with either AIC 
or MDL as a means of verification.

Note that Q v(d) — Qv(d) in the objective function in (5.43) is a 2Dx2D 
matrix. Thus, || Qv (6) — Q v(d)||  ̂ is rather small for small values of D regardless 
of the difference between D and the actual number of sources, D. This 
observation motivates the inclusion of the weighting function w(d) in (5.43) and 
(5.45). The recommended weighting function is based on the number of nonzero 
entries comprising Qv(d) — Q v(d) in the noiseless case. Three cases need to be 
considered: (i) D <  D, (H) D =D , and (ii) D > D. Q v(d) -  Qv(d) is a 2Dx2D
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A 2 - A 2 A
matrix and thus has 4D elements. If D <  D, all 4D elements of Qv(6) — Qv(d) 
are nonzero, in general. If D =  D, Qv(i>) is unitary under noiseless conditions 
such that Qv (d) — Qv (b) =  O. Thus, for D =  D there are no nonzero entries. 
Finally, it turns out that if D >  D, only 4(D — D)2 of the 4D* elements of 
Qv(d) — Qv(d) are nonzero. As it provides insight into the proposed method for 
estimating the number of sources, we quickly develop the last result.

The proof o
vectors of X? v x ; v *y *

the last result is based on properties of the right singular 
J  in the noiseless case. To this end, let V J ’ be the

Nx2D matrix composed of the 2D right singular vectors of XJb associated with the 
2D largest singular values. In the noiseless case, XJb is of rank 2D, where D is the
actual number of sources. Thus, for D = 
relationship in (5.13) which we repeat here.

D, we know that VJ satisfies the

V V f V *  Qv(D) (5.46)

where P was defined in (4.8) and where Q v(d) is the 2Dx2D unitary matrix

Q v ( D ) - V f r v j *  (5.47)

Note that in the noiseless case, the expression above is exactly equal to the 
expression for Qv(b) in (5.43)/(5.45) when D =D . In the case of D >  D, 2(D-D) 
right singular vectors associated with the nullspace of XJb are erroneously

2Dappended to V x such that VJ5 may be partitioned as

V f  =  [Vx : V *] (5.48)

where E=(D-D) and VJe denotes the Nx2E matrix whose columns are the 
erroneously assigned 2E right singular vectors in the nullspace of XJb, i. e., 
associated with the singular value zero.

Now, we are interested in analyzing the structure of Q v(d ) formed according 
to the prescription
in (5.43)7(5.45) for D=D+l,D+2,...,-5~—I. The classical relationship between the 

right and left singular vectors of a matrix tells us that we may alternatively
analyze Qv (6) formed according to (5.47) with V

A

equal under noiseless conditions. Thus, for D
replaced by V  J1. The two are

Q tW  =
y  SDh  P y 2D* y  2D9  p y ->e *

v f  r v fv f  W f

D+l,D+2,...,-y-—I,

Qv(D) o

O V f l V f
(5.49)

The result V f r V J J  =  O follows from the orthogonality between the columns of



V* and those of V n and  the relationship in (5.46):

v*rrv2E*
N ( V f  ‘  q ;  ( I > ) j  V ? ' Q ^D *) V ? TV « ' (5.50)

Now, it can be easily shown that the "closest" unitary matrix to a matrix of the

form
Qi O Qi O

, where Q 1 and Q 2 are both square, is
O Q 2 0  Q2

, where Qi and

Q2 are the respective "closest" unitary matrices to Q 1 and Q2. Thus, under 
noiseless conditions we have the final result

Qv(D) -  Qv(D) (5.51)
O O 

O Q n- Q n

where Q n =  V neH FVjf and Q n is the "closest" unitary matrix approximating Q n. 
It thus follows that for D >  D, the only nonzero entries of Qv(d) — Qv(d) are the 
elements of the 2Ex2E matrix Q n- Q n. Since E—D-D, the number of nonzero 
elements is 4(D—D)2 as stipulated previously.

Returning to the development of the proposed weighting scheme, consider D,

the actual number of sources, to be a random variable with Pr{D =  i} =  -----,
T"

i = l , 2,...,-j-— I. This is a reasonable assumption in the absence of a-priori 
knowledge. Let F j denote the number of nonzero elements comprising 
Q v(d) — Qv(d). Under the above condition, F j is a random variable. For a fixed 
D jtheexpec tedvalueo fF jis

E(Fj)
H - I2

M -I

2

D 2 ' * 2

£ 4 ( D - D ) \ +  E  4 D 
D -I D -D +l

(2M -6)D2 -  - D 3 +  |-D
O  O

(5.52)

The weighting function w(d) is chosen to satisfy the following desirable condition: 

w(d) E (F£) =  constant D = l,2 ,. . . ,-^ - l  (5.53)

A suitable weighting function is thus the reciprocal of (5.52)
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(2M -6)D* -  - D 3 + - D
M d) = ------------- --------------- —  D = l,2, . . . , f -1  (5.54)

2

The proposed method for estimating the number of sources is then given by (5.45) 
with w(b) given by (5.54). Simulations are presented in Section 5.6 which 
demonstrate the excellent performance of this scheme.

5.5 M ethods for Angle Pairing

The problem considered here is that of matching estimates resulting from the 
application of P R O —E S P R IT  to an E S P R IT  array that can orient doublets 
along more than one independent axis. We have already shown, for example, 
that in the case of a corrugated box array, one can obtain four, pairwise 
independent axis. Again, let vector r  denote the displacement axis between the 
sensors in a doublet, and cp=upi +  vpj be the projection of the p-th wave on the

A A

x-y plane, i and j are the unit vectors along the x and y axes respectively. The 
relation between the corresponding azimuth, elevation angles to up, vp is given by 
(2.1). D represents the total number of radiating sources and it is assumed that 
at this stage this is a known quantity. Estimating each cp p= l,..,D , is equivalent 
to estimating each pair (up,vp), p = l,..,D . So apparently it would suffice to have 
two independent linear equations relating each pair (up,vp). However, this is not 
enough. To see why, suppose the two doublet orientation axes are f j  =4 andAd a  ̂ Ad
r 2 = j. Then processing along T1 provides D numbers that are estimates for
U i , . . ,ud'. Let these estimates be the set S - Iu f1,..,ufD}. On the other hand,

d
processing with respect to r 2 provides another D numbers that are estimates for 
V i,..,V p . Let these estimates be the elements of the set ^’={vJi,..,vfD}. Note that 
subscripts ip and j p, p = l,..,D  are used to index the p-th element of the 
corresponding set. No other information is available. The problem arises when 
we try to match each entry from S  to the appropriate entry found in %. What 
we need is additional information or properties regarding the elements of S  and 
%. For this, one can either use a M USIC based technique or an E S P R IT  
technique. First we consider the latter method.

The idea here is simple. Apply P R O —E S P R IT  to three or more, pairwise
d d d

independent, doublet axes f j ,  r 2 and f'3.. To illustrate with respect to the
A d Jk j

previous example, let the 3-rd axis of doublet orientation be rg =  i+ j. Processing 
with respect to this axis, gives estimates for u j+ v i,..,up+ vp . These estimates are 
the elements of set ^={(u+v)£i,..,(u+ v)|D}. We first assume that the data were
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noiseless so that we have perfect estimates for all u, v and (u+v). Then the 
following argument is valid. For any UipG^ there exists a VjqG^ and (u+v)k G ^ 
such that uip +Vj  ̂=(u+v)kr. Thus, under such circumstances, one would take the 
first element of 2 , and then start a search over % to find that element such that 
the sum of both would be identically equal to one element of S'. This is one 
matched pair. This process continues, taking into account the remaining 
elements of 2), % and S', until they are all exhausted.

In the presence of noise, the task of correctly pairing the elements of 2  and % 
becomes more complicated. The reason is that we cannot recover each pair 
independently as we did in the no noise case. Instead, consider the following 
minimization problem

D
min E

1Ii--I1D p=l
I lf J o
kt,..,kD

ufp+ vIP “  (u+v)kp (5.56)

So the attempt here is to search over all combinations of the indices ip, j p and kp 
until that combination is found that reduces the overall distance between the sum 
of the estimates of Ui ,Vi, i= l,..,D , and the estimate of their sum (u+v)}. Once 
the optimal index combinations are found, the D pairs can be matched 
accordingly.
In general, the search must be carried over all combinations of the three index 

sequences, however several combinations can be eliminated due to the fact that 
the corresponding elevation angles fall outside the permissible range 
(0° <  </><90°). An advantage offered by this method, is that the extra 

information relating Ui and Vi, i= l,..,D  that is obtained can also be used to 
further enhance the quality of the estimates. In particular, since when processing(J
relative to a specific orientation axis f  we obtain estimates of linear 
combinations of the Ui and Vi, i= l,..,D , for three or more such combinations we 
can use the method of least squares to improve the estimates. Regarding the 
number of numerical operations that are required to perform the search, it is 
proportional to (D!)2. This number can be large, so for this reason plus the fact 
that this method requires an additional eigenvalue decomposition, it may be 
desired to use some other procedure to pair the u and v estimates. One such 
alternative is the following technique that is conceptually based on MUSIC.

