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Abstract 

Solar Farms are absolutely idle in the night and even during daytime operate below capacity 

in early mornings and late afternoons. Thus, the entire expensive asset of solar farms remains 

highly unutilized. This thesis presents novel technologies for utilization of PV solar farm 

inverter in nighttime for providing multiple benefits to power systems, as well as 

accomplishing the same objectives during the daytime from the inverter capacity left after 

production of real power. The new technology transforms a solar farm inverter functionally 

into a dynamic reactive power compensator known as STATCOM, and termed PV-

STATCOM.  

A novel coordinated control of PV-STATCOMs is proposed for loss reduction in a 

distribution network. The saved energy is substantial and can be used for powering several 

homes annually. The second novel PV-STATCOM control involves a temporary curtailment 

of real power production and utilization of the available reactive power capacity to prevent 

the instability of a critical induction motor load. The third novel PVSTATCOM control is 

employed to significantly enhance the power transfer limit of a long transmission line both in 

the nighttime and also during daytime even when the solar farm is producing a large amount 

of real power. A new technique for short circuit current management is developed for a 

conventional PV solar farm that can potentially solve the problem due to which several solar 

farms have been denied connectivity in Ontario. This thesis has contributed to two patent 

applications and presented first time implementations of another two filed patents.  

A generalized PV solar system model in EMTDC/PSCAD software has been developed and 

validated with manufacturer's datasheet. Another contribution of this thesis is the first time 

harmonics impact study of the largest solar farm in Canada, in the distribution utility network 

of Bluewater Power, in Sarnia, Ontario. 

This thesis makes a strong case for relaxing the present grid codes to allow solar farms to 

exercise these novel controls. This technology can open up new avenues for solar farms to 

earn revenues apart from the sale of real power. This will require appropriate agreements 

between the regulators, network utilities, solar farm developers and inverter manufacturers. 
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Chapter 1  

1 Introduction 

1.1 General 

Solar energy is the most widely available source of renewable and sustainable energy that 

can play a leading role in the program of reducing greenhouse gas emissions. One of the 

established means to transfer this energy and transform it into electricity is Photovoltaic 

(PV) technology. One of the world’s largest PV projects of 80MW, capable of providing 

electricity for more than 12,000 homes, is located in Sarnia, ON, Canada, and has been 

generating power since 2010. This is a $400 million project. The installed PV capacity 

now exceeds more than 250 MW all over Canada [1]. Although PV technology is 

expensive, it is receiving strong encouragement through various incentive programs 

globally [2]-[6]. As a result, PV technology is becoming more popular for connecting to 

the grid both on large and small scales. PV solar farms are inactive during night and only 

partially utilized during daytime. Therefore, a huge investment remains unutilized in 

most of the time over a 24 hours period. This thesis deals with novel technologies for 

utilizing the unused capacity of the PV solar farm inverter for providing several benefits 

to power system such as, line loss reduction, prevention of induction motor load 

instability, improvement of transmission line capacity, etc. 

1.2 Modeling of a Grid Connected PV Solar System 

1.2.1 System description 

A grid connected solar farm system is represented in terms of a block diagram, shown in 

Fig. 1.1. In a grid connected PV system the PV solar farm is connected to the electrical 

network at a bus called the Point of Common Coupling (PCC). The AC network consists 

of a number of loads connected with a typically stiff source, known as ‘Grid’, which is 

primarily responsible for supplying its loads when there is no PV power generation. After 

supplying the neighbouring loads, the additional power generated by the PV solar farm 

goes back to the grid. The PV solar farm generates DC power with its PV panels based on 

solar insolation and temperature, as shown in Fig. 1.1. A DC-DC converter is used to 
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harvest maximum DC power at that solar insolation and temperature by incorporating the 

Maximum Power Point Tracking (MPPT) algorithm. A DC link capacitor is used to 

maintain the DC link voltage constant at the inverter DC terminal. The inverter 

transforms the available DC power to AC power to supply to the AC network. The 

inverter includes semiconductor devices configured in a ‘matrix’ of switches and a 

controller which controls the switching of the devices. The power quality at the output 

terminal of the inverter is maintained with the use of a filter. The output voltage level of 

the inverter is integrated with the network voltage by using a step up coupling 

transformer. The details of each subsystem are provided below:     

 

Figure 1.1 Block Diagram of a Complete Grid Connected PV System. 

1.2.2 PV Solar Panel/Module  

In a PV solar system, the PV modules, often called PV panels, are the power generating 

devices. For a large scale PV system a number of PV modules are connected in series to 

form a ‘String’, and these strings connect in parallel to form an ‘Array’. However, the PV 

modules, or panels, are comprised of a number of PV cells also connected in series and 

shunt configuration. These PV cells are a formation of p-n junctions from the doping of 

p-type and n-type substrates that are able to produce DC current and DC junction voltage 

upon the incidence of light due to the photovoltaic effect on semiconductors. As a result 

of the series and shunt combination of the cells in a module, the PV module can be 

equally characterized with an increased level of current and voltage. The current versus 

voltage (I-V) characteristic of the PV cell, and thereby the PV module, is not linear as 

shown in Fig. 1.2. For a particular amount of solar irradiation, there is a peak point of 
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power corresponding to the voltage at which the PV module can supply maximum power 

for that irradiance level expressed in the units of Sun. One Sun is equivalent to an 

irradiance level of 1000 watt/m2. These I-V characteristics are also temperature 

dependent. As a result, the maximum power point operation varies depending upon the 

solar irradiation and temperature as evident from the typical power versus voltage (P-V) 

characteristic curves, also illustrated in Fig. 1.2.  

 

(a) 

 
(b) 

Figure 1.2 Typical I-V characteristic of a PV module at (a) different solar 

irradiation levels at 25 ̊C and (b) different temperatures at 1 Sun irradiation. 
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Due to the construction similarity of the solar cells with the p-n junction photodiode, in 

general, the equivalent circuit of a PV cell can be represented by a current source in 

parallel with a p-n junction diode, as shown in Fig. 1.3, where G denotes the solar 

irradiation, T is the temperature, Rs is the equivalent series resistance of the cell, and Rsh 

is the equivalent shunt resistance of the cell [7]. Although there is another equivalent 

circuit representation of two diodes, known as the double exponential model [8], the 

single diode model is the simplest representation with respect to accuracy and 

construction. 

 

Figure 1.3 Equivalent circuit of PV solar cell (single diode model). 

The modeling of solar panels using different commercially available software such as 

Matlab/Simulink, SPICE, SABER, etc., is reported in [8]-[17]. For modeling PV panels, 

these software applications utilize lookup tables for the equivalent source current output 

according to I-V curves [9], approximate diode current equations embedded in an 

equivalent current source [10], equivalent linear DC voltage source [11], program coding 

for current output corresponding to equivalent source terminal voltage [12], and a 

predetermined constant from the I-V characteristic curve of PV cell for the determination 

of equivalent source parameters [8].  

Although the aforementioned papers utilize standard diode equations to model PV cells, 

it is important to determine precisely the equivalent series resistance Rs and the shunt 

resistance Rsh due to the non-linearity of the equations [18]. The effects of Rs and Rsh are 

illustrated in Appendix-A. Some papers have used I-V characteristic curves [12], [13] to 

determine equivalent Rs of the PV cell by neglecting Rsh of the PV cell as the value of Rsh 

is quite high and the effect of Rs is more dominant than Rsh in certain operating regions. 

Alternatively, they have determined both the resistances through iterative techniques 
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[14]-[17]. Several models have also been developed in EMTDC/PSCAD software for 

fault analysis [19], MPPT modeling [20], PV array modeling [21],[22]. These models are 

developed using approximate equations by neglecting both Rs and Rsh [19]. Some models 

typically use a number of pre-defined constant values with FORTRAN coding [20]. One 

of them [21] utilizes predefined constants derived from I-V characteristic curves. Another 

paper [22] has used the circuit based piecewise linearization technique through trial and 

error method to model the PV source. 

However, the above mentioned modeling techniques are based on the use of lookup 

tables [9] or predetermined constants from the I-V characteristic curve of PV cell and, 

thereby, the PV module are PV cell manufacturing parameters dependent and require 

more detailed information for the modules from the manufacturer’s datasheet of the PV 

cell. The determination of both resistances through iterative techniques requires more 

iterative programming, and eventually slows down the simulation process. Also, the 

circuit based piecewise linearization technique, through trial and error, requires repetitive 

refinement for different levels of solar radiation and temperature. It is further noted that 

the dynamic model of the PV solar modules represented with an equivalent linear DC 

voltage source is not the proper choice because of the nonlinear I-V characteristics of PV 

cells, and thereby the modules. In most cases, these models lack accuracy in prediction of 

output power and current due to a large number of assumptions and approximations. 

1.2.3 Maximum Power Point Tracking (MPPT) System 

To harvest maximum power from the solar cells or modules as depicted in Fig. 1.2, a 

Maximum Power Point Tracking (MPPT) system is required to be integrated with the 

system, as illustrated in Fig.1.1. In modeling the MPPT, two types of topologies are used: 

one is the use of a DC-DC converter [23], [19] and the other is without a DC-DC 

converter [24], [25].  

1.2.3.1 MPPT with DC-DC converter 

In this topology, a DC-DC buck, boost, or buck-boost converter is used to maintain the 

output DC link voltage across the DC link capacitor constant and allows the PV panels to 

operate at this maximum power point voltage. It also serves as a decoupling circuit 
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between PV panels output and inverter input to minimize the effect of inverter operation. 

A detailed modeling procedure for a DC-DC converter of PV solar cells, thereby, the PV 

modules can be found in [26]. 

1.2.3.2 MPPT without DC-DC Converter (Converter-less MPPT) 

In a grid connected solar system, it is also possible to maintain the voltage constant 

across the DC link capacitor by controlling the inverter input current without the use of a 

DC-DC converter. This technique minimizes the loss and increases the efficiency [27]. 

The output voltage of PV panels or modules serves as the DC link voltage: and when this 

voltage is maintained at maximum power point voltage due to inverter control, the PV 

panels generate maximum power.      

1.2.3.3 MPPT Algorithm 

To maintain the DC link voltage constant a reference is used by monitoring the output 

voltage and current of the PV panels based on some established algorithms, e.g. Perturb 

and Observe [28], Incremental Conductance, [29] etc. such that the PV panels operate at 

maximum power point voltage to generate maximum power. Among all of the 

algorithms, incremental conductance algorithm is much more efficient in terms of rapid 

tracking of changes in the solar irradiation level [26], [30]. The reference obtained from 

the MPPT algorithm is set in the DC-DC converter switching controller (not shown in 

figure) for the DC-DC converter based system, or in the inverter controller for the 

converter-less system as shown in Fig. 1.1. 

1.2.4 PV Inverter Modeling 

1.2.4.1 PV Inverter Configuration  

Two types of inverter configuration are employed presently in solar farms. One is called 

string technology; [32]-[35] where several modules in string configuration feed in to a 

single large inverter. These large inverters are grouped together to feed the grid. The 

other is called the micro-inverter, also known as AC module technology, [32], [33] where 

each individual module has its own inverter and the outputs of all micro-inverters are 

integrated together to feed the grid. 
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There are numbers of inverter topologies used for grid connected PV solar farms. There 

are single step topology for AC modules [36],[37], two stage topology for multiple 

modules [38],[39], multilevel inverter topology [40],[41], fly-back type inverter 

[42],[43], fly-back current fed inverter, [44] all of which are summarized in [45]. 

Different topologies used by several commercial manufacturers are compared and studied 

in terms of performances in [46]-[50], [35]. A resonant inverter is also discussed in [51].  

To construct inverter circuits, manufacturers use Metal-Oxide Semiconductor Field 

Effect Transistor (MOSFET) [52], Gate Turn Off (GTO) thyristor, and Insulated Gate 

Bipolar Transistor (IGBT) switches [53]. The present trend is to use IGBT switches [53], 

[54] because of their low loss and ease of switching [55]. A typical six pulse inverter 

using the IGBT switches is depicted in Fig. 1.4 [11], [24] which is comprised of 6 IGBT 

switches with associated snubber circuits for smooth switching operation [56]. The firing 

pulses to trigger the IGBT switches are generated from the inverter controller.  

 

Figure 1.4 Typical PV solar farm inverter. 

1.2.4.2 Inverter Firing Strategy 

To generate the firing pulses for the IGBTs in the inverter, various technologies such as 

Pulse Width Modulation (PWM) [52], [53], Sinusoidal Vector PWM (SVPWM) [24], or 

Hysteresis control [57] techniques are used. Among all of these techniques, the PWM 

technique is widely used for high power PV inverter applications [52],[53],[58].   
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1.2.4.3 Inverter Control schemes  

The PV solar farm is required to inject power to the grid at close to unity power factor 

according to several DG inter-connection standards [59],[60],[61]. In modeling the 

control system, two control schemes are widely used - Current Sourced Inverter (CSI) 

and Voltage Sourced Inverter (VSI) or, alternately known as Voltage Sourced Converter 

(VSC). In a CSI scheme, the inverter input is maintained as a constant current source 

with the use of DC link inductors, whereas the VSI scheme uses the DC link capacitor to 

maintain constant voltage source at the inverter input. For CSI, the output of the inverter 

is the controlled voltage. On the other hand, the output of the VSI control scheme is a 

controlled current. Due to the lower short circuit current contribution to the grid faults, 

the VSI with current control strategy is preferred by industries [52],[53],[55]. Therefore, 

the remainder of the work in this thesis is mainly focused on VSI based inverter control 

schemes. 

Fig.1.5 presents the VSI current controller of a typical PV solar farm inverter which uses 

d-q current and voltage components as a feedback signal of two current control loops: 

direct axis current control loop and quadrature axis current control loop 

[24],[52],[54],[62]-[65]. The three phase voltage (Va, Vb, Vc) and current (Ia, Ib, Ic) 

measured at PCC (not shown in figure) are converted into d-q components of voltage 

(Vsd
c, Vsq

c) and current (Id, Iq) through the Park’s transformation process. In this 

transformation, it uses the angle obtained from the PCC voltage (Va, Vb, Vc) through a 

phase locked loop (PLL) oscillator known as the synchronization angle, θ. For balanced 

three phase signals, ��(�) = cos 
 ; ��(�) = cos(
 − �� ) ; ��(�) = cos(
 − ��� ) and 
 = (�� + �) 

The Park’s transformation is as follows [108] as given in Appendix – A for a rotating d-q 

frame at a speed of ω:  

���(�)��(�)� = 23 . � cos 
 cos �
 + 2�3 � cos �
 − 2�3 �
− sin 
 − sin �
 + 2�3 � − sin �
 − 2�3 �" . #��(�)��(�)��(�)$ 
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where, the quantity, f, represents either the instantaneous voltage or current signals. 

ω=2πf is the angular frequency and φ is the phase angle of the corresponding 

components. Therefore, the real power, P and the reactive power, Q in d-q co-ordinate 

system is given by [108], 

% = 32 &'�. (� + '� . (�)		+,-		. = 32 &−'�. (� + '� . (�) 
If the direct axis component vd is aligned with the space vector, at steady state, the power 

expression can be decoupled as follows [108]: 

% = 32 /'� . (�0		+,-		. = 32 &−'�. (�) 
The d-q components of voltages vd, vq and current id, iq are constantly rotating with d-q 

reference axes. Therefore, vd, vq, id and iq are expressed as in Laplace form as Vsd
c, Vsq

c, Id 

and Iq, respectively. 

In Fig. 1.5, the direct axis current control loop consists of two proportional integral 

controllers, PI-1 and PI-3. Whereas, the quadrature axis current control loop consists of 

PI-2 and PI-4. The direct axis current control loop maintains the DC link voltage constant 

around a reference set by the MPPT algorithm in a converter-less MPPT technique and 

injects the balance of the power generated from the PV modules to the inverter output. To 

perform this control function, the DC link voltage, VDC, is compared with the DC voltage 

reference, VDC_ref, obtained from the MPPT algorithm and is passed through a PI-3 

controller to obtain the direct axis current control loop reference, Id_ref. The measured 

direct axis current signal, Id, is compared with this reference signal, Id_ref, to obtain the 

direct axis modulation signal, md, through the PI-1 controller. On the other hand, the 

quadrature axis current control loop is used to maintain the reactive power output of the 

inverter around a reference value of zero for unity power factor operation[24],[62]. In this 

case, the reactive power output is compared with the reference value which gives the 

quadrature axis current control loop reference, Iq_ref, through the PI-4 controller and 

generates the quadrature axis component of modulation signal, mq, with the comparison 

of Iq through the PI-2 controller. The direct axis and quadrature axis voltages act as 

disturbance signals in these control loops and a decoupling factor of ωL is included to 

decouple these two control loops where, ɷ is the angular frequency in rad/sec and L is the 
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inductance at the output of the inverter. The detailed mathematical manipulation is given 

in Appendix-A.  However, the output two axis modulation signals md and mq from the 

controller are converted into three phase signals called modulating signals (ma,mb,mc), as 

follows:  1� = 1 cos(
 + 2), 1� = 1 cos(
 + 2 − 120°), 1� = 1 cos(
 + 2 + 120°) 

where, 1 = 61� + 1�,  2 = tan9: ;<;=. 

>= ?>@A + >BA 

C = DEF−G >B>@ 

1+ = 1 HIJ(
 + 2) 1K = 1 HIJ(
 + 2 − 120°) 1L = 1 HIJ(
 + 2 + 120°) 

 

Figure 1.5 Generic VSI based PV inverter controller. 

In the PWM technique, these ‘modulating signals’ are compared with high frequency 

triangular signals called ‘carrier signals’ to generate the gating signals for the IGBT 

devices to inject PV solar farm power to the AC grid at unity power factor and controls 

the DC link voltage. 

1.2.4.4 DC link Capacitor  

In a PV solar system the main role of the DC link capacitor, in addition to holding a 

constant DC voltage, is to maintain the power quality at the DC side which ultimately 

influences the power quality at the AC side [66]. For smooth operation of the inverter, a 

comparatively ripple free DC current and voltage is required at the input of the inverter. 

While using the DC link capacitor in a converter-less MPPT system, the size of the DC 

link capacitor must be carefully chosen. Otherwise, pulsating power due to extra high 
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value of capacitor or a power variation due to a very low value of DC link capacitor will 

be transmitted to the grid [27]. The sizing of DC link capacitors is reported in [52], [65], 

[67], [68] based on maximum energy storage capacity and allowable minimum DC 

voltage. 

1.2.5 Filter Modeling 

Along with the fundamental component, the inverter generates harmonics depending 

upon its switching frequency and the size of DC link capacitor. Hence, filters are required 

at the AC side of the inverters such that the net harmonics output expressed in terms of 

Total Demand Distortion (TDD) and Total Harmonic Distortion (THD) comply with the 

grid code requirements as set by several standards, e.g. IEEE 519 [69], IEEE 1547 [59]. 

To perform the filtration of the output AC power in order to obtain a purely sinusoidal 

waveform, a number of filter configurations are used [35]; out of which the L-C-L 

configuration or the L-C filter, in conjunction with the transformer impedance, are chosen 

widely [70], [71]. The traditional modeling techniques for the L-C-L filter are reported in 

[64],[68],[70],[71].   

1.2.6 Step Up Transformer  

A step up transformer is primarily used as the coupling transformer between the inverter 

and the grid. In most of the inverters, the DC terminal is grounded to apply equal DC link 

voltage across each IGBT switches. Therefore, in the case of any line to ground fault at 

the AC side of the inverter, to protect the IGBT valves, the zero sequence current flow 

through the valves are prevented by using either ungrounded wye winding, or delta 

winding at the inverter side of the step up transformer. In the case of any overvoltage due 

to ungrounded winding at the inverter side, the inverter is equipped with protective 

devices to shut itself down by sensing the voltage and phase angle at its terminal 

[52],[53],[55]. According to several utility connection requirements, the DG coupling 

transformer should be delta (at the inverter side) and must be grounded wye at the utility 

side [72] due to several advantages as discussed in [73],[74]. Therefore, the step up 

transformer with either delta (at inverter side) - wye grounded (at the utility side) [75] or, 

floating wye (at the inverter side) - wye grounded (at the utility side) is preferred [76]. 
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1.3 Short Circuit Contribution of Grid Connected PV Solar 
System 

In electric power systems, the integration of more Distributed Generators (DGs) with the 

network increases the short circuit level due to the current contribution of the DGs to a 

potential fault [77]-[79]. Hence, utility companies, especially in Ontario, are limiting the 

connection of DGs into their network [61] which has resulted in the loss of opportunity to 

integrate more renewable generation into the network. Compared to the synchronous and 

induction machine based generators, the inverter based generators, such as the  

Photovoltaic (PV) system, contributes much less fault current to the network due to the 

characteristics of PV panels and inverter operation. The short circuit current contribution 

from a PV system inverter is in the range of 1.2 times the rated current for the large size 

inverter (1MW) [55], [80] 1.5 times (500kW) for the medium size inverter [80], [81] and 

2 - 3 times for the smaller inverters [80],[81]. Although each PV solar farm satisfies the 

standards, the total amount of fault contribution becomes unacceptably large for a feeder 

that has a large number of PV systems [81], [82]. According to several grid 

interconnection standards [59], [60], regardless of fault level, it is required to disconnect 

the PV solar farms or any other DGs upon detection of fault on the system.  

Therefore, it is not only important to detect the faults rapidly, but also to disconnect the 

DGs from the network as quickly as possible to minimize short circuit current 

contribution. This issue has not been adequately addressed in literature. Although [83] 

claims that their controller is capable of limiting the short circuit contribution within 1 

pu, the details are not yet disclosed to the public.  

1.3.1 Techniques for Fault Detection 

The traditional relay technologies mainly use the over-voltage, under-voltage, and over-

current signals to detect the fault and, subsequently, operate the protective breaker and 

disconnect the DGs from the network. According to DG interconnection requirements by 

a utility [61], a DG generating more than 1 MW is required for transfer trip. To detect the 

fault the utility uses instantaneous over current relay which takes about 17 milliseconds 

to detect a fault and transfers the trip signal within 5-10 milliseconds [61]. The traditional 

breaker operating time is considered as 83 milliseconds [61]. Therefore, the current 
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practice of detecting a fault and disconnecting the DG takes at least 105-110 

milliseconds. Within this time the fault current already exceeds its allowable peak limit at 

least for 7-8 cycles.  Techniques have been proposed for quick detection of fault through 

the monitoring of change in the voltage phase angle [84], combined voltage phase and 

magnitude [85], positive sequence component of voltage [86], [87], and d-q components 

of voltage magnitude at the point of common coupling (PCC) [88],[89]. To detect the 

fault faster current monitoring is chosen in [90]- [92]. According to [90], the speed of 

fault detection depends on the digital signal processing and sampling rate of the fed back 

current signal that is able to generate a trip signal within 3-5 ms. Whereas, [91] and [92] 

use the rate of rise of current and current magnitude to generate a trip signal within 1ms. 

So far, these fast fault detection techniques are used for power system network protection 

and unsymmetrical fault detection in Fault Current Limiter (FCL), which uses either solid 

state breaker to trip faster. 

Such techniques have not been applied for fast fault detection in the case of PV solar 

systems. 

1.4 Flexible AC Transmission System (FACTS) Devices 

Flexible AC Transmission System (FACTS) is defined by IEEE [93] as: 

 “Alternating current transmission systems incorporating power electronic-based and 

other static controllers to enhance controllability and increase power transfer 

capability.” 

FACTS devices can be classified based on the device technology as follows [94]-[96]: 

A) Thyristor Based FACTS Devices:  

The thyristor based FACTS devices employ thyristor that can only be turned on by gating 

signals, but cannot be turned off by removing gating signals. They turn off only when the 

current passing through it becomes zero. This type of FACTS device can be categorized 

in two groups: Shunt connected, and Series connected thyristor based FACTS devices. 

Shunt connected thyristor based FACTS devices include Thyristor Controlled Reactor 

(TCR), Thyristor Switched Capacitor (TSC), and Static Var Compensator (SVC), etc.  
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Series connected thyristor based FACTS devices include Thyristor Controlled Series 

Capacitor (TCSC), Thyristor Switched Series Capacitor (TSSC), and Thyristor 

Controlled Phase Angle Regulator (TCPAR), etc. 

B) Voltage Sourced Converter (VSC) based FACTS devices:  

In these VSC based FACTS devices GTO, MOSFET, or IGBT devices are used to form 

the switches in the VSC. These devices can be turned ON and turned OFF by employing 

the gating signals. As a result, the controllability increases significantly. In every VSC 

based FACTS device, a dc link capacitor is used to maintain a constant voltage. Based on 

the construction and application, these devices are categorized in three different groups: 

Shunt Connected VSC based FACTS devices, Series Connected VSC based FACTS 

devices, and Combined Shunt and Series Connected FACTS devices. 

Shunt connected VSC based FACTS devices include the Static Synchronous 

Compensator (STATCOM) which primarily comprises an inverter. The inverter could be 

either six pulse, twelve pulse, or higher. The higher the pulse level, the lower the 

harmonic injections but the higher the construction complexity [94]-[96]. Also, the 

inverter could be single level, two level, or multilevel [94]-[96], [199]-[202].  

Series connected VSC based FACTS devices include the Static Synchronous Series 

Compensator (SSSC) which can effectively modulate the line reactance by introducing 

into the line a voltage at an appropriate phase angle with respect to current [95], [199]-

[202].   

Combined Shunt and Series Connected FACTS devices include the Unified Power Flow 

Controller (UPFC), which is basically the combination of a SSSC and a STATCOM 

sharing a common DC link capacitor. Therefore, two VSCs are connected on either side 

of the capacitor; one is connected in shunt, and the other is connected in series. The 

UPFC performs both the functions of SSSC and STATCOM simultaneously [95], [199]-

[202]. 

FACTS devices, although very expensive, are widely employed in power systems for the 

following reasons: 
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The shunt connected FACTS devices exchange controlled reactive power with the grid in 

order to maintain the bus voltage constant, or to modulate the bus voltage and increase 

system stability [97] and damping [95], [199]-[202]. The series connected FACTS 

devices effectively increase, decrease, or modulate the line reactance to control power 

flow and to increase system stability [94]-[96], [199]-[202]. 

A distinctive feature of VSC based FACTS devices (STATCOM, SSSC, UPFC) is the 

capability of real power exchange if they are connected to an energy storage system such 

as battery [96], [98]-[102],[199]-[202]. However, this thesis focuses on STATCOM 

operation, thus, the STATCOM is described in detail in the next section.    

1.5 STATCOM 

1.5.1 Basic Operating Principle:  

A STATCOM is analogous to a synchronous condenser [95] and is capable of generating 

three phase sinusoidal voltages with controllable amplitude and phase angle. Fig. 1.6 

shows the one line diagram of a STATCOM with its voltage and current phasors in a 

power system.  

 

Figure 1.6 (a) STATCOM (b) analogous representation of STATCOM and,  

(c) STATCOM terminal voltage and current phasor. 
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The STATCOM is connected with the utility through a coupling reactance or 

transformer, as shown in Fig. 1.6 (a). Therefore, the STATCOM can be equally 

represented as an ideal adjustable voltage source connected to a utility network, as shown 

in Fig. 1.6 (b) where the equivalent reactance Xs is provided by the coupling transformer 

leakage reactance. Like the synchronous condenser, when the STATCOM inverter output 

voltage Einv_fund is greater than the utility voltage EPCC, as shown in Fig 1.6 (c), the 

STATCOM supplies reactive power Q or leading current, and when Einv_fund is less than 

EPCC it absorbs Q or supplies lagging current. It is noted, when Einv_fund is exactly equal to 

the EPCC, no current flows from the STATCOM. This condition is known as the floating 

state. Therefore, the reactive power can be varied from inductive to capacitive range 

smoothly by varying the STATCOM terminal voltage magnitude Einv_fund. 

Since the STATCOM controls reactive power flow through power electronics processing, 

it does not require any additional capacitor banks or reactors as a SVC that contributes to 

a compact design, and smaller footprint, as well as low noise and low magnetic impact. 

The only capacitor used is at the DC terminal of the STATCOM, which provides a 

constant voltage. As DC power does not have any reactive component and the voltage at 

the DC terminal is held constant, the DC link capacitor does not participate in any 

reactive power exchange. Since the STATCOM does not inject any real power to the 

grid, the DC link provides an instantaneous power-circulating path to satisfy the power 

balance relation and thus, the converter establishes a circulating reactive power exchange 

among the phases. However, in a practical STATCOM system there are real power losses 

that are compensated from the DC link capacitor, thereby reducing the DC link voltage. 

Thus, some real power must be absorbed from the AC system to keep the DC link 

capacitor voltage constant. This is accomplished by making the VSC terminal voltage lag 

the utility system voltage by an angle of θ. The magnitude of this angular difference 

depends on the amount of charge that needs to be replenished in the DC link capacitor. 

1.5.2 V-I Characteristic of STATCOM 

The typical V-I characteristic and the V-Q characteristics of a STATCOM are depicted in 

Fig. 1.7 [95]. According to the V-I characteristics it is observed that the STATCOM is 

able to provide its rated reactive current even when the voltage at its terminal decreases 
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as low as 0.1 p.u. Therefore, the Q limit varies linearly with the bus voltage as observed 

in Fig. 1.7(b). This reveals that the STATCOM can operate effectively even if there is a 

fault in the network which might cause a low voltage situation. It is also observed that 

both the maximum inductive and the capacitive current ranges, as well as the inductive 

and capacitive reactive power ranges are equal, giving the STATCOM twice the dynamic 

range for the same size of VSC.  

 

Figure 1.7 STATCOM (a) V-I and (b) V-Q characteristics. 

1.5.3 Configuration 

A STATCOM is comprised of a voltage sourced converter (VSC) with a DC link 

capacitor. The sole purpose of the DC link capacitor is to maintain the DC link voltage 

constant such that the voltage at the AC terminal can be controlled smoothly. The VSC 

can be based on either Gate Turn Off (GTO) thyristors or Insulated Gate Bipolar 

Transistors (IGBT) [96]. The IGBT based STATCOMs are becoming more popular due 

to being more cost effective. Along with the IGBT switches, snubber circuits are 

incorporated for smooth switching operation of the IGBT devices [103]. The IGBT 

switches can be controlled through various control techniques among which the Pulse 

Width Modulation (PWM) technique is widely used in large size STATCOMs. A typical 

STATCOM is depicted in Fig. 1.8 where the coupling transformer is used for 

transforming the STATCOM output voltage to the system bus voltage. While using the 

PWM technique, a filter is needed to eliminate harmonics and maintain the power quality 

at the AC side of the STATCOM [104], [105]. 
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Figure 1.8 IGBT based basic STATCOM configuration. 

1.5.4 Controller 

The STATCOM controller is used either to control the voltages at the PCC or to control 

the reactive power flow. Based on the control strategy, the PCC signal is monitored 

accordingly. A PWM based typical PCC voltage control strategy of a STATCOM is 

demonstrated in Fig. 1.9 [106] where the controller is implemented with the use of d-q 

co-ordinate system signals [98], [107].  

>= ?>@A + >BA 

C = DEF−G >B>@ 

1+ = 1 HIJ(
 + 2) 1K = 1 HIJ(
 + 2 − 120°) 1L = 1 HIJ(
 + 2 + 120°) 

 

Figure 1.9 Schematic Diagram of Generic STATCOM Controller. 
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In this control system, all of the measured current and voltage quantities are converted 

from the ABC co-ordinate system to the d-q co-ordinate system prior to being given as 

controller input. This controller uses two inner current control loops: direct axis current 

(Id) control loop and the quadrature axis current (Iq) control loop.  Regardless of the 

control strategy, in an ideal case, STATCOM does not transfer any real power.  However, 

in a real case, a real power loss associated with STATCOM operation lowers the DC link 

voltage. Hence to maintain constant DC link voltage the DC bus is monitored and 

regulated through a controller PI-3 on direct axis current control loop which eventually 

defines the reference value Id_ref for the direct axis current control loop as shown in Fig. 

1.9. On the other hand, to control the voltage at the PCC through reactive power 

exchange, the PCC voltage is monitored and is compared with the reference value of 

PCC voltage. The output of the voltage regulator PI-4 on the quadrature axis control loop 

sets the reference value Iq_ref for quadrature axis current control loop. The current signals 

monitored from the PCC are then compared and passed through two PI controllers, PI-1 

and PI-2, to generate desired modulating signals md and mq. These modulating signals, md 

and mq, are converted back into three phase signals and compared with a high frequency 

carrier signal which generates a series of gating signals for the IGBT switches of the 

inverter.  

According to the switching of the IGBT devices, the input DC voltage of the inverter 

appears at the output of the inverter as a high frequency pulsating DC, which includes a 

fundamental component of AC voltage. It is noted that a phase locked loop oscillator 

(PLL) is used to synchronize the VSC output with the power system voltage and 

frequency [106].  

In this PWM technique, the output and input voltage relation in terms of modulation 

index ‘m’ can be expressed as follows [98], [96], [108]:  

MNO(P9Q),ST�U = 1. MVO 2W ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.1) 

Therefore, by controlling the magnitude of the modulation signal with the controller, the 

desired AC voltage output from the input constant DC voltage Vdc can be achieved. A 

detailed mathematical analysis of a STATCOM controller can be found in [106],[108].  
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1.5.5 Voltage Control 

This voltage control operation of a STATCOM is demonstrated with an EMTDC/PSCAD 

software simulation result, presented in Fig. 1.10.  

  

(a)

 
(b) 

Figure 1.10 Voltage and current waveforms for (a) 5 MVAr inductive and (b) 5 

MVAr capacitive mode of operation of STATCOM. 
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The high frequency pulse series signal, Einv, represents the line-to-line pulsating voltage 

between phase A and B at the STATCOM inverter terminal. The red sinusoidal 

waveform (Einv_Fund=V2) represents the fundamental component of the line-to-line voltage 

between phases A and B extracted from the pulsating voltage ‘Einv’ with the use of a 

filter. The green waveform (EPCC=V1) represents the PCC line to line voltage between 

phases A and B and the blue waveform (Iinv_a) represents the inverter output current at 

phase A. Fig. 1.10(a) represents the voltage and current waveforms for 5MVAr inductive, 

and Fig. 1.10(b) represents the voltage and current waveforms for 5 MVAr capacitive 

reactive power supplied by the STATCOM. 

It is evident from the waveforms in Fig. 1.10 (a) that when the magnitude of fundamental 

voltage at the STATCOM terminal is lower than the PCC voltage (V1), the inverter output 

current is lagging behind the voltage, indicating that the STATCOM is operating in 

inductive mode. On the other hand, when the magnitude of fundamental voltage at the 

STATCOM terminal is higher than the PCC voltage as shown in Fig. 1.10(b), the inverter 

output current is leading the bus voltage, indicating that the STATCOM is operating in 

capacitive mode. Based on this principle, the VSC of STATCOM regulates the voltage 

magnitude at its terminal such that both capacitive and inductive reactive power can be 

exchanged with the grid as needed. It is noted that the control system is compensating for 

a very small amount of real power loss by maintaining the DC link voltage constant. 

Hence, a very small phase angle difference between the voltages is noticed (not visible in 

figure.) 

1.6 Application of Shunt FACTS Devices: 

Transmission grids worldwide are presently facing challenges in integrating large-scale 

renewable systems (wind farms and solar farms) due to their limited power transmission 

capacity [109]. In a power system, the power transfer over a transmission line is limited 

by several angular stability limits such as: thermal limit, steady state stability limit, 

transient stability limit, and damping limit [95], [97]. The relative magnitudes of these 

various limits are presented graphically in Fig. 1.11 where the vertical length denotes the 

level of power in MVA.  
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Figure 1.11 Relative magnitudes of various power transmission limits. 

To increase the transmission capacity of existing transmission lines, series compensation 

and various Flexible AC Transmission System (FACTS) devices are utilized 

[94],[95],[110],[111]. In an extreme situation, new lines may need to be constructed at a 

very high expense [112]. 

Among various applications of shunt connected FACTS devices on a transmission 

network, the following are the most significant applications of these devices that have 

been considered in this thesis. 

1.6.1 Voltage Control and Improvement of Steady State Power 
Transfer Capability over a Long Transmission line. 

In a long transmission line, regulation of midpoint voltage helps to increase the steady 

state power transfer limit. For instance, assuming a lossless long transmission line as 

shown in Fig. 1.12 (a), the power transferred over the transmission line can be expressed 

by :  

%: = M:MY sin Z . ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.2) 

Where, V1 and V2 are the magnitudes of sending end and receiving end voltages 

respectively, δ is the angle difference between two voltages, and X is the reactance 

between the sending and receiving end.  



23 

 

   

(a)      (b)  

Figure 1.12 Power flow improvement (a) without compensation and (b) with mid-

point compensation. 

Therefore, for V1=V2=1 pu, the maximum power transfer over the transmission line is 

obtained for δ=90̊ and at this condition: 

%:_;�\ = 1Y . ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.3) 

In this uncompensated line, for further improvement of power transfer, a parallel 

transmission line is required to effectively reduce the value of X. Alternately, placement 

of a shunt FACTS device at the mid-point helps to improve the power flow [65], as 

demonstrated in Fig. 1.12 (b). In this FACTS device, a compensated system to the power 

flow equation becomes,  

%: = M:M;Y/2 sin Z/2 , ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.4) 

Therefore, for V1=Vm=1 pu, the maximum power transfer over the transmission line is 

obtained for δ=180̊ and at this condition the maximum power flow that can now be 

achieved becomes [95], 

%:_;�\ = 2Y ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.5) 

Thus the power transfer limit is increased to twice the capacity of the uncompensated 

line.  

1.6.2 Improvement of Transient Stability and Enhancement of 
System Damping 

The transient stability is limited mainly due to low frequency power oscillation in the 

power system among which the rotor mode electromechanical oscillation is the 

significant one, having a frequency oscillation in the band 1-2 Hz. This oscillation can 
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lead a power system towards instability. This instability can be avoided with the use of a 

shunt connected FACTS device [95], [113]-[116]: 

Consider a single machine infinite bus system as shown in Fig. 1.13, where a shunt 

FACTS device is connected at the mid-point of the line. 

 

Figure 1.13 Single Machine Infinite Bus (SMIB) system with shunt FACTS devices. 

The machine swing equation can be expressed as:  

` -Z-� = %a − %b ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.6) 

Here, M is the angular momentum, δ is the generator rotor angle, PM is the mechanical 

power and PE is the electrical power. For a small signal disturbances, 

` -∆Z-� = ∆%a − ∆%b ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.7) 

Considering ∆%a = 0, since mechanical power input is assumed constant, 	
` -∆Z-� = −∆%b 	⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.8) 

For a mid-line compensated system, considering |V1|=|V2|=V, 

%b = M. M;g 2W . sin Z 2.W ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.9) 

For incremental change in electrical power, 

∆%b = i%biM ∆M + i%biM; ∆M; + i%biZ ∆Z 

By considering the sending end voltage constant, i.e., ∆M = 0, 
Using equation (1.8) we get,  

` -∆Z-� + i%biM; ∆M; + i%biZ ∆Z = 0	 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.10) 

This is the expression for small signal dynamic behavior of the system, where the middle 

term 
jkljmn ∆M;	is the effect of the FACTS devices. If the FACTS devices are used to 
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maintain the mid-point voltage Vm strictly constant then, ∆M; = 0, Hence, the equation 

(1.10) becomes as follows: 

 ` �o∆p�qo + jkljp ∆Z = 0	 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.11) 

Or, in Laplace domain,  

r. ∆Z + 1̀ . i%biZ ∆Z = 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.12)	 
The characteristic equation becomes, 	

r + 1̀ . i%biZ |t = 0	 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.13) 

Hence the roots are, 	
r = ±v− 1̀ . i%biZ |t = ±wv 1̀ . i%biZ |t = ±w�x ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.14) 

Here, j denotes the imaginary quantity. Therefore, the roots of the characteristic equation 

lie on the imaginary axis, that results in un-damped oscillations in the rotor angle δ with a 

frequency of  

�x = ?:a . jkljp |t where, 
jkljp  is the synchronizing power coefficient. 

Therefore, it is observed that the pure voltage control by the FACTS device does not 

provide system damping [95]. However, the FACTS device can contribute to the 

damping by modulating the mid-point voltage instead of keeping it constant. The mid-

point voltage is modulated in response to the oscillation in generator rotor as, ∇M; =z. �(∆p)�q  where, k is a constant. 

Hence, equation (1.10) can be re-written as follows: 

` -∆Z-� + i%biM; z. -(∆Z)-� + i%biZ ∆Z = 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.15) 

The characteristic equation becomes as, 

r + r. z̀ . i%biM; |t + 1̀ . i%biZ |t = 0	 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.16) 

{|, r + 2}r + �x = 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.17)	 
Hence, the roots become:  
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r = −2} ± 64} − 4�x2 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1.18) 

It is clearly evident that the roots lie on the left half of the s plane and the oscillations 

damp out exponentially, where the damping ratio can be expressed as } = U.a . jkljmn |t 

However, to modulate the mid-point voltage various signals can be used as auxiliary 

signals that reflect the rotor mode oscillation [95]. The main criterion for choosing this 

signal is to have a better observation as well as good controllability [95],[96]. The 

following signals can be used to modulate the mid-point voltage: 

A) Local signals:  

Line current, Real power flow, Reactive power flow, Bus frequency, Bus 

voltage/angle. 

B) Remote signals (synthesized/telecommunicated):   

Rotor angle/speed deviation of a remote generator, angle or frequency difference 

between remote voltages at the two ends of the transmission line.   

1.7 Enhanced Utilization of Grid Connected PV Solar 
System 

1.7.1 Nighttime Utilization of PV Solar Farm as STATCOM for 
Increasing Wind Connectivity 

Recent research [57],[117] reported that the PV solar farm can be transformed to act as a 

STATCOM to increase the connectivity of a neighbouring wind farm during nighttime on 

a distribution network. This novel concept of PV solar farm control is used to regulate the 

voltage at PCC during nighttime. The PV solar farm generates power during the day time 

and provides voltage control during nighttime when it is normally sitting idle. 

1.7.2 Line loss Improvement with PV solar farm 

Renewable energy sources like Photovoltaic (PV) solar, wind, fuel cell, etc. are 

connected to the distribution grid as Distributed Generation (DG) sources at different 

locations in an electrical network. The loads are also distributed on a feeder and the 

power is supplied to these loads over the network by both conventional generators and 
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DGs. The flow of current in the lines causes I2R heating loss due to line resistance. These 

losses increase as the square of the current. It is always recommended to locate the DGs 

near the large loads such that, to meet the demand of the load, the whole network is not 

used to transfer the power; consequently, the line losses are minimized. However, it is not 

simple to locate DGs close to loads all of the time. Power is always carried over the 

whole network as DGs only generate a small fraction of the total load demand. For better 

selection of location and sizing of DGs based on real power generation to minimize the 

network losses various algorithms have been suggested [118]-[125].  

It is also understood that due to the injection of DG real power to the network, the Point 

of Common Connection (PCC) voltage raises itself [126]-[129] which also helps to 

reduce the line losses by improving the overall voltage profile along the line. Thus, the 

PV solar farm, by injecting real power, can indirectly reduce the system losses [130]. 

Loss reduction through voltage control with a PV solar farm is reported [131] with the 

use of an external series reactor to provide reactive power. A hybrid system of PV with 

Fuel Cell (FC) [132] is also able to compensate for the fluctuation in real power 

generation due to the variability effects of weather on a PV solar system. This is also 

shown to reduce the network losses by locating the solar system optimally in the network. 

In addition, it has been demonstrated that network losses can be reduced [133]-[135] by 

minimizing the voltage fluctuations at the PCC caused by variations of real power output 

from the PV solar farm, through the use of DG reactive power control.  

These papers have considered both power quality in terms of voltage fluctuation and the 

optimal system losses by a single PV system during only daytime, and also have not 

addressed the additional internal losses in the inverter due to reactive power support 

[133]. It is also noticed, that no studies have been reported on the use of multiple PV 

systems through reactive power compensation for reducing the losses. 

1.7.3 Transmission Limits and Damping Enhancement with PV 
solar farm 

A full converter based wind turbine generator has recently been provided with FACTS 

capabilities for providing improved response during faults and fault ride through 
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capabilities [136], [137] in a distribution network. Another research is reported to utilize 

the PV inverter for improving the system stability through the modulation of real power 

which uses active energy storage devices [107] and is demonstrated for the case of simple 

load variation. Other papers [138]-[140],[11] have proposed voltage control functionality 

with PV systems. 

Although, it has been reported that the grid connected photovoltaic solar farm has 

reactive power compensation capability [141], [142]. No research has been reported to 

enhance the steady state or the transient state power transfer limit of a transmission line 

with this reactive support capability of PV solar farm. 

1.8 Impact of PV System Harmonics in the Network  

In a power system, the transmission and distribution lines comprise a combination of 

resistance, R, inductance, L, and capacitance, C [143]. The combination of L-C of the 

line can resonate at certain frequencies leading to Network Resonance. The network 

presents high impedance at these resonant frequencies and these high impedances appear 

as peaks in the frequency scan of network impedance [144]. Moreover, presence of any 

capacitors gives rise to additional network resonant modes. Power electronics based 

generators in the network such as a PV system produce harmonics that are injected into 

the network [145], [146]. If these injected harmonics match with any one of the 

resonance peaks, the voltage at that harmonic frequency will be amplified [147]-[149] 

which may cause failure or damage the customer equipment or protection systems.  

A real world case study has been reported for a distribution network [150] which 

demonstrated the increase of voltage harmonics due to network resonance occurring at 

low frequencies due to power factor correction capacitors at the substation in the 

presence of harmonics sources. The network resonance also varies with the loading 

condition in a transmission and sub-transmission network [151] and with short circuit 

levels, [152] etc. The impact of a PV solar system on the network is reported in [153]. 

However, the impact of harmonics generation from a large scale PV solar system has not 

been reported in literature. 
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1.9 Motivation of Thesis 

• Basic Model Development of a Grid Connected PV Solar System  

A detailed modeling of the complete PV solar system in electromagnetic transient 

analysis software, such as EMTDC/PSCAD, is needed to be able to assess its impact 

on the network. The electrical rating of PV solar panels is mainly dependent upon the 

manufacturing materials and their physical properties. Many times manufacturers do 

not disclose detailed physical properties of the PV module, except some electrical 

quantities like open circuit voltage (Voc), Short Circuit Current (Isc), Maximum Power 

Point voltage (Vmpp) and Current (Impp), rated power or the maximum Power (Pmpp), 

temperature co-efficient etc. Therefore, to model the PV system comprehensively, it 

is required to determine other physical parameters, such as series resistance of PV 

cells (Rs), shunt resistance of PV cells (Rsh), or diode ideality factor (n) from these 

sets of generalized data.  

The use of a DC-DC converter based MPPT at the output of a PV panel initiates 

additional losses and hence, reduces the overall efficiency, whereas, the converter-

less MPPT is much more efficient. In EMTDC/PSCAD, implementing the converter-

less MPPT with the help of an iteration technique increases the complexity of the 

model and may enhance the simulation time. The use of graphical approaches that use 

C++ coding is not user friendly. So, an accurate and efficient user-friendly MPPT 

implementation technique needs to be developed based on standard library blocks in 

an EMTDC/PSCAD environment. This has not been disclosed in any literature, so 

far.  

• Management of Short Circuit Current Contribution from Grid Connected PV 

Solar Systems 

Solar farms are facing a restriction on their connectivity due to their short circuit 

current contributions. Also, they need to be disconnected rapidly when a fault is 

detected in order to conform to technical connection requirements of the utilities. A 
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better fault current management technique to limit the short circuit current within 

rated value is therefore needed to ensure effective deployment of solar farms. 

• Novel Controller of PV Solar Farm for New Application in Power System 

The PV system is completely dependent on the sun and, therefore, can generate 

electricity only during the presence of enough daylight and remains idle during 

nighttime. It is understood that the PV solar system and a STATCOM both are based 

on voltage source inverters. Hence, novel controllers’ designs could potentially be 

implemented to transform a PV system into that of a STATCOM to demonstrate new 

functionalities.  

• Harmonics Impact of a Large Scale Solar Farm 

As discussed earlier, it is important to investigate the potential for network resonance 

in the presence of harmonics sources and shunt capacitors. In a BWP distribution 

network, the large scale 80 MW PV solar farm is connected with different feeders 

which have feeder capacitors, power factor correction capacitors, or load capacitors 

as well as underground cables. Hence, these feeders need to be modeled and 

investigated for potential network resonances and harmonic amplification with 

respect to different network conditions.  

1.10 Objective and Scope of the Thesis 

The objectives and the scope of the thesis are as follows: 

1. To develop a generalized model of PV panels in EMTDC/PSCAD software, 

regardless of PV module types, size etc. only by knowing the standard parameters 

provided by the module manufacturers.  

2. To develop a fast fault detection technique and to integrate it with the converter 

based DG systems such that the DGs become disconnected before the peak 

current exceeds the rated peak value of current due to the fault at any point of the 

network. 
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3. To develop novel controls of a PV solar farm as a STATCOM, termed PV-

STATCOM for reduction of distribution system loss, prevention of motor load 

instability, improvement of power transfer capability of a long transmission line 

through voltage control.  

4. To develop novel controls of PV solar farm as STATCOM, termed PV-

STATCOM for enhancement of transient stability limit of a typical transmission 

line through damping control. 

5. To determine the potential of harmonic amplification in the BWP distribution 

network in the presence of a large scale 80 MW PV solar farm. Out of four 

feeders which connect the large scale solar farm, one of the feeders (18M14) 

connected to 20 MW solar farm is considered for this study.   

1.11 Outline of Chapters 

The chapters are organized as follows: 

• Chapter-2: presents a detailed three phase grid connected PV solar farm modeling 

technique developed in EMTDC/PSCAD by the use of standard EMTDC/PSCAD 

library blocks. It includes solar module modeling from manufacturers datasheets, 

converter-less MPPT modeling, and LCL filter incorporation into conventional grid 

tied inverter. The simulation results are validated with a commercially available PV 

solar farm inverter. 

• Chapter-3: presents a new control concept for fast fault detection on a network and a 

fault current management technique based on inverter output current magnitude and 

slope monitoring. The current slope detector and the magnitude detector are 

developed and incorporated with the conventional solar farm such that a quickest 

fault detection and best fault management can be achieved. The controller is 

developed and demonstrated by EMTDC/PSCAD software. 
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• Chapter-4: introduces the innovative concept of PV solar farms to act as a 

STATCOM, called PV-STATCOM by the utilization of used and unused capacity of 

the solar farm during both night and day.  

• Chapter-5: presents one of the novel applications of PV solar farm as PV-

STATCOM to improve the distribution line losses through voltage control technique 

with the remnant reactive power capability of the solar farm at any power generation 

level of PV solar farm. No PV solar farm generation curtailment is required in this 

proposed control strategy. The associated control configuration and the network 

management techniques are proposed by steady state load flow analysis. Finally, a 

financial analysis is presented to highlight the net loss savings. In this steady state 

modeling technique, PowerWorld Simulator is used. 

• Chapter-6: presents another novel operation of a PV solar farm for the prevention of 

induction motor load instability by using the PV solar farm’s used capacity as PV-

STATCOM. A load curtailment is required for a very short period of time. In case of 

any network disturbances, the PV solar farm senses the fault by the developed fast 

fault detection technique, and disconnects the PV panels. To prevent the motor 

instability, the PV inverter is immediately turned into a STATCOM and provides 

voltage support until the motor returns to its nominal operating condition. Once the 

motor is stabilized, the PV-STATCOM returns to its original solar farm operation. 

This new controller is developed and demonstrated through EMTDC/PSCAD 

software. 

• Chapter-7: demonstrates a novel concept of utilizing a PV solar farm as a PV-

STATCOM to enhance the transmission capacity through voltage control and 

damping control technique. It utilizes the entire solar farm inverter capacity in the 

night and the remainder inverter capacity after real power generation during the day, 

both of which remain unused in a conventional solar farm operation. Similar 

STATCOM control functionality can also be implemented in inverter based wind 

turbine generators during no-wind or partial wind scenarios for improving the 

transient stability of the system. Studies are performed for two variants of a Single 
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Machine Infinite Bus (SMIB) system.  One SMIB system uses only a single PV solar 

farm as PV-STATCOM connected at the midpoint, whereas the other system uses a 

combination of a PV-STATCOM and another PV-STATCOM or an inverter based 

wind Distributed Generator (DG) with similar STATCOM functionality. The novel 

controllers are developed in EMTDC/PSCAD software. Three-phase fault studies are 

conducted to demonstrate the improvement in stable power transmission limit for 

different combinations of PV-STATCOM controllers on the solar and wind farm 

inverters, both during night and day. 

• Chapter-8: presents a case study of network resonance for a practical utility 

distribution network connecting a large scale 20 MW PV solar farm. It presents 

model validation through load flow and SCADA and the network resonance peak 

through the frequency scan technique for different operating condition of the network. 

One BWP distribution network feeder 18M14 is studied, connecting 20 MW solar 

farms. As the feeder 18M14 has reactive power, compensation capacitors on the 

feeder level and a load capacitor this feeder is studied for potential network resonance 

peak in detail. The study is accomplished by utilizing SCADA, GIS to construct the 

network, CYME for load flow validation of the modeled network, and the frequency 

scan is accomplished in EMTDC/PSCAD. By using the measured data from the 

large-scale solar farm, the level of voltage distortion is studied for the first time at 

different times and in worst conditions of the network.  

• Chapter-9: This chapter concludes the entire thesis, and presents the thesis 

contribution and recommendation for future work. 
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Chapter 2  

2 Modeling of a Three Phase Grid Connected 
Photovoltaic (PV) System in EMTDC/PSCAD.  

2.1 Introduction  

In this chapter, a model of the complete grid connected PV solar system is developed 

along with the solar panel modeling which uses the standard datasheet values as input 

parameters. The major contribution is the complete development of a converter-less grid 

connected PV system in EMTDC/PSCAD software by using its available library blocks.  

This model is general and applicable for any size and type of PV module. The Maximum 

Power Point Tracking (MPPT) feature is embedded with four quadrant DC-AC converter 

controller logic to harvest maximum power from the PV panels. As a result, this model 

can be used to simulate the maximum available power output for any level of solar 

irradiation and ambient temperature efficiently. 

Section 2.2 describes the study system and modeling of the system. Section 2.3 presents 

various simulation results for different levels of power output of the solar farm [154]. 

Section 2.4 concludes the chapter. 

2.2 System Model 

2.2.1 System Description 

The single line diagram of a simple study system is depicted in Fig. 2.1.  
 

#1 #2 Filter

Inverter

Grid

PV Module

PCC
DC

AC

 
Figure 2.1 Single line diagram of grid connected PV system 
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Figure 2.2 Detailed system model (a) PV source (b) IGBT inverter (c) filter (d) 

MPPT module and (e) inverter switching signal controller. 

The study system is comprised of a 100 kW PV solar farm having MPPT capability 

connected through a transformer with the equivalent grid representation of the 

distribution network [155]. In this study, the solar farm is connected through the point-of-

common-coupling (PCC) to the grid of 400 Volt systems. The short circuit impedance of 

the grid is considered to be 0.009 Ω [155]. The coupling transformer is configured as ∆-

Y, grounded with a turn ratio of 1:1. The ∆ side of the transformer is connected with the 

inverter side, as shown in Fig. 2.1. The voltage at the output side of the inverter is 230 V. 

The PV module is capable of generating a DC voltage of up to 887 Volts [154]. The 

MPPT can vary the voltage over a wide range of reference values depending upon the 

solar irradiation. In this study, although the PV system is connected to a specific network 

[155], the PV system model developed here is general. The detailed system is presented 

in Fig. 2.2 and described in subsequent sections. 
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2.2.2 PV Source Model 

The equivalent circuit model [7] of a PV cell is shown in Fig. 2.3 (a) where, G denotes 

the solar irradiation, T is the temperature, Rs is the equivalent series resistance of the cell, 

and Rsh is the equivalent shunt resistance of the cell.  

                   
(a)      (b) 

Figure 2.3 Circuit model of PV Source and its equivalent representation in 

EMTDC/PSCAD. 

In this equivalent representation, generally the resistance Rs , Rsh are not provided by the 

manufacturer’s datasheet, which is given in the form of Table-2.1 [154] where, Standard 

Test Condition (STC) is defined as the solar irradiation of 1000W/m2 equivalently 1 Sun 

at 25oC. Additional datasheets are available in Appendix A. Therefore, the objective of 

this section is to determine a general expression to obtain parameters Rs and Rsh to be able 

to perform simulation studies. 

Table 2.1 FS 272 PV module electrical specification at STC* and at 45 
o
C, 0.8 Sun. 

Item Description Symbols AT 

STC 

AT 

45oC, 

0.8 Sun 

Nominal Power (±5%) PMPP (Watt) 72.5 54.4 

Voltage at PMPP Vms (Volt) 66.6 62.4 

Current at PMPP Ims (Amp) 1.09 0.87 

Open Circuit Voltage VOC (Volt) 88.7 82.5 

Short Circuit Current ISC (Amp) 1.23 1.01 

Temperature Co-efficient of PMPP Kp (%/°C) -0.25 

Temperature Co-efficient of VOC High temp>25°C Kv (%/°C) -0.25 

Temperature Coefficient of VOC Low Temp (-40°C to + 

25°C) 

Kv (%/°C) -0.20 

Temperature Coefficient of ISC Ki (%/°C) 0.04 

Cell Type CdS/CdTe with 116 active cells. 

* At STC, AM=1.5, T=25°C and G=1000 watt/m2 =1Sun and all ratings ±10%, unless specified otherwise. 
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As discussed in Section 1.2.2, researchers have either neglected both Rs and Rsh [19] or 

Rsh [13] only, which reduces the accuracy. Determination of both Rs and Rsh through 

complex iteration technique [14]-[17] may not converge at all times. It is noted that in the 

determination of the value of Rs and Rsh, another parameter named diode ideality factor n, 

needs to be known [14]-[17], and is not provided by the manufacturer’s datasheet. 

The model developed below overcomes the above discrepancies. A non-iterative 

technique has been developed to obtain both Rsh and Rs by using the datasheet values 

given in Table 2.1 and thereby ensuring simplicity and accuracy. In addition, a simple 

procedure is discussed to obtain n also by using the manufacturer datasheet. 

The PV solar farm model is developed for use with EMTDC/PSCAD. For this purpose 

the circuit model given in Fig. 2.3 (a) is transformed into a controlled current source [10] 

as presented in Fig. 2.3(b). The current control block embeds all the current equations 

implemented with the use of EMTDC/PSCAD standard library blocks to determine the 

current output of the controlled current source according to its terminal voltage. It is 

noted that the output current from the controlled current source is the current at the 

terminal of PV circuit model as shown in Fig. 2.3 (a). The equations are derived as 

below: 

The relationship between voltage and current with respect to different solar irradiations 

and temperatures for a standard PV source can be expressed by a set of basic diode 

equations [15]: 

~ = ~S� − ~t&��(m����) xU�x�⁄ − 1) − M + ~��,���� 					⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.1) 

where, V and I are the output voltage and current of the PV cell at any temperature and 

radiation, respectively. In this equation, for an equivalent single string panel, ns is the 

number of series cells in the string, Rs is the total series resistance of the string expressed 

in ohm, k is the Boltzmann’s constant, n is the diode ideality factor, q is the charge of 

electron expressed in ‘coulomb’, Rsh is the leakage or shunt resistance expressed in ohm, 

I0 is the reverse saturation current, T is the temperature in oK, and Iph is the photo current, 

as depicted in Fig. 2.3 (a).  
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The photo current, Iph, is a direct function of solar radiation, G, and can be expressed as 

[15]: 

~S� = ~S�(��O) ��x�; 								⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.2) 

where, ~S�(��O), is the photocurrent at standard insolation level, Gnom.  

The reverse saturation current I0 is a function of temperature and is usually expressed 

with the equation containing the energy band gap function, Vg [12], [8]. 

~t = ~t(��). � �����x . �9�m��:���(�o9��)�x.U.��.�o.x� 			⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.3) 

Here, Ts is the temperature at STC and T2 is other operating temperature. However, this 

energy band gap is yet another unknown parameter and depends upon the manufacturing 

material and process. However, at STC; T=Ts, G=Gnom, I0=I0(STC), and Iph=Iph(STC). 

Applying two conditions in (2.1) i.e., (i) short circuit condition where V=0 and I=Isc and 

(ii) open circuit condition where I=0 and V=Voc we get: 

~�� = ~S�(��O) − ~t(��O)&��(�����) xU��x�⁄ − 1) − ~����,���� 						⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.4) 

and, 

0 = ~S�(��O) − ~t(��O)&��m�� xU��x�⁄ − 1) − M��,���� 	 
�|,				~S�(��O) = ~t(��O)&��m�� xU�x�⁄ − 1) − M��,���� 					⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.5) 

Substituting, the value of Iph(STC), in  (2.4), we get,  

 ~�� = ~t(��O)&��m�� xU�x�⁄ − 1) − m��x���� − ~t(��O)&��(�����) xU�x�⁄ − 1) − �����x���� 

�|,														~t(��O) = ~��,���� + ~���� − M��,����(��m��/xU�x� − �������/xU�x�)				⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.6) 

 
In this procedure, no energy band gap information is required to determine I0. 

Now using (2.5) in (2.2), the expression of photo current ~S�can be obtained as follows: 
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~S� = �~t(��O)���m��/xU�x� − 1� + M��,����� ��x�; 			⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.7) 

It is noted that the short circuit current Isc and open circuit voltage Voc can be expressed in 

terms of temperature coefficient to relate them with the quantities at STC as follows [15]: ~�� = ~��(��O)�1 + ��(� − ��)�		⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.8) M�� = M��(��O)�1 + ��(� − ��)�				⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.9) 

Here, Ki is the temperature coefficient of PV short circuit current and Kv is the 

temperature coefficient of PV open circuit voltage at STC. Both are expressed in %/ oC. 

Ts is the standard temperature at STC, Gnom is the solar radiation at STC. Now 

substituting (2.6)-(2.9) in (2.1), the final expression of the PV output current becomes as 

follows: 

~ = &~��(��O)�1 + ��(� − ��)��,���� + ��� − M��) ���m��(���)�:���(�9��)�xU�x� − 1� �
,���� ���m��(���)�:���(�9��)�xU�x� − �����(���)�:�� (�9��)���xU�x� � �x�;

− &~��(��O)�1 + ��(� − ��)��,���� + ��� − M��) ���(m����)xU�x� − 1�
,���� ���m��(���)�:���(�9��)�xU�x� − �����(���)�:�� (�9��)���xU�x� � 		

+ �M��,�����x�; − M + ~��,���� 		⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.10) 

This is the final expression for the output current of the controlled current source in 

which, once Rs, Rsh and n are determined, the output current I denoted as Ipv in the circuit 

can be obtained. The current I is dependent upon the solar irradiation, G, temperature, T 

and its terminal voltage, V denoted as VDC in the circuit. 

• Determination of shunt resistance (Rsh) and series resistance (Rs): 

To determine these parameters, an STC case is considered, as they do not vary 

significantly with different temperature and insolation. In (2.10) it is assumed that, 

�����(���)�:�� (�9��)���xU�x� ≅ 1				 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.11) 
This assumption is validated as below.  
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It is observed that the magnitude of the exponent will be high, which is the worst case, if  

the value of n is low and the value of Rs is high with a large temperature difference from 

the STC. Usually, the temperature variation is considered as Ts±50 oC where Ts=25 oC.  

Considering the diode to be ideal gives the lowest value of n=1 [156]. As the value of Rs 

is not yet determined an approximate value of maximum Rs is chosen. In I-V 

characteristic curve the slope at Voc determines the approximate value of Rs [18]. 

Therefore, it is justified to make an approximation of Rs by the expression, Rs=(Voc-

Vmpp)/Impp, which calculates an optimistic value of Rs as demonstrated in Appendix-A. By 

using the parameters given in Table-1, the approximate maximum value of Rs is found as 

0.175 Ω. Therefore, for the worst case scenario, the left side of (2.11) is calculated as 

1.065, which is very close to 1.0 and thus the assumption is justified.  

Therefore, the term,  

 

���m��(���)�:���(�9��)�xU�x� − 1�
���m��(���)�:���(�9��)�xU�x� − �����(���)�:�� (�9��)���xU�x� � ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.12) 

can be approximated as unity. At STC, by replacing T by Ts and G by Gnom, and using the 

above approximation, (2.10) can be approximated as follows: 

~ = &~��(��O)�,���� + ��� − M��(��O)),����
− &~��(��O)�,���� + ��� − M��(��O)) ���(m����)xU�x� − 1�

,���� ���m��(���)xU�x� − 1� − M + ~��,���� 			⋯ (2.13) 

Therefore, the expression for shunt resistance can be derived by using the fact that at 

maximum power point (MPP) the derivative of power with respect to voltage is zero. 

As we know, power % = M~. Therefore, 

i%iM = ~ + M i~iM = 0|�q	;SS ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.14) 

Hence, differentiating (2.13), we get: 
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i~iM = − &~��(��O)�,���� + ��� − M��(��O)) ���(m����)xU��x� � ¢£ ¤1 + �� i~iM¥,z��,� ¦
,���� ���m��(���)xU��x� − 1� − 1 + �� i~iM,���� 								 

Or, 

i~iM §̈̈
©̈1 + ��,���� + &~��(��O)�,���� + ��� − M��(��O)) ���(m����)xU��x� � ª £��,z��,�«

,���� ���m��(���)xU��x� − 1� ¬
®

= − &~��(��O)�,���� + ��� − M��(��O)) ���(m����)xU��x� � ª £,z��,�«
,���� ���m��(���)xU��x� − 1� − 1,���� 								 

Or, 

i~iM �(,���� + ��) ���m��(���)xU��x� − 1�
+ &~��(��O)�,���� + ��� − M��(��O)) ���(m����)xU��x� � ª £��,z��,�«�
= −&~��(��O)�,���� + ��� − M��(��O)) ���(m����)xU��x� � ª £,z��,�«
− ���m��(���)xU��x� − 1� 

Or,  
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i~iM
= −&~��(��O)�,���� + ��� − M��(��O)) ���(m����)xU��x� � ª £,z��,�« − ���m��(���)xU��x� − 1�

�(,���� + ��) ���m��(���)xU��x� − 1� + &~��(��O)�,���� + ��� − M��(��O)) ���(m����)xU��x� � ª £��,z��,�«� 
Putting into (2.14) and equating at MPP, we get: 

&~��(��O)�,���� + ���),���� − &~��(��O)�,���� + ��� − M��(��O)) ¯��(mn��n��)xU�x� − 1°
,���� ¯��m��(���)xU�x� − 1°

− M; + ~;��,����
= M;&~��(��O)�,���� + ��� − M��(��O)) ¯��(mn��n��)xU��x� ° ª £,z��,�« + M; ¯��m��(���)xU��x� − 1°

�(,���� + ��) ¯��m��(���)xU��x� − 1° + &~��(��O)�,���� + ��� − M��(��O)) ¯��(mn��n��)xU��x� ° ª £��,z��,�«� 

where, Vm and Im are the maximum power point voltage and current at STC, respectively. 

Simplifying the above expression for Rsh at STC is obtained as follows: 

��� = &~��(��O)�� − M��(��O)) ���(mn��n��)xU��x� − 1� £,���z, + ���m��(���)xU��x� − 1�
�,�~; ¯��m��(���)xU��x� − 1°� (M; − ~;��)W − ���(mn��n��)xU��x� − 1� £~��(��O)��z, ⋯ ⋯ (2.15) 

 

Now, to deduce the expression of Rs, the leakage current component in (2.1), 

(V+IRs)/nsRsh, can be neglected as the current flowing through the leakage resistance, Rsh, 

is very small. Therefore, at STC using T=Ts and G=Gnom, I0=I0(STC), and Iph=Iph(STC), (2.1) 

can be re-written as: 

~ = ~S�(��O) − ~t(��O)&��(m����) xU��x�⁄ − 1)		⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.16) 
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Again, applying short circuit condition and open circuit condition at STC, we get, ~�� = ~S�(��O) − ~t(��O)&��(�����) xU��x�⁄ − 1)		⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.17) 

And, 0 = ~S�(��O) − ~t(��O)&��m�� xU��x�⁄ − 1)	 �|,				~S�(��O) = ~t(��O)&��m�� xU��x�⁄ − 1)		⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.18) 

Substituting, the value of Iph(STC), in  (2.17) at STC, we get,  

 ~��(��O) = ~t(��O)&��m��(���) xU��x�⁄ − 1) − ~t(��O)±������(���)��� xU��x�⁄ − 1² 
�|,														~t(��O) = ~��(��O)���m��(���)/xU��x� − �����(���)��/xU��x��				⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.19) 

Therefore, substituting (2.19) into  (2.18) we get: 

�|,				~S�(��O) = ~��(��O)&��m��(���) xU��x�⁄ − 1)���m��(���)/xU��x� − �����(���)��/xU��x�� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.20) 

Putting the expression (2.19) and (2.20) into (2.16), we get, 

~ = ~S�(��O) − ~t(��O)&��(m����) xU��x�⁄ − 1) 
Or, ~ = ���(���)±T<³��(���) ´µ��´�⁄ 9:²¤T<³��(���)/´µ��´�9T<¶��(���)·�/´µ��´�¥ − ���(���)&T<(³¸¶·�) ´µ��´�⁄ 9:)¤T<³��(���)/´µ��´�9T<¶��(���)·�/´µ��´�¥ 
Simplifying further with the assumption shown in (2.11), we get, 

 

~ ≈ ~��(��O) − ~��(��O) ���(m����)xU��x� − 1�
���m��(���)xU��x� − 1� 			⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.21) 

From this expression, by applying the MPP operating condition at STC, by putting V= Vm 

and I=Im,  the expression becomes: ~;~��(��O) ���m��(���)xU��x� − 1� = ���m��(���)xU��x� − 1� − ���(mn��n��)xU��x� − 1�			 
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Or,  ~;~��(��O) ���m��(���)xU��x� − 1� = ���m��(���)xU��x� − ��(mn��n��)xU��x� � 
Or, ��(mn��n��)xU��x� = ��m��(���)xU��x� − ~;~��(��O) ���m��(���)xU��x� − 1� 

Or, £(M; + ~;��),z��,� = º, ���m��(���)xU��x� − ~;~��(��O)� 

Or, (M; + ~;��) = ,z��,�£ º, ���m��(���)xU��x� − ~;~��(��O) ¯��m��(���)xU��x� − 1°� 

 Therefore, Rs is found as follows: 

�� = ,���z,£~; ln ���m��(���)xU��x� − ~;~��(��O) ¯��m��(���)xU��x� − 1°� − M;~; 		⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.22) 

• Determination of diode ideality factor n: 

It is obvious from output current expression (2.10), shunt resistance Rsh expression (2.15), 

and series resistance Rs expression (2.22) that all are dependent upon the value of diode 

ideality factor n which differs based on cell type mainly due to the manufacturing process 

[157]-[159]. Depending upon the value of n, the maximum power point varies [160]. 

Hence, the value of n is determined such that it satisfies the maximum power point 

voltage and current. It is noted that the determination of n is done only once for a specific 

datasheet. Therefore, no repetitive iterative technique is needed while running the 

simulation for different operating levels. The following technique is used to determine n. 

A simple DC circuit is constructed as shown in Fig. 2.4.   

 

Figure 2.4 DC circuit to determine diode ideality factor, n. 
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In this Fig. 2.4, the controlled current source shown in Fig 2.3 (b) is connected with an 

ideal DC source which also acts as a current sink. In the current control module of the 

controlled current source as shown in Fig. 2.4, expressions (2.10), (2.15) and (2.22) are 

implemented with the use of EMTDC/PSCAD standard library blocks as shown in Fig. 

2.5 by using the ideal value of n=1 at initial step.  

 

Figure 2.5 ‘PV Source’ building blocks in EMTDC/PSCAD 

The ideal DC voltage source is set for Vmpp at STC. Now the value of n is increased 

slowly and the output current is measured to verify if Iph=Impp. When the Impp 

corresponding to Vmpp matches with the datasheet value for a certain value of n, this value 

of n is recorded as the actual value of diode ideality factor for that specific PV module 

datasheet. Thus n is determined accurately through a simulation process by matching Vmpp 

and Impp at STC. Since n influences the value of Rs and Rsh as seen in (2.22) and (2.15), 

the values of Rs and Rsh also become very accurate.  
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Once the actual value of n is determined by using the above mentioned procedure, the PV 

module in Fig. 2.2 (a) is modeled by implementing the same blocks as shown in Fig 2.5, 

but with the actual determined value of n. Therefore, the PV module, modeled as 

controlled current source in Fig. 2.2(a), generates the desired current output IPV by taking 

the feedback of its terminal voltage VDC corresponding to the prevalent solar irradiation 

and temperature.  

2.2.3 Maximum Power Point Tracking (MPPT)  

The incremental conductance algorithm [161] is utilized to get the reference voltage for 

MPPT. This algorithm is shown by the flowchart in Fig. 2.6. This MPPT algorithm is 

implemented in EMTDC/PSCAD software with the mathematical and logical blocks 

available in the software library, as shown in Fig. 2.7. The MPPT algorithm monitors the 

change in current and voltage at PV module output with a certain time interval known as 

sampling time.  

In the algorithm presented in Fig. 2.6, two cases are observed while monitoring the 

change in DC voltage. The first case is when there is no change in voltage, and the 

second case is when there is a change in voltage.  

For first case when there is no change in voltage it examines the change in current. If the 

change in current is zero then the algorithm assumes that the PV module is already 

operating at Maximum Power Point (MPP). Therefore, there is no voltage step change. 

But, if the change in current is a non-zero value then the algorithm assumes that the PV 

modules are not operating at MPP. Therefore, a small step change in voltage is applied 

depending upon the +ve or –ve change in current [161]. Due to the change in voltage at 

the module output the current output from the module also changes. This process 

continues until the PV module reaches its MPP operating condition. 

For the second case, when there is a change in voltage, it examines the relationship ���m = − �¼³m½�	 [161]. If the relationship is satisfied, the algorithm assumes that there is a 

change in the level of insolation and temperature, but the PV modules are operating at 

MPP. Therefore, no changes in operating point are required. But, if the relationship is not 
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satisfied, the PV module is not operating at MPP. Therefore, a small step change in 

voltage is applied, which changes the current output of the PV module. In this case, as in 

the first case, the process continues until the MPP operating condition is reached.   
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Figure 2.6 Incremental conductance algorithm flowchart for MPPT. 

To implement the above algorithm in EMTDC/PSCAD, the sampling time is given in the 

form of time delay as shown in Fig. 2.7. The PV module output current Iph is compared 

with the previously sampled output current through a subtraction block S1 to monitor the 

change in current. Similarly, the change in voltage in Vdc is monitored with other 

subtraction block S2. On the other hand, the ratios of dI/dV and Iph/Vdc are compared with 

another subtraction block S3 which gives an output of ‘e’ and is passed through a band 

comparator B3. The outputs S1 and S2 are passed through band comparators B1 and B2, 

respectively. The band comparators gives +1 output when the input is more +ve value 

than the upper +ve limit, -ve output when the input is more –ve then the lower -ve limit, 

and zero output when the input lies within upper +ve and lower –ve limits [165]. 

However, when there is no change in DC voltage, for example, in the first case as 

discussed in the algorithm, the output of B2 becomes zero, which inverts to 1 and 

multiplies with the output of B1. Now, if the change in current is zero, the output of B1 
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will also be zero. Therefore, there will be no change at the output, Vmpp_ref. But if the 

output of B1 is a non-zero value, either +1 or -1, the voltage step delV will be added or 

subtracted with the previously sampled value and will appear at Vmpp_ref. It is noted that in 

this case the output of B3 will be multiplied with zero as the output of B2 is zero, as 

shown in Fig. 2.7. 

If the change in voltage is not zero, as noted in the second case, and discussed in the 

algorithm, the output of B2 will be 1 after passing through |X| block. It will allow the 

output of B3 to go at the output, Vmpp_ref. On the other hand, the inverted output of B2 

will nullify the output of B1. Therefore, in this case, depending upon the output of B3, 

the change in voltage step will be applied to Vmpp_ref. In this MPPT modeling, the 

sampling time given as a time delay is considered as 0.2 sec and the voltage step is 

considered as 5 V to get an acceptable output in terms of speed and accuracy. It is noted 

that Vmpp_ref acts as reference DC voltage of the inverter. Therefore, with the control of 

inverter DC link voltage regulator the Maximum Power Point Tracking is achieved. 

 

Figure 2.7 MPPT module building blocks for Incremental Conductance algorithm. 

2.2.4 Inverter  

The inverter is composed of six IGBT devices with associated snubber circuits as shown 

in Fig. 2.2 (b). This inverter transforms DC power to AC by using sinusoidal pulse width 

modulation (SPWM) technique [103], [56] which uses a high switching frequency of 5 

kHz. This frequency is chosen to avoid excessive switching losses and noise in the 
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audible range. A series of switching signal pulses of different pulse widths resulting from 

the comparison between a 5 kHz triangular wave, known as carrier wave, and the 

sinusoidal modulating signals, are fed from the controller to the inverter. By controlling 

the modulating signal, the switching pulse width and switching instances can be 

controlled, which ultimately controls the power output from the inverter [103], [56].  

The detailed controller configuration to generate the modulation signals is shown in Fig. 

2.2 (e) where two current control loops in a d-q co-ordinate system are used, as explained 

in section 1.4.2.3. The direct axis current control loop consists of two proportional 

integral controllers, PI-1 and PI-3. Whereas, the quadrature axis current control loop 

consists of PI-2 only. The direct axis current control loop maintains the DC link voltage 

constant around a reference set by the MPPT algorithm in a converter-less MPPT 

technique. To perform this control function, the DC link voltage, VDC, is compared with 

the DC voltage reference, Vmpp_ref, obtained from MPPT algorithm and is passed through 

PI-3 controller to obtain the direct axis current control loop reference, Id_ref. The 

measured AC output current signals IA, IB and IC of the inverter are transformed into a d-q 

reference frame as a direct axis component, Id, and quadrature axis component, Iq, as 

explained in section 1.4.2.3. The direct axis component, Id, is compared with direct axis 

reference value of Id,ref and passed through the regulator PI-1 to generate direct axis 

component of modulation signal, md. On the other hand, the quadrature axis current 

control loop is used to maintain the reactive power output of the inverter around a 

reference value of zero for unity power factor operation [24],[62]. Therefore, the 

reference, Iq_ref, is set to zero according to the following decoupled power equation at 

steady state [108].  

% = M�~� 			⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.23) . = −M�~� 				⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.24) 

where, P and Q are the real and reactive power output of the inverter, respectively. 

The quadrature axis component Iq is regulated through PI-2 controller and generates the 

quadrature axis component of modulation signal, mq. It is noted that two limiters are used 

to limit the modulation index, 1 = ?1� + 1�. The outputs of these current control 
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loops are transformed back into the ABC reference frame, thereby generating the 

sinusoidal modulating signals, ma, mb and mc.  

A phase locked loop oscillator (PLL) is used for grid synchronization and, therefore, the 

angle, th_rad, measured from grid voltage is fed into the ABC to the d-q converter. It is 

noted that while modeling with EMTDC/PSCAD library components, the use of an offset 

angle of 1.57 rad (90 degree) in the PLL makes the alignment of direct axis component 

Vd with the voltage vector in ABC frame, VABC. As a result, the quadrature component of 

AC voltage Vq can be considered as zero during steady state. Low pass filters are added 

with d-q voltage transformation to obtain the noise free fundamental measured voltage 

for feedback. 

The corresponding proportional gain, kp, and integral gain, ki, in each PI controllers are 

tuned through simulation process with systematic hit and trial method starting with a base 

value from the detailed mathematical design procedure of the inverter controller given in 

Appendix A.  

2.2.5 DC Link Capacitor Modeling 

As mentioned earlier, the DC link voltage must be maintained constant to achieve high 

power quality and to minimize the ripples of the PV source current. To fulfill these 

objectives generally a large size DC link capacitor which is capable of handling 

maximum power, Pmax, is used [64]. For maximum power at a frequency f, the total 

energy for a single cycle is, 

¾;�\ = (%;�\ �⁄ )			⋯ ⋯	⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.25) 

This energy is considered to be supplied by the DC link capacitor in the worst case 

scenario such that the dc-link voltage does not go below the margin, Vdcmin. Therefore, it 

is expressed by:  

¾;�\ = 12 ¿M�� − 12 ¿M��	;�x 		⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.26) 

By equating (2.25) and (2.26), the size of the DC link capacitor is determined as follows: 
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 ¿ = (2%;�\) /�M�� (1 − z)0	À+|+-⁄ 	⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.27)  

Where, z = M��	;�x M��⁄ ,  and is known as ripple factor.  

The value of ‘k’ is chosen in such a way that the controllability of the source current can 

be achieved at all operating points through the tuning of inverter controller parameters, kp 

and ki. It is assumed in the determination of the size of DC link capacitor that the output 

current is ripple free. This assumption is justified as the output power quality is 

maintained using high switching frequency and AC filter at the output which is discussed 

in the next section. 

2.2.6 AC Filter Modeling 

Different filter configurations can be used at the inverter output. Among these, L filter 

comprised of only series inductor, L-C filter comprised of series inductor with a shunt 

capacitor, and L-C-L filter comprised of two series inductors at either side of a shunt 

capacitor in ‘T’ configuration are used widely [35]. Due to certain advantages of the L-C-

L filter, it is largely preferred [63], [64] and is presented in Fig. 2.2 (c) for the study 

system. In modeling the L-C-L filter certain conditions [63] are considered to: (i) avoid 

excessive voltage drop in the ac side across inductors, (ii) maintain better controllability 

of output current and, (iii) suppress the ripple in the AC side current. These conditions 

are, 

a) The capacitor size should be limited such that it can draw a maximum reactive power 

of not more than 5% of the rated active power in order to maintain almost unity 

power factor. 

b) The total value of inductance should be around 0.1 pu to limit the AC voltage drop 

during operation. Otherwise, higher DC link voltage is required to ensure current 

controllability. 

c) The resonant frequency should be in the range between ten times the line frequency 

and one-half of the switching frequency, to avoid amplification of unwanted 

harmonics in the lower parts and upper parts of the harmonics spectrum. 
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d) Passive damping must be sufficient to avoid high frequency oscillation known as the 

ringing effect by taking the losses under consideration. 

The expression for filter capacitor can be given as below [63]: 

¿ = λ%;�\�6��MSx � 	À+|+-						 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.28) 

where, nominal frequency, f=50Hz. The constant λ=1.65% is chosen arbitrarily for the 

study system to operate the inverter very close to unity power factor operation according 

to condition (a). From (2.28) the value of the filter capacitor is found to be 99 µF for the 

study system. Hence, the capacitive reactance is calculated as 32.15 Ω, which draws 

1.645 kVAr at 230 volts. This power is 1.6% of the rated power which is very low 

according to condition (a). Therefore, for the selected capacitor value, condition (b) can 

be relaxed and slightly higher value of inductances may be chosen [63].   

The size of inverter side inductance L1 can be determined from the following formula 

[63]: 

(Â(ℎ�Ä)((ℎ�Ä) = 1|1 + |(1 − ¿Å:��Ä )|		⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.29) 

Where, ig(hsw) is the grid current at switching harmonic and i(hsw) is the switching current 

output from the inverter, ωsw=2πfsw,  fsw is the switching frequency. The constant r is the 

ratio of grid side inductance L2 and the inverter side inductance L1, i.e., L1/L2=r. For the 

study system, the suppressed switching current harmonic at the grid is considered as 0.1 

times the output switching current harmonics. The value of the constant r is chosen as 

9.5, which is reasonable according to the recommendation of [67] and [68] to avoid the 

overlapping of the cut-off frequency of the L-C-L filter with the bandwidth of the grid 

connected current controller. This results in a value of L1=500 µH and L2=52.64 µH. 

Therefore, the total value of LT=L1+L2 is calculated as 0.3 pu (Appendix-A) which is 

higher than the recommended value given in condition (b). As the DC link voltage is 

sufficiently higher than 2Vac, this higher value of LT does not affect the controllability 

due to the presence of enough DC link voltage [63]. In addition, the use of larger L1 
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suppresses the ripple current more effectively.  

The resonance frequency can be calculated with the following expression [63]: 

 �Æ = Ç6(Å�/Å:Å¿)È 2�	ÉÊ		 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (2.30)W  

For the study system the value of resonance frequency is found fr=2317 Hz, which is 

within the range of 10f and 1/2fsw and hence satisfies the condition (c). 

It is noted that L2 includes the transformer leakage inductance. If the leakage inductance 

of the transformer is large enough then the transformer itself can act as an L2 branch in 

the L-C-L filter configuration and is illustrated in Fig. 2.2 (c). The damping resistor in 

series with capacitor is considered as 1/3rd of the capacitive reactance at resonant 

frequency [63] to effectively damp the oscillations or the ringing effect. 

2.3 Case Study 

2.3.1 Operating Data 

In this simulation study, 10 x 138 numbers of series-parallel combinations of FS 272 

solar modules are connected to make a total capacity of 100kW at STC. Thus, 10 

modules in series form a string, whereas the total number of string is 138. Therefore, the 

voltage represents the string voltage and the current represents the cumulative current of 

all 138 strings. It is noted that the current in a string is equivalent to the current in a 

module. On the other hand, the voltage across a single module is the string voltage 

divided by the number of series modules in a string.  

2.3.2 Model Output 

In Fig. 2.8 and Fig. 2.9, the DC voltage and current, AC side RMS voltages and currents, 

PV power output, and the variation of THD are illustrated for a solar radiation of 1 Sun at 

25°C (0-40 sec) and solar radiation of 0.8 Sun at 45°C (40-60 sec) while the system is run 

with MPPT for the duration of 15-60 sec. 
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Figure 2.8 PV system output at different radiation and temperature; PV current 

and inverter output phase current, DC link and AC voltage and power output. 
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Figure 2.9 Total Harmonic Distortion (THD) at different irradiation & temperature.  

It is observed from Fig. 2.8 that while the PV system operates under STC without the 

MPPT enabled (10-15sec) it generates a low power level of 53.7kW corresponding to 

827.7 V DC. After 15 seconds when the MPPT feature is enabled, it reaches its maximum 

power point within next 10 seconds, which is the time taken by the MPPT module to 

track the maximum power. This can be made even faster with fine tuning of the 

controller. Thus, at STC with MPPT enabled, the PV system operates at 100kW at a 

string voltage level of 666 V, (DC) for the duration of 25≤ t ≤40 seconds. This 

demonstrates the effectiveness of the modeled MPPT.  

After 40 seconds, the solar insolation level changes from 1 Sun to 0.8 Sun and the 

temperature changes from 25oC to 45oC. Corresponding to this insolation and 

temperature, the maximum power point decreases to 74.7 kW with a string DC operating 

voltage of 624 V. This continues until t=60 seconds. A small difference between the DC 

and AC supply occurs due to the losses in the inverter and its associated circuits.  The 

voltage at the AC side is almost constant as it is established by the grid voltage. The level 

of harmonics remains within the acceptable IEEE 519 standard [69] limit (5% of 

fundamental) as illustrated in Fig. 2.9, for different operating conditions as mentioned 

above. This demonstrates the effectiveness of the modeled L-C-L filter and the sizing of 

DC link capacitor. As illustrated in Fig. 2.10, the instantaneous phase voltage and current 

are in phase, which demonstrates that unity power factor is maintained at the PCC by the 

solar inverter. 
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Figure 2.10 Instantaneous phase voltage and current output of PV system at STC. 

It is observed from Fig. 2.8 that with the MPPT feature at STC, the operating voltages of 

each string are 666 V. Therefore, the operating voltage of each series module is (= 

666V/number of modules in a string) 66.6 volts. The total solar farm output current is 

observed to be 150.4 amps. Therefore, the current output from a single string is (=150.4 

amp/number of total string) 1.09 amp. The output maximum power point voltage and 

current matches very closely with the datasheet values provided in Table 2.1.  

By using the developed model at STC, the value found for series resistance, Rs, is 

0.038Ω, shunt resistance, Rsh, is 822.85 Ω and the diode ideality factor, n, is 2.6588 for 

the specified datasheet. To validate the developed model with the above determined 

values of Rs, Rsh and n, the quantities as provided by the same manufacturer given in 

Table – 2.1, at a non STC case (0.8 radiation level and 45oC), are predