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Abstract: 

HVDC systems are playing an increasingly significant role in energy transmission due to their 

technical and economic superiority over HVAC systems for long distance transmission. HVDC is 

preferable beyond 300-800 km for overhead point-to-point transmission projects and for the cable 

based interconnection or the grid integration of remote offshore wind farms beyond 50-100 km. 

Several HVDC review papers exist in literature but often focus on specific geographic locations or 

system components. In contrast, this paper presents a detailed, up-to-date, analysis and assessment 

of HVDC transmission systems on a global scale, targeting expert and general audience alike. The 

paper covers the following aspects: technical and economic comparison of HVAC and HVDC systems; 

investigation of international HVDC market size, conditions, geographic sparsity of the technology 

adoption, as well as the main suppliers landscape; and high-level comparisons and analysis of HVDC 

system components such as Voltage Source Converters (VSCs) and Line Commutated Converters 

(LCCs), etc. The presented analysis are supported by practical case studies from existing projects in 

an effort to reveal the complex technical and economic considerations, factors and rationale involved 

in the evaluation and selection of transmission system technology for a given project. The 

contemporary operational challenges such as the ownership of Multi-Terminal DC (MTDC) networks 

are also discussed. Subsequently, the required development factors, both technically and regulatory, 

for proper MTDC networks operation are highlighted, including a future outlook of different HVDC 

system components. Collectively, the role of HVDC transmission in achieving national renewable 

energy targets in light of the Paris agreement commitments is highlighted with relevant examples of 

potential HVDC corridors. 
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CCC Capacitor Commutated Converters OLTC On-Load-Tap-Changer  

CAGR Combined Annual Growth Rate OH Overhead Transmission Line 

CSP Concentrated Solar Power PLL Phase-Locked-Loop 

C2L Conventional 2-Level VSC Converter PWM Pulse-Width-Modulation 

XLPE Cross-linked Polyethylene Cable RES Renewable Energy Source 

CSC Current Source Converters RCB Residual Circuit Breaker 

DCCB DC Circuit Breaker ROW Right-of-Way 

DER Distributed Energy Resource SC Short Circuit 

GEI Global Energy Interconnection Vision SCL Short-Circuit Level 

HB Half-Bridge MMC Submodule SCR Short-Circuit Ratio 

HVAC High Voltage Alternating Current PV Solar Photovoltaic 

HVDC High Voltage Direct Current STATCOM Static Synchronous Compensator 

IGBT Insulated-Gate Bipolar Transistor SVC Static VAR Compensator 

IGCT 
Integrated Gate-Commutated 

Thyristor 
SFCL 

Superconducting Fault Current 

Limiter 

LCC Line Commutated Converter TCSC Thyristor-Controlled-Series-Capacitor 

LCS Line Commutation Switch UHVDC Ultra High Voltage Direct Current 

MCB Main Circuit Breaker Branch UG Underground Transmission 

MI Mass-Impregnated Cable VSC Voltage Source Converter 

 

1. Introduction: 

To meet the growing energy demand, the global annual electricity generation is anticipated to 

surpass 38,000 TWh by 2040 compared to 24,000 TWh in 2016. The contribution of renewable 

energy sources is expected to approach 51% of the total generation mix by 2040 compared to 22% 

today [1]. This requires continuous network infrastructure development with large investments to 

maintain efficient energy generation, transmission and distribution. That is, many large-scale 

renewable energy power plants are located far from main demand centres, thus requiring efficient 

bulk energy transmission for very long distances [2, 3]. Similar efficient and cost-effective 

transmission criteria is required for offshore wind farms that have increased their market share 

recently, especially in Northern/Western Europe [4-6].  

In contrast, the interconnection of regional and national electricity markets is evolving globally 

for energy trading and increasing the security of supply level. For example, the EU has recently set a 

target for each country to achieve a level of interconnected capacity with neighbouring markets that 

is equivalent to 15% of its installed capacity by 2030 [7].  

1.1. HVDC Transmission Background 

Bulk energy transmission/interconnection is feasible using both HVAC and HVDC links. 

Historically, HVAC has been the main transmission technology benefiting from the early development 
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of AC transformers that allowed for high voltage AC transmission for longer distances and lower 

losses, thus settling  the Edison and Tesla “War of Currents” in Tesla’s favour. However, the 

consequent development of mercury arc valves and their widespread adoption by 1930s gradually 

paved the way for DC to re-enter the transmission market as they also allowed for energy to be 

transmitted at higher DC voltages.  

The first commercial HVDC link was built by ABB in Sweden by 1954 after years of 

experimentation. The Gotland 1 link spanned 98 km, carrying 20 MW at 100 kV [8-10]. The use of 

HVDC transmission evolved further with the development of thyristor valves in the 1960s, 

overcoming several drawbacks of their predecessors. The main advantages were reduced weight and 

space requirements for thyristors, with increased efficiency, power density and control flexibility. As 

a result, thyristor based links quickly dominated the HVDC landscape. Reference [8] presents an 

interesting review of the early HVDC market transition from mercury-arc to thyristor switching 

valves. 

 Further innovation led to the development of Insulated-Gate Bipolar Transistor (IGBT) valves in 

1980s [11, 12], which were introduced to the HVDC market by the late 1990s [13]. IGBT valves are 

technically advantageous compared to previous options, as they offer additional grid-support 

ancillary services (e.g. reactive-power support for connected AC networks and improved power 

quality control [14]).  

1.2. Technical HVAC vs. HVDC Assessment  

The use of HVDC transmission over long distances provides several technical advantages when 

compared to HVAC. DC transmission losses/costs are significantly lower than HVAC due to the 

absence of transmission line capacitive/reactive charging effects. This limits the main HVDC 

transmission losses to line-resistive losses, and omits the need for expensive, fast, AC line-reactive 

compensators [15]. DC transmission can thus be used efficiently for very long transmission distances 

that exceed 3,000 km as of 2018 [16], compared to 1,049 km for point-to-point HVAC [17, 18]. It also 

requires fewer cables/conductors and utilizes the full lines transmission capacity up to their thermal 

limits. This reduces the required cross-sectional area for DC cables and consequently the 

transmission cost [19]. Right-of-Way (ROW) space (i.e. the required horizontal ground clearance 

distance) for DC transmission is also considerably lower compared to the AC equivalent, for both 

overhead and underground bulk power transmission options [20].  
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Table 1: Technical comparison summary between HVAC and HVDC transmission. 

Transmission Type HVAC HVDC 

Cables/Lines  

Number of 

Conductors 

Higher (3-phase conductors, lower individual ratings, 

cumulatively more expensive)  
Lower 

Utilization 
Limited by skin-effect (although bundled conductors are 

used to limit it) 
Full up to thermal limits 

Losses 
Higher (mainly resistive and reactive, requiring 

expensive line-capacitance compensators) 

Lower (mainly resistive and corona 

losses) 

ROW Higher (could exceed x3 times of HVDC) [20] Lower 

Maximum Implemented 

2018 Distance  
Lower (1,049 km: Yuheng-Weifang link in China [17, 18]) 

Higher (3,324 km: Changji-Guquan 

link in China [16]) 

Meshed 

Grids  

Availability Widespread on a global scale 
Currently limited with significant 

predicted growth 

Protective 

Equipment 
Well-Developed UHV Circuit Breakers 

Extensive R&D effort to  develop 

HVDC Breakers and/or converters 

fault blocking capability 

Substations 

Cost Significantly Lower Higher (converter stations) 

Losses [21] 
Low transformer and HV equipment losses 

(0.3% in AC double circuit) 

Higher station losses 

(could exceed 1% for VSC)  

Economic Viability 
UG Cables < 50-100 km  

Overhead Line < 300-800 km 

Beyond HVAC limits  

(Point-to-Point Links) 

 

Having said that, the expensive rectifier and inverter stations for AC/DC and DC/AC conversion, 

which are not required in HVAC case, significantly add to the overall HVDC transmission cost. That 

is, DC transmission fixed cost (stations and equipment) is much higher compared to AC, whereas line 

costs and losses are highly skewed in the favour of DC. Thus establishing a breakeven distance for 

both technologies after which DC transmission becomes economically preferable.  

The HVDC breakeven distance estimations vary but typical ranges expand between ~300 km to 

~800 km for overhead lines and ~50 km to ~100 km for offshore/underground cable links [15, 19, 

21, 22]. This variability is related to individual project conditions (e.g. MW/kV rating, transmission 

terrain and local policies). Table 1 summarizes the main comparison points between HVAC and HVDC 

transmission, while a more detailed evaluation can be found in [21].  

Some applications necessitate the use of reliable HVDC stations as a sole option to link two 

asynchronous AC power systems in different countries [23] or within the same country, as in Japan 

(with both 50/60 Hz systems) and the United States (with asynchronous 60 Hz systems) [24-26]. 

Figure 1.a qualitatively summarizes the cost evolution of HVAC vs. HVDC converters with distance, 

indicating breakeven points, whereas Figure 1.b provides an example from ABB, comparing the costs 

of different transmission alternatives for a 6,000 MW/2,000 km link [20]. 
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Collectively, the commissioned; operational HVDC global capacity has well exceeded 200 GW as 

of 2017, and is expected to surpass 400 GW by 2022 based on announced projects pipeline [27]. 

Further growth is dependent on market demand and technology development. Figure 2 summarizes 

the expected cumulative HVDC capacity until 2022.  

1.2.1. Conversion of HVAC lines to DC Operation 

Due to the technical advantages of HVDC, a conversion of HVAC lines to DC operation might be 

justifiable (i.e. in terms of expensive HVDC converter stations installation) in cases when a 

transmission capacity expansion is required, benefiting also from the robust HVDC control schemes 

that improve the system dynamic response [28]. A transition to DC operation is mainly advantageous 

in terms of maximizing the conductors’ utilization, increasing the transmitted power capacity and 

decreasing the corona effect compared to AC [29-31]. However, techno-economic analyses are 

required to assess the different AC uprating techniques such as the use of series AC compensators, 

Flexible AC Transmission Systems (FACTS) or STATCOM devices against the option of converting to 

HVDC transmission. Early research works presented and discussed the HVAC to HVDC conversion 

idea, illustrating the magnitude of potential capacity increment up to 3.5 times by adjusting 

transmission voltage and conductors’ configuration [32]. Conversion to DC operation requires 

installing HVDC converter stations rated at the full capacity at both ends and may also require the 

adjustment of transmission tower heads and insulators to accommodate DC requirements. Several 

methods and case studies have been subsequently presented in literature with variable power 

capacity increment factors that are dependent on project/transmission configuration [28, 30, 31, 33-

35]. The authors of [34] presented a summary of 12 relevant works in literature, including case 

studies and evaluations of different technical and environmental effects on the conversion feasibility. 

On the other hand, a CIGRE working group developed a comprehensive guide on AC to DC line 

conversion including economic and technical constraints, while presenting various case studies such 

as the conversion of parallel 287 kV AC circuits in the United States to DC operation [28]. Another 

case study presented in [31] concluded the feasibility of converting a 380 kV double-circuit AC line 

to hybrid AC/DC operation (i.e. converting one circuit to DC operation), where the power capacity of 

the converted DC circuit is doubled with a permissible voltage increase by the conductors’ limits up 

to ±450 𝑘𝑉.  

 In terms of practical implementation, it has been reported recently that an AC line of the UltraNet 

project in Germany has been converted from 380 kV AC to DC, which significantly increased its power 

transmission capacity. Similar implementations are being studied for various projects where 

transmission capacity expansion is a requirement [36]. Similarly, AC asset conversion is taking place 
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in a pilot project “Angle-DC” in Wales by ScottishPower to convert a 33 kV AC line into ±27 kV 

Medium-Voltage DC operation with a similar goal of maximizing the line capacity in response to the 

surging electricity demand [37]. This introductory section serves to illustrate the potential and 

capabilities of DC transmission as a serious competitor to AC transmission in various applications. 

1.3. Contributions and Scope  

Several HVDC reviews have been published in literature, targeting different aspects of the 

technology adoption. A significant number of reviews focus on individual system components (e.g. 

converter stations, cables and protection equipment) [10, 38-40], while others provide detailed 

system-level comparison with other transmission alternatives (e.g. VSC and LCC based HVDC, or 

HVDC vs. HVAC) [21, 41, 42]. In addition, other reviews target implementation outlook and 

challenges for HVDC technologies within a geographic/policy based context [15, 43, 44].  

However, a comprehensive market study and technical review has not yet been fully addressed to 

the best of authors’ knowledge. In addition to an updated, detailed, step-by-step overview of HVDC 

technology and outlook on a global scale that combines both utility and academic experiences. This 

paper thus presents a high-level assessment of the available technologies, starting from individual 

components to system level analysis, while providing relevant and carefully selected case studies 

from different international markets. The paper also demonstrates the role of HVDC in achieving RES 

targets. Collectively, the present paper cites 248 works from literature, 75% of which were published 

during the past 5 years.  

The main contributions of this paper are summarized as below, where Figure 3 graphically 

presents the logical sequence followed in this work. 

a) Comprehensive review of HVDC systems drawn from real projects and authors critical assessment 

of existing literature based on their expertise.  

b) Highlights of contemporary technical and economic challenges of HVDC transmission systems. 

c) Comprehensive summary of market data, costs, and statistics for individual system components 

and overall structures. 

The rest of this paper is organized as follows: Main HVDC market trends in terms of global capacity 

distribution and technology supplier landscape are first discussed and analysed in Section 2, which 

gives important understanding of the market dynamics and global demand variation.  

Section 3 presents an overview of the main HVDC transmission system components and a detailed 

assessment of the state-of-the-art technologies, including a summary of system-level control 

algorithms. This section is concluded by technical and economic comparisons between different 

competing HVDC technologies with relevant case studies. 
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Section 4 summarizes the main contemporary system-level challenges to the HVDC transmission 

market, focusing on network operation and technology requirements. Section 5 then highlights the 

HVDC technology outlook and the required development areas to overcome existing technical and 

operational challenges, with a summary of literature and expert predictions for development limits 

by the end of next decade. The overall growth factors of HV interconnectors are also analysed in this 

section, driven by supportive cross-jurisdiction interconnection policies and the anticipated large-

scale distant onshore and offshore renewable energy expansion to meet the national renewable 

energy integration targets. Finally, the manuscript sections are summarized by concluding remarks.  

 

 
 

(a) (b) 

Figure 1: HVAC vs. HVDC cost comparison: (a) qualitative breakeven distance assessment. (b) cost and ROW 
estimation for a 6,000 MW transmission for 2,000 km [20]. 

 
Figure 2: Capacity evolution of HVDC interconnectors based on BNEF raw dataset [27]. 
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Figure 3: Summary of the topics covered by this paper and the contribution of HVDC interconnectors 

adoption in serving the global renewable energy expansion landscape. 

2. HVDC Market Overview 

This section presents a detailed review of HVDC transmission market status and trends in terms 

of capacity evolvement, geographic/demand distribution and leading system 

manufacturers/vendors. The following statistical analysis is mainly based on a raw dataset released 

by BNEF in February 2016. The analysis covers operational worldwide projects that are 

commissioned since 1965, and spans to cover pipeline projects until 2022 that were announced up 

until the dataset release [27]. This dataset underwent a filtration process excluding decommissioned, 

abandoned projects, in addition to adjusting some inconsistent entries by the authors and adding a 

number of projects that were missing using other literature and manufacturers sources, which are 

cited where needed. The  reviewed dataset consists of 252 considered projects that are either 

commissioned, announced or permitted/under construction. Several subsets of the available data are 

considered hereafter in this paper based on data type availability (e.g. 170 of the 252 projects had 

data relevant to suppliers/manufacturers). The use of any subset in this paper is clearly mentioned 

in order to provide the reader with a reference sample number to the illustrated comparisons. The 

numbers presented are thus indicative of global trends but do not provide an absolute measure due 

to the described subsets utilization. 
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2.1. HVDC Geographical Landscape  

As Figure 2 illustrates, the total expected HVDC transmission capacity operational by 2022 

surpasses 400 GW. More than half of this capacity (~52%) is internal in Asia (i.e. both sending and 

receiving ends are located in Asia). This market domination is mainly influenced by China and then 

India as key market players. Many HVDC projects in that area are constructed to transmit bulk energy 

from distant generation sites/renewable energy sources to major load centres over very long 

distances due to the vast geographic sparsity of these countries. Several recent projects in China are 

highly rated at 6,400 MW/±800 kV [2, 13, 27, 45], with some links already exceeding 10,000 MW [16, 

46]. This development has pushed the limits of available technologies and encouraged manufacturers 

to invest in higher-rating equipment and testing facilities. For instance, main HVDC suppliers (ABB & 

Siemens) have recently announced their new 1,100 kV single-phase transformer units for Ultra HVDC 

(UHVDC) applications [47, 48].  

Based on [27] dataset analysis, it is estimated that the average capacity for internal Asian projects 

is around 4,000 MW, which is significantly ahead of other regions (e.g. 1,600 MW for Central & South 

America, compared to 1,500 MW for North America and around 1,100 MW in Europe). The evolving 

Chinese dominance in particular over the global HVDC capacity is evident in Figure 4, which 

illustrates the main markets share between 2010-2017. Similar trends are persistent over longer 

periods; though graphical illustration is presented for this period in particular due to its contribution 

to the rapid HVDC expansion presented by Figure 2, especially in China [2] .  

The largest number of recorded projects lays in Europe. Yet the internal European projects 

capacity accounts for 22% of global HVDC projects compared to the Asian capacity dominance 

illustrated earlier due to the demand distribution and geographical variations. That is, constructing 

expensive UHVDC links with very high transmission capacities is only justified when there is a 

matching demand in importing areas. In this context, the moderate average capacity of European 

HVDC links compared to that of China is reasonable, considering the absence of the need case for very 

high power transfer or very long distance links. Instead, cross-borders point-to-point HVDC links 

with 1-2 GW capacity are common in Europe as part of EU incentives and initiatives to increase the 

interconnection of markets and security of supply [15, 39]. 

 In fact, several HVDC links are supported both financially and regulatory by the EU under the 

“Projects of Common Interest” pillar with several defined priority energy corridors such as the 

“Priority Corridor Northern Seas Offshore Grid” and “Priority Corridor Baltic Energy Market 

Interconnection Plan”. These plans, including both onshore and offshore projects, serve the EU target 

of achieving its energy interconnection capacity target of 15% (relative to the member states 
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installed capacity) by 2030 [7, 49, 50], while supporting broader utilization of available, sparse, 

renewable energy sources. Some European countries have already exceeded this target by 2014. 

Namely, Austria (29%) and Belgium (17%) [7]. This European trend for interconnection of electricity 

markets is intended to help facilitate  proposed plans to reduce  nuclear and thermal based 

generation and to replace it with renewable energy, mainly offshore wind and PV [15].  

A correlation can also be observed between the discussed geographic capacity rating distribution 

and the transmission DC voltage as higher power is transmitted more efficiently at higher voltages 

[21]. Asia has the highest average transmission voltage as many of its established HVDC links since 

2010 are rated at ±800 kV, and lately up to ±1,100 kV using overhead transmission lines. Brazil has 

also recently inaugurated its first ±800 kV HVDC system for +2,000 km point-to-point power 

transmission at Belo Monte [51]. On the other hand, the maximum DC transmission voltage at any 

other location is currently limited to ±600 kV due to the moderate power rating and distance of the 

implemented projects. Figure 5 summarizes the average and maximum HVDC transmission voltages 

at different continents, and compares these numbers to the average power rating per area.  

Finally, Figure 6 shows a world map summarizing most of the existing and some planned HVDC 

links based on data from the European Joint Research Centre released in 2017 [52]. Some planned 

projects are missing from the map (e.g. the Biscay Gulf interconnector between Spain and France 

[53]), yet it reflects the generic landscape of HVDC transmission geographic distribution. 

 

 

Figure 4: HVDC global capacity distribution between 2010 and 2017, based on [27] raw dataset. 
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Figure 5: Global Distribution of HVDC Transmission Voltage with (average power per area), based on [27] 
raw dataset and [51] . 

 

 
Figure 6: Global HVDC capacity distribution overview as of 2017 [52]. 

2.2. Main HVDC Converter Suppliers 

The first commercial HVDC link was commissioned by ABB more than 60 years ago using Line 

Commutated Converter (LCC) technology [13]. After more than 60 years, the HVDC converters 

market is still dominated by three suppliers: ABB, Siemens and Alstom Grid whose energy business 

was recently acquired by General Electric (GE) in 2015. The following statistics are based on a subset 

of 170/252 projects from the BNEF dataset with available suppliers’ data [27]. Missing project data 

is not concentrated in a single geographic location which ensures the presented conclusions give a 

valid indicative representation of global trends, if not a definitive  absolute measure. This analysis 

aims to identify main HVDC market contributors and the distribution of their activities in terms of 

geography and technology adoption to provide the reader with a technical context of the global HVDC 

scene.  
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 Figure 7 presents the main suppliers-based statistics, where the term ABB/Siemens or GE Lead 

indicates the existence of multiple suppliers in a project. That is to say, classifying a project as ABB, 

Siemens or GE lead does not mean that the other two or even other suppliers are not present in this 

particular project, rather, the classification aims to simplify the suppliers’ landscape analysis as 

allowed by the available data.  

Being a mature technology used for decades and more suitable for overhead high-power 

transmissions [8, 54], the number of LCC based projects is significantly higher than their VSC 

counterparts. Although the latter provides more technical advantages. Further technical discussion 

on converters technology is presented in Section 3. Figure 7(b) summarizes the technology based 

suppliers’ comparison, based on the same available BNEF data from 170 projects, where N/G 

indicates missing technology information.  

  

(a) (b) 
Figure 7: Global HVDC technology suppliers landscape based on: (a) geographic distribution, (b) converter 

stations technology. Data: [27] based on 170/252 HVDC projects sample. 

3. HVDC Technology Assessment 

This section provides detailed assessment of the available HVDC transmission technologies by 

first introducing typical HVDC system structure, followed by a specific review of each component 

within the system. Namely, the section covers converter stations, converter transformers, 

transmission options as well as a summary of control schemes and protection equipment. Relevant 

case studies discussing the design alternatives from two real HVDC projects are also presented. It is 

important to note that the equipment footprint, distribution and proportions vary significantly with 

rating/technology. Thus, a generic HVDC structure overview is presented in Figure 8, while briefly 

summarizing main system components with their available technologies and status.  
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Figure 8: Generic HVDC transmission project layout with component-based description. DCCBs are not 

typically implemented in point-to-point links, and are displayed to illustrate their principal of operation. 

 

3.1. Converter Stations 

The backbone of any HVDC project is the converter station as it converts AC voltage to adequate 

DC transmission voltage level (AC/DC converter) at one end, and converts the DC voltage back to 

adequate AC grid interfacing voltage level (DC/AC converter) at the other end. The notion of sending 

and receiving end are often used interchangeably depending on the power flow direction [55]. Two 

main converter types are being used in HVDC links: Line Commutated Converters (LCCs) and Voltage 

Source Converters (VSCs). Both are discussed below in terms of technology overview, required 

auxiliary equipment (i.e. filters and reactive compensators), available ratings and their economical, 

technical viability. 

3.1.1. Line-Commutated Converters 

LCC converters, as the name implies, are operated based on the AC transmission line parameters. 

Their switching frequency matches the line frequency (50-60 Hz). Gate control signals are used to 

direct their operating (i.e. rectifier/inverter) mode based on thyristor firing angles (ideally: 0 − 90° 

for rectifier and 90 − 180° for inverter mode), as well as for power quality regulation [56, 57].  

As a result, LCCs lack AC faults ride through capability and have no inherent black-start capability. 

That is, they cannot be used to restart a blacked-out AC systems connected to their terminals since 
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thyristor operation is dependent on line frequency voltages which will not exist in case of a black-

out. To overcome this  limitation, the first HVDC link in Gotland used auxiliary synchronous 

condensers powered separately to restore the HVDC converter operation in case of an AC fault, which 

in turn could participate in restoring AC system operation [58], adding to the system cost and 

complexity. Different research works have evaluated the technical requirements and possible control 

techniques for successful participation of LCC stations in AC systems black-start [59, 60].  

3.1.1.1. Technical LCC Assessment 

Conventional LCC stations utilized 6-pulse thyristor bridges shown in Figure 9(a). The converter 

operation depends on the thyristor firing sequence to produce a unipolar DC voltage and current 

outputs. The 6-pulse cyclic DC output is smoothed by the DC reactor connected at the DC output side, 

with the aid of additional DC filters to ensure power quality requirements are met. The smoothing 

reactor is rated for full converter current (increasing its size) and is used additionally to mitigate 

abrupt current variations, prevent commutation failure (CF) and maintain DC current continuity 

during light loading conditions [61]. The term CF refers to the failure of DC current to commutate 

from the outgoing thyristor to the incoming thyristor when the AC voltage distortions in the host AC 

grid affect the firing sequence of the converter valves. CF leads to simultaneous conduction of more 

than two thyristors and sudden drop in the DC voltage or even creation of DC short circuit across the 

link. 

In contrast, Figure 9(b) shows a high-level block diagram of the more common 12-pulse LCC 

converters, consisting of two series connected 6-pulse units fed separately by Y-Y and Y-Δ 

transformers to create a required 30° phase-shift for commutation [56]. Advantages of 12-pulse 

converters include their enhanced reliability, reduced harmonic currents in AC and DC sides and 

filtering requirements. Typical power loss in each LCC station are ranging from 0.6% to 0.8% [15, 21, 

54]. Detailed discussion and derivations of LCC operation principle is found in [56, 57, 61]. 

LCCs are classified as Current Source Converters (CSC) as they permit DC current flow in one 

direction. Power-flow-reversal thus necessitates reversing the DC voltage polarity at both converter 

stations (i.e. shifting between inverter/rectifier modes). This process creates significant DC stress 

levels on transmission and station equipment that could damage some cable types as discussed later. 

Yet, this occasionally does not pose a major limitation since power-flow reversal is often not required 

as in case of HVDC transmission from distant generators to load centres.  
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Figure 9: Typical Line-Commutated Converters Topology: (a) 6-Pulse bridge converter, (b) 12-Pulse 
bridge converter. 

 

That is, high-Power LCC transmission often links generation areas with higher inertia and short-

circuit level to receiving load centres that could be substantially weaker due to their lack of rotating 

machines [46, 62]. Connecting receiving LCC stations to weak AC networks can cause significant 

problems (e.g. commutation failure). A network short-circuit ratio (SCR) is widely used in power 

systems to characterize the strength of AC grids. This parameter is traditionally defined as the ratio 

between a network’s three-phase short circuit fault level (SCL) at the point-of-common-coupling 

(PCC) to the rated DC power of the HVDC [63, 64]. IEEE standard 1204-1997 classified an AC grid as 

weak if its SCR < 3, and very weak when SCR < 2 [65]. Other recent works investigated various limits 

and definitions of the SCR and other assessment parameters to accommodate emerging multi-

terminal and multi-fed HVDC systems [63, 66].  

Another major disadvantage of LCC converters is their inherent consumption of around 50% to 

60% of their operational MW as reactive power. This is due to the inherent delay of their current 

waveforms with respect to commutation voltage. Necessitating the operation of additional, 

expensive, reactive AC compensation equipment [56, 67, 68]. 
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Overall, LCC projects still dominate the HVDC market as indicated by Figure 7(b). The technology 

is well established despite the abovementioned design challenges. Combinations of LCC converter 

stations currently provide the highest available ratings and power transfer capabilities in HVDC 

market, recently achieving 12,000 MW/±1100 kV in China with the Changji-Guquan link [16, 47]. 

Different LCC design variations have also been proposed over time to mitigate the described 

limitations, including Capacitor Commutated Converters (CCCs). This type of converter is briefly 

discussed in the following subsection. 

3.1.1.2. Capacitor Commutated Converters 

LCC stations connected to weak AC grids are more prone to commutation failures that can lead to 

significant power loss. Thus, the CCC configuration has been proposed and successfully implemented 

by installing series capacitor modules between converter transformers and the inverter thyristor 

valves. This modification reduces the effective stations reactive power consumption seen by the AC 

side (down to 10-15% [69]) and consequently increases the power factor, reduces reactive AC shunt 

requirements and mitigates the chance of commutation failures [70]. The Brazil-Argentina Back-to-

Back HVDC interconnector with a total capacity of 2,200 MW is the main example. ABB used this 

technology to compensate for reactive power and avoid building an additional synchronous 

compensator [71]. Though, large-scale implementation of CCC requires complex control to balance 

capacitor voltages and achieve stable operation. Practically, CCCs are implemented in a limited 

number of projects, because conventional CCC schemes are challenging in terms of: i) demonstrating 

undesired transient response after unbalanced faults. ii) requiring additional arresters to limit their 

charge in case of abnormal operation; and iii) increasing the voltage stress on the thyristor valves, 

which can reach up to 2 or 3 p.u. [70, 72, 73]. Finally, researchers are actively attempting to address 

these challenges by proposing different dynamically controlled-capacitors using active modules (e.g. 

the Thyristor-Controlled-Series-Capacitor, TCSC) to replace the conventional fixed capacitors with 

promising potential [70, 72, 74]. 

3.1.2. Voltage-Source Converters 

The first implementation of VSC converters technology in HVDC transmission was in 1997, using 

IGBT valves for the 3-MW Hällsjön-Grängesberg test link in Sweden by ABB [13]. Since then, VSC 

technology has improved significantly and proven itself as a key market competitor that has been 

gradually replacing LCC options especially in offshore applications and power transmission projects 

with ratings of less than 2,000 MW (highest operational VSC rating). A recent study published by 

BNEF reported that the share of VSC technology from the total number of new projects could 

approach 65% by next decade [75].  
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3.1.2.1. Technical VSC Assessment  

The shift towards VSC technology is expected to continue due to its technical superiority and 

gradual ratings development. VSCs are self-commutated, operable in 4-quadrants, and do not depend 

on line voltages, rather, they rely on external control voltage signals for commutation [41, 76]. Power-

flow reversal in VSC stations is based on reversing the DC current direction while its voltage polarity 

remains constant , which is much faster and reliable compared to LCC [77]. These features are 

advantageous in terms of establishing the VSC ability to: 

- Utilize advanced switching techniques (e.g. Pulse-Width-Modulation (PWM) [78]), allowing for 

switching frequencies in the lower KHz range [79, 80]. This significantly reduces the harmonic 

filters sizing requirements by moving the main distortion frequency component away from the 

baseband (50-60 Hz) and leads to a significant reduction in reactive equipment and footprint costs 

compared to LCC.  

- Ride through symmetrical and asymmetrical AC network faults and offer post-fault black-start to 

the host AC networks, which allows the converter to initiate the restoration of rated AC network 

voltage in a post-black out scenario. Several VSC black-start implementation setups and relevant 

control techniques are discussed in [58, 81, 82].  

- Independently control active and reactive power consumption/generation. This makes it possible 

to support the AC grid power quality (i.e. converter stations can even act as independent 

STATCOMs during DC transmission line outages, or can provide reactive power support while 

transmitting active DC power)) [14, 76].  

The basic structure of VSC stations (two-level arrangement) is shown in Figure 10. Different 

configurations of the two-level arrangement are employed in existing links. For instance, 

conventional two-level (C2L) converters that utilize series/parallel strings of IGBT valves in a similar 

configuration to thyristor-based 6-pulse converters [13]. Modified topologies have later emerged and 

are widely adopted in recent projects. For instance, Siemens has launched its HVDC Plus scheme 

which utilizes VSC based Modular Multilevel Converters (MMC) as its core technology [83, 84]. The 

NEMO interconnector, commissioned in early 2019, also uses HVDC Plus converters (with MMC). 

3.1.2.2. Modular Multilevel Converters 

The technical operating principle of MMC technology relies on replacing switching series 

semiconductor strings with equivalent IGBT/capacitors submodules (SMs) that provide enhanced 

operation quality with a high scalability/flexibility factor, in addition to increasing the converter 

station fault tolerant operation. The basic arrangement of Half-Bridge (HB) MMC is also illustrated in 

Figure 10 which highlights the main differences as compared to C2L-VSCs. An increase in the number 
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of SMs permits the MMC to generate sinusoidal AC voltages with practically negligible harmonics, 

thus reducing or even eliminating the need for AC and DC filtering (when very large number of levels 

is used) [85]. 

MMCs also decrease the submodules voltage/current stress, while reducing switching losses and 

filtering requirements compared to other VSC topologies by effectively distributing the main bulky 

DC link capacitors into smaller units embedded to the submodules, (see Figure 10) [41]. Qualitatively, 

the advantages of MMC-VSC can be summarized as: 1) modularity and scalability. 2) high-efficiency. 

3) superior harmonics performance with increased number of SMs per arm [42]. Some existing and 

operational MMC-HVDC projects are: Trans Bay Cable (400 MW/±200 kV, USA, 2010) and INELFE 

(2x1000 MW/±320 kV, France-Spain, 2015) [86].  

It is expected for MMCs to dominate the VSC-HVDC landscape as the technology advances further. 

At present, MMCs are the preferred industry choice for VSC-HVDC with stations power rating of up 

to 1,000 MW [87]. A published report on HVDC economics highlights that the economic case for 

MMCs is currently better when compared to conventional VSC converters in several cases [88]. 

However, the reliability of MMC based systems is still an active research area due to the large number 

of components involved [89]. Accordingly, extensive research efforts are underway to increase MMC 

efficiency and reliability through innovative topologies and control algorithms that use different 

modular cell structure (e.g. Half vs. Full Bridge) [87, 90-92]. The implementation of MMCs in several 

VSC-MTDC network configurations is also preferable due to their potential fault-blocking capabilities 

[78, 93]. In fact, several Multi-Terminal MMC-VSC projects are either commissioned or under-

construction in China as illustrated in Table 2, with the largest being the Zhangbei four-terminal DC 

grid (4,500 MW/±500 kV) that aims to meet the expected higher demand during Beijing 2022 Winter 

Olympic Games [94].  

Table 2: List of some existing and planned Multi-Terminal MMC-VSC Projects in China 

System Name Terminals Rated Power (MW) Rated MTDC Voltage (kV) Status 

Nan’ao [95, 96] 3 200/100/50 ±160 
Commissioned 

(2013) 

Zhoushan [97] 5 400/300/100/100/100 ±200 
Commissioned 

(2014) 

Zhangbei [94, 98] 4 3,000/3,000/1,500/1,500 ±500 
Under 

Construction 

  The possible use of Integrated Gate-Commutated Thyristor (IGCT) valves in future MMC 

implementations also has a significant potential due to their higher ratings and reliability.  The 

lifecycle cost of IGCT compared to IGBT for HVDC applications is estimated to be less in [99], which 

also presents an interesting comparison between the two switching devices for MMC. 
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Currently, VSC-HVDC station losses vary based on the adopted topology, with a typical magnitude 

of 1% per station (varies depending on the topology and switching frequency, and estimated to be 

less by some recent sources [54]). Notably, it is predicted that new MMC station losses could 

approach LCC losses range by 2020. It is also important to note that different variations to the 

discussed topologies exist and could be utilized on an application specific basis.  

 

Figure 10: Basic structure of VSC converter station, showing generic two-level topology and the advanced 

Modular Multilevel Converter (MMC) with Half-Bridge cell modules. 

3.1.3. LCC vs. VSC Comparison 

After reviewing the main features of HVDC converter technologies, the LCC and VSC options are 

compared in terms of their main technical and economic parameters. Although the current market 

share of VSC considerably lags the LCC technology, the expected trend is for VSC share to increase 

further as the technology advances and allows for higher ratings at reasonable cost that justifies its 

added technical capabilities [80]. NEMO interconnector is an example, where initial project planning 

in 2008 considered using LCC technology since VSC alternatives were not tested for higher power 
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ratings, such as 1,000 MW. Yet the consequent VSC development shifted the adopted technology to 

MMC-VSC [100].  

Further, VSC technology is more suitable for DC grids implementation based on its constant DC 

voltage behaviour and control advantages [78, 101, 102]. Unlike the current-source based LCCs that 

have limited applicability in multi-terminal DC (MTDC) grids because reversing power flow direction 

at any connected station would require reversing the voltage polarity for all the other connected DC 

stations [40]. The role of LCC technology in MTDC implementation is thus mainly restricted to hybrid 

applications that aim to facilitate the integration of large LCC assets into VSC based DC grids [103, 

104]. In contrast, conventional VSC stations also have smaller physical footprint compared to a 

similarly rated LCC station by 40-50% [75].  

The present moderate implementation limit of 2,000 MW for VSC based project is mainly justified 

by the stations significant cost increase beyond this point compared to the well-established LCC 

technology as illustrated by Figure 11, which is based on a UK transmission dataset from 2015 [105]. 

This cost dataset source is selected as it is classified in [106, 107] to provide the least deviation from 

real costs when used for HVDC cost modelling.  It is important to note that converter stations cost is 

variable and project dependent, yet the presented sample data accurately reflects the described 

trend. The sharp cost increment of VSC stations is explained by the moderate maximum available 

IGBT voltage/current ratings. Data from recent ABB releases [108] show that their high voltage IGBT 

modules rating ranges from 1,700 V to 6,500 V. The highest current withstanding capability is 

attributed to the 4,500 V IGBT modules, justifying their common use in HVDC. In contrast, thyristors 

are readily available at higher ratings: (1,600 V to 8,500 V per module with currents between 350 A 

and 6,100 A) [108]. 

For ease of illustration, assume a hypothetical converter rated for 400 kV DC link voltage and 800 

MW rated DC power, which can be realized by two-level VSC or LCC. With typical commercially 

available semiconductor devices such as 4.5 kV/3 kA IGBT and 8 kV/4 kA thyristors, and device 

voltage utilization of 60% for increased reliability and account for potential system over-voltages 

[109]. Based on the selected parameters, it is estimated that the number of required IGBTs is 894 

compared to 504 thyristors only. Further, the number of switches is effectively doubled if current 

flow requirements are increased beyond a single-module capability. Thus, different combinations 

result in different device count and unit cost, and these are indicative parameters for the overall 

station cost. In the case of MMC converters, the increased number of balancing capacitors may also 

escalate the overall station cost.  
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In contrast, the technical feasibility of accommodating 8,000 MW DC power at a single point of an 

AC grid through LCC-HVDC is challenging for many existing power grids in the world, including 

Europe (e.g., for SCR = 2, the required three-phase short-circuit level at the PCC will be 16,000 MVA). 

Whereas futuristic VSC-HVDC links of such rating are more capable of connecting to weak networks. 

Finally, Table 3 summarizes the main comparison points between both LCC and VSC technologies in 

HVDC applications.  

3.1.3.1. Hybrid LCC-VSC HVDC Systems 

Several recent research works are investigating a hybrid LCC & VSC operation in HVDC links. The 

main objective of such schemes is to utilize the advantages of both converter technologies. For 

instance, connecting LCC station at the bulk generation site to make use of its reduced cost and high 

capacity, while connecting a single or multiple VSC station at the receiving side to exploit the reduced 

footprint of VSC stations and to utilize their ability to support weak grids and overcome potential 

commutation failure [110-112]. In such hybrid systems, bidirectional power flow is not typically 

needed, and LCC terminals mostly operate in rectifier mode while VSC terminals operate as inverters. 

Yet, the use of intermediate DC-DC transformers between VSC and LCC stations through hybrid 

configurations such as the Active-Forced-Commutated Bridge is investigated in [113] to sustain 

effective bidirectional power flow in hybrid HVDC links when the LCC voltage polarity is reversed, 

with the capability of stations voltage matching.  

Other hybrid VSC and LCC connections within the same converter station are discussed in 

literature. The authors of  [114] analysed four hybrid configurations in terms of their combined 

power rating and PQ capability enhancement as compared to conventional LCC stations. Hybrid 

multi-infeed systems are also investigated in [115], where parallel, independent, VSC and LCC DC 

lines are connected to the same AC bus to improve its voltage stability. 

At present, a number of hybrid LCC-VSC HVDC links are reported by [115] to be in the planning 

phase in China. Namely, the hybrid Baihetan-Jiangsu 8,000 MW link in China, which is characterized 

by a conventional LCC station at one end, and a hybrid LCC-VSC station at the other end. The 3-

terminals Wudongde-Yunnan HVDC link is another interesting hybrid link being considered for 

practical implementation, utilizing an 8000 MW LCC station at the sending end to benefit from the 

high LCC capacity and lower scaled cost, while using VSC stations of lower rating at the receiving 

areas with 5000 MW and 3000 MW, respectively [110, 115, 116].  

 



22 
 

Table 3: Comparison between HVDC transmission technology options 

HVDC Converter Types LCC VSC 

Switching Device 
Mercury Arc (1950s – 1970s) 

IGBT (1990s – Present) 
Thyristor (1970s – Present) 

Commutation (Frequency Range) Line Dependent (50-60 Hz) Self-Commutated (up to few kHz)  

Station Power Loss [15, 54, 117] 0.6%-0.8%   ~ 1%  

Power-Flow Reversal Mechanism 
Voltage Polarity Reversal (slow, causes 

more current stress) 

Current Direction Reversal (Fast, adds 

more reliability) 

Network Strength Dependency 
Dependent (expensive added 

equipment in weak grids) [58] 
Largely Independent 

Converter Station Footprint Larger  Smaller (40-50%) [75] 

Inherent VAR Consumption 50-60% of rated MW  
None, and can support reactive power 

to AC grid 

Reactive/Filtering Equipment Requirements High (Expensive) Low 

Inherent VAR control and Grid Support No Yes 

Inherent AC Grid Black-Start Capability No Yes 

Fault Handling 

Capability 

AC Side Lower (Line-Frequency Dependent) Higher (MVAR Support/Black Start) 

DC Side Higher (DC Reactor/SC failure) Lower (High di/dt rate) 

AC & DC Side Harmonics Level Higher Lower 

Market Share (# of 

Projects) [27] 

(1954-2018) 81% 19% 

(2010-2018) 70% 30% 

Available Rating 

Combinations* 

Max 12,000 MW/ ±1,100 KV  
2,000 MW [118]/ ±500 kV [15] 

 (525 kV [119]*)  

Average 2,000 MW/ ±400 kV  580 MW/ ±220 kV  

Common Applications High-Power, Long Distance Offshore/Cable-based Projects 

Multi-Terminal HVDC Suitability  Limited  Highly Suitable  

Stations Cost (at High Ratings) Lower Higher 

*Current maximum VSC voltage is ±500 kV at Skagerrak 4 project [15], which will be taken over by NordLink in 2020 with ±525 KV 

[119]. 

 
Figure 11: LCC and VSC stations cost evolution with rating based on actual data from [105]. 
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3.1.4. Evaluation of HVDC Transmission Configurations 

Both LCC and VSC links can be connected using different network configurations. The DC network 

topology or configuration selection is mainly influenced by the required level of reliability, rating, 

cost-effectiveness and complying with local policies and regulations [120]. Commonly used 

topologies of HVDC transmission systems are DC mono-pole and DC bi-pole, while DC tri-poles are 

rarely implemented and are mostly based on design variations of the other common configurations 

[121]. In contrast, Back-to-Back (B2B) connections are primarily used to link unsynchronized 

neighbouring AC networks. One such example is Al-Fadhili project, commissioned in 2009 to link 

Saudi Arabia system to its neighbouring markets (Kuwait, Qatar and Bahrain) with a total capacity of 

1,800 MW [122].  

Another subset of the BNEF dataset [27] consisting of 160/252 projects with available 

configuration data reveals that 33% of them are configured in a B2B fashion. Signifying the important 

role of this configuration in networks interconnection. Most of these B2B links are connected using 

LCC converters (94% of the considered projects within the subset) compared to limited number of 

VSC links since LCC stations have less power loss. Yet, several research works discuss different 

efficient VSC B2B configurations and control techniques mainly based on MMC topologies [23, 123]. 

3.1.4.1. Monopolar Configurations 

Power transfer between the two converter stations in this configuration utilizes a single DC pole 

rated for full high-voltage DC capacity. The return circuit can be a  low voltage return path 

(asymmetrical monopole), which may be realized using  an earth electrode at each station, or a low-

voltage metallic return link [124]. Earth electrodes require special design considerations to 

accommodate the fully rated DC current (in kA), and are typically placed away from the converter 

stations and connected using electrode lines [125, 126]. This option is cost effective and avoids the 

use of return cable/conductor extending over the whole link distance. Yet, several existing 

regulations/policies restrict the use of earth electrodes in many HVDC projects due to their negative 

environmental impacts, especially in case of buried cables underground or subsea: potentially 

causing corrosion to nearby pipes and affecting sea creatures in the latter case [126]. When used, the 

metallic return link is rated for full current, but with significantly less voltage insulation 

requirements compared to the HV line as it’s placed in the low voltage path. Figure 12(a) illustrates 

both conventional HVDC monopole connection options, which are applicable to both LCC and VSC 

projects, but more commonly used with LCC.   

Another  monopole configuration that equally shares the full rated HV  between two positive and 

negative links connecting both stations is known as symmetrical monopole (e.g. ±320 kV lines rather 
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than single 640 kV line to ground) [124]. The direct advantage in symmetrical monopole systems is 

decreasing the rating of the links, which is especially important when underground/subsea cables 

are used due to their currently available moderate voltage ratings compared to the overhead (OH) 

lines. Figure 12(b) illustrates the symmetrical monopole configuration, where midpoint grounds are 

defined at both converter stations. This configuration is common for offshore VSC applications. On 

the other hand, it is rarely implemented in case of LCC, with the NorNed link as an exception, where 

each station has a single 12-pulse converter configured to produce opposite transmission polarities 

[127].  

The main disadvantage of the discussed monopole configurations remains in that there is no 

inherent redundancy in the design, meaning that when there is a fault in one of the lines or 

converters, then the full transmission capacity is lost [128].  

3.1.4.2. Bipolar Configurations 

This configuration is the most widely used in HVDC transmission as it commonly provides 

increased reliability. Figure 12(c) illustrates a high-level block diagram of bipolar configuration 

alternatives, where each station contains two converters grounded at midpoint. These converters 

produce equal and opposite HV outputs, creating a normal energy flow path at the outer loop with 

negligible flow in the neutral/earth connection. The mid-point emergency return path can be 

designed using either earth electrodes or metallic return link, similar to the monopole case. 

The main advantage of common bipolar configurations is the increased reliability, which is 

analogous to a double-circuit AC transmission line. That is, a fault on any single transmission 

line/cable or converter pole causes only that link to independently shut down. In this scenario, 

provided that the fault does not affect the other pole assets, the neutral link is used as a low voltage 

return path allowing for continued operation up to 50% of the total HVDC power capacity [21, 67]. 

The inherent voltage reduction discussed for symmetrical monopoles is also a key parameter for 

bipolar links to increase their power transfer capability.  

On the other hand, the rigid bipolar configuration is sometimes used for long distance 

transmission. In this configuration, no return electrode (for environmental compliance) or return 

conductor (for economic consideration) are used. Indicating a 100% power loss in case of a single 

cable fault, or a 50% power loss in case of single-pole converter fault with proper current re-routing 

[129]. 

Collectively, 53% of considered dataset projects utilize bipolar links (79% without Back-to-Back 

projects). Figure 13 summarizes the share of each HVDC configuration in the HVDC market based on 

a 160 project subset from the BNEF data [27]. 
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(a) 

 
(b) 

 
(C)  

Figure 12: Common HVDC transmission configurations: (a) Monopole with both metallic and earth electrode 
return options. (b) symmetrical monopole. (c) Bipole with both return options. (two return options are 

presented in (a) and (c) for illustration, actual implementations use only one). 

 
Figure 13: Market share of the main HVDC configurations, including and excluding Back-to-Back links, based 

on data from 160 projects [27]. 
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3.2. Converter Transformers 

Design requirements for HVDC converter transformers are different from that of AC power 

transformers. HVDC Converter transformers are needed to match the AC grid voltage to the converter 

AC voltage which is largely linked to the rated DC link voltage. Transformers also isolate the 

converters from the connected AC networks. They contribute to reducing the short-circuit current as 

their coils limit the fault-current rate of change. The leakage reactance of converter transformers is 

generally higher than that of AC power transformers. A leakage reactance of 0.1 p.u. is attractive 

economically and limits the reactive power losses which affect the converter P-Q capability, but fault 

considerations necessitate a modest increase, ranging practically from 0.15 p.u. to 0.18 p.u. [61, 130, 

131]. 

Compared to conventional transmission transformers, a converter transformer is designed to 

withstand DC and AC stresses; thus, increasing its insulation requirements and size. The DC stress is 

significantly more in LCC than the VSC case, although some conventional VSC design alternatives also 

exhibit high levels of DC stress [13]. 

Transformers in 12-pulse LCC converters are connected in Y-Y, Y-Δ configuration (Figure 9b) in 

order to mitigate the system generated low order harmonics, especially the 5th and 7th components, 

and suppress their propagation to the AC network  [130].  

Converter transformers in both VSC and LCC stations typically utilize automatic On-Load-Tap-

Changers (OLTCs) to regulate grid and converter voltages within allowable tolerance limits [132, 

133]. OLTCs are operated to maintain constant DC side voltages by correspondingly fixing the 

converter interfacing AC voltage to mitigate commutation failures [62, 134]. 

In terms of physical transformer connections and used types in HVDC transmission, then the main 

connection configurations for converter transformers are: i) single-phase, three-winding. ii) three-

phase, three-winding. iii) single-phase, two-winding. iv) three-phase, two-winding. A major selection 

criterion for the transformer type is its rating as it directly affects the size and ease of transportation. 

Highly rated transformers for high power applications are physically enormous, making it 

impractical to transport them to site. Instead, option (iii) is more commonly used in HVDC 

applications as it is easier to transport, where transformers are connected in three-phase 

arrangements at the station, while maintaining adequate phase-balancing. This makes it easier to add 

spare transformers on site at a reasonable cost for increased system reliability [13, 135].  

The practicality of this option is evident at Ultra-HVDC ratings, where up to 24 single-phase 

transformers are needed per station (two 12-pulse LCC converters are connected in series per pole 

to withstand the ratings, with each requiring six single-phase, two-winding units). Additional 4 
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transformers are typically added as spare parts in similar cases [61]. Figure 14 compares options (ii) 

and (iii) for a 6-pulse station for illustration, while presenting the scaled size of a UHVDC 800-kV 

transformer from ABB for context [13]. As discussed earlier, the current maximum available 

converter transformers unit rating is 1,100 kV from ABB & Siemens. 
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Figure 14: Comparison between common converter transformer installation options (single-phase vs. three-
phase units). 

3.3. Transmission Assets 

HVDC transmission types are classified into overhead (OH) conductors and underground 

(UG)/subsea cables. The use of a specific type per project is dependent on the HVDC link terrain, and 

influenced by adopted policies and regulations.  

3.3.1. HVDC Conductors/Cables Overview 

Overhead HVDC transmission is well-established at very high ratings for long distances with 

several commissioned and operational ±800 kV links, especially in China and India. The first ±800 

kV/6,400 MW link was built in 2010, linking the Chinese Xiangjiaba-Shanghai regions at a distance 

exceeding 1,900 km.  

On the other hand, cable-based HVDC links are mainly used for offshore markets interconnection 

and wind-farms grid integration. Cable based transmission is typically adopted at considerably 

shorter distances compared to OH conductors in HVDC projects as the breakeven distance described 
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by Figure 1(a) is much shorter for DC cables due to the excessive required reactive compensation 

with AC cables [136]. Having said that, the maximum ratings achievable by cable-based HVDC links 

so far are currently limited to 2,200 MW/600 kV (Western HVDC Link) between Scotland and North 

Wales, utilizing LCC technology with Mass-Impregnated (MI) cables [137-139]. The longest cable-

based project to date is NorNed at 580 km. This record is set to be broken by the upcoming Nord Link 

(623 km in 2020), Viking Link (770 km in 2020) and NSN Link (730 km in 2021) projects, all linking 

Northern European countries through submarine cables [140, 141]. 

 Although converter technology and ratings are essentially the same for both OH and cable 

transmission options, there is a clear gap between the maximum available ratings for the two options 

as illustrated by Figure 15 [142]. It should be noted that the use of UG cables is sometimes adopted 

over cheaper OH alternatives to comply with local regulations or public concern about the visual 

impact of OH lines especially when increasing the link power capability is not an essential design 

parameter. One example is the SydVästlänken (South-West) link between Norway and Sweden, rated 

at 1,200 MW and consisting mainly of UG cable sections to minimize its environmental impact on the 

surrounding areas [143]. Cables are also not exposed to transient faults induced by lightning or 

ambient environment condition as compared to OH lines, thus providing more operational reliability 

[144].   

 

Figure 15: Qualitative summary of the limited power transfer capacity of DC cables. 

Another subset of 134/252 projects with transmission distance breakdown from BNEF data is 

used to analyse the level of adoption of each transmission method. [27]. These projects are classified 

into OH, UG and Subsea. A project is classified in this work into one of these categories if it dominates 

the overall link distance by more than 70%. Otherwise, the transmission project is categorized as 

mixed. For instance, it is found that 96% of the covered projects in Asia (mainly China and India) are 

dominated by OH conductors, which is justified by the transmission terrain and the required long 

transmission distance.  

Figure 16(a) summarizes the global classification of the considered subset of projects based on 

transmission type, where mixed projects worldwide typically consist of more UG component 

compared to OH. Figure 16(b) also summarizes the average project length, voltage and power ratings 

for each HVDC transmission technology type based on the same data subset.  
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Two main types of HVDC cables are used in market: i) Mass-Impregnated (MI) and ii) Extruded 

Cables (XLPE). These two types are compared in the next subsection as they are suitable for different 

technologies with different development paces.   

 

  

(a) (b) 

Figure 16: HVDC market share of different transmission types: (a) technology adoption distribution. (b) 
Average ratings/length per type. Raw data source: [27]. 

3.3.2. HVDC Cables Comparison 

Mass-Impregnated (MI) cables were used in HVDC transmission systems as far back as the 1st 

commercial HVDC project in Gotland, Sweden in 1954 at 100 kV [13]. Their insulation system is based 

on lapped paper tapes that are impregnated with a viscous, oily, compound [38, 145]. This cable 

technology is well-proven and operationally compatible with both VSC and LCC converters which 

means it continues to be used in many submarine HVDC projects up to the highest available rating in 

the Western HVDC  link [137].  

However, another competitive technology has been receiving a major research focus to provide 

more sustainable and flexible alternative to the existing MI cables technology. Extruded DC cables 

technology was first applied in HVDC transmission systems in 1999, notably, at the same location of 

its MI competitor in Gotland, Sweden at 80 kV rating [13, 146, 147]. The insulation material in 

extruded HVDC cables is based on cross-linked polyethylene (XLPE), hence they are typically referred 

to as XLPE cables [38]. Their main advantages compared to MI cables are: i) Low weight and design 

flexibility, leading to easier transport and site installation. ii) More mechanical robustness. iii) Faster 

manufacturing process. iv) Environmentally friendly with no oil leaks and use of recyclable materials 

[16]. A more comprehensive technical comparison between the different HVDC cables technologies 

is found in [38].  
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XLPE cables are used primarily in VSC-HVDC links, as they are prone to failure due to the excessive 

DC stress from the power flow reversal when used in LCC-HVDC links. Despite this, a few exceptions 

exist where cables are designed with high DC breakdown strength to accommodate voltage polarity 

reversal, as in the Japanese Hokkaido-Honshu HVDC link [146, 148]. The development in XLPE cables 

market share is thus dependent on the increasing VSC market share. Figure 17(a) summarizes the MI 

and XLPE DC Cables market development overtime based on EuropaCable data [149]. It is expected 

that XLPE cables will soon have a dominant share of the HVDC market. Figure 17(b) compares the 

cost of MI and XLPE cables at similar ratings (without installation cost), and indicates a reasonable 

gap (by 2015) that may be justified economically in some cases based on the easier XLPE cables 

installation [105]. 

Currently, the maximum implemented and operational rating of a project using XLPE cables is 

2,000 MW/±320 kV at the INELFE link (2x1,000 MW parallel links) [27, 118, 150]. The NEMO 

Interconnector, commissioned in 2019, operates at ±400 kV in a symmetrical monopole 

configuration, utilizing XLPE submarine cables manufactured by JPS Japan [151]. Further advances 

are expected with next generation 525 kV XLPE cables already announced by ABB [39], and 640 kV 

cable prototypes recently tested and announced by NKT [147]. Other notable DC cable manufacturers 

with ongoing progress are Nexans, Prysmian, Furukawa and LS Cables. Table 4 summarizes the 

comparison points between MI and XLPE cables for HVDC applications. 

On the other hand, superconducting cables are theorized as a potential competitor in HVDC 

transmission as their technology provides significant advantages compared to existing options in 

terms of reduced size and losses. They also provide increased power transmission capacity that could 

match OH options in efficiency. However, the technology is still very expensive for long-distance 

implementation with limited availability and requires extensive additional research and validation 

[152, 153]. 

Table 4: Comparison between XLPE and MI DC cables technology. 

Cable Type Mass Impregnated (MI) Extruded (XLPE) 

Insulation Type Paper insulated/Oil filled  Polymer (cross-lined polyethylene) 

First Use for HVDC 1954  1999  

HVDC Applications LCC & VSC 
Mainly VSC 

(limited suitability for LCC due to voltage reversal)* 

Mechanical Weight/Installation Higher/Harder Lower/Easier 

Maximum Rating 

 (Project-Based) 

2,200 MW/±600 kV  

(Western Link) [137] 

2,000 MW/±320 kV**  

(INELFE) [118] 

Longest Distance 580 km (NorNed) [127] 400 km (NordBalt) [147] 

* Special types of XLPE cables are rarely used in LCC projects (e.g. the ±250 kV Hokkaido-Honshu link in Japan) [146, 148]. 

** NEMO Interconnector commissioned in 2019 uses 400 kV XLPE cables manufactured by JPS of Japan [151]. ABB has also recently 
manufactured 525 kV XLPE cables that should be soon in service [39]. 
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(a) (b) 

Figure 17: XLPE and MI cables comparison: (a) DC cables length up to 2020 [149]. (b) average costs 
comparison of ~400 kV cables at different ratings, excluding installation which is easier/cheaper for XLPE 

cables [105]. 

3.4. HVDC Controllers 

The reliability and complexity of HVDC power flow control systems vary based on the technology 

used (LCC or VSC) and the connected AC network conditions (strong or weak), in addition to the DC 

network topology (point-to-point or multi-terminal). This section briefly summarizes the main 

adopted techniques in controlling HVDC stations, including special considerations for weak AC grids. 

A detailed control review is out of the scope of this work. Relevant detailed references are provided 

where needed in the following subsections.  

3.4.1. Control of LCC-HVDC Transmission  

Typical control structures in LCC-HVDC transmission assign different tasks for each station in 

point-to-point links. The specific control architecture varies depending on the operating conditions 

(e.g. AC networks strength). The thyristors firing angle is the only controller output that could be 

manipulated at both ends to control the DC power and voltage. A converter station that operates in 

rectifier mode (sending-end)  typically regulates the DC link current or power, whereas the converter 

station that operates in inverter mode (receiving-end) tends to regulate the DC link voltage directly 

or indirectly by controlling the thyristors’ extinction angle within a narrow range in an effort to 

minimize reactive power consumption and risk of CF [46, 56]. The described control configuration is 

recommended when LCCs are connected to weak AC grids. A combination of PI controllers and Phase-

Locked-Loops (PLLs) are typically used to achieve the reference set-points of the controlled variables 

while the OLTC of converter transformers can also participate in the voltage control action [154, 

155]. In contrast, the inverter DC current control mode is normally invoked during AC and DC short 

833 917

2225
2958

50

250
1025

3075

567

467

1367

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1980's 1990's 2000's 2010's

C
ab

le
s 

A
d

d
it

io
n

 P
e

r 
D

e
ca

d
e

 (
km

)

MI Submarine MI Land XLPE Submarine XLPE Land

A total of ~1150 km MI 
Submarine cables were 

laid before 1980 5
8

%

0.45

0.55

0.65

0.75

0.85

0.95

1.05

1.15

1.25

400 800 1,200 1,600 2,000

$
m

/k
m

Rating (MW)

MI Avg XLPE Avg

Voltage Ratings:
MI (400-500 kV)
XLPE (320-400 kV)



32 
 

circuit faults [46]. That is, switching between different control operating modes should be 

permissible by the control architecture.  

 Operating LCC-HVDC in weak AC grids requires special measures to mitigate the risk of 

commutation failure. For example, FACTS devices such SVC and STATCOM have been employed in a 

number of links to improve system stability and facilitate the control operation. Examples include 

the Baltic Cable link between Germany and Sweden, the IFA Cross-Channel link between the UK and 

France, and the  Western link project within the UK [46, 139]. Finally, more detailed insights of LCC-

HVDC control structures can be accessed from [46, 57, 62, 64]. 

3.4.2. Control of VSC-HVDC Transmission   

VSC-HVDC systems are superior in terms of providing independent control of active and reactive 

powers, and their suitability for integration into weak AC grids. Vector control is the most used and 

straightforward method to manipulate the two control variables, i.e., magnitude and phase angle of 

the fundamental voltage generated by a VSC at its AC terminals by controlling the IGBTs gating 

signals. This is done to achieve the desired system level set-points [46]. Unlike LCCs, power flow 

direction does not dictate the converter station control mode and terms rectifier and inverter do not 

have physical influence apart from convention in some parts of the literature. However, the control 

objectives of both stations must be consistent from the point of view of power balance. As an example, 

in a point-to-point VSC-HVDC link, one of the converter stations must define a strict DC voltage level 

to facilitate correct operation and the other converter station must define the basis in which the real 

power is to be dispatched. With both stations having additional control degrees of freedom that could 

be used to control reactive power or AC voltage. Besides vector control, there are other methods in 

literature to control VSC-HVDC systems [156, 157]. 

Unlike LCC-HVDC, the use of self-commutated switching devices that can switch several times per 

fundamental period enables techniques such as pulse width modulation (PWM) to be employed with 

VSC-HVDC system. This permits the system to be seen conceptually as a true current controlled 

voltage source, capable of injecting limited and controlled active and reactive currents during 

symmetrical and asymmetrical AC faults to support AC networks. However, ensuring stable 

operation of VSCs in weak AC grids requires advanced PLLs or alternative control implementations 

such as the power synchronization method, etc., [46, 158-160]. It is worth underscoring that for the 

MMC type VSC-HVDC links, more controllers for managing internal dynamics will be required, but 

such aspects are beyond the scope of this paper.  

Philosophically, the control of VSC-based Multi-Terminal HVDC networks could be seen as 

simple extension of point-to-point HVDC link, and it is an evolving topic that continues to attract 
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research attention. Master-slave, DC voltage margins and many types of linear and nonlinear droop 

controls are just a few examples of methods proposed for ensuring satisfactory operation of multi-

terminal HVDC networks during normal and abnormal conditions [161-163].  

3.5. HVDC Networks Protection 

LCC and VSC based HVDC transmission require different protection systems that vary between 

point-to-point and multi-terminal HVDC links. For instance, the inherent LCC characteristic of 

unidirectional DC current with highly inductive DC link greatly restrains the rate-of-rise of DC fault 

current. In addition, the use of switching devices with bipolar voltage blocking capability is 

advantageous in terms of increasing the system immunity to DC fault current. Several fault-detection 

techniques for point-to-point LCC converters are presented in literature, discussing fault isolation 

algorithms and limiting potential thyristor commutation failures following a fault condition [164-

166]. 

On the other hand, the bidirectional DC current of VSCs, and its adoption of switching devices with 

unidirectional voltage capability, in addition to increased DC fault level due to the large transient 

fault current from the energy intensive DC-Link capacitors discharge, exacerbate the vulnerability of 

VSC to DC faults [167].  That is, the DC side in VSC-HVDC is prone to abrupt and very high rates of 

fault current rise. This fact influences the transmission type selection as the majority of existing VSC 

projects either use Back-to-Back configuration or cables transmission since overhead lines are 

exposed to more short-term DC faults (e.g. due to lightning) [168]. The use of DC superconducting 

fault-current limiters (SFCL) within VSC-HVDC transmission is suggested in the literature to mitigate 

this issue [169-172]. HVDC protection is thus dependent on a combination of circuit breakers and 

converters fault blocking operation. The development status and main trends in HVDC protection are 

discussed here. 

3.5.1. AC Circuit Breakers in HVDC Transmission 

AC Circuit Breaker (ACCB) technology is well-developed and available at very-high ratings using 

gas-insulated switchgears to accommodate different needs, up to 1,100 kV - 1,200 kV [173]. The 

operation of ACCB depends on fault-current interruption at the natural cyclic zero-crossing point of 

the AC current (Figure 8), typical response time is 2-3 cycles (i.e. 40-60 ms in a 50-Hz network) [168, 

174]. A tripping time of this magnitude is acceptable in most AC networks as the fault current rate of 

change is limited by the inherent inductance of the AC transmission lines, but poses serious 

challenges for multi-terminal HVDC networks.  

AC breakers are widely used in point-to-point HVDC protection due to their low cost and reliability 

[175, 176]. Different control algorithm and fault-handling techniques are used to coordinate their 



34 
 

operation with other protective equipment (e.g. in MMC implementation) [177]. Protective device 

coordination is used in VSC stations to limit the contribution of the AC network to DC fault level by 

opening AC breakers, since inverse-parallel diodes connected to IGBT modules conduct during fault 

[178]. In contrast, utilizing AC side breakers for blocking DC faults typically results in a complete 

shutdown of the fault-side converter station until normal connection conditions are restored. This 

leads to a temporary loss of the ancillary AC grid support services that could be provided by VSC-

HVDC stations (i.e. voltage support) [178, 179].  

 

3.5.2. DC Circuit Breakers 

Failing to rapidly isolate a DC faulty line in MTDC networks can lead to a fast fault propagation 

through the healthy network assets, causing unnecessary tripping and outages. The rate of DC fault 

current increase in VSC-HVDC is particularly rapid due to the low DC network impedance and the 

lack of inherent current limiting reactance as in LCC-HVDC [180, 181]. DC breakers thus have an 

average tripping time requirement of 3-ms to 10-ms [44, 182]. This requirement is summarized by 

Figure 18a, whereas Figure 18b illustrates a DC grid fault scenario. The DCCBs connected to the faulty 

line should trip fast enough to prevent fault propagation.  

 

(a) 

 

 (b) 

Figure 18: (a) Qualitative description of the rapid  fault current increase rate in DC networks and the resulting 
fast DCCB tripping requirements. (b) Illustrative DC grid fault scenario 

There are a limited number of operational, small-scale, VSC-MTDC networks already implemented 

as real-life case studies to test different protection scenarios. The main example is the Zhoushan DC 

grid in China, consisting of 5 interconnected VSC stations at ±200 kV [44]. Different protection 

scenarios including the use of DCCB technology for this DC grid are discussed in [97, 183]. Several 
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manufacturers are actively testing DCCB prototypes and recent sources indicate successful 

implementation of 200 kV hybrid DC breakers [44, 184], with potential technology development up 

to 500 kV. The fault blocking capability of new converter station technologies (i.e. MMC based VSC) 

can also play significant, cost-effective role in DC networks protection in coordination with DCCB 

devices [78, 93]. The development of reliable high voltage DC circuit breakers (DCCB) has been the 

subject of extensive R&D activities to overcome existing protection limitations. That is, one of the 

main prospects of MTDC network protection today suggests the use of non-fault blocking converters 

such as half-bridge MMC plus fast acting DCCB and selective protection strategies to isolate the 

faulted line. 

 The DCCB technology solutions used by ABB and Alstom are discussed and compared in [185], 

while highly-rated GEIRI breakers are introduced in [44]. The hybrid technology used by different 

manufacturers is based on a combination of solid-state semiconductor electronic devices (thyristors 

and IGBT) and fast mechanical switches/disconnections. The basic structure of hybrid DCCB systems 

is similar, consisting of: i) low-losses normal flow branch. ii) main circuit breaker branch (MCB). iii) 

Absorption branch utilizing surge-arrestors. DC breaker designs should consider bi-directional fault-

current blocking capability in VSC systems to accommodate current reversal when changing power-

flow direction [186]. Figure 19 summarizes the operational sequence of ABBs [187] hybrid DCCB 

design [187].  

Different hybrid DCCB design variations have also been proposed in literature (e.g. replacing the 

current-limiting inductor with a superconducting fault current limiter (SFCL) [184]). Further, less-

commonly adopted, DCCB operation techniques are discussed in [186].  

Due to the breaker control complexity and the large number of required semiconductor switches, 

the DCCB cost is significantly higher than ACCBs [179]. Further research and development efforts are 

required to increase the available DCCB ratings at a reasonable cost to ignite the reliable adoption of 

MTDC networks. Finally, the current status and requirements for DCCB development are summarized 

by Table 5. 
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Figure 19: Operating principle of ABB DC Circuit Breaker. 

Table 5: DCCB progress summary and development status. 

Parameter Status 

Main Application Multi-Terminal VSC Based DC Networks (MTDC) 

Common Technology Hybrid Breakers (Mechanical Disconnectors & Solid State Devices) 

Available Prototype 

Ratings [44]* 

Supplier ABB Alstom GEIRI 

Voltage (kV) 80 130 200 

Trip Time (ms) 5 5.5 3 

* The given data is based on publically available documentation and announcements. Newer prototypes with higher ratings up to 200-
500 kV may also be under development by lead technology manufacturers.  
 

3.6. HVDC Technologies – Case Studies 

Understanding the capabilities and key differences between transmission technology alternatives 

is essential for system designers to make proper selections while efficiently meeting the transmission 

capacity and system criteria. The following case studies for two transmission projects discuss the 

technologies used and the rationale behind their selection, in light of the previously presented 

comparisons between HVDC and HVAC and between the HVDC technology alternatives, to provide 

the reader with practical context from real-life projects.  

3.6.1. Case Study 1: INELFE France-Spain HVDC Interconnector (VSC) 

Interconexión Eléctrica Francia-España (INELFE) is an HVDC interconnector that was 

commissioned in 2015 between France and Spain [38, 39, 188]. This France-Spain link is rated at 

2,000 MW/±320 kV (consisting of two parallel 1,000 MW lines) and extends over 64.5 km between 

Baixas town in France and Santa Llogaia in Spain.  
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HVAC vs. HVDC: At a distance of 64.5 km, overhead AC transmission would have been a more 

economic option. However, the increasing social opposition for constructing overhead transmission 

lines in Europe and the consequent debates limited the transmission options for INELFE to 

underground cables. HVDC thus became the more reasonable techno-economic solution as 64.5 km 

falls within the HVAC vs. HVDC breakeven distance range [118].   

Converter Stations (LCC vs. VSC): A preliminary study was conducted to determine the most 

suitable technology for the link. Automatic control of reactive power exchange was a design 

requirement as some power contingency incidents were recorded near the border area. Thus, the 

new link was required to be capable of supplying up to 30% of its MW rating as reactive power to the 

connected areas [118, 189]. Moreover, the connected AC grids had a low short-circuit ratio, which 

made it more challenging to select LCC. As a result, VSC technology was adopted due to its 

independent real/reactive power flow, grid support capabilities and fast power-flow reversal by 

changing current direction, which is preferable in bidirectional, cross-border, energy trading links 

[189].  

VSC Technology Selection: From the available VSC options, Half-Bridge based MMC technology 

was selected due to its positive effect on dynamic performance and AC harmonics elimination. The 

number of modular levels was set to 401 [190, 191]. This way, Siemens was able to effectively 

generate pure sinusoidal voltages at the converters AC interfacing points, effectively eliminating 

harmonics. The selected connection configuration was symmetrical monopole, in order to use DC 

cables at half the pole-to-pole voltage and maximize the transmitted power. Two parallel 

symmetrical monopoles were constructed (2x1000 MW) to accommodate the design power flow 

requirement with moderate available VSC power/voltage ratings, and to increase redundancy (i.e. in 

case one link is temporarily lost, the other would operate normally at 1,000 MW/±320 kV, in a similar 

fashion to bipolar configurations) [118].  

Transmission Cables: The use of XLPE cables from Prysmian was possible due to the adoption of 

VSC technology for the project. At the project awarding time in 2010, the maximum available XLPE 

cables rating was ±320 kV. The use of such cables in INELFE was the first in any HVDC project, with 

a power rating of 500 MW for each HV cable [39, 188].  

Collectively, it can be observed from this case study how the technology selection and the number 

of converters/cables can sometimes be adapted to the available technology limits while maintaining 

the high-level requirements in terms of power transfer and grid support. Finally, the budget for 

constructing the INELFE France-Spain link was estimated at 700 million euros  [188].  
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3.6.2. Case Study 2: Western HVDC Link in UK (LCC) 

The Western HVDC link was constructed to expand the transmission capacity between Scotland 

and England/Wales. The link was required to achieve a rating of 2,200 MW at a total estimated budget 

of 1 billion Pounds Sterling. The link voltage rating was set to ±600 kV, spanning over ~420 km, 

including 385 km submarine cable sections [139, 192]. The project was initially planned to be 

commissioned by 2015. Consequent delays led to a partial inauguration of 900 MW transmission 

capacity in 2017, with the full capacity planned to come into operation by the end of 2018 [192, 193].  

HVAC vs. HVDC: Both transmission options were initially considered for the planned Western link. 

However, overhead and onshore cable options were discarded based on potential land disruption, 

high visual impacts and the excessive planning/consents time. Clearly, an offshore connection of 

~400 km is well beyond the HVAC vs. HVDC breakeven distance and thus HVDC was selected [139]. 

Converter Stations (LCC vs. VSC): Although VSC technology provides far more technical 

advantages when compared to LCC as described throughout this work, the initial project proposals 

between 2009 and 2012 concluded that LCC is more suitable for the Western link. The fairly strong 

networks with high SCRs at both sending and receiving ends contributed to this decision, in contrast 

to the INELFE interconnector case [139]. Furthermore, the planned high-voltage transmission at 

±600 kV was more suitable with LCC stations given their track record at higher voltages, although 

additional reactive-power support equipment (e.g. SVC) and large, switched, harmonic filters were 

required. A preliminary cost-based comparison between VSC and LCC for the project is presented in 

[193], attributing more cost uncertainty to VSC although it was within a comparable range to that 

reported for LCC. However, the financing report concluded that LCC was the only technology at the 

time to be commercially available for the requested capacity. Rigid Bipolar configuration with 12-

pulse converters was adopted for the link, with no emergency current return path to avoid additional 

long conductor cost, and to comply with environmental requirements in case of the earth electrode 

return path option  [129, 154].  

Transmission Cables: Given the adoption of LCC, Mass Impregnated cables were used to connect 

both stations due to their availability at higher ratings up to 600 kV, unlike XLPE technology that was 

commercially limited to 320 kV at the time. Furthermore, the risk of excessive DC stress and breakage 

of XLPE cables with LCC under voltage polarity and power-flow reversal conditions rendered the 

option incompatible as this link required bi-direction flow capability.   



39 
 

3.6.3. Case Studies Comparison 

Comparing both studied links, one can notice the similarity in their power ratings (2 GW and 2.2 

GW), in addition to the similar projects announcement timeframe (early 2010s). However, each was 

implemented using different station and cable technologies. While the available XLPE cables rating 

was limited to ±320 kV at the beginning of this decade, INELFE utilized symmetrical monopoles with 

double VSC stations to accommodate required 2 GW power transfer through the link using VSC/XLPE 

combination.  

One can argue that a similar technique could have been used at the Western UK link with VSC 

stations and XLPE cables, which would have facilitated a more convenient integration of the link 

assets to any planned Multi-Terminal DC network in future. [193]Though, it was eventually deemed 

more appropriate by network planners to resort to the well-developed LCC technology, considering 

the strong network conditions at both transmission ends. Although future nuclear shutdowns at the 

Scottish end may negatively affect the network strength, leading to further investment in 

synchronous compensators. The presented analysis demonstrate the role that the risk factor plays in 

technology selection, especially for projects rated at the VSC-LCC technology boundary limits. Which 

require deeper feasibility investigation to evaluate the available options on technical, economic and 

operational basis.  

Finally, in terms of reliability, both projects have been operational for only a short time and thus 

benchmarking their failure history is improper. Having said that, both links mainly utilize 

underground/subsea cables for transmission, and it is noted by analysing data from CIGRE reliability 

reports [194, 195] that cable-based projects have an average forced annual unavailability time due 

to outages and failures of around 3.52%. Though, the adoption of rigid bipolar configuration in 

Western HVDC link is likely to decrease its reliability further when compared to the double 

symmetrical monopoles in INELFE project because the power transfer of a rigid bipolar link is totally 

lost in case of a permanent single cable fault.  

4. HVDC Transmission Challenges 

This section briefly summarizes the main challenges for the HVDC system components discussed 

earlier, and then discusses more comprehensively some system-level implementation and 

operational challenges. A relevant case study to these challenges is then presented. 

4.1. Component Level Challenges 

The previous section introduced a comprehensive component-level assessment for the state-of-

the-art of different HVDC system components, including some of their limitations. For instance, 

technical boundaries of LCC converters when compared to VSC are evident in terms of their excessive 
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reactive power consumption requirement, in addition to their lack of inherent grid support 

capability, which is especially important in weak AC grids. Hybrid HVDC systems and the use of 

peripheral devices, mostly controlled by VSC based power electronics, is introduced in literature and 

implemented by various projects to overcome such limitations. LCC stations are also ill-suited to 

MTDC networks mainly due to the requirement of reversing their DC terminal voltage for each 

power-flow reversal. 

In contrast, the main presented challenges for VSC are relevant to the technology development 

pace in terms of the current moderately available ratings and higher costs of VSC stations when 

compared to LCC. In addition to the lack of high-voltage DCCBs, which technically limits the 

implementation of VSC based MTDC grids.  

The main challenges related to transmission assets can be classified as technical and legislative. 

Cable ratings are commercially limited to 600 kV in today’s market. While overhead transmission, 

although cheaper and available at higher ratings, is more prone to short-term faults and is facing 

increasing opposition from the public in densely populated areas due to its visual and environmental 

impacts.  

4.2. System Level Challenges  

High-level system challenges are mainly related to the operation of HVDC networks from 

regulatory and economic points of view, in addition to addressing the feasibility question of investing 

in such high-voltage transmission projects compared to other alternatives.  

4.2.1. DC Networks Technical Standardization  

This point is becoming increasingly important as reliable MTDC implementation has not only 

become a question of technology readiness, rather, a regulatory one as well. For instance, the 

anticipated high demand on MTDC networks makes it important to develop compatible DC grid codes 

and standards, because point-to-point links with different voltage levels (e.g. ±150 kV and ±320 kV) 

are already implemented and could be interconnected as part of future planning. Thus requiring the 

use of DC-DC transformers to integrate such systems operating at different voltage levels into a single 

interconnected DC grid. Some ideas and converter designs with interesting fault-blocking capabilities 

are already emerging in literature [78, 196]. More importantly, International institutes such as IEEE 

and CIGRE are establishing the process of developing the required standards [197, 198]. Although 

these are non-binding standards, they serve as an incentive to Transmission System Operators 

(TSOs) and regulatory bodies to take similar steps. Common standards also facilitate the 

interoperability of multi-vendor converters (i.e. compatibility between different converter 

topologies supplied by different manufacturers, which is critically important to maintain market 
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competition). Finally, different aspects of HVDC grid code requirements, implementation suggestions 

and a summary of relevant social/political challenges are presented in [15]. 

4.2.2. DC Networks (SuperGrid) Operation 

The “SuperGrid” concept aims to interconnect different AC electricity networks. Such schemes 

increase the security of supply of the individual interconnected networks and facilitate the 

interfacing of large-scale renewable energy sources directly to the DC networks [199].  

However, the emergence of DC grids requires extensive planning and coordination between 

different network operators, especially when they are operated across different countries. That is, 

questions of cost-benefit optimization and network ownership would arise in such a scenario, in 

addition to the willingness of neighbouring markets to participate in setting new energy policies and 

to change their investment plans. For instance, it is estimated that investments of up to 600 billion 

euros may be required for an interregional European grid infrastructure. Whereas large French 

investments in nuclear power are recently reported, boosting its share of the local energy mix to 

~75%. As a result, heavy investments in alternative energy pathways in the short term from all 

concerned bodies or governments is questionable [15]. 

Having said that, it is important to address that the process of constructing a cross-border DC grid 

is incremental. That is, small-scale multi-terminal HVDC networks can be constructed by a single TSO 

or small-clusters of TSOs. Examples of that are the North-East Agra network in India (Although 

currently operated using LCC technology) [199, 200] and the North Sea offshore interconnection in 

Europe [15]. The development into larger DC grids can eventually be performed through expanding 

the existing point-to-point or multi-terminal networks in a gradual manner. In this case, the 

participation of a large group of TSOs requires setting clear rules for network operation and 

ownership to govern the energy flow between different parties [199, 201]. 

4.2.2.1. High-Level DC Grid Control Topologies  

Several coordination methods between involved TSOs are presented in literature. Most Notably, 

coordinative, independent and integrated grid control [199, 201, 202].  

Coordinative DC Grid Control: In this scheme, the DC network is operated by an entity whose 

policies and practices are set by the participating TSOs. This entity is in charge of the DC grid assets 

including the converter stations. It handles the power flow through the MTDC system and ensures a 

smooth set-point transition following unscheduled power-flow changes/ interruptions in a way that 

must benefit all participating TSOs. In contrast, this entity applies incentives/penalties to the 

participating TSOs following their pre-set rules and agreements. The European Network of 

Transmission System Operators (ENTSO-E) organization can be thought of as such an entity [176].  
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Independent DC Grid Control: In this case, the grid is controlled by an independent entity whose 

primary goal is to maximize its operational benefits while respecting connection rules and policies of 

each participating TSO. For instance, the independent entity is rewarded in this operative scenario 

for providing energy reserve to imbalanced areas, whereas part of this reward is paid back to the 

providing area. Having said that, designing the specific regulations to control DC grids under this 

scheme is challenging as it should balance the independent operator authorities and participating 

TSOs benefits.  

Integrated DC Grid Control: One of the participating TSOs expands its operation in this case to add 

the DC network and converter stations at other areas under its operation. This TSO, as a network 

operator, could create bilateral agreements with the other TSOs to purchase services from one TSO 

and sell them to another, while taking responsibility of the network assets maintenance.  

The control alternatives discussed above are summarized in Figure 20. Where implementing any 

of them, or possibly a combination, is dependent on the regional agreements, conditions, and 

investing parties in the particular inter-regional DC grid of interest. Other coordination and control 

techniques are also presented in literature, e.g. proposing distributed, shared control whereby all 

connected TSOs participate in sharing primary reserve in case of power imbalance to achieve an 

equilibrium operating point with unified frequency deviation [203]. Optimization techniques for 

optimal power dispatch in MTDC networks are also discussed in [204] to control energy flow within 

desired TSO set-points.  

 

 
(a)  
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 (b) 

Figure 20: Different operating schemes of DC Supergrids: (a) Independent/Coordinated; (b) 
integrated 

4.2.3. Utilization of High-Voltage Transmission Lines 

Contemporary electricity networks integrate large-scale intermittent sources, which could 

sometimes lead to congestion problems in transmission line utilization. The generated renewable 

energy from wind, solar or hydro power sources is thus likely to be partially curtailed when one of 

the following conditions is met: i) lack of local demand or storage at the RES generation area, or lack 

of transmission infrastructure to distant load demand; ii) existence of transmission pathways that 

are congested by other competing sources either at the generation or load areas.  The effects of high 

RES penetration on network congestion in Europe and China with case studies related to 

transmission grid expansion are discussed in [205-208].  

Transmission grid infrastructure and expansion is a proposed solution in many such cases. By 

means of building new HVDC or HVAC transmission pathways to reduce network congestion and 

curtailed energy. However, investment decisions in new expensive transmission lines is risky and 

should be evaluated thoroughly in terms of the involved costs, technical and operational 

considerations [176]. Cost databases, economic HVDC models and HVAC vs. HVDC investment 

benchmarks are presented in literature to assist decision-makers in sizing and selecting the 

appropriate transmission technology for the intended application [107, 209]. 

In contrast to congestion, another important point to consider when constructing new High-

Voltage lines for large-scale RES transmission is the local generation/demand trends and regulations 

in the receiving areas. Namely, building new transmission pathways should typically alleviate 

congestion and consequently curtailment. Yet, decreasing the energy import demand at receiving 

areas by switching to local generation alternatives due to lack of proper coordination can similarly 

cause renewables curtailment. A detailed case study discussing similar issues from China is 



44 
 

presented in the next subsection. It serves to clarify the importance of proper HVDC transmission 

planning between the different involved parties to avoid transmission lines under-utilization. 

4.2.4. Case Study: Interconnectors Utilization Challenge in China 

China has a unique electricity market generation/demand distribution, with vast distances 

separating its RES rich areas (concentrated in northern and western regions) and main populated 

demand centres (in eastern and southern provinces). Large-scale RES plants are predominantly 

hydro, wind or solar, yet the lack of matching local demand in these generation areas or high-capacity 

transmission infrastructure to major population centres caused significant generation curtailment of 

RES resources in early 2010s. For instance, 17% of wind energy generation (~21 TWh) was lost in 

2012 [208].  

In parallel, the fast demand growth in densely populated areas facilitated the construction of 

several high-voltage transmission lines to utilize the excess available RES generation (see Figure 4 

for the Chinese HVDC capacity expansion after 2010). As a result, RES energy curtailment was 

significantly reduced down to 8% for wind by 2014. This percentage was still high compared to the 

international average of wind energy curtailment, between 1% and 3% [208, 210]. Yet, the 

contribution of HV interconnectors in mitigating the curtailment issue in China was evident in this 

period, which is classified by [208] as the “1st curtailment wave”. 

This demand growth in Chinese electricity market later decreased, reaching 0.96% by 2016 [211]. 

On the other hand, the approval of constructing coal power plants was decentralized in 2014, 

allowing local province governments to commission new plants although the central government 

trend is to reduce the coal energy dependence in the country [211]. As of 2017, nearly 70% of China’s 

electricity is generated from coal plants [212]. These factors, combined with the economic 

favourability of using decentralized coal plants by local governments rather than importing RES from 

distant provinces, led to the following consequences: 

1) Establishing a trend of coal-energy overcapacity in several provinces. 

2) Reducing the reliance on imported energy from distant large-scale renewable sources. 

3) Establishing a 2nd wave of increased RES generation curtailment. However, this time due to the 

low demand in the receiving areas rather than the absence of transmission infrastructure. 

4) Underutilization of UHV transmission links. Bloomberg estimated that average UHVDC lines 

utilization in 2018 is ~56% compared to even lower utilization of UHVAC lines [213]. 

As a result, the RES generation curtailment climbed to 110 TWh by 2016 [214], with 49.7 TWh from 

wind (rising back to 17%). Moreover, the overall lost wind energy from 2011 to 2016 approached 

150 TWh. The equivalent 𝐶𝑂2 emissions to generating this lost energy from coal based plants is 0.12 
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billion tons [212]. More detailed analysis of the main factors affecting renewables curtailment are 

summarized and analysed in [208], specifically for wind energy.   

Several recommendations have been recently presented in literature to mitigate this problem 

[208, 215-218], where Figure 21 summarizes the Chinese RES curtailment issue and the main 

recommended policies for its mitigation. 

 
Figure 21: Summary of RES curtailment problem in China and its effect on HV Interconnectors Utilization 

5. HVDC Technology/Market Horizon 

This section discusses the potential growth of HVDC interconnectors in light of the expected 

technology development outlook, while analysing key influencing factors (e.g. demand variation and 

HVDC role in achieving national RES targets).  

5.1. Market Development Landscape 

The generated revenue from global HVDC links has been consistently increasing. Navigant 

research institute released a detailed HVDC report predicting its short-term landscape between 2013 

and 2020, with average annual global HVDC interconnectors revenue exceeding 7 billion USD with a 

combined annual growth rate (CAGR) of 5.5% [219]. This profitable trend is expected to continue 

globally in light of the anticipated technology and regulatory developments. 

5.1.1. HVDC System Components Outlook  

Looking further into the future, the electricity infrastructure market is conservative in nature, 

meaning that even though technology prototypes may be readily developed,  associated high costs 

and extensive testing requirements  can cause significant delays in widespread implementation [75]. 

In contrast, demanding market needs and the strive to achieve national/regional interconnection and 

renewable targets could accelerate the development rate of new HVDC transmission technologies, 
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mainly: XLPE cables with higher voltage and power rating, and hybrid DC switchgears for Multi-

Terminal HVDC networks. In addition to accelerating the adoption of common regulatory standards. 

In addition, the present generation of fault-blocking MMC-VSCs improve system resiliency to DC 

faults and speed up post-fault recovery, but is unable to prevent a drop of the power transfer between 

the connected AC grids to zero. Having said that, fault-blocking converters are still anticipated to play 

a significant role in multi-zones DC grids that would rely on relatively low cost partially selective 

protection strategies. Fault-blocking MMCs are thus undergoing extensive research and development 

activities to be successfully implemented in MTDC networks.  

On the other hand, the UK Electricity Ten Year Statement predicts the utilization of 650 kV XLPE 

cables for 2,600 MW VSC transmission by 2030, compared to 750 kV at 3,000 MW for MI cables per 

DC bipole [105], accompanied by an increase in the maximum submarine laying depth from 1,600 m 

to 2,500 m over the same time interval [117]. This would pave the way for longer distance subsea 

transmission. The Advisory Committee on Electrical Transmission and Distribution (ACTAD) 

presented a more optimistic outlook for XLPE cables with 800 kV/2000 A predicted availability by 

2030. The same source predicts an increase to the LCC-OH transmission limit from ±1,100 kV to 

±1,200 kV [220].  

The use of UG land cables for HVDC transmission is expected to grow, especially in Europe. 

Influenced by increased public awareness to environmental and visual effects of OH transmission, 

delaying the permitting process [106]. A practical case was recently observed in Germany, where 

public pressure led to rerouting of the planned Suedlink energy highway to use UG XLPE cables 

instead of OH transmission lines to mitigate their visual impact and environmental effects [221, 222].  

Finally, Table 6 presents a summary of the forecasted component-level development horizon for 

HVDC transmission.  
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Table 6: Summary of the medium term horizon for main HVDC transmission system components. 

System Component Medium-Term Technology Outlook Likely Impact 

HVDC 

Converters 

LCC 
Maintaining its position as the main 

OH UHVDC power transfer technology 

Pushing the maximum power transmission limit in Asia 

beyond 12,000 MW at ±1,200 kV [220] 

VSC 

Available at higher ratings beyond 

650 kV at lower normalized costs and 

station losses [105] 

Playing vital role in MTDC development, increasing 

interconnected markets share and RES utilization 

(expected 65% of new HVDC projects by 2020 [75]) 

HVDC 

Cables 

MI 
Higher rating availability (750 kV at 

3,000 MW per bipole by 2030 [105]) 

Pushing the maximum rating limits for projects with 

UG/submarine cable sections, yet with overall 

diminishing market share compared to XLPE 

XLPE 
Higher rating availability (650 kV at 

2,600 MW per bipole by 2030 [105]) 

Expanding its market share dominance , parallel to VSC 

technology progress and fuelled by the need to construct 

new MTDC links connected to offshore wind farms 

DC Grid 

Protection 

DCCB 
Moving from MV prototyping stage to 

HV implementation around 2030 [220] Accelerating DC grids implementation. Leading to 

increased MTDC networks share, increased security of 

supply and enhanced RES utilization 
VSC Based 

MMC 

Enhanced control algorithms for DC 

fault-blocking at higher ratings [87] 

 

5.1.2. RES Interconnection Horizon 

Interesting techno-economic studies are emerging in parallel to assess the feasibility of different 

interconnection scenarios. A recent work investigated a potential 3,300 km link by 2030 between 

Europe (UK) and North America (Canada) with a carrying capacity of 4,000 MW at ±640 kV. The 

authors concluded that the cost of such ambitious investment could be justified by the associated 

social benefits and the project high energy exchange potential [223].  

The feasibility of MTDC networks implementation in Africa to support remote renewable energy 

utilization and interconnection of markets by 2030 was recently discussed in [224] with an estimated 

18 Billion USD of required investments for grid renovation. Authors presented MTDC networks as an 

economically viable alternative to AC grid expansion. The generic role of HVDC transmission systems 

as a key enabler of large-scale renewable utilization is further discussed in [225]. Linking North 

Africa to Europe through MTDC networks to share the benefit of renewable energy sources (solar & 

wind) and increase security of supply is also discussed in [226] with 2030 and 2050 milestones. 

Interconnecting both regions is additionally discussed in various recent research articles, 

highlighting the vast energy utilization prospects that could be realized through an operational DC 

grid [223, 227]. Relevant to this, the authors of [228] present a potential roadmap for such African-

European interconnection using HVDC to transmit dispatchable Concentrated Solar Power (CSP) 

power to Europe through Italy and Spain on the medium-term as the main connection points from 
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Africa to support a future supergrid implementation. Ultimately, helping both the EU and African 

countries to achieve their RES penetration targets. The following reference provides an overview on 

RES targets and implementation landscape in Africa [229]. 

Middle-East region is also viewed as a significant energy interconnection market, especially 

within the Gulf Corporation Council (GCC) area that has a current generation capacity of 148 GW, 

with a potential additional capacity from renewables exceeding 800 GW that can be used for energy 

trading with remote neighbouring areas as part of the Global Energy Interconnection (GEI) vision. 

Detailed discussion of interconnection opportunities in this region is presented in [43]. Further 

analysis of point-to-point and meshed HVDC pathways between the Middle-East-North-Africa 

(MENA) region and Europe to export CSP is presented in [230].  

Another interesting recent study investigates the possibility of achieving 100% renewable energy 

penetration in Europe by 2050, and concludes that such a scenario would require increasing the wind 

generation capacity by 90% to 1.9 TW, maintaining an annual deployment level of 7.5 GW per year 

compared to an annual installation requirement of 10.5 GW of solar PV. Transmission infrastructure 

reinforcement would consequently be required to increase the utilization of such huge renewable 

energy capacity for both wind and solar to reach distant demand areas through HVDC transmission 

[231]. Similar analysis is performed for Australia in [232] with HVDC playing an active role to achieve 

such ambitious targets.   

Collectively, Table 7 summarizes several renewable grid penetration targets from major 

international markets. HVDC links are essential to achieve these targets due to their vital role in long-

distance transmission from remote large-scale renewable sources to load centres.  

Table 7: Renewable energy targets in main global markets. 

Market Renewable Energy Target (E/P)* Target Year 

Europe 
32% (E) [233] 

15% (EU member states capacity interconnection) [7] 
2030 

China 
770 GW (P) [234, 235] 

(37%-39% of total capacity in 2020 [1, 235]) 
2020 

India 
227 GW (P) [236] 

(48% of total capacity in 2022 [1]) 
2022 

Russia 4.5% (E) [237] 2024 

Brazil 45% (E) [226, 238] 2030 

GCC Countries 80 GW (P) [239] 2030 

Africa** 50% (E) [229] 2030 

USA*** 
New York 50% (E) [240] 2030 

California 50% (E) [240] 2030 

* E/P is used to distinguish (E)nergy generation from (P)ower generation capacity targets. 

** This number is based on achieving individual existing national RES penetration targets by 2030 [229]. 

*** No nationwide target is set, yet IRENA estimates a potential of reaching 27% (E) of RES generation by 2030 with appropriate investment 

in interconnection infrastructure, in addition to renewable incentives [241]. 
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5.2. HVDC Growth Factors Analysis 

The growth in HVDC transmission system adoption is driven by various factors that are analysed 

here. As presented, the development of reliable HV technology is expected to accelerate the transition 

towards DC grids adoption from a technology readiness point of view. However, it is important to 

note that adequate network operation standards also need to be developed for cross-border energy 

exchange in future meshed DC grids.  

Long-term, long-distance transmission UHVDC demand coming mainly from Asia is another 

important adoption factor, while considering the currently slow pace for commissioning new UHVDC 

lines in China as discussed earlier due to ongoing under-utilization. The future growth rate is 

significantly influenced by the implementation of RES support policies.  

   Collectively, the increased adoption of energy interconnection on a global scale and the ongoing 

attempts to standardize technology are likely to drive a parallel normalized decline in technology 

costs via economies of scale. This, in turn, could increase HVDC interconnection further as it becomes 

more economically viable and profitable compared to other energy alternatives, in addition to the 

socio-economic benefits and inherent improved supply reliability that are linked to the use of HV 

networks. In such a scenario, financing new high-voltage interconnectors becomes less of a challenge 

when supporting policies for reducing harmful carbon emissions and industry standardization are 

implemented, especially if operation of new coal/fossil-fuel plants is gradually limited [242]. 

National renewable energy adoption targets are becoming a worldwide trend to battle climate 

change and pollution in accordance with the 2016 Paris Agreement that was signed by 195 countries 

[243, 244]. The shift towards more renewable, sustainable sources consequently drives their cost 

down further. Having said that, the reliance on distributed RES is challenging in densely populated 

urban areas and major demand centres because of the limited urban energy generation density. This 

leads to a fast convergence to DERs physical installation network penetration limits [245]. 

Alternatively, large-scale RES offer a suitable economic alternative to cover the surging demand in 

the receiving areas. Especially considering the large-scale RES lower normalized cost when 

compared to small-scale sparse installations with equal cumulative capacity [246-248]. These large-

scale sources could be located in very distant locations from load centres based on the relevant 

technology (i.e. high solar-irradiance area for PV and CSP, and high speed wind area for wind farms). 

High-Power LCC overhead transmission provides the best option in land-based large scale RES 

utilization, compared to VSC based XLPE submarine transmission for the growing offshore wind farm 

demand. The above-mentioned trends are thus considered as the main accelerating factors in 
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increasing the adoption of HV interconnectors. Figure 22 qualitatively summarizes the main HVDC 

transmission growth factors in the foreseen future. 
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Figure 22: HV interconnection global growth factors. 

6. Conclusions 

This paper presented a comprehensive overview of HVDC transmission systems, targeting readers 

from various backgrounds. It provides an up-to-date summary of the HVDC technology options, 

market status and supplier landscape, challenges and future trends. Furthermore, the main 

components of HVDC transmission systems and technologies are reviewed, including converters, 

transformers, transmission assets, control techniques and protection equipment. The main 

conclusions and observations drawn from the critical reading of the literature, and the qualitative 

and quantitative analysis in this paper are summarized as follows:  

- LCC-HVDC dominates the market in terms of available capacity, mainly contributed by highly 

rated Asian OH links. Installation costs and DC operating voltages of such systems favour the 

adoption of OH-HVDC lines over MI-HVDC cables. 

- VSC-HVDC transmission technology is beginning to dominate the market in projects rated at 2,000 

MW or less and this is expected to continue for the foreseeable future due to its inherently 

superior technical and grip-support capabilities compared to LCC-HVDC.  

- The introduction of MMC type VSC-HVDC transmission systems earlier this decade has facilitated 

the following for VSCs: scalability to high power and DC voltage, enhanced performance, improved 

protection capabilities, lower semiconductor losses and reduced filtering requirements.  

- XLPE cables market share is surpassing that of its MI competitor (58% of HVDC cables market in 

2010s). This trend is dependent on VSC-HVDC development as XLPE cables are mainly compatible 

with VSCs. 
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- MTDC networks are expected to play a significant role in future energy transmission networks as 

they facilitate large-scale renewable energy integration and increase the security of energy 

supply. However, successful MTDC implementation is dependent on: 

o Developing commercial, reliable, DC protection equipment (DCCB and Fault-Blocking MMC-

VSC converters), which are likely to be widespread by 2030.  

o Developing common standards and regulations to integrate existing cross-borders HVDC links 

operating at different voltages into a single DC network. 

- Close coordination between investing bodies in High-Voltage transmission infrastructure and end 

users should be maintained when building new large-scale HVDC links, to avoid possible under-

utilization of HV transmission assets as observed recently in China.   

Finally, ambitious visions for global energy interconnection are also discussed and presented as part 

of the future HVDC transmission systems adoption outlook, fuelled by increased RES utilization 

targets on country/regional levels.  

7. Acknowledgement 

This publication is supported by Iberdrola S.A. as part of its innovation department research 

studies. Its contents are solely the responsibility of the authors and do not necessarily represent the 

official views of Iberdrola Group. 

8. References 
[1] New Energy Outlook 2017: Global Overivew. BNEF, 2017. 
[2] Sun J, Li M, Zhang Z, Xu T, He J, Wang H, et al. Renewable energy transmission by HVDC across the 

continent: system challenges and opportunities. CSEE Journal of Power and Energy Systems. 
2017;3:353-64. 

[3] Zhang H, Zhang S. A new strategy of HVDC operation for maximizing renewable energy 
accommodation. 2017 IEEE Power & Energy Society General Meeting2017 

[4] Raza A, Dianguo X, Xunwen S, Weixing L, Williams BW. A Novel Multiterminal VSC-HVdc Transmission 
Topology for Offshore Wind Farms. IEEE Trans Ind Appl. 2017;53:1316-25. 

[5] Higgins P, Foley A. The evolution of offshore wind power in the United Kingdom. Renew Sustain Energy 
Rev. 2014;37:599-612. 

[6] Korompili A, Wu Q, Zhao H. Review of VSC HVDC connection for offshore wind power integration. 
Renew Sustain Energy Rev. 2016;59:1405-14. 

[7] Wendt V. Europe's 2030 15% Interconnection Target: Challenges & Solutions for a Timely Project 
Implementation. Vienna: EuropaCable, 2015. 

[8] Tiku D. dc Power Transmission: Mercury-Arc to Thyristor HVdc Valves [History]. IEEE Power Energy 
Mag. 2014;12:76-96. 

[9] Rudervall R, P Charpentier J, Sharma R. High Voltage Direct Current (HVDC)Transmission Systems 
Technology Review Paper. Energy Week.Washington, D.C., 2000 

[10] Sutton SJ, Lewin PL, Swingler SG. Review of global HVDC subsea cable projects and the application of 
sea electrodes. International Journal of Electrical Power & Energy Systems. 2017;87:121-35. 

[11] Huang AQ. Power Semiconductor Devices for Smart Grid and Renewable Energy Systems. Proceedings 
of the IEEE. 2017;105:2019-47. 



52 
 

[12] Shenai K. The Invention and Demonstration of the IGBT [A Look Back]. IEEE Power Electron Mag. 
2015;2:12-6. 

[13] Special Report: 60 years of HVDC.  ABB Technial Journal. Sweden: ABB, 2011. 
[14] DANIELSSON J, PATEL S, PAN J, NUQUI R. Transmission Grid Reinforcement with Embedded VSC-

HVDC. 2015 Grid of the Future Symposium.Paris 2015 
[15] Pierri E, Binder O, Hemdan NGA, Kurrat M. Challenges and opportunities for a European HVDC grid. 

Renew Sustain Energy Rev. 2017;70:427-56. 
[16] Gu X, He S, Xu Y, Yan Y, Hou S, Fu M. Partial discharge detection on 320 kV VSC-HVDC XLPE cable with 

artificial defects under DC voltage. IEEE Transactions on Dielectrics and Electrical Insulation. 
2018;25:939-46. 

[17] Yuheng-Weifang 1000kV UHV AC Transmission and Transformation Project Starts Construction. 
China: State Grid, 2015. 

[18] Chen G, Zhou X, Chen R. Variable Frequency Transformers for Large Scale Power Systems 
Interconnection: Theory and Applications: Wiley; 2018. 

[19] Sood VK. 31 - HVDC Transmission. In: Rashid MH, editor. Power Electronics Handbook (Third Edition). 
Boston: Butterworth-Heinemann; 2011. p. 823-49. 

[20] Dynamic Reactive Compensation – MV STATCOM. ABB, 2008. 
[21] Kalair A, Abas N, Khan N. Comparative study of HVAC and HVDC transmission systems. Renew Sustain 

Energy Rev. 2016;59:1653-75. 
[22] Jung H, Biletskiy Y. Evaluation and comparison of economical efficiency of HVDC and AC transmission. 

2009 Canadian Conference on Electrical and Computer Engineering2009 
[23] Liu YH, Perera LB, Arrillaga J, Watson NR. A Back to Back HVdc Link With Multilevel Current 

Reinjection Converters. IEEE Trans Power Del. 2007;22:1904-9. 
[24] Y.Sekine, Takahashi K, Hayashi T. Application of power electronics technologies to the 21st century’s 

bulk power transmission in Japan. Electrical Power & Energy Systems. 1995;17:181 - 94. 
[25] McLellan BC, Zhang Q, Utama NA, Farzaneh H, Ishihara KN. Analysis of Japan's post-Fukushima energy 

strategy. Energy Strategy Reviews. 2013;2:190-8. 
[26] McCalley JD, Krishnan V. A survey of transmission technologies for planning long distance bulk 

transmission overlay in US. International Journal of Electrical Power & Energy Systems. 2014;54:559-
68. 

[27] [dataset] Aspinall N., Electric Transmission: HVDC and Interconnectors. BNEF, 2016. 
[28] J. Lundquist LOB, A. Beutel, A.C. Britten, D.A. Douglass, J. Iglesias, V. Jankov, J.A. Jardini, D. Muftic, S. 

Steevens. Guide to the Conversion of Existing AC Lines to DC Operation. Paris: CIGRE, 2014. 
[29] Larruskain DM, Zamora I, Abarrategui O, Iturregi A. VSC-HVDC configurations for converting AC 

distribution lines into DC lines. International Journal of Electrical Power & Energy Systems. 
2014;54:589-97. 

[30] Manickam R, Palaniappan SN. Upgrading transmission line capability by AC–DC conversion. Computers 
& Electrical Engineering. 2018;68:616-28. 

[31] Lundkvist J, Gutman I, Weimers L. Feasibility study for converting 380 kV AC lines to hybrid AC / DC 
lines. EPRI's High-Voltage Direct Current & Flexible AC Transmission Systems 
Conference.Westminster, CO, USA, 2009. 

[32] Clerici A, Paris L, Danfors P. HVDC conversion of HVAC lines to provide substantial power upgrading. 
IEEE Trans Power Del. 1991;6:324-33. 

[33] Peng C, Huang AQ. Converting HVAC to HVDC grids: A novel switched conductor HVDC scheme. 2016 
IEEE/PES Transmission and Distribution Conference and Exposition (T&D)2016 

[34] Mbuli N, Xezile R, Motsoeneng L, Ntuli M, Pretorius J-H. A literature review on capacity uprate of 
transmission lines: 2008 to 2018. Electr Power Syst Res. 2019;170:215-21. 

[35] Naidoo P, Estment RD, Muftic D, Ijumba N. Progress report on the investigations into the recycling of 
existing HVAC power transmission circuits for higher power transfers using HVDC technology. The 8th 
IEE International Conference on AC and DC Power Transmission2006 

[36] Lundberg P, Jacobson B, Kumar V, Kasal G-K, MS S, Kumar A. Power Convert from AC to HVDC for higher 
power transmission. ABB, 2018. 

[37] Yu J, Smith K, Urizarbarrena M, Bebbington M, Macleod N, Moon A. Initial designs for ANGLE-DC 
project: challenges converting existing AC cable and overhead line to DC operation. CIRED - Open 
Access Proceedings Journal. 2017;2017:2374-8. 



53 
 

[38] Chen G, Hao M, Xu Z, Vaughan A, Cao J, Wang H. Review of high voltage direct current cables. CSEE 
Journal of Power and Energy Systems. 2015;1:9-21. 

[39] Vrana TK, Energi S. Review of HVDC Component Ratings: XLPE Cables and VSC Converters. 2016 IEEE 
International Energy Conference (ENERGYCON).Leuven, Belgium, 2016. 

[40] Franck CM. HVDC Circuit Breakers: A Review Identifying Future Research Needs. IEEE Trans Power 
Del. 2011;26:998-1007. 

[41] Perez MA, Bernet S, Rodriguez J, Kouro S, Lizana R. Circuit Topologies, Modeling, Control Schemes, and 
Applications of Modular Multilevel Converters. IEEE Trans Power Electron. 2015;30:4-17. 

[42] Debnath S, Qin J, Bahrani B, Saeedifard M, Barbosa P. Operation, Control, and Applications of the 
Modular Multilevel Converter: A Review. IEEE Trans Power Electron. 2015;30:37-53. 

[43] Zhang X-P, Ou M, Song Y, Li X. Review of Middle East energy interconnection development. Journal of 
Modern Power Systems and Clean Energy. 2017;5:917-35. 

[44] An T, Tang G, Wang W. Research and application on multi-terminal and DC grids based on VSC-HVDC 
technology in China. High Voltage. 2017;2:1-10. 

[45] Huang D, Shu Y, Ruan J, Hu Y. Ultra High Voltage Transmission in China: Developments, Current Status 
and Future Prospects. Proceedings of the IEEE. 2009;97:555-83. 

[46] Khazaei J, Idowu P, Asrari A, Shafaye AB, Piyasinghe L. Review of HVDC control in weak AC grids. Electr 
Power Syst Res. 2018;162:194-206. 

[47] Ultra high voltage: Developments in power transformers technology. Zurich: ABB, 2017. 
[48] The world’s first ±1,100 kV HVDC transformer passed testing. Munich: Siemens, 2017. 
[49] Projects of Common Interest. Available: https://ec.europa.eu/energy/en/topics/infrastructure/, 

2018, [accessed 02 September 2018]. 
[50] European solidarity on Energy: Better integration of the Iberian Peninsula into the EU energy market. 

Brussels: European Commission, 2018. 
[51] Liu Z, Zhang F, Yu J, Gao K, Ma W. Research on key technologies in ±1100 kV ultra-high voltage DC 

transmission. High Voltage. 2018;3:279-88. 
[52] M. A, P. M. A China-EU electricity transmission link: Assessment of potential connecting countries and 

routes. Luxembourg: Publications Office of the European Union, 2017. 
[53] Electricity interconnection France-Spain across the Bay of Biscay. INELFE, 2017. 
[54] Keim T, Bindra A. Recent Advances in HVDC and UHVDC Transmission [Happenings]. IEEE Power 

Electron Mag. 2017;4:12-8. 
[55] Arcia-Garibaldi G, Cruz-Romero P, Gómez-Expósito A. Future power transmission: Visions, 

technologies and challenges. Renew Sustain Energy Rev. 2018;94:285-301. 
[56] Kundur P. Power System Stability and Control. India McGraw-Hill; 1994. 
[57] HVDC for beginners and beyond Alstom Grid, 2010. 
[58] Bahrman M, Bjorklund P. The New Black Start: System Restoration with Help from Voltage-Sourced 

Converters. IEEE Power Energy Mag. 2014;12:44-53. 
[59] Li B, Liu T, Xu W, Li Q, Zhang Y, Li Y, et al. Research on technical requirements of line-commutated 

converter-based high-voltage direct current participating in receiving end AC system's black start. IET 
Gener Trans Dis. 2016;10:2071-8. 

[60] Andersen BR, Lie X. Hybrid HVDC system for power transmission to island networks. IEEE Trans 
Power Del. 2004;19:1884-90. 

[61] Liu Z. Ultra-High Voltage AC/DC Grids. China: Academic Press; 2015. 
[62] Mankour M, Khiat M, Ghomri L, Chaker A, Bessalah M. Modeling and real time simulation of an HVDC 

inverter feeding a weak AC system based on commutation failure study. ISA Transactions. 
2018;77:222-30. 

[63] Illanas M. Evaluation of a new definition for a Multi-Infeed Short Circuit Ratio Stockholm: KTH Royal 
Institute of Technology 2007. 

[64] Zhang Y. Investigation of Reactive Power Control and Compensation for HVDC Systems. Canada: The 
University of Manitoba; 2011. 

[65] Wu G, Liang J, Zhou X, Li Y, Egea-Alvarez A, Li G, et al. Analysis and design of vector control for VSC-
HVDC connected to weak grids. CSEE Journal of Power and Energy Systems. 2017;3:115-24. 

[66] Yang H, Cai Z, Zhu L, Zhou B, Zhang D. A novel assessment index of LCC-HVDC system impact on short-
term voltage stability of the receiving-end AC system. Electr Power Syst Res. 2017;142:125-33. 



54 
 

[67] Bahrman MP, Johnson BK. The ABCs of HVDC transmission technologies. IEEE Power Energy Mag. 
2007;5:32-44. 

[68] Sood V. HVDC and FACTS Controllers: Applications of Static Converters in Power Systems. USA: 
Kluwer; 2004. 

[69] Xue Y, Zhang X. Reactive Power and AC Voltage Control of LCC HVDC System With Controllable 
Capacitors. IEEE Trans Power Syst. 2017;32:753-64. 

[70] Guo C, Yang Z, Jiang B, Zhao C. An Evolved Capacitor-Commutated Converter Embedded With 
Antiparallel Thyristors Based Dual-Directional Full-Bridge Module. IEEE Trans Power Del. 
2018;33:928-37. 

[71] Ottosson N, Kjellin L. Modular back-to-back HVDC, with capacitor commutated converters (CCC). 
Seventh International Conference on AC-DC Power Transmission2001 

[72] Xue Y, Zhang X, Yang C. Elimination of Commutation Failures of LCC HVDC System with Controllable 
Capacitors. IEEE Trans Power Syst. 2016;31:3289-99. 

[73] Wen J, Wang J, Wang L, Yin W, Liu B. Evaluation of Capacitor Commutated Converter HVDC for Qinghai-
Xizhang Interconnection Project. 9th IET International Conference on AC and DC Power Transmission 
(ACDC 2010)2010 

[74] Xue Y, Zhang X, Yang C. Commutation Failure Elimination of LCC HVDC Systems Using Thyristor-Based 
Controllable Capacitors. IEEE Trans Power Del. 2018;33:1448-58. 

[75] Electron Highways: Technologies for High Voltage Transmission. BNEF, 2017. 
[76] Torres-Olguin RE, Molinas M, Undeland T. Offshore Wind Farm Grid Integration by VSC Technology 

With LCC-Based HVDC Transmission. IEEE Trans Sustain Energy. 2012;3:899-907. 
[77] Pan J, Nuqui R, Srivastava K, Jonsson T, Holmberg P, Hafner Y. AC Grid with Embedded VSC-HVDC for 

Secure and Efficient Power Delivery. 2008 IEEE Energy 2030 Conference2008 
[78] Gowaid IA, Adam GP, Massoud AM, Ahmed S, Holliday D, Williams BW. Quasi Two-Level Operation of 

Modular Multilevel Converter for Use in a High-Power DC Transformer With DC Fault Isolation 
Capability. IEEE Trans Power Electron. 2015;30:108-23. 

[79] Badkubi S, Nazarpour D, Khazaie J, Khalilian M, mokhtari M. Reducing the current harmonics of a wind 
farm generation based on VSC-HVDC transmission line by shunt active power filters. Energy Procedia. 
2012;14:861-6. 

[80] Barnes M, Beddard A. Voltage Source Converter HVDC Links – The State of the Art and Issues Going 
Forward. Energy Procedia. 2012;24:108-22. 

[81] Adam GP, Ahmed KH, Finney SJ, Bell K, Williams BW. New Breed of Network Fault-Tolerant Voltage-
Source-Converter HVDC Transmission System. IEEE Trans Power Syst. 2013;28:335-46. 

[82] Macleod N, Cowton N, Egan J. System restoration using the "black" start capability of the 500MW 
EIRGRID East- West VSC-HVDC interconnector. IET International Conference on Resilience of 
Transmission and Distribution Networks (RTDN) 20152015 

[83] Friedrich K. Modern HVDC PLUS application of VSC in Modular Multilevel Converter topology. 2010 
IEEE International Symposium on Industrial Electronics2010 

[84] Knaak H. Modular multilevel converters and HVDC/FACTS: A success story. Proceedings of the 2011 
14th European Conference on Power Electronics and Applications2011 

[85] M. Davies MD, J. Dorn, J. Lang, D. Retzmann, D. Soerangr. HVDC PLUS – Basics and Principle of 
Operation. Siemens, 2009. 

[86] HVDC PLUS – the decisive step ahead. Siemens, 2016. 
[87] Adam GP, Abdelsalam I, Fletcher JE, Burt GM, Holliday D, Finney SJ. New Efficient Submodule for a 

Modular Multilevel Converter in Multiterminal HVDC Networks. IEEE Trans Power Electron. 
2017;32:4258-78. 

[88] M Elizondo HK. Economics of High Voltage dc Networks. United States: PNNL, 2016. 
[89] Tu P, Yang S, Wang P. Reliability- and Cost-Based Redundancy Design for Modular Multilevel 

Converter. IEEE Trans Ind Electron. 2019;66:2333-42. 
[90] Adam GP, Davidson IE. Robust and Generic Control of Full-Bridge Modular Multilevel Converter High-

Voltage DC Transmission Systems. IEEE Trans Power Del. 2015;30:2468-76. 
[91] Li R, Adam GP, Holliday D, Fletcher JE, Williams BW. Hybrid Cascaded Modular Multilevel Converter 

With DC Fault Ride-Through Capability for the HVDC Transmission System. IEEE Trans Power Del. 
2015;30:1853-62. 



55 
 

[92] Trinh N, Zeller M, Wuerflinger K, Erlich I. Generic Model of MMC-VSC-HVDC for Interaction Study With 
AC Power System. IEEE Trans Power Syst. 2016;31:27-34. 

[93] Elserougi AA, Abdel-Khalik AS, Massoud AM, Ahmed S. A New Protection Scheme for HVDC Converters 
Against DC-Side Faults With Current Suppression Capability. IEEE Trans Power Del. 2014;29:1569-77. 

[94] Bawa H. ABB enables world’s first HVDC grid in China. Zurich, Switzerland: ABB, 2018. 
[95] Bathurst G, Bordignan P. Delivery of the Nan'ao multi-terminal VSC-HVDC system. 11th IET 

International Conference on AC and DC Power Transmission2015 
[96] Rao H. Architecture of Nan'ao multi-terminal VSC-HVDC system and its multi-functional control. CSEE 

Journal of Power and Energy Systems. 2015;1:9-18. 
[97] Pipelzadeh Y, Chaudhuri B, Green T, Wu Y, Pang H, Cao J. Modelling and Dynamic Operation of the 

Zhoushan DC Grid: Worlds First Five-Terminal VSC-HVDC Project2015. 
[98] Zhang L, Zou Y, Yu J, Qin J, Vittal V, Karady GG, et al. Modeling, control, and protection of modular 

multilevel converter-based multi-terminal HVDC systems: A review. CSEE Journal of Power and Energy 
Systems. 2017;3:340-52. 

[99] Ladoux P, Serbia N, Carroll EI. On the Potential of IGCTs in HVDC. IEEE Journal of Emerging and 
Selected Topics in Power Electronics. 2015;3:780-93. 

[100] Consultancy support for the NEMO Interconnector: Cost Assessment Report. British Power 
International, 2013. 

[101] Sanz IM, Chaudhuri B, Strbac G. Inertial Response From Offshore Wind Farms Connected Through DC 
Grids. IEEE Trans Power Syst. 2015;30:1518-27. 

[102] Cao Y, Wang W, Li Y, Tan Y, Chen C, He L, et al. A Virtual Synchronous Generator Control Strategy for 
VSC-MTDC Systems. IEEE Trans Energy Convers. 2018;33:750-61. 

[103] Nguyen MH, Saha TK, Eghbal M. Master self-tuning VDCOL function for hybrid multi-terminal HVDC 
connecting renewable resources to a large power system. IET Gener Trans Dis. 2017;11:3341-9. 

[104] Dong S, Chi Y, Li Y. Active Voltage Feedback Control for Hybrid Multiterminal HVDC System Adopting 
Improved Synchronverters. IEEE Trans Power Del. 2016;31:445-55. 

[105] Electricity Ten Year Statement 2015: Appendix E. United Kingdom: National Grid, 2015. 
[106] Härtel P, Vrana TK, Hennig T, von Bonin M, Wiggelinkhuizen EJ, Nieuwenhout FDJ. Review of 

investment model cost parameters for VSC HVDC transmission infrastructure. Electr Power Syst Res. 
2017;151:419-31. 

[107] Vrana TK, Härtel P. Estimation of investment model cost parameters for VSC HVDC transmission 
infrastructure. Electr Power Syst Res. 2018;160:99-108. 

[108] Power semiconductors: Proven Reliability and High Quality for Best Performances. ABB, 2018. 
[109] Wang L, Xu J, Wang G, Zhang Z. Lifetime estimation of IGBT modules for MMC-HVDC application. 

Microelectronics Reliability. 2018;82:90-9. 
[110] Guo C, Yin Z, Zhao C, Iravani R. Small-signal dynamics of hybrid LCC-VSC HVDC systems. International 

Journal of Electrical Power & Energy Systems. 2018;98:362-72. 
[111] Jung J, Cui S, Lee J, Sul S. A New Topology of Multilevel VSC Converter for a Hybrid HVDC Transmission 

System. IEEE Trans Power Electron. 2017;32:4199-209. 
[112] Haleem NM, Rajapakse AD, Gole AM, Fernando IT. Investigation of Fault Ride-Through Capability of 

Hybrid VSC-LCC Multi-Terminal HVDC Transmission Systems. IEEE Trans Power Del. 2019;34:241-50. 
[113] Li P, Adam GP, Finney SJ, Holliday D. Operation Analysis of Thyristor-Based Front-to-Front Active-

Forced-Commutated Bridge DC Transformer in LCC and VSC Hybrid HVDC Networks. IEEE Journal of 
Emerging and Selected Topics in Power Electronics. 2017;5:1657-69. 

[114] Bakas P, Harnefors L, Norrga S, Nami A, Ilves K, Dijkhuizen F, et al. A Review of Hybrid Topologies 
Combining Line-Commutated and Cascaded Full-Bridge Converters. IEEE Trans Power Electron. 
2017;32:7435-48. 

[115] Li Z, Zhan R, Li Y, He Y, Hou J, Zhao X, et al. Recent developments in HVDC transmission systems to 
support renewable energy integration. Global Energy Interconnection. 2018;1:595-607. 

[116] Ying H, Weihuang H, Ming L, Tao L. Steady-state control strategy of multi-terminal hybrid UHVDC. 2017 
19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe)2017 

[117] Technologies for Transmission System. European Network of Transmission System Operators for 
Electricity (ENTSOE), 2016. 

[118] Francos PL, Verdugo SS, Álvarez HF, Guyomarch S, Loncle J. INELFE — Europe's first integrated 
onshore HVDC interconnection. 2012 IEEE Power and Energy Society General Meeting2012 



56 
 

[119] Callavik M, Lundberg P, Hansson O. NORDLINK: Pioneering VSC-HVDC interconnector between 
Norway and Germany. ABB Power Systems, 2015. 

[120] Van Hertem D, Delimar M. 6 - High Voltage Direct Current (HVDC) electric power transmission systems. 
In: Melhem Z, editor. Electricity Transmission, Distribution and Storage Systems: Woodhead 
Publishing; 2013. p. 143-73. 

[121] Barthold LO. Technical and Economic Aspects of Tripole HVDC. 2006 International Conference on 
Power System Technology2006 

[122] MacLeod NM, Barker CD, Kirby NM. Connection of renewable energy sources through grid constraint 
points using HVDC power transmission systems. IEEE PES T&D 20102010 

[123] Jae-Hyuk K, Yoon-Seok L, Byung-moon H. New pre-charging scheme for MMC-based back-to-back 
HVDC system operated in nearest level control. 2017 IEEE 3rd International Future Energy Electronics 
Conference and ECCE Asia (IFEEC 2017 - ECCE Asia)2017 

[124] Sellick RL, Åkerberg M. Comparison of HVDC Light (VSC) and HVDC Classic (LCC) site aspects, for a 
500MW 400kV HVDC transmission scheme. 10th IET International Conference on AC and DC Power 
Transmission (ACDC 2012)2012 

[125] Pan Z, Wang X, Mei G, Liu Y, Yao W, Liu H, et al. A transformer neutral current balancing device to 
restrain half-cycle saturation induced by HVDC monopolar operations. Electr Power Syst Res. 
2016;132:104-14. 

[126] Marzinotto M, Mazzanti G, Nervi M. Ground/sea return with electrode systems for HVDC transmission. 
International Journal of Electrical Power & Energy Systems. 2018;100:222-30. 

[127] Skog J-E, Koreman K, Pääjärvi B, Worzyk T, Andersröd T. The NorNed HVDC Cable Link: A Power 
Transmission Highway Between Norway and the Netherlands ABB Online Library  

[128] Boeck SD, Tielens P, Leterme W, Hertem DV. Configurations and earthing of HVDC grids. 2013 IEEE 
Power & Energy Society General Meeting2013 

[129] Marcus Haeusler SB. HVDC Solutions for Integration of the Renewable Energy Resources: Comparison 
of Technical Alternatives and System Configurations. Siemens 2017. 

[130] Carlson A. Specific Requirements on HVDC converter tranformers ABB Transformers.Sweden, 1996 
[131] Matar M, Paradis D, Iravani R. Real-time simulation of modular multilevel converters for controller 

hardware-in-the-loop testing. IET Power Electron. 2016;9:42-50. 
[132] Raoofsheibani D, Henschel D, Hinkel P, Ostermann M, Wellssow WH, Spanel U. Quasi-dynamic model 

of VSC-HVDC transmission systems for an operator training simulator application. Electr Power Syst 
Res. 2018;163:733-43. 

[133] Castro LM, Tovar-Hernández JH, González-Cabrera N, Rodríguez-Rodríguez JR. Real-power economic 
dispatch of AC/DC power transmission systems comprising multiple VSC-HVDC equipment. 
International Journal of Electrical Power & Energy Systems. 2019;107:140-8. 

[134] Franken B, Andersson G. Analysis of HVDC converters connected to weak AC systems. IEEE Trans 
Power Syst. 1990;5:235-42. 

[135] Bancal S. Basic Design of an HVDC Interconnection in Brazil. Stockholm: KTH Royal Institute of 
Technology; 2015. 

[136] Hertem DV, Gomis-Bellmunt O, Liang J. HVDC Grids - For Offshore and Supergrid of the Future. USA: 
Wiley-IEEE; 2016. 

[137] Pipelzadeh Y, Chaudhuri B, Green TC, Adapa R. Role of western HVDC link in stability of future Great 
Britain (GB) transmission system. 2015 IEEE Power & Energy Society General Meeting2015 

[138] Sanz IM, Chaudhuri B, Strbac G, Hussain K, Bayfield C, Adapa R. Corrective control through Western 
HVDC link in future Great Britain transmission system. 2015 IEEE Power & Energy Society General 
Meeting2015 

[139] Achenbach S, Barry V, Bayfield CH, Coventry PF. Increasing the GB electricity transmission networks' 
power transfer capability between North and South — The Western HVDC Link. 10th IET International 
Conference on AC and DC Power Transmission (ACDC 2012)2012 

[140] Mircea Ardelean PM. HVDC Submarine Power Cables in the World. European Commission, 2015. 
[141] Viking HVDC Link Official Website. Available: http://viking-link.com/, 2018, [accessed 30 January 

2019]. 
[142] Montanari GC, Morshuis PHF, Zhou M, Stevens GC, Vaughan AS, Han Z, et al. Criteria influencing the 

selection and design of HV and UHV DC cables in new network applications. High Voltage. 2018;3:90-
5. 



57 
 

[143] Ingemansson D, Wheeler JD, MacLeod NM, Gallon F, Ruiton O. The South — West scheme: A new HVAC 
and HVDC transmission system in Sweden. 10th IET International Conference on AC and DC Power 
Transmission (ACDC 2012)2012 

[144] Yang J, Zheng J, Tang G, He Z. Characteristics and Recovery Performance of VSC-HVDC DC Transmission 
Line Fault. 2010 Asia-Pacific Power and Energy Engineering Conference2010 

[145] HVDC Mass Impregnated Cable Systems—a Well-Proven Concept. Nexans 2018. 
[146] Murata Y, Sakamaki M, Abe K, Inoue Y, Mashio S, Kashiyama S, et al. Development of high voltage DC-

XLPE cable system2013. 
[147] Mokhberdoran A, Carvalho A, Silva N, Leite H, Carrapatoso A. Application study of superconducting 

fault current limiters in meshed HVDC grids protected by fast protection relays. Electr Power Syst Res. 
2017;143:292-302. 

[148] NISHIKAWA S, SASAKI K, AKITA K, SAKAMAKI M, KAZAMA T, SUZUKI K. XLPE Cable for DC Link. 
2017:59-64. 

[149] Cable Power. EU EuropaCable 2014. 
[150] Abdel-Moamen MA, Shaaban SA, Jurado F. France-Spain HVDC transmission system with hybrid 

modular multilevel converter and alternate-arm converter. 2017 Innovations in Power and Advanced 
Computing Technologies (i-PACT)2017 

[151] UK Electricity Interconnection: Driving competition and innovation in the HVDC supply chain. United 
Kingdom National Grid 2016. 

[152] Thomas H, Marian A, Chervyakov A, Stückrad S, Salmieri D, Rubbia C. Superconducting transmission 
lines – Sustainable electric energy transfer with higher public acceptance? Renew Sustain Energy Rev. 
2016;55:59-72. 

[153] Bruzek CE, Allais A, Dickson D, Lallouet N, Allweins K, Marzahn E. Superconducting DC cables to 
improve the efficiency of electricity transmission and distribution networks.  Eco-Friendly Innovation 
in Electricity Transmission and Distribution Networks2015. p. 135-67. 

[154] Xue Y, Kong D, Song Z, Hamidi V, Zhang X. Development of an Advanced LCC-HVDC Model for 
Transmission System. 11th IET International Conference on AC and DC Power Transmission2015 

[155] Lee G, Moon S, Kim R, Kim C. Reactive power control operation scheme of LCC-HVDC for maximizing 
shunt capacitor size in AC systems. 2015 IEEE PES Asia-Pacific Power and Energy Engineering 
Conference (APPEEC)2015 

[156] Gnanarathna UN, Gole AM, Jayasinghe RP. Efficient Modeling of Modular Multilevel HVDC Converters 
(MMC) on Electromagnetic Transient Simulation Programs. IEEE Trans Power Del. 2011;26:316-24. 

[157] Bergna G, Garcés A, Berne E, Egrot P, Arzandé A, Vannier J, et al. A Generalized Power Control Approach 
in ABC Frame for Modular Multilevel Converter HVDC Links Based on Mathematical Optimization. IEEE 
Trans Power Del. 2014;29:386-94. 

[158] Arani MFM, Mohamed YAI. Analysis and Performance Enhancement of Vector-Controlled VSC in HVDC 
Links Connected to Very Weak Grids. IEEE Trans Power Syst. 2017;32:684-93. 

[159] Z ZJ. Impact of short circuit ratio and phase locked loop parameters on the small-signal behaviour of a 
VSC-HVdc converter. 2016 IEEE Power and Energy Society General Meeting (PESGM)2016 

[160] Zhang L, Harnefors L, Nee H. Interconnection of Two Very Weak AC Systems by VSC-HVDC Links Using 
Power-Synchronization Control. IEEE Trans Power Syst. 2011;26:344-55. 

[161] Sayed S, Massoud A. Minimum transmission power loss in multi-terminal HVDC systems: A general 
methodology for radial and mesh networks. Alexandria Engineering Journal. 2018. 

[162] Li B, Liu T, Zhang Y. Unified adaptive droop control design based on dynamic reactive power limiter in 
VSC-MTDC. Electr Power Syst Res. 2017;148:18-26. 

[163] Khan S, Bhowmick S. A comprehensive power-flow model of multi-terminal PWM based VSC-HVDC 
systems with DC voltage droop control. International Journal of Electrical Power & Energy Systems. 
2018;102:71-83. 

[164] Lee J-G, Khan UA, Lee H-Y, Lim S-W, Lee B-W. Mitigation of commutation failures in LCC–HVDC systems 
based on superconducting fault current limiters. Physica C: Superconductivity and its Applications. 
2016;530:160-3. 

[165] Wang D, Gao HL, Luo SB, Zou GB. Travelling wave pilot protection for LCC-HVDC transmission lines 
based on electronic transformers’ differential output characteristic. International Journal of Electrical 
Power & Energy Systems. 2017;93:283-90. 



58 
 

[166] Yoo Y, Jung S, Jang G. A study on Overvoltage and Protection of Line-Commutated Converter HVDC 
Metallic Return Cable. IFAC-PapersOnLine. 2015;48:369-72. 

[167] Elserougi AA, Massoud AM, Abdel-Khalik AS, Ahmed S. Bidirectional Buck-Boost Inverter-Based HVDC 
Transmission System With AC-Side Contribution Blocking Capability During DC-Side Faults. IEEE 
Trans Power Del. 2014;29:1249-61. 

[168] Candelaria J, Park J. VSC-HVDC system protection: A review of current methods. 2011 IEEE/PES Power 
Systems Conference and Exposition2011 

[169] Lee J-G, Khan UA, Hwang J-S, Seong J-K, Shin W-J, Park B-B, et al. Assessment on the influence of 
resistive superconducting fault current limiter in VSC-HVDC system. Physica C: Superconductivity and 
its Applications. 2014;504:163-6. 

[170] Manohar P, Ahmed W. Superconducting fault current limiter to mitigate the effect of DC line fault in 
VSC-HVDC system. 2012 International Conference on Power, Signals, Controls and Computation2012 

[171] Garcia WRL, Tixador P, Raison B, Bertinato A, Luscan B, Creusot C. Technical and Economic Analysis of 
the R-Type SFCL for HVDC Grids Protection. IEEE Trans Appl Supercond. 2017;27:1-9. 

[172] Lee J-G, Khan UA, Lim S-W, Shin W-j, Seo I-J, Lee B-W. Comparative study of superconducting fault 
current limiter both for LCC-HVDC and VSC-HVDC systems. Physica C: Superconductivity and its 
Applications. 2015;518:149-53. 

[173] Pioneer and Technology Leader, Driving Gas-Insulated Switchgear (GIS) Innovations. ABB, 2018. 
[174] High-VOltage Circuit Breakers: From 72.5 kV up to 800 kV.  Siemens Energy Sector. Berlin2012. 
[175] It's time to connect: Technical description of HVDC Light® technology. ABB, 2008. 
[176] Van Hertem D, Ghandhari M. Multi-terminal VSC HVDC for the European supergrid: Obstacles. Renew 

Sustain Energy Rev. 2010;14:3156-63. 
[177] Weixing L, Jovcic D, Nguefeu S, Saad H. Coordination of MMC converter protection and DC line 

protection in DC grids. 2016 IEEE Power and Energy Society General Meeting (PESGM)2016 
[178] Han X, Sima W, Yang M, Li L, Yuan T, Si Y. Transient Characteristics Under Ground and Short-Circuit 

Faults in a 500 kV MMC-Based HVDC System With Hybrid DC Circuit Breakers. IEEE Trans Power Del. 
2018;33:1378-87. 

[179] MacIver C. A Reliability Evaluation of Offshore HVDC Transmission Network Options. Glasgow: 
University of Strathcylde; 2015. 

[180] Pei X, Cwikowski O, Smith AC, Barnes M. Design and Experimental Tests of a Superconducting Hybrid 
DC Circuit Breaker. IEEE Trans Appl Supercond. 2018;28:1-5. 

[181] Raza A, Akhtar A, Jamil M, Abbas G, Gilani SO, Yuchao L, et al. A Protection Scheme for Multi-Terminal 
VSC-HVDC Transmission Systems. IEEE Access. 2018;6:3159-66. 

[182] Blond SL, Bertho R, Coury DV, Vieira JCM. Design of protection schemes for multi-terminal HVDC 
systems. Renew Sustain Energy Rev. 2016;56:965-74. 

[183] Tang G, He Z, Pang H, Huang X, Zhang X. Basic topology and key devices of the five-terminal DC grid. 
CSEE Journal of Power and Energy Systems. 2015;1:22-35. 

[184] Cwikowski O, Wickramasinghe HR, Konstantinou G, Pou J, Barnes M, Shuttleworth R. Modular 
Multilevel Converter DC Fault Protection. IEEE Trans Power Del. 2018;33:291-300. 

[185] Nguyen A-D, Nguyen T-T, Kim H-M. A Comparison of Different Hybrid Direct Current Circuit Breakers 
for Application in HVDC System2016. 

[186] Khan UA, Lee J, Amir F, Lee B. A Novel Model of HVDC Hybrid-Type Superconducting Circuit Breaker 
and Its Performance Analysis for Limiting and Breaking DC Fault Currents. IEEE Trans Appl Supercond. 
2015;25:1-9. 

[187] Callavik M, Blomberg A, Häfner J, Jacobson B. The Hybrid HVDC Breaker: An innovation breakthrough 
enabling reliable HVDC grids. ABB Grid Systems. 2012. 

[188] The Spain-France Underground Electrical Interconnection: A World-Pioneering Project. INELFE, 2015. 
[189] S. Dennetière SN, H. Saad, J. Mahseredjian. Modeling of Modular Multilevel Converters for the France-

Spain link. International Conference on Power Systems Transients.Vancouver, Canada, 2013. 
[190] Peralta J, Saad H, Dennetiere S, Mahseredjian J, Nguefeu S. Detailed and Averaged Models for a 401-

Level MMC–HVDC System. IEEE Trans Power Del. 2012;27:1501-8. 
[191] Ferreira AA, Bellmunt OG, Teixido M. Grid power flow impact on the on-state losses of the modular 

multilevel converter. 12th IET International Conference on AC and DC Power Transmission (ACDC 
2016)2016 

[192] Roper P. Western Link Final NewsLetter. United Kingdom: ScottishPower, National Grid 2018. 



59 
 

[193] Mike Wilks GK, Craig Lucas, Charlotte Higgins. Western HVDC Final Funding Review: A report to Ofgem. 
Pöyry, 2012. 

[194] M. G. Bennett NSD, A. Leirbukt. A Survey of the Reliability of HVDC Systems Throughout the World 
During 2011 – 2012. Cigré Paris Session.Paris, 2014. 

[195] N.S.Dhaliwal MGB. A Survey of the Reliability of HVDC Systems Throughout the World During 2013 – 
2014. Cigré Paris Session.Paris, 2016. 

[196] Adam GP, Gowaid IA, Finney SJ, Holliday D, Williams BW. Review of dc–dc converters for multi-
terminal HVDC transmission networks. IET Power Electron. 2016;9:281-96. 

[197] Müller HK, Torbaghan SS, Gibescu M, Roggenkamp MM, van der Meijden MAMM. The need for a 
common standard for voltage levels of HVDC VSC technology. Energ Policy. 2013;63:244-51. 

[198] Uehara K, Ikeda H. Recent and future situation of Japan’s T&D system. Journal of International Council 
on Electrical Engineering. 2016;6:231-4. 

[199] Babazadeh D, Van Hertem D, Nordström L. Study of centralized and distributed coordination of power 
injection in multi-TSO HVDC grid with large off-shore wind integration. Electr Power Syst Res. 
2016;136:281-8. 

[200] Patel MM, Yadav VK. Design and operational constraints of NEA +800kV, 6000MW UHVDC bipolar 
system. 2017 Innovations in Power and Advanced Computing Technologies (i-PACT)2017 

[201] Babazadeh D, Chenine M, Nordström L. Survey on the Factors Required in Design of Communication 
Architecture for Future DC grids. IFAC Proceedings Volumes. 2013;46:58-63. 

[202] Phulpin Y, Ernst D. Ancillary services and operation of multi-terminal HVdc systems. 2012. 
[203] Dai J, Phulpin Y, Sarlette A, Ernst D. Coordinated primary frequency control among non-synchronous 

systems connected by a multi-terminal high-voltage direct current grid. IET Gener Trans Dis. 
2012;6:99-108. 

[204] Nanou SI, Tzortzopoulos OD, Papathanassiou SA. Evaluation of an enhanced power dispatch control 
scheme for multi-terminal HVDC grids using Monte-Carlo simulation. Electr Power Syst Res. 
2016;140:925-32. 

[205] Bird L, Lew D, Milligan M, Carlini EM, Estanqueiro A, Flynn D, et al. Wind and solar energy curtailment: 
A review of international experience. Renew Sustain Energy Rev. 2016;65:577-86. 

[206] Zakeri B, Price J, Zeyringer M, Keppo I, Mathiesen BV, Syri S. The direct interconnection of the UK and 
Nordic power market – Impact on social welfare and renewable energy integration. Energy. 
2018;162:1193-204. 

[207] Goop J, Odenberger M, Johnsson F. The effect of high levels of solar generation on congestion in the 
European electricity transmission grid. Applied Energy. 2017;205:1128-40. 

[208] Dong C, Qi Y, Dong W, Lu X, Liu T, Qian S. Decomposing driving factors for wind curtailment under 
economic new normal in China. Applied Energy. 2018;217:178-88. 

[209] Held A, Ragwitz M, Sensfuß F, Resch G, Olmos L, Ramos A, et al. How can the renewables targets be 
reached cost-effectively? Policy options for the development of renewables and the transmission grid. 
Energ Policy. 2018;116:112-26. 

[210] Cai Y, Aoyama Y. Fragmented authorities, institutional misalignments, and challenges to renewable 
energy transition: A case study of wind power curtailment in China. Energy Research & Social Science. 
2018;41:71-9. 

[211] Feng Y, Wang S, Sha Y, Ding Q, Yuan J, Guo X. Coal power overcapacity in China: Province-Level 
estimates and policy implications. Resources, Conservation and Recycling. 2018;137:89-100. 

[212] Fang D, Zhao C, Yu Q. Government regulation of renewable energy generation and transmission in 
China’s electricity market. Renew Sustain Energy Rev. 2018;93:775-93. 

[213] China's UHV Transmission Build-out Slowing. BNEF, 2018. 
[214] Wang Y, Yan W, Zhuang S, Li J. Does grid-connected clean power promote regional energy efficiency? 

An empirical analysis based on the upgrading grid infrastructure across China. Journal of Cleaner 
Production. 2018;186:736-47. 

[215] Lin B, Wu W. Cost of long distance electricity transmission in China. Energ Policy. 2017;109:132-40. 
[216] Liu B, Liao S, Cheng C, Chen F, Li W. Hydropower curtailment in Yunnan Province, southwestern China: 

Constraint analysis and suggestions. Renewable Energy. 2018;121:700-11. 
[217] Zhao Z-Y, Chen Y-L. Critical factors affecting the development of renewable energy power generation: 

Evidence from China. Journal of Cleaner Production. 2018;184:466-80. 



60 
 

[218] Li Y, Lukszo Z, Weijnen M. The impact of inter-regional transmission grid expansion on China’s power 
sector decarbonization. Applied Energy. 2016;183:853-73. 

[219] Torvik K, Lockhart B. High-Voltage Direct Current Transmission Systems. Navigant Research, 2013. 
[220] Uehara K, Kern C, Koepfinger JL, Waldron M, Li G, Choe J-W. Future Vision of Transmission and 

Distribution 2030 23rd International Conference on Electricity Distribution.Lyon, 2015 
[221] Galvin R. Trouble at the end of the line: Local activism and social acceptance in low-carbon electricity 

transmission in Lower Franconia, Germany. Energy Research & Social Science. 2018;38:114-26. 
[222] Komendantova N, Battaglini A. Beyond Decide-Announce-Defend (DAD) and Not-in-My-Backyard 

(NIMBY) models? Addressing the social and public acceptance of electric transmission lines in 
Germany. Energy Research & Social Science. 2016;22:224-31. 

[223] Purvins A, Sereno L, Ardelean M, Covrig C-F, Efthimiadis T, Minnebo P. Submarine power cable 
between Europe and North America: A techno-economic analysis. Journal of Cleaner Production. 
2018;186:131-45. 

[224] Barasa M, Bogdanov D, Oyewo AS, Breyer C. A cost optimal resolution for Sub-Saharan Africa powered 
by 100% renewables in 2030. Renew Sustain Energy Rev. 2018;92:440-57. 

[225] Andersen AD. No transition without transmission: HVDC electricity infrastructure as an enabler for 
renewable energy? Environmental Innovation and Societal Transitions. 2014;13:75-95. 

[226] Boie I, Kost C, Bohn S, Agsten M, Bretschneider P, Snigovyi O, et al. Opportunities and challenges of high 
renewable energy deployment and electricity exchange for North Africa and Europe – Scenarios for 
power sector and transmission infrastructure in 2030 and 2050. Renewable Energy. 2016;87:130-44. 

[227] Benasla M, Allaoui T, Brahami M, Denaï M, Sood VK. HVDC links between North Africa and Europe: 
Impacts and benefits on the dynamic performance of the European system. Renew Sustain Energy Rev. 
2018;82:3981-91. 

[228] Benasla M, Hess D, Allaoui T, Brahami M, Denaï M. The transition towards a sustainable energy system 
in Europe: What role can North Africa's solar resources play? Energy Strategy Reviews. 2019;24:1-13. 

[229] Africa 2030: Roadmap for a renewable energy future. Abu Dhabi: IRENA, 2015. 
[230] Hess D. The value of a dispatchable concentrating solar power transfer from Middle East and North 

Africa to Europe via point-to-point high voltage direct current lines. Applied Energy. 2018;221:605-
45. 

[231] Zappa W, Junginger M, van den Broek M. Is a 100% renewable European power system feasible by 
2050? Applied Energy. 2019;233-234:1027-50. 

[232] Blakers A, Lu B, Stocks M. 100% renewable electricity in Australia. Energy. 2017;133:471-82. 
[233] Europe leads the global clean energy transition: Commission welcomes ambitious agreement on 

further renewable energy development in the EU. Strasbourg: EU, 2018. 
[234] Renewable Energy Prospects: China. Abu Dhabi: IRENA, 2014. 
[235] China Energy Engineering: Annual Report 2016. China: Energy China, 2016. 
[236] Buckley T, Shah K. Karnataka’s Electricity Sector Transformation: India’s Leading Renewable Energy 

State. IEEFA, 2018. 
[237] REmap 2030: Renewable Energy Prospects for the Russian Federation Abu Dhabi: IRENA, 2017. 
[238] Gurgel A, Sergey P. The Impacts of the Brazilian NDC and their contribution to the Paris Agreement on 

Climate Change. 20th Annual Conference on Global Economic Analysis.West Lafayette, 2017 
[239] Wogan D, Pradhan S, Albardi S. GCC Energy System Overview. Saudi Arabia: KAPSARC, 2017. 
[240] Young D, Bistline J. The costs and value of renewable portfolio standards in meeting decarbonization 

goals. Energy Economics. 2018;73:337-51. 
[241] IRENA. Renewable Energy Prospects: United States of America, REmap 2030 analysis. Abu Dhabi, 

2015. 
[242] Liu J. China's renewable energy law and policy: A critical review. Renew Sustain Energy Rev. 

2019;99:212-9. 
[243] Mathy S, Menanteau P, Criqui P. After the Paris Agreement: Measuring the Global Decarbonization 

Wedges From National Energy Scenarios. Ecological Economics. 2018;150:273-89. 
[244] Mendonça HL, van Aduard de Macedo-Soares TDL, Fonseca MVdA. Working towards a framework 

based on mission-oriented practices for assessing renewable energy innovation policies. Journal of 
Cleaner Production. 2018;193:709-19. 

[245] Aziz T, Ketjoy N. PV Penetration Limits in Low Voltage Networks and Voltage Variations. IEEE Access. 
2017;5:16784-92. 



61 
 

[246] Alassi A, Ellabban O, Bañales S. Generic Distributed Photovoltaic Cost Outlook Methodology: Australian 
Market Application Example. 2018 IEEE International Conference on Renewable Energy Research and 
Applications (ICRERA).Paris, 2018 

[247] Dobrotkova Z, Surana K, Audinet P. The price of solar energy: Comparing competitive auctions for 
utility-scale solar PV in developing countries. Energ Policy. 2018;118:133-48. 

[248] Ding M, Xu Z, Wang W, Wang X, Song Y, Chen D. A review on China׳s large-scale PV integration: 
Progress, challenges and recommendations. Renew Sustain Energy Rev. 2016;53:639-52. 

 

 


