221 research outputs found

    HVDC transmission : technology review, market trends and future outlook

    Get PDF
    HVDC systems are playing an increasingly significant role in energy transmission due to their technical and economic superiority over HVAC systems for long distance transmission. HVDC is preferable beyond 300–800 km for overhead point-to-point transmission projects and for the cable based interconnection or the grid integration of remote offshore wind farms beyond 50–100 km. Several HVDC review papers exist in literature but often focus on specific geographic locations or system components. In contrast, this paper presents a detailed, up-to-date, analysis and assessment of HVDC transmission systems on a global scale, targeting expert and general audience alike. The paper covers the following aspects: technical and economic comparison of HVAC and HVDC systems; investigation of international HVDC market size, conditions, geographic sparsity of the technology adoption, as well as the main suppliers landscape; and high-level comparisons and analysis of HVDC system components such as Voltage Source Converters (VSCs) and Line Commutated Converters (LCCs), etc. The presented analysis are supported by practical case studies from existing projects in an effort to reveal the complex technical and economic considerations, factors and rationale involved in the evaluation and selection of transmission system technology for a given project. The contemporary operational challenges such as the ownership of Multi-Terminal DC (MTDC) networks are also discussed. Subsequently, the required development factors, both technically and regulatory, for proper MTDC networks operation are highlighted, including a future outlook of different HVDC system components. Collectively, the role of HVDC transmission in achieving national renewable energy targets in light of the Paris agreement commitments is highlighted with relevant examples of potential HVDC corridors

    Economic Assessment of Fault Current Limitation and Power Flow Control Techniques in Subtransmission Networks

    Get PDF
    Tärkeintä nykyaikaisessa sähköverkossa on taata asiakkaille keskeytymätön ja korkealaatuinen sähkönjakelu. Nyky-yhteiskunnassa sähköllä on merkittävä rooli kulutushyödykkeenä ja sähkön jakeluongelmat voivat aiheuttaa taloudellisia tappioita mille talouden osa-alueelle tahansa ja millä maantieteellisellä alueella tahansa. Tässä diplomityössä luotettavuustutkimus suoritettiin kuvitteellisessa koeverkossa hyödyntämällä useita tekniikoita, joiden avulla kontrolloitiin vikavirtaa ja tehonhallintaa 110 kV silmukkaverkoissa. Lisäksi tässä tutkimuksessa testattiin perinteisiä sekä nykyaikaisempia vaihtoehtoja, joita sovellettiin tapauksiin, missä maakaapelit ja ilmajohdot on asennettu rinnakkaisiin piireihin toiminnan optimoimiseksi. Taloudellinen tarkastelu on tehty siitä näkökulmasta, että löydettäisiin kustannustehokkain ja luotettavin ratkaisu, jossa on otettu huomioon kuorman kasvuennuste 40 vuoden aikavälillä. Vikavirta-analyysi- sekä tehonhallinta simulointeja on toteutettu, jotta voitaisiin taata tehokkuus ja toiminnallinen toteutuskelpoisuus muuttuvissa olosuhteissa valittujen toimintatapojen ja teknisten ratkaisujen puitteissa. On syytä huomata, että simuloinnit ja luotettavuustarkastelu suoritettiin yksinkertaisessa neljän sähköaseman verkossa. Tätä yksinkertaistettua mallia voidaan kuitenkin ilman suuria muutoksia soveltaa kaikille 110-kV taajamien jakeluverkoille.Supplying uninterrupted and high quality electric power to the customer is a priority in the current power systems. Electricity, as a commodity, represents the motive force of modern society and its deprivation causes costly losses for essential parts of the economy in any region. This thesis performs a reliability study on a fictional test network, employing several techniques to control fault current and power flow in meshed 110-kV subtransmission systems. More specifically, this work tests traditional and recent alternatives applied to cases in which underground cables (UGC) and overhead lines (OHL) are installed in parallel circuits for optimized performance. Economic assessment is handled in order to provide the most inexpensive and reliable solutions, accrediting load growth prediction for a review time of 40 years. Moreover, fault analysis and power flow simulations are implemented to confirm efficacy and operational viability under contingency conditions of the chosen techniques and technologies. It is imperative to realize that the simulations and reliability studies were conducted in a simple 4-bar network. However, this simplified model can be adapted to any 110-kV urban subtransmission network without major alterations

    Active power control in a hybrid PV-storage power plant for frequency support

    Get PDF
    The recent increase of intermittent power generation plants connected to the electric power grids may stress the operation of power systems. So, grid codes started considering these power plants should con- tribute to the grid support functions. Recently, a power ramp rate limitation is being included in several grid codes, which is a challenge for photovoltaic installations due to the lack of inertia. This paper pre- sents a method to deal with the main grid code requirements considering a PV plant with an energy stor- age device, where a strict two-second time window ramp rate restriction is applied. A direct ramp rate control strategy is used, which includes a dynamic SOC control and battery support functionality for active power setpoint compliance. The control strategy is validated by simulations.Postprint (published version

    Feeder flow control and operation in large scale photovoltaic power plants and microgrids : Part I Feeder ow control in large scale photovoltaic power plants : Part II Multi-microgrids and optimal feeder ow operation of microgrids

    Get PDF
    This thesis deals with the integration of photovoltaic energy into the electrical grid. For this purpose, two main approaches can be identified: the interconnection of large scale photovoltaic power plants with the transmission network, and the interconnection of small and medium-scale photovoltaic installations with the distribution network. The first part of the thesis is focussed on the interconnection of large scale photovoltaic power plants. Large scale photovoltaic power plants are required to provide different ancillary services to the electrical networks. For this purpose, it is necessary to control the active and reactive power injected by photovoltaic power plants at the point of interconnection, i.e. to control the power flow through the main feeder. In this direction, it is developed a central controller capable of coordinating the different devices of the photovoltaic power plants as photovoltaic inverters, FACTS, capacitor banks and storage. The second part is focused on the distributed generation, consisting on small and medium-scale generation facilities connected to the distribution system. In this context, distribution grids, traditionally operated as passive systems, become active operated systems. In this part, the microgrid concept is analysed, which is one of the most promising solutions to manage, in a coordinated manner, the different distributed energy resources. Taking into account the possible transformation of the current distribution system to a multi-microgrid based system, the different architectures enabling microgrids interconnections are analysed. For the multi-microgrid operation, it could result interesting that a portion of their networks operate so that the power exchange is maintained constant, i.e. controlling the power flow at the main feeder. In this thesis, an optimal power flow problem formulation for managing the distributed generation of these feeder flow controlled microgrids is proposed

    Novel Controls of Photovoltaic (PV) Solar Farms

    Get PDF
    Solar Farms are absolutely idle in the night and even during daytime operate below capacity in early mornings and late afternoons. Thus, the entire expensive asset of solar farms remains highly unutilized. This thesis presents novel technologies for utilization of PV solar farm inverter in nighttime for providing multiple benefits to power systems, as well as accomplishing the same objectives during the daytime from the inverter capacity left after production of real power. The new technology transforms a solar farm inverter functionally into a dynamic reactive power compensator known as STATCOM, and termed PV-STATCOM. A novel coordinated control of PV-STATCOMs is proposed for loss reduction in a distribution network. The saved energy is substantial and can be used for powering several homes annually. The second novel PV-STATCOM control involves a temporary curtailment of real power production and utilization of the available reactive power capacity to prevent the instability of a critical induction motor load. The third novel PVSTATCOM control is employed to significantly enhance the power transfer limit of a long transmission line both in the nighttime and also during daytime even when the solar farm is producing a large amount of real power. A new technique for short circuit current management is developed for a conventional PV solar farm that can potentially solve the problem due to which several solar farms have been denied connectivity in Ontario. This thesis has contributed to two patent applications and presented first time implementations of another two filed patents. A generalized PV solar system model in EMTDC/PSCAD software has been developed and validated with manufacturer\u27s datasheet. Another contribution of this thesis is the first time harmonics impact study of the largest solar farm in Canada, in the distribution utility network of Bluewater Power, in Sarnia, Ontario. This thesis makes a strong case for relaxing the present grid codes to allow solar farms to exercise these novel controls. This technology can open up new avenues for solar farms to earn revenues apart from the sale of real power. This will require appropriate agreements between the regulators, network utilities, solar farm developers and inverter manufacturers

    Technical performance and stability analysis of eskom power network using 600kv, 800kv, and 1000kv hvdc.

    Get PDF
    Master of Medical Science in Electrical Engineering. University of KwaZulu-Natal, Durban 2016.In designing electric power networks or implementing major expansions to existing networks, a number of the key issues regarding the technical performance of the network at both transmission and distribution level must be ascertained, namely: voltage regulation, voltage fluctuations, electrical losses, transmission/distribution plant loading and utilization, fault level, generation stability, harmonics, phase balancing, supply availability and system security. System studies and analysis conducted from time to time to ascertain the operating state of a network, taking into account, load growth projections for the future. Undue stresses on the system or anticipated problems are determined from power flow analysis or during operation and maintenance. Using a modified Eskom network (KwaZulu-Natal sub-grid) as a case study, the technical and stability analysis for different high voltage direct current (HVDC) transmission voltages: 600kV, 800kV and 1000kV were carried out using DIgSILENT PowerFactory engineering software tool, as an alternative for bulk power transfer using high voltage alternating current (HVAC) link along the major corridors. Static analysis using PV and QV curves; dynamic analysis using RMS time domain and electromagnetic EMT analysis were carried out. Dynamic analyses were performed to determine the system fault levels and critical fault clearing time. Results obtained from this investigation show that 600kV and 800kV HVDC transmission systems have greater power capacity than equivalent HVAC line. HVDC delivery systems were observed to have lower electrical losses, better voltage profile, increase fault clearing time, enabling robust protection schemes to be installed. Voltage distortion due to harmonic content and imperfect current waveform in Cahosa-Bassa LCC-HVDC link were also investigated, and re-engineering with the use of VSC-HVDC technology has been proposed. This option provides reduced harmonic content, excellent sinusoidal waveform and minimal vulnerability to commutation failure. A financial and economic analysis of a 500kV HVAC double circuit and ±600kV HVDC transmission network were compared. HVDC system was proposed the most suitable scheme for bulk transmission of electric power over long distances due to high efficiency and better economics

    Offshore Wind Farm-Grid Integration: A Review on Infrastructure, Challenges, and Grid Solutions

    Get PDF
    Recently, the penetration of renewable energy sources (RESs) into electrical power systems is witnessing a large attention due to their inexhaustibility, environmental benefits, storage capabilities, lower maintenance and stronger economy, etc. Among these RESs, offshore wind power plants (OWPP) are ones of the most widespread power plants that have emerged with regard to being competitive with other energy technologies. However, the application of power electronic converters (PECs), offshore transmission lines and large substation transformers result in considerable power quality (PQ) issues in grid connected OWPP. Moreover, due to the installation of filters for each OWPP, some other challenges such as voltage and frequency stability arise. In this regard, various customs power devices along with integration control methodologies have been implemented to deal with stated issues. Furthermore, for a smooth and reliable operation of the system, each country established various grid codes. Although various mitigation schemes and related standards for OWPP are documented separately, a comprehensive review covering these aspects has not yet addressed in the literature. The objective of this study is to compare and relate prior as well as latest developments on PQ and stability challenges and their solutions. Low voltage ride through (LVRT) schemes and associated grid codes prevalent for the interconnection of OWPP based power grid have been deliberated. In addition, various PQ issues and mitigation options such as FACTS based filters, DFIG based adaptive and conventional control algorithms, ESS based methods and LVRT requirements have been summarized and compared. Finally, recommendations and future trends for PQ improvement are highlighted at the end

    An Update on Power Quality

    Get PDF
    Power quality is an important measure of fitness of electricity networks. With increasing renewable energy generations and usage of power electronics converters, it is important to investigate how these developments will have an impact to existing and future electricity networks. This book hence provides readers with an update of power quality issues in all sections of the network, namely, generation, transmission, distribution and end user, and discusses some practical solutions
    • …
    corecore