Consider again the no noise case. Suppose the pairs (UjjVi ), i= l,..,D  are 
properly matched. Each of the D pairs uniquely defines the corresponding array 
manifold vector a;, i= l,..,D . Also, each &j is orthogonal to the (M-D) 
dimensional nullspace of Rxx- M is the number of doublets. Let U x be a matrix
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containing the orthonormalized eigenvectors of R xx corresponding to its nonzero 
eigenvalues. Then

■ p , - i - u “u ?  ;

is a projection operator on the nullspace of R xx. The following expression must 
then be true.

E
i=I

| a p P x&i| 0

With noisy data, equality to zero will never be achieved. However, one would 
expect that the left hand side of the last equation achieves its minimum when the 
elements of 2  are correctly paired with the elements of %. Formulating this, we 
want to

D
min £
1IfilD p=-l
j i f  dp

i P ( V vJp)p Xa P ( V yjp) (5.57)

Note that with noisy data the projection operator is formed using the eigenvectors
A

of the clean covariance matrix C xx. Also, a p(ujp,Vjp) is expressed like this in 
order to indicate that the p-th array manifold vector is constructed using the p-th 
elements of 2  and % respectively. Although so far we have exclusively made use

A

of the forward covariance matrix C xx, we could easily have used the F-B
a f̂b

correlation matrix, C xx, with almost no change in the final result. With respect 
to the computational task, it is noted that in contrast to the previous scheme, no 
additional eigenvalue decompositions, other than the ones required for the 
estimation part of the algorithm, have to be computed. However, the 
construction of the projection operator and the subsequent evaluation of all the 
terms on the right hand side of (5.57) demand non-trivial computational effort.

A comparison between the performance of the the two methods is done in 
the next section. We briefly state at this point that the two procedures perform 
equally well, with no major advantage of one over the other. The simulations we 
carried out showed -that the probability of incorrect pairing diminishes very 
rapidly with an increase in either the number of snapshots or the signal to noise 
ratio of each received signal. This is very encouraging, because with two 
dimensional arrays, obtaining good individual u or v estimates but failing to pair 
them correctly is still catastrophic.
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5.6 C o m p u te r S im ulations

Computer simulations were conducted to demonstrate the computation 
reduction and performance improvement achieved when PFBAVG is employed in 
conjunction with P R O —E SP R IT . The array employed in the first set of 
simulations is the 2M =  28 element square corrugated box array depicted in 
Figure 1.1(a) [ZOLT89a]. The coordinate system is defined such that the array is 
situated in the x-y plane. Each set of three adjacent elements around the 
perimeter of the array forms a right isosceles triangle with the length of each leg 
equal to a half-wavelength. In the SI E S P R IT  configuration depicted in Fig. 
1.1(a), the array is decomposed into two translationally invariant 14 element 
subarrays with the displacement or doublet axis aligned with the x-axis. This 
configuration allows one to estimate the direction cosine of each source relative to 
the x-axis, Ujc =Cos(CK)c), k=l,2 ,...,D . In the SI E S P R IT  configuration depicted 
in Fig. 1.1(b), the array is decomposed into two translationally invariant 14 
element subarrays with the displacement axis aligned with the y-axis. This 
configuration allows one to estimate the direction cosine of each source relative to 
the y-axis, Vjc =  Cos(^c), k = l , 2,...,D. In either configuration, the individual arrays 
comprising the translationally invariant pair have no sensors in common.

Note that the angles Uj, i= l,2 ,...,D , and the angles V;, i= l,2,...,D , may be 
estimated via PFBAVG modified P R O —E S P R IT  simultaneously in a parallel 
fashion. It should be noted that the corrugated box array was chosen for 
simulation purposes for two reasons. First, in either of the two configurations 
depicted in Figure 1.1, the individual arrays comprising the respective 
translationally invariant pair are observed to be nonlinear. Second, with respect 
to either u estimation or v estimation, the overall array exhibits only a single 
invariance. The corrugated box array thus represents an illustrative example 
where multiple invariance E S P R IT  [ROY88b,ROU89b,OTT89,SWI89] is not 
applicable. The point is that if an array exhibits multiple translational 
invariances, one should employ MI E S P R IT  as opposed to PFBAVG modified 
P R O -E S P R IT .

The first scenario simulated consisted of three sources. Two highly 
correlated, equal strength sources were located at (^1 45* , 5* ) ,
corresponding to (ux , V1) =  (.0616 , .0616), and (d2 , ^2) =  (225* , 5 *), 
corresponding to (u2 , V2) =  (—.0616 , —.0616). The degree of correlation was 
95% and the SNR of each these two sources was 13.4 dB, If one examines the 
u = v  planar slice of the 2D quiescent array pattern associated with the overall 28 
element array pointed to boresite, i. e., the z-axis, the 3 dB beamwidth is 
computed to be 14.3*. The angular separation of the two sources in the u—v
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plane is 10° or seven-tenths of a beamwidth. A third uncorrelated source with 
SNR =  15.8 dB was located at (<93 , >̂3) =(32° , 20°), corresponding to 
(u3 , v3) =  (.29 , .1812). The noise was modeled to be independent from element 
to element and of equal power. Thus, formation of the Z correlation matrix and 
the coarse "cleaning" described by (5.22) was not required.

It is noted that the difference between $i and O2 is 180 ° while 4>i — <p2 - 
Thus, without array manifold modification as prescribed in Section 5.4, PFBAVG 
modified P R O —E S P R IT  breaks down. This will be illustrated by examining the 
EV’s of the PFBAVG’d correlation matrix with and without array manifold 
modification at a later point. To avert breakdown, v-modification according to 
(5.33) and (5.34) was employed. The phase angles, Vi, i=  1,2,...,14, were selected 
according to the prescription in (5.41).

The results of 200 independent trials are plotted and tabulated in Figure 5.1. 
The number of snapshots was N =25 in each trial run. In Figures 5.1(a) and 
5.1(b), estimates of 4Ijkk =  e*̂ uit, k =  1,2,3 obtained from the original and 
PFBAVG modified versions of P R O —E SPR IT , respectively, are plotted. The 
corresponding estimates of <f>kk =  eJ k, k =  1,2,3 obtained from the same 200 
independent trials are plotted in Figures 5.1(c) and 5.1(d), respectively. Sample 
means (SMEANS) and sample variances (SVARS’s) were computed for both 
estimation schemes. An immediate observation is that the estimates of <hkk, 
k =  1,2,3, obtained with PFBAVG modified P R O —E S P R IT  are more closely 
clustered near the unit circle, indicated by the dotted line, than the corresponding 
estimates obtained with the original version of P R O —E SP R IT . As argued 
previously, this may be attributed to the fact that PFBAVG modified 
P R O —E S P R IT  explicitly exploits the unity magnitude of the elements of the 
diagonal invariance operator, i. e., 4>kk, k= l,...,D , while the original version of 
P R O —E S P R IT  does not. The corresponding average number of floating point 
operations (flops) per run, as calculated by the PRO-MATLAB software used to 
conduct the simulations, is indicated in each of the Figures 5.1(a) thru 5.1(d) as 
well. In the case of u estimation, a single execution of P R O —E SP R IT  
corresponding to a single trial required approximately 552,164 flops. In contrast, 
each corresponding execution of PFBAVG modified P R O —E S P R IT  required 
382,478 flops. A similar substantial reduction in computation was realized in the 
case of v estimation as well. At the same time, the quality of the estimates 
obtained from PFBAVG modified P R O —E S P R IT  is observed to be significantly 
better than the quality of the estimates obtained from P R O —E SPR IT . This 
conclusion is substantiated by comparing corresponding SVAR’s indicated on the 
appropriate plots. In each case, the reduction in variance achieved with



83

PFBAVG is by a factor between 1.5 and 1.8. As a final note, the price paid for 
these gains should be pointed out. For this specific array scenario, 
P R O —E S P R IT  can handle up to 13 sources, while the maximum number of 
sources PFBAVG modified P R O —E S P R IT  can handle is 6.

Figure 5.2 illustrates the effect of array manifold modification on the 
distribution of the EV’s. The arithmetic mean of each EV of the 14x14

a xx y
PFBAVG’d correlation matrix, C fh , i n  the case of u estimation was computed 
over 200 independent trials with the array and source parameters described 
above. As noted previously, O2 — O2 — 180 ° and =  <f>2 giving rise to a 
deflation of the signal subspace as discussed in Section 5.3. This deflation of the 
signal subspace is illustrated by the graph of the average eigenvalue distribution 
in the case of no array manifold modification. Recall that with PFBAVG each 
source takes up two degrees of freedom. With no v-modification, it appears that 
there are only four signal eigenvalues corresponding to two sources. It should be 
noted that if one nevertheless executes PFBAVG modified P R O —E S P R IT  under 
the correct assumption of six signal eigenvalues, i. e., three sources, the situation 
is not corrected and the algorithm still breaks down. The situation is corrected^ 
however, in a computationally simplistic manner by simple v-modification of C re 
and C fb according to (5.33) and (5.34), respectively. Two methods of 
determining the phase angles, Vi , i= l,2,...,M , were investigated. The method 
used in the simulations discussed above and presented in Figure 5.2 was that

a xxv
based on the minimization of the Frobenius norm of C fb . The corresponding 
prescription for the phase angles is given by (5.41) and involves negligible 
computation. The graph labeled as "optimal V" illustrates the corresponding 
effects on the average eigenvalue distribution. This curve gives the appearance of 
six signal eigenvalues, corresponding to three sources. Relative to the situation 
with no v-modification, two of the six largest EV’s have decreased in magnitude 
while the other four have increased in magnitude. As discussed in Section 5.4, the
sum of all 14 EV’s was the same in both cases. For purposes of comparison,

27Ti
selection of the phase angles according to Vi =  - j j—, i—0,1,...,M-Ir was examined 
as well. In this case, the elements of the diagonal matrix V  are uniformly-spaced 
around the unit circle. Observing the graph labeled ' tUniform V", we find that it 
lies between the "No V" and "Optimal V" curves. Correspondingly, we find that 
the signal subspace deflation problem is remedied, but the SVAR’s of the 
estimates achieved with "Uniform V" modification are slightly higher than the the 
SVAR’s of the estimates achieved with "Optimal V" modification under the same 
conditions. This claim is substantiated by simulations not presented here due to 
space constraints.
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Figure 5.3 illustrates the performance of the weighted Procrustes difference 
scheme described by (5.43) for estimating the number of sources. Empirical 
probabilities were computed from the results of 200 independent trials. For 
purposes of comparison, the performance of the Procrustes difference scheme 
described by (5.48) with w(d) =  I, D = 1,2,...,6, i.e., without weighting, is plotted 
as well. For Figure 5.3(a), the array and source parameters were exactly equal to 
those indicated in the previous simulations except that the number of snapshots 
varied from N = 7  to N=200  in nonuniform increments. For the case of N =25 
snapshots and weighting according to (5.54), which yielded the estimator 
performance displayed in Figures 5.1 and 5.2, the empirical probability of correct 
detection was .975, i. e., the procedure correctly determined that there were D= 3  
sources 195 times out of 200. Recall that two of the sources were 95% correlated 
and separated by seven-tenths of the 3 dB beamwidth. In addition, the third 
uncorrelated source was several dB above the other two sources, and was 
angularly located approximately one 3 dB beamwidth away from the second 
source. With weighting, an empirical probability of I, i. e., no errors out of 200 
runs, was achieved with N =  35 snapshots, and for all values of N greater than 35. 
For the values of N tested, an empirical probability of I w ith o u t weighting, i. e., 
with uniform weighting, was not achieved until N =50 snapshots. Prior to 
N =  50, it is observed that the empirical probability of correct detection obtained 
with weighting according to (5.54) is significantly higher than that obtained with 
uniform weighting. Similar comments hold with regard to the performance of the 
method as a function of SNR as plotted in Figure 5.3(b). In generating Figure 
5.3(b), the array and source parameters were again exactly equal to those 
associated with the previous simulations except that the SNR of each source was 
varied in nonuniform increments. The value k =  I corresponds to the SNR values 
used in the simulations presented in Figures 5.1 and 5.2. With weighting 
according to (5.56), an empirical probability of I was achieved with k= 2  in which 
case the SNR of source I and 2 is 16.4 dB. W ithout weighting, the same condition 
was not achieved until k=2.5 .

Figure 5.4 presents the results of a simple simulation example illustrating the 
improvement in performance achieved by spacing the doublets over a large 
aperture in order to achieve a greater resolution capability with a limited number 
of elements. For this set of simulation results, the array was linear composed of 
M =14 equi-spaced doublets. In the first set of simulations presented in Figure 
5.4(a), the spacing between the two elements comprising each doublet was a. half- 
wavelength, while the inter-doublet spacing was a half-wavelength. In this case, 
the overall array was simply a uniformly-spaced linear array of 28 elements with 
inter-element spacing of a half-wavelength. The corresponding effective aperture



85

is thus 14X giving rise to a 3 dB beamwidth of approximately 4 ° . In the second 
set of simulations presented in Figure 5.4(b), the inter-doublet spacing was 
increased by a factor of 3, while the spacing between the two elements comprising 
each doublet was held fixed at a half-wavelength. This configuration gives rise to

an effective aperture of 14 3 \
2

28X, twice that occurring with an

inter-doublet spacing of a half-wavelength. Correspondingly, the 3 dB 
beamwidth is 2 ° . This translates into an increase in the resolution capability by 
a factor of 2, roughly speaking. The price paid for this factor of 2 increase in 
resolution capability will be addressed shortly. We first present the simulation 
results.

The source scenario consisted of two highly correlated, equal strength sources 
located at Oi — 2 0, corresponding to U1 =  .0349, and O2 — —2 ° , corresponding to 
u2 =  —.0349. In accordance with convention for linear arrays, u =  sin((9), where 
0 is the angle of a source relative to broadside. The degree of correlation was 95% 
and the SNR of each was 13.4 dB. The results of 200 independent trials are 
plotted and tabulated in Figure 5.4. In each trial run, the number of snapshots 
was N =  25 and estimates of the two source angles were computed via PFBAVG 
modified P R O —E SPR IT . It is noted that each of the two SVAR’S achieved with

3 \
an inter-doublet spacing of — , listed in Figure 5.4(b), is smaller than the

A

X
corresponding SVAR achieved with an inter-doublet spacing of —, listed in

A

Figure 5.4(a), by a factor of either 2.5 or 2.75. This may be attributed to the
factor of two increase in effective aperture length achieved with an inter-doublet

3X Xspacing of —  relative to that achieved with an inter-doublet spacing of — The 
2 2

average number of flops is very nearly equal for the two cases since each array has 
the same number of elements, 28.

What is the price paid for the factor of 2 increase in resolution capability
3X

achieved with an inter-doublet spacing of — ? Since the spacing between the two
2

elements comprising each doublet is —, there is a one-to-one mapping between u
•if A11J v  2 U jiru

and the displacement scalar 4* =  e  =  G over the interval -I <  u <  I, i.
e., from endfire to endfire. However, the mapping between u and the array 
manifold vector a(u) associated with either of the two translationally invariant 
subarrays is n o t one-to-one over the interval -I <  u <  I. a(u) is the array 
manifold vector associated with a uniformly-spaced linear array of 14 elements
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with an inter-element spacing of ;— . Any two sources separated by either 
2 . 4 . .  2

A u = -  or A u = -  give rise to the same a(u) and, as a consequence, make a rankO O
one contribution to either of the two data matrices, X  and Y. As an example,

2
consider two sources with one located at U1 and the other at u2 =  U1 +  —. The

3
noiseless X and Y data matrices may be expressed as

Xla(Ui)Si =a(u1){s1 +82}1 
i=l

(5.58)

Y  =  XCj^ a (U i)Sjr =  eJ,ru'{ l + e  3 }a(u1){s1 +  s2}T
I-1

(5.59)

It should be noted, though, that as long as no two sources are separated by either 
2 4

A u = -  or A u = - ,  it is ideally possible to determine the direction of each andu O
every source in the interval -I <  u <  I via SI E SP R IT  w ith o u t am biguity!! In
contrast, this statement does not hold for a uniformly-spaced linear array with an

3Xinter-element spacing of -—. In this case, without a-priori knowledge, one would
2

not be able to determine via Si E S P R IT  or MI E SP R IT  in which of the three 

intervals, -I <  u <  ~  <  u <  -i- <  u <  I, a particular source lies
J  u  O t )

regardless of the angular separations between sources.
In order to avoid the array manifold ambiguity problem occurring in the case 

of equi-spaced doublets spaced greater than a half-wavelength, one should space 
the doublets aperiodically over an aperture commensurate with resolution 
requirements as depicted in Figure 1.2(b). A linear array of aperiodically spaced 
doublets exhibits only a single invariance, thus negating the use of multiple 
invariance E S P R IT  [ROY88b,ROY89b]. In this case, the PFBAYG modified 
P R O —E S P R IT  developed within serves as a computationally efficient 
manifestation of SI E SPR IT .

In the next set of simulations we examine the performance of the techniques 
outlined in Section 5.5 that can be used to pair the u and v estimates. The 
scenario we simulated was the following. In total there were three sources coming 
from the following directions. (^i,01)=(25°,15°), (#2>^2)= (55° ,5°) and
($3»^3)= (42o,30°). In terms of (u,v), these angles translate into 
(ui,Vj)=(.235,.1094), (u2,V2)=(.05,.0714) and (u3,v3)=(.3716,.3346) respectively. 
The array was the corrugated box array described before, and the method that 
was used to estimate Ui and Vi , i=  1,2,3 was the version of P R O —E S P R IT  with
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no pseudo FB averaging incorporated. When the ESPRIT-based method was 
used, the axis of the doublets was oriented first along the x-axis, then along the 
y-axis, and finally along the line y=-x , to give estimates of u, v and u-v 
respectively. For the MUSIC based method the only orientation axes used were 
the x-axis and y-axis. In the two simulations we carried out we considered the 
empirical probability of correct pairing, first as a function of the number of 
snapshots, and then as a function of the signal powers. Before discussing the 
results, it is appropriate to explain what we mean by probability of correct 
pairing. We assumed that our algorithm paired correctly the D pairs (u;,Vj) 
i= l,..,D , if the combined absolute deviation of the corresponding azimuth and 
elevation angles from their true value was the least amongst all other possible 
pairings. If the least angular deviation was given by a different combination, and 
the deviation did not exceed some threshold, then the assumed pairing was 
assumed in error. If the threshold was exceeded, the results of that particular run 
were completely disregarded, and this was as an indication that no possible 
combination made sense. In Figure 5.5(a) we show what happens if the SNR of 
each source was held fixed at 13 dB, while the number of snapshots varied 
starting at N—5. The three sources were uncorrelated, and the empirical 
probabilities were obtained from 200 independent runs. Observe that even with 5 
snapshots, both methods managed to pair the u and v estimates quite 
successfully. With 25 snapshots, no error occurred. It can also be seen that the 
MUSIC-based method worked slightly, better that the ESPRIT-based method, 
for almost all number of snapshots. For both cases, in 3% of the total number of 
runs the threshold was exceeded, basically because of bad estimates. In this 
particular example, for the ESPRIT-based method we had to check a total of 36 
different combinations, while for the MUSIC-based method this number was only 
6. Figure 5.5(b) shows how the empirical probability of correct pairing varies as a 
function of the SNR. The three sources were again uncorrelated, and the number 
of snapshots was held fixed at N =  10. The results here are not surprising either. 
Even when the signal and noise have the same power, the probability of correct 
pairing is almost 90%. The better performance of the MUSIC-based method is 
observed here as well. Using this, probability one is reached when the SNR is 
close to 17 dB, while the ESPRIT-based technique does not reach this point until 
the SNR is almost 30. The most probable explanation for this is that if there is 
an outlier in the noise, this will result in bad estimates for u, v and u-v. Hence, 
the u-v estimates in such a case contain no information at all, and the outcome of 
the matching process is more or less a random event.
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Comparison of the estimation of the u and v parameters via the 
original version of PRO—ESPRIT and the new one based on 
pseudo F-B Averaging. 5.2(a) and 5.2(b) compare the u 
estimates, while Figures 5.2(c) and 5.2(d) compare the v 
estimates.
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Eigenvalue Distribution Before and After V-roodificarion
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Figure 5.2 Average eigenvalue distribution before and after array manifold 
modification. The eigenvalues are averaged over 200 
independent trials. The sources are located at (0i,^i)=(45°,5°), 
(0j .& M 225°,5°) and (03,& M 32°,20°). The SNR of the first 
two sources is 13.4 dB and are 95% correlated. The third source 
is uncorrelated with the first two and has an SNR of 15.8 dB. 25 
snapshots were used.
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la) as a function of the number of snapshots and (b) as a 
function of the SNRt with the weighted Procrustes difference 
scheme. The array and source parameters are described in 
Figure 5.2. For each set of parameters, the corresponding 
probability was computed from the results of 200 independent 
runs.
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Figure 5.4 A comparison of the performance of pseudo F-B 
PRO —ESPRIT when it is applied to a linear array of 28 
sensors. The estimated quantities are U 1 and u3 for — 2° and 
#5= 2°. In both cases the sensors in a doublet are separated by 
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Figure 5.5 The probability of correct pairing of the u and v estimates 
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C H A PT ER  6
A P PL IC A T IO N  OF PR O -E S PR IT  IN  BEA M SPA CE

8.1 In troduction

We have concluded in the previous chapters that the major computational 
task in the application of PRO-ESPRIT is the initial EVD of the MxM correlation 
matrices R xx and Ryy, where M is the number of sensors comprising each array. 
Today, there are in operation arrays that consist of hundreds even thousands of 
sensors. Correspondingly, the respective dimensions of R nt and R vy can be 
extremely large. The eigenvalue decomposition of matrices of such large 
dimensions is not a practical requirement, despite the availability of highly 
sophisticated and robust software and hardware. Our experience has indicated 
that even when dealing with matrices of moderate dimensions, results provided by 
EVD and SVD routines are of dubious accuracy when the given matrices are not 
very well conditioned. Assuming that we can overcome the accuracy problem, the 
requirement of real time operation makes PRO-ESPRIT prohibitive when M is 
large. Depending on the array structure, that is, if it is a ULA or a 2-D ESPRIT 
array, one can employ Forward-Backward averaging or pseudo Forward- 
Backward averaging of the data, respectively, to avoid one, of the two required, 
EVD’s. This, however, can hardly be considered the best solution to the problem 
at hand. A better solution is to apply PRO-ESPRIT in beamspace. Contrary to 
the element space where the data is taken to be the raw snapshot vectors, in 
beamspace these snapshot vectors are first acted upon by a beamformer matrix 
yielding a beamspace snapshot vector of lower dimensionality. Operation in 
beamspace has advantages as well as disadvantages. The primary benefit is the 
reduction in computation. This is due to the reduced dimensionality of the 
beamspace snapshot vectors yielding correlation matrices of lower dimensionality. 
In addition, with proper selection of the elements of the beamformer matrix, it is 
possible to steer the beam in a specified direction, i.e., suppress all signals that fail 
outside a desired range of DOA’s and amplify signals falling within this range.

The ultimate goal is to detect and localize sources that originate from any 

point in the angular region #=—90° 0=90°. Since we concentrate completely on
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ULA’s, instead of denoting directions using the variable 9, it is preferable to use 
the variable u where u=sin0. Thus, as 6 varies in the interval —90° to 90°, u 
varies from -I to I. The approach here is to divide the interval u = - l  to I into a 
number of bands, and then cover each band with a set of beams, symmetrically 
positioned around its center. If we do this, then the data corresponding to each 
band may be processed simultaneously in parallel, for the purpose of estimating 
the DOA’s. This approach poses several interesting questions. For example is it 
necessary for the bands to overlap, and if so, by how much? If there is no overlap 
among bands, what is the effect of a source in close proximity to the boundary of 
two consecutive bands? These and other questions will be addressed and 
discussed as we proceed. The discussion and analysis here will mainly focus on a 
set of beams centered around the point u = 0. The analysis for beam sets steered 
to other pointing angles follows directly from this. The reader is reminded that 
we are only considering ULA’s. The procedures developed here may be extended 
to arbitrary, 2-D arrays on a rectangular grid. The reason for concentrating on 
the linear arrays is the Vandermonde structure of the array manifold vector. 
This structure may be judiciously exploited to yield computationally efficient 
implementations. We begin by considering a certain class of weight vectors for 
forming the desired beams.

6.2 Choice and Construction of the Beamforming Matrix

Consider an ESPRIT array system made up of two translationally invariant 
arrays X and Y. Following the procedure outlined in Chapter 3, we form the 
"raw" data matrices X  and Y. Summarizing the results developed in Chapter 3, 
X  and Y  may be decomposed in the noiseless case as

X  =  AS , Y = A $ S  (6.1)

where the dimension of A  is MxD. Recall that M is the number of sensors in each 
array, D is the number of sources and S is DxN, N being the number of 
snapshots. Next, consider the effect of pre-multiplying both X  and Y  by the

Hsame beamformer matrix W  ; the dimensions of W  is MxB. B is then the 
number of beams formed, i.e. B is the length of the beamspace snapshot vectors. 
Substituting into (6.1), the corresponding beamspace data matrices Xb and Yb 
are:

Xb = W hX  =  W hAS (6.2a)

Y b =  W hY  =  W hA4>S (6.2b)

From (6.2a) and (6.2b) it follows that the matrix pencil {Yb -  AXb) is an
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ESPRIT matrix pencil whose Generalized Eigenvalues are 4>jj, i==l,..,D. Hence, 
PRO-ESPRIT may be applied to obtain estimates of 4>j; i= l,..,D . For proper 
operation of PRO-ESPRIT, however, we require that the beam number, B, be at 
least one greater than the number of sources. In general, the number of sources is 
not known a-priori, and the user must ensure that the expected number of 
sources does not exceed B. In the practical case of noisy data, W  also influences 
the form of the resulting X and Y beamspace noise correlation matrices, R ““b and 
R££b. In terms of the element space noise correlation matrices R ““ and Ry“, 
R ““b and Ryyb may be expressed as

R “ b -  W hR “ W  , R ^ b = W hR ^ W  (6.3)

It should be noted that even if the element space noise is spatially white, the noise 
in beamspace is correlated, in general. Uncorrelated noise in beamspace may be 
achieved, however, by employing a beamforming matrix composed of mutually 
orthogonal columns. In contrast to element space operation in the case of white 
noise, proper beamspace operation requires an EYD of Rbb — ^2Rxxb an<i 
R ^  — O2R ^ b respectively, where O2 is the noise power, a2 must be estimated 
prior to performing the above decompositions. A quick and efficient method for 
doing such will be presented in section 6.4.

We now elaborate on the choice of the beamforming matrix W . The 
structure of W  is dictated by many parameters. The most important parameters 
are the pointing angles of the beams. An important factor to consider is the 
structure of the beamspace array manifold vector. From (6.2) we see that it is 
not required that the beamspace array manifold vectors W  A  exhibit 
Vandermonde structure. However, the Vandermonde structure is a prerequisite 
for the applicability of F-B averaging in beamspace. Recall that F-B averaging 
serves to substantially reduce the computational burden. We thus concentrate on 
a class of matrix beamformers which yield a beamspace manifold vector 
possessing the Vandermonde structure.

To construct a beamforming matrix which preserves the Vandermonde 
structure in beamspace, consider the following prescription. Choose any (M- 
B +l)xl vector h and generate W  as
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h 0 0 
O h O  
O O h  
0 0 0 (6.4)

O O O O O h

Let aj(u) denote the i-th column of A  and Wj be the 1-th column of W . If aj(u) is
7Ta Vandermonde vector with parameter ^ ii =  exp(j2—Ui),
A

W wa i ( U ) = ^ a i (U)

I
^ii

H (6.5)

The final vector in (6.5) is clearly a scalar multiple of a Vandermonde vector with 
exactly the sam e parameter ^ ii but of dimension B, rather than M, the 
dimension of the original vector. Of course, B<M. Let us now consider the 
structure of X i,. In view of the result in (6.5), it follows that Xb may be 
expressed as #

X b = A b^S  (6.6)

The subscript B is used to indicate the row dimension of A.
=  diag{h a(u i),...,h a(uD)} and may be viewed as an "amplification" matrix, 

since each of its diagonal elements scales the corresponding row of the source 
signal matrix S. 'I' is a function of the direction of arrival of the D incident 
signals, as well as the beamforming vector h. Therefore, through judicious 
selection of h, we may "amplify" signals coming from a certain region of the

interval u= —l I, and, at the same time, attenuate signals from outside the above 
region.

Although the beamforming matrix structure in (6.4) yields a beamspace 
manifold vector with the desired Vandermonde structure, its use is not 
recommended since it reduces the resolution capability to that of a ULA of B 
sensors separated by a half wavelength. That is, the resolution cabability is 
reduced by a factor of M/B. This is clearly not desirable. However, the result in
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(6.5) is important in analyzing the structure of the beamspace manifold vector 
generated by a DFT (Discrete Fourier Transform) matrix beamformer. We 
proceed motivated by the work of Zoltowski and Lee [ZOLT89d,ZOLT89e].

Consider the use of a beamforming matrix composed of B mutually 
orthogonal classical beamforming vectors, denoted by 8j^(u0) with equi-spaced 
pointing angles. If M is even, sm(u0) has the form

sm(u0) -J 7r M - 1J -(U-U0) -Jyr .(M-3).(U- Uo) (6.7)

while if M is odd

Sm(U0)
/ \ M[ 2 / \-J'r—r—(u~uo)

e 1 e
. M , ,jn_-(u_u°)

T

(6.8)

where U0 is the pointing angle of the beam generated by sm(u0) Without loss of 
generality, assume that the number of beams, B, is an odd number. Similar 
results hold for the case of M even. In this case, S is constructed as

S(un) = [ SmK - - ^ A ub) ! Sm(U0- A ub) : sM(u0) :

sM(u0+AuB) i • • •  • sM K A ub) ] (6.9)

where Aub= 2/M, the spacing between the pointing angles of adjacent beams. 
With this separation, the columns of S(u0) are mutually orthogonal, such that 
S(u0)hS(u0)=MI. Thus, this beamforming matrix yields uncorrelated noise in 
beamspace. However, S(u0) does not exhibit the structure described by (6.4). 
Thus, the beamspace manifold vector does not exhibit the Vandermonde 
structure. However, note that S(u0) may be expressed in terms of a matrix 
product as

S(U0) = P ( U 0)E(U0) (6.10)

where P(u0) is an MxB banded Toeblitz matrix of the form
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P(U0)

P 0 0 . . 0

0 Po . . o
0 0 . . 0

(6 . 11)

0 0 0 0 P0

and E(u0) is a BxB matrix. To substantiate the validity of this decomposition, we 
extend the results of Zoltowski and Lee in [ZOLT89e]. To this extend, consider 
the M-th order polynomial associated with each of the B columns of S(u0). That 
is, let Sj (z) be the polynomial in z whose coefficients are the components of the j- 
th column of S(u0), j= l,. .B . It can be shown that each of these B polynomials 
have M-B roots in common. Consider uo= 0, i.e, broadside operation. In this

case, the common roots of the B polynomials are located at z=exp{j7T— k},
M

fc=i 5 ± l i , i 5 ± a , . . , M - i 2 ± i l .  If ,
2 2 2

is not zero, the location of the

corresponding common roots may be simply obtained by multiplying all above
j2—u„

roots by e M . Let p(z) be the polynomial whose roots are the common roots of 
Sj (z) j= l,..,B . Finally, let ej(z) j= l , . . ,B  denote the polynomials which satisfy 
Sj(z) =p(z)ej(z) j= l,..,B . The polynomials ej(z) j= l , . . ,B  are each of order B. 
For a given Sj(z) and corresponding ej(z), j= l,. . ,B , let us stack the coefficients of 
these polynomials in the Mxl vector Sj and the Bxl vector ej j= l,..,B . The 
coefficients of p(z) are placed in vector p. Note that that the coefficients of the 
product of two polynomials can be obtained from the convolution of their 
respective coefficients. If we express the convolution operation Sj=p0*ej, j= l,. .B , 
in terms of matrix multiplication, we obtain (6.10). Note that whereas S(uQ) does 
not have the property required by (6.4), P (u0) does. Define X 9 =  S (uQ)X and

HX p = P  (u0)X. Ys and Yp are defined similarly. Note

X p =  ( E h(U0) ) - iX s =  ( E h(U0 ) ) - 1S h(U0 ) X  (6 .12)

Thus, start again from the raw data matrices X  and Y, pre-multiply them by 
S (u0) followed by a further pre-multiplication by (E (u0)) '. Apparently, this 
procedure would require the formation and storage of both S(u0) and (E (u0)) '. 
We shall demonstrate, however, that pre-multiplication by S (u0) can be more 
efficiently accomplished via the use of DFT or FFT routines.

We confine ourselves again to the case o f U0 =0. Similar results follow for the

more general case. Consider a beam pointed to u =  — 1, 1=
M

I S = I i o o B = L and
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let si=»m(1 j^") be the weight vector associated with this beam. If x(n) denotes the

n-th raw snapshot vector from the X array data, then (6.7) dictates

„ M-I -J1T(M-Zp-J)-Jr
»1 x(n) =  2  x(p)e M

P = O

or equivalently

s,x(n)
-J-J-I(M -I) M -I jZ-J-pl

M s #  M
p=0

By direct comparison of the above equation with the expression for the Discrete 
Fourier Transform (DFT) of x(ri)

M -I -j2 ^~ k n
X (k )= J > (n )e  M

n=0
we conclude that the following equality holds.

s,Hx(n)
- j- i- l(M -l)

X(—I)
(B -I) (B -I)

2 2
(6.13)

Hence, the Bxl beamspace snapshot vector SHx(n) can be obtained by selecting 
the appropriate coefficients of the Discrete Fourier Transform of x(n). From 
(6.14) it also follows that only B of the M DFT values must be computed. As 
practical matter, the availability of dedicated Fast Fourier Transform software 
and hardware suggests that if the number of sensors, M, is a power of two, the 
beamspace domain snapshot vectors may be formed in a very computationally 
efficient manner.

6.3 Large Arrays and Ill-Conditioning Problem s

In this section we point out and illustrate by example a possible limitation of 
the beamforming method based on the the decomposition of S into P E . First, it 
must be pointed out that S by itself has a very sound condition number, equal to

H
one regardless of the value of M. This follows from the fact that S S is a 
multiple of the identity matrix. However, ill-conditioning can manifest itself in 
both P  and E. The circumstances under which this can happen are illustrated by 
the following example. The case under consideration involves the formation of 
three beams, with the center beam directed right at boresight, u—0. For this 
case the following closed form expression for the 3x3 matrix E  can be found in 
[ZOLT89e].
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E

I

. n
‘ u

-2 C°s(2ij.)

I

(6.14)

One can easily show that as a result of the conjugate symmetry in both its 
columns and rows, the eigenvectors and eigenvalues of E  have the following 
properties. For any M, E  has one imaginary and two real eigenvalues. The 
imaginary eigenvalue X1 and the two real eigenvalues X2 , X3 are given by the 
following expressions.

X1 =  2js in (^-)

\ 7T . . 7TX2)3 =  -cos(2— )-cos(— )_ ( coS( 2 ^ ) - c o s ( ^ )  Y  +  4 c o s(^ )

We are primarily interested in the case of M large. Under this assumption, a 
Taylor series approximations yields

x‘“ iI f  ’ x’“ 2 W  ’ x’“
If we consider the absolute values of X1jX2jX3, the one with the smallest 
magnitude, X2, approaches the value of zero at a rate proportional to M2, while 
the one with the largest magnitude, X3, approaches the value of four at a rate 
again proportional to M2. X1 also converges to zero at a slower rate, however, 
proportional to M. This implies that, if the number of elements, M, is exceedingly 
high, E  will be ill-conditioned, nearly of rank one. An alternative way to see this 
is that as M grows, each column of E  converges element-wise to a scalar multiple 
of the vector [I —2 1] . In this case, the result of any operation involving E, 
especially inversion such as the one in (6.12), may yield erroneous results.

The reason why P  is troublesome is rather peculiar. Ostensibly, P  should 
well conditioned since it is a banded Toeblitz matrix, such that any two columns 
are linearly independent. However, let us again assume that M is large, and that 
the number of beams formed is small compared to M. As explained above, P(O) 
is constructed by first generating an (M-B)-th order polynomial whose roots are 
the M-B common roots of the B beams, stacking its M-B+l coefficients in a vector 
and using this vector construct P . The trouble here is caused by the large ratio 
of the magnitude of the middle coefficient and the coefficients of the highest
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degree or constant terms. As an example, in the case of B = 3  beams and M =  128 
elements, this ratio is in the order of IO17. Under these conditions, the initial and 
final rows of P(O) are almost negligible in magnitude compared to the middle 
rows, causing once more an ill-conditioning problem.

Similar results follow for the case of any other number of beams. This 
analysis serves to point out that when it comes to implementing this algorithm, 
the mathematical precision of the processor used is of vital importance. To give 
some numbers, in the simulations we carried out on the computer with PRO- 
MATLAB, a software using double precision, we found that with 15 beams, the 
algorithm experienced no conditioning problems until the number of elements 
approached 80.

6.4 PRO-ESPRIT W ith F-B Averaging and W hite Noise

In this section we prescribe the algorithm to be followed to apply PRO- 
ESPRIT in beamspace with the previously described procedure for forming the 
beamspace data matrices. We also intend to incorporate F-B averaging because 
of the advantages offered by this mode of processing. Compared to the F-B 
averaging scheme described in Chapter 4, two basic adjustments are required. 
This is due to the correlation introduced among the noise components as a result 
of the multiplication by (E(u0)H)-1 . In Chapter 4, the F-B noise correlation 
matrix was a scalar multiple of the identity matrix. This represented a great 
advantage, both in the noise cleaning process as well as in the sources detection 
process. However, unless the beamforming matrix has some special structure such 
as columns that are orthonormal, both noise cleaning as well as source detection 
become more complicated tasks, even with spatially white noise.

The analysis that follows is greatly simplified if we assume that the 
beamspace snaphot vectors are generated via pre-multiplication of the 'raw ” 
snapshot vectors by (P(u0)H)-1 . It is emphasized that in practice, the beamspace 
snapshot vectors are obtained via the procedure outlined in Section 6.2. Let us 
define P jc(U0) be the matrix derived from columns i to k of P(u0) as this matrix is 
defined in (6.11). Following the steps outlined earlier, we first operate on X  
containing the raw data snapshot vectors to obtain the beamspace snapshot 
matrix Xb- From Xb, we can obtain two matrices Xp and Yp having the 
ESPRIT structure if we construct them according to step I of the PRO-ESPRIT 
summary for the ULA scenario, found in Chapter 4. The symbol L is again used 
to denote the subarray length. This step is repeated here, using the newly 
introduced notation.
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Xfc =  [p i.HK ) X  I .... I Pb-̂ h(U0)X] (6.15)

Yfc. -  [p L H(u„ ) X  I . .. .  I P ^ l-H (B 0 )x ]  

From Xp and Yp we construct Xpg and Yp8 as follows.

Xfc8 =  [xfc I IYfc'] , Yfc8 =  [y f  I ixfc*

(6.16)

(6.17)

where I is the reverse permutation matrix defined in (4.2). The common steps of 
the beamspace algorithm with the element space algorithm stem from the 
following two facts. Firstly, we can express Yp8 as

Yp8 = iX p B*j (6.18)

where J  is a block reverse permutation matrix defined by

J
Oni In’ 
In- 0n»

W=N(B-L)

Thus, through relations similar to the ones in (4.10), the components of the 
Singular Value Decomposition or the Eigenvalue Decomposition of Yp8 can be 
extracted from the corresponding decompositions of Xp8 . Secondly, since by 
construction the manifold vectors Al of Xp and Yp satisfy Al =IA l^ l-1 , PRO- 
ESPRIT can be applied to solve for the eigendata 4»̂  i= l,..,D . This is the 
justification why P(u0) was required to have a banded Toeblitz structure.

For the most part, the discussion made and conclusions reached in Chapter 4 
apply equally well here, with the exception of the techniques that are used to 
obtain clean estimates of the true auto and cross correlation matrices as well as 
estimating both the noise power and the number of sources. As it has already 
been mentioned, the reason for making changes is that the beamspace noise 
covariance matrices are no longer scalar multiples of the identity matrix. By 
definition, the noise correlation matrix of any subset of the element space 
snapshot vectors is O2I. After going through the necessary manipulations, the F-

p g  pQ

B auto and cross correlation matrices Q xx Q yy and Q xy are,

I FB . 
Sxx

B -L

E(PL-,(t>o))H(PL, ,K)) + T - i

B -L + l
E (Pi.+i-.(uo))T(PLi--,(a0))* I (6.19a)
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B—L-H »,
Q? = *2 E (PU.(uo))H(PL-,(u0)) +

i -2

'B-I.

S(PL-,(«..))T(PL,B.,(n»))‘
i=l

Qx? = *2 E (PL-.(u0))H (PLti(Uo)) + *-i
B—L-Hl

E (PL+-.(«o))T(Pij;! ,K))'
i=‘J

I (6.19b) 

I (6.20)

Consider first the structure of Qxx* We show this matrix satisfies the following 
property.

Q »  =  Q ^ - I Q S i  (6-2 i)

(6.21) dictates that the Eigenvalue Decomposition of (Rrab-cj2Qxx) 13 related to 
the Eigenvalue Decomposition of (R ŷ b-cj2Qyy)' That is, we can get the 
reduction in computation discussed previously, even after "cleaning" the data 
correlation matrices. The proof of (6.21), commences with the following 
relationships.

( P lK ) J fl( P i K ) )  =  (P L + i-lK ))H(p U i - iK ) )  i=2,..,B—L+l (6.22)

(6.22) is a direct result of the special structure of P(u0); the proof of (6.21) 
involves simple but tedious algebraic manipulations and is omitted here. As a 
consequence of (6.22), (6.19a) and (6.19b) simplify as

q S = ^ (B -L X P t(u .))H(Pt(u.)) + ^ (B -L )i(P ‘(u0))T(P;.(u.))'i (6.23a)

Q ™ =^(B -L )(P‘(u.))H(Pt(u.)) + ^(B -L )f(P ‘(u.))T(P ‘(U. ) ) i  (6.23b)

A second property stemming from the special structure of P(u0) is described as

(Pl(U0))B(PiK)) = i(P lK ))T(P lK ))‘i  (6.24)
PB F'B

Exploitation of this property further simplifies the results for Qxx and Qyy
Q S = S ^ ( B - L ) ( P t ( U 0))B (P lK )) (6.25)

(6.24) and (6.25) validate (6.21).
Knowledge of the beamspace noise correlation matrices is important for the 

following reason. With a noise correlation matrix, equal to a scalar multiple of 
the identity, such as the case dealt with in Chapter 4, and an adequate number of

FB
snapshots, the Eigenvalue Decomposition of Rxx yields asymptotically unbiassed 
estimates of the signal subspace U xx, the noise power, and the number of sources. 
This will not be the case, however, in the presence of colored noise. Noise power 
estimation and cleaning must be done in two steps, i.e., first estimate the noise
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€% a f*'| i p g
power cr, and then subtract cr Q xx from both R xx̂  and Ryyb• Iq the absence of 
any a-priori information regarding the noise power level one may employ the 
procedure outlined in Section 3.4 to estimate the noise power. Recall that the 
procedure in 3.4 exploited the fact that the eigenvectors of the noiseless R ^> 
corresponding to the eigenvalue X=O are also the generalized eigenvectors of the 
matrix pair {Rxxb>Qxx} corresponding to the generalized eigenvalue Z(B-L)CT2. 
Therefore, B-D of the B generalized eigenvalues of |R xxb>Qxx} asymptotically 
approach the value of Z(B-L)O2 and, as a consequence, the average of the these 
"noise" eigenvalues should an accurate estimate of O2. This result also holds if we 
extract a subarray out of the overall array, and form the FB data correlation 
matrices with the elements of this subarray. However, one must insure that the 
subarray length is, larger than the expected number of sources, in order that at 
least one of the the computed GEV’s, is a noise GEV. The appropriate noise 
correlation matrix should also be used. Instead of working with the FB 
correlation matrices, one can also estimate the noise power from the Eigenvalue 
Decomposition of the correlation matrix derived from either Xp or Y p . In such a 
case the noise correlation matrix would a be scalar multiple of the identity 
matrix.

At this point, we simply assume an estimate of cr2 is available using one of 
the methods described above. This allows cleaning of both R xxb and Ryyb> 
yielding C xxb and Cyyb, respectively. The corresponding "clean" and "unclean" 
matrices are related as

C ^b =  Rxxb ^2Qxx > ^xy Ryyb ĉ Qxx (6.26)

A question that arises is this: under what conditions is it possible to obtain a 
relationship between the eigenvalue decompositions of C ^b  and Cyyb? More 
specifically, under what conditions the following property hold?

c £ „  =  i c g ‘bi  (».27)

If (6.Z7) were to hold, it would then imply that the eigenvalues of C ^  and C ^ j 
are identical, and for a particular eigenvalue the corresponding eigenvectors

I  ^
would be e and Ie respectively. To check for this, consider ICSbI- From (6.26)

IC S bI =  I R S a - ^ 2I Q S i  (6.28)

_ -p FH _,T2O fb — O fb— 1̂ yyb Wxx ^yyb
^  PQ

It is emphasized that if the relationship I Q S I - Qxb> did not hold, (6.28) would
FB

not be true. This would further imply that the EVD of Cyyb could not be 
extracted from that of C xxb- Before we summarize all the steps of the algorithm, 
we comment on the beamspace noise cross correlation matrix Q xy. Again as a
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result of the special structure of P(u0), one can easily show that the following 
property holds.

(P tK ))H(p£+i(uo)) = ,- - ,  = (P |" LK ))H(P l'L+1K )) («-29)
FRThe above expression reduces Q xy to

Q ^ ( B - L ) ( P t ( U 0))H(PL1K ) )  + ^ ( B - L W P L K J H p I M ) ' !  (6.30)

So, a clean estimate of the cross covariance matrix C ^ b can be obtained from the 
unclean cross correlation matrix R xyb via

c ; ; b = R x; b - ^ Q ™  ( o n

We now proceed to summarize PRO-ESPRIT as it would be applied in the 
beamspace domain. The B beams will be centered symmetrically about u=u0.

Summary o f beamspace PRO-ESPRIT (white noise)

(1) For each raw snapshot vector, x(n), use (6.13) to form xs(n) =  SH(u0)x(n)

(2) Pre-multiply xs(n) by (EH(u0))_1 to obtain the beamspace snapshot vector
x b (n )

(3) With N snapshots, stack the N beamspace snapshot vectors as the columns of 
the NxB data matrix X b

(4) U seX b to construct Xp and Yp according to (6.15) and (6.16)

(5) Use (6.17) to construct Xpg and Y fb

(6) Form R ^ b = 4 - X ^ X ^ b and R ^ b= I Y |# Y ^b

(7) Estimate the noise power, O2, and perform rough cleaning of the noise from
FB FB FB

R xxb and I^xyb obtain and *̂xyb

FB FB(8) Take an EVD of C xxb: C xxbUj=XiUi, i=  I ,..,L

(9) Form U xx=[ua, . . . , uDj and E=diag{X1'/2, . . .  ,X0

(10) Form Q u =  U xxIU xx and Qv =  E- 1U ^ C ^ bIU xx2 ~1

(11 ) T akeS V D ofQ a=U 1S1V P a n d Q v=U rErV ?
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(12) Q u - U lVf1 , Q y = U rV ?

(13) Find the D Eigenvalues of S - 1QuSQy

6.5 Sim ulations and Discussion

In the first simulation we considered the following scenario. The array was a 
uniform linear array of M =64 sensors separated by half a wavelength. The 
number of beams was 13, with the middle beam pointed at u = 0. The pointing 
angles of the beams were equi-spaced by Au =2/64. In terms of angles away from 
bo reside, this beamforming configuration approximately covers the region 0——I l 0 
to #=—11°. A signal originating from outside of this range will be suppressed by 
the beamformer. The 3 dB beamwidth for this array size is about 1.8°, In the 
first simulation we assume that there are three sources arriving from the following 
directions. O1- - S 0, 02=0° and #3=0 .9°. Therefore, the second and third sources 
are separated by almost half a beamwidth. The source covariance matrix was the 
following.

R SS

0.5 0.4 0.4 
0.4 0.5 0.4 
0.4 0.4 0.5

Thus all three sources are 80% correlated .with each other. The signal to noise 
ratio for each source is 10log(.5) — —3 dB. For this simulation we used 20 
snapshots. The results of 120 independent runs are displayed in Figure 6.1. 
Observe that despite the low signal to noise ratio of the signals, the estimates are 
quite good, as also indicated by their sample mean and variance. The second and 
third sources are resolved quite well despite their close proximity. As the 
numbers indicate, the source which is at 0° has the smallest variance relative to 
the other two sources, while one would expect that the smallest variance would be 
exhibited by the source at —5° because its estimates are not affected by resolution 
problems. The reason for this is that the source at 0° coincides exactly with the 
beam steered at u = 0, and therefore the gain associated with this source is large. 
The remaining two sources are situated in the interval between two consecutive 
beams. In the next simulation (Fig. 6.2) we kept all array and signal parameters 
unchanged, however we reduced the number of beams to 7, that is almost half the 
value of beams we had in the first simulation. So, if the different set of beams 
were to be non-overlapping, we would now require almost twice as many sets of 
beams than before in order to cover the interval U = -I  to u = l .  The advantage is 
that the computation would decrease since the dimensions of the matrices we had
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to work with was almost halved. The sample means and sample variances are 
comparable to the ones we observed earlier. Note that although the number of 
beams was decreased, the ones which remained did not change their position, so 
the same reason as before can be used to explain the small variance exhibited by 
the estimates of the source coming from 0=0°. Next, we try to illustrate what 
will happen if a signal falls outside the band. In particular, we shifted the three 
sources to the following locations. B i = - 5°, B 2 = Q 0  and #3= 12.8°. The number of 
beams was 13, so the array is sensitive to signals whose direction of arrival is in 
the range of —11° to 11°. The direction of the third source is clearly outside this 
range. The number of snapshots was raised to 25, while the source covariance 
matrix was unchanged from before. The results of 120 independent runs are 
shown in Figure 6.3. In this Figure, the estimates for the signals at B 1 and B 2 
were almost perfect, with small bias and little variance. As far as the estimates 
for Bz  are concerned, they are the ones concentrated about the (x,y) point (1,0). 
This is a typical behavior of PRO-ESPRIT in beamspace. If a source falls close 
or outside the edge of the band, it is decoded as a source coming right from 
bireside. Of course, in this simulation we assumed that the number of sources 
was 3. In fact, if one was to look at the GEV’s of {RxxbiQxx} would 
unambiguously reach the conclusion that there were only two sources in the band 
we are interested in. However, in many cases, a source close to the edge of the 
band can cause ambiguities, especially if its power is significantly higher than the 
power of the remaining sources. In including this simulation we tried to raise the 
question of designing overlapping bands rather orthogonal ones, to avoid various 
mishappenings such as the one demonstrated via this simulation. If the bands are 
orthogonal, sources on the boundaries of two adjacent bands will be invisible to 
both of them and will go undetected. If on the other hand there is overlapping, 
a source invisible to one band because it is positioned at its edge, will be visible to 
the next. Typical percentages of overlapping that are suggested in literature are 
33% to 50%. Of course, as the level of overlapping increases, the required 
number of bands also increases, and so does the total amount of computation to 
cover the region U = -I  to u = l .  If each band can be processed in parallel, then 
the number of bands is not a crucial matter.
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Figure 6.1 The performance of beamspace PRO-ESPRIT with a 64 element 
array and bands of 13 beams. The beams cover the range 
0=—I l 0 to 0=11°, or u=-.1875 to u=.1875. The source at #=0° 
is at the peak of the beam centered at u = 0.
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Figure 6.2  Effect caused by reducing the number of beams from 13 to 7 . 
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Figure 6.3 With 13 beams, the result of assigning one source a direction 
outside the visible interval 0**—11° to 0=11°. The sources at 
S=-S0 and S=S0 are estimated almost perfectly. The source at 
0= 12.8° appears as coming right from boreside.
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CHAPTER 7 
CONCLUSION

We have introduced a new array signal processing algorithm, PRO-ESPRIT, 
that can be used for the estimation of the azimuth and elevation of multiple 
radiating sources. Following the development of the general algorithm that is 
applicable to any array geometry exhibiting the ESPRIT structure, we 
concentrated on the specific application of PRO-ESPRIT first with linear, 
uniformly spaced arrays, and then with arbitrarily shaped, two dimensional 
arrays. We discussed in detail the exploitation of the redundancies built in either 
array configuration that result to a reduction of the required computational task 
by almost a factor of two. This, we feel, has been our major contribution, 
especially in view of the fact that in radar applications, the execution time is one 
of the most vital constraints the designer must take into account. For linear, 
uniformly spaced arrays the reduction of computation via the incorporation of 
Forward-Backward of the data has was achieved with almost no complication at 
all. In contrast, the application of pseudo Forward-Backward to the planar, two 
dimensional arrays had to be further examined to deal with cases of instability in 
the associated matrices. In both cases there was no apparent degradation in the 
performance of either algorithm. The v-modification of the pseudo-FB 
correlation matrices we introduced in the Section 5.5 is, perhaps, not the only 
way out of the mentioned ill-conditioning problem. For example, the design of 
arrays whose manifold matrix exhibits uniform stability as a function of the 
source directions is another alternative. In the development of the v-modification 
technique, we assumed a diagonal V. It is also possible to increase the degrees of 
freedom in V, and theoretically this should lead to even more, numerically stable, 
correlation matrices.

To accommodate large arrays, in Chapter 6 we demonstrated the application 
of PRO-ESPRIT in beamspace. The motivation, there, was the fact that with 
increasing array sizes, the application of any array signal processing algorithm in 
element space, is severely limited by the ability of the available software and 
hardware to handle matrices with large dimensions. We hope, that it became 
apparent from the discussion that the application of PRO-ESPRIT in beamspace
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will result in substantial reduction of the computational load. Although we 
concentrated exclusively on one specific beamforming matrix that allowed both 
the use DFT fast computation of the beamspace snapshot vectors plus the option 
of using F-B averaging, the results for any other beamforming would not be very 
different than the ones obtained here. Also of interest is the application of PRO- 
ESPRIT in beamspace but also with a two dimensional array.
The actual application is quite straight forward, however, there is more to be 

done in this area to deal with problems such as the design of good beamformers 
and interference cancellation.
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A ppendix A

Proof of theorem 2: Let Q 1 and Q 2 each be a comp lex-valued, unitary 
matrix, of the same dimension, with each exhibiting symmetry as well, i. e.,

Q iQ i — Q iQ i =   ̂ and Q 1 =  Q 1 ; Q 2Q 2 =  Q 2Q2 =   ̂ snd Q 2 =  Q 2

Also, let E be a nonsingular matrix. If Ai is an eigenvalue of the matrix 

E ' Q 1 E Q 2, then is an eigenvalue of E ' Q 1 E Q 2 as well.
Xf

Proof: Since A; is an eigenvalue of E ' Q 1 E Q 2, it is also a generalized
eigenvalue of the pencil (Q 1 E Q 2 , E}. Hence, A; satisfies:

Q 1 E Q 2 -  Ai E 0 .(A-I)

Factoring out Q 1 on the left of the expression in the determinant, and Q 2 on the 
right, and subsequently dividing both sides of the equation by | Q 1 | | Q 2 | , 
yields:

E Ai Q 1E Q2 (A.2)

where we have invoked the fact that Q 1 and Q 2 are unitary matrices. In turn, 
factoring out -AiE on the left of the expression inside this determinant and 
dividing by I-AiEl yields:

E"' Q 1hE Q 2 -  - L i
Ai

0 (A.3)

Now, if IA  I = 0 , then | A* | =  0. Thus, taking the conjugate of the expression 
in the determinant yields:

S' Qj -  4 -1
Xf

QiSQj -  E l
Ai

O = E  ~  — 1 (A.4)

T
where the expression on the RHS follows from the fact that Q 1 =  Q 1 and

Q 2 =  Q2*
I  — I ^ H

This indicates that —p is an eigenvalue of E Q 1 E Q 2 as well. Q.E.D.
A
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A ppendix B

Proof of Equation (5.44): We start by repeating the problem to be solved.
A Ai

Let /Xy and be the pre-determined phases of entry (i,j) of Cxx and Cyy 
respectively. We want to estimate parameters V1 , . .,v^ such that the following 
equation holds for all indices i in the range I,..,M and for all j> i.

Vi - V j = - y ( / i i j + t ' i . j  H y k iij ( B - I )

kjj is an arbitrary but also odd integer. For convenience, assume Icj j=-Icj j. 
This is basically a definition, since (B.l) is defined only for j> i. Because of the

restriction of i and j, the total number of equations is —M (M -I).
2

In general, the

set of equations we have to work with will constitute an overdetermined system of 
linear equations. Instead, the problem can be re-expressed as a least squares 
minimization problem, i.e.,

min H A v—c ||p (B.2)
v€IRm

T
v ~ [ v i **vm ] is an Mxl vector containing the variables we want to solve for, c is

an —M(M—l)xl vector containing the terms on the right hand side of (B.l), and 
2

A  is an -M (M -I)  x M sparse matrix. If we try to solve the problem directly 
2

using the left pseudo inverse of A, we will soon run into numerical trouble 
because A  does not have full rank. Specifically, its rank is M-I instead of M. 
Hence, there should exist a vector v° that is in the null space of A, i.e., Av0=O. 
Let v be the minimizing solution. Then, for any scalar a, v  +o?v° would also be 
a minimizing solution. In view of this observation, we would like to to limit the 
search over v to those vectors that lie in the (M-I) dimensional space spanned by 
the rows of A. This can be accomplished if we first obtain an Mx(M-I) matrix D 
whose columns span the same space as the space spanned by the rows of A  and 
then define

z Zi Z2 - r
Now force v=Dz. We are now guaranteed that v does not belong to the null 
space of A. This further implies that minimization can be carried out with 
respect to the auxiliary variables Zi ,..,zm- i - The problem is therefore 
reformulated as follows.
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min Il A D «-c  ||p (B.3)
•€IR(M- " v ’

We are now guaranteed of a unique solution, and it is given by

[(AD)T(A D )]"‘ADc =Dz (B.4)

Taking advantage of the inherent sparsity in A we can obtain the following 
closed form solution for each element of the optimal vector v*.

Vp M

M -p p—I
E ^ p.j+p ~  E '7 j ,p

i = i  j = i
p=l,..,M (B-S)

where

l i , i - 1H f jX j  + i ' u  ) + y k i,j

It is now a matter of some tricks before (B.5) can be put into its desired form 
given by (5.44). Observe that since both Forward data correlation matrices Cxx

A

and Cyy are Hermitian, /4j  = —/Vj i. Similarly for z/,j. The above two facts in 
conjunction with the previous constrain imposed on k y , allow us to write

Substitutihg (B.6) into (B.5), the result is

4c
M

M—p p—I
S  7p,j+p -  E ^ P d

_j=l j - 1
p=l,..,M

(B.6)

(B.7)

The last thing that remains to be done is to put both parts of the summation 
under the same index. If we go through this step, (B.5) reduces to

* I M
v P  = T T  E  ^ p J  P = W M  

j^p

I M

S IiVA j =  l
■ i f 1 p .j+ /yp ,j )+ Y kPij p= l,.. ,M

This is the expression we were after, and it is identical to (5.44).

(B-S)
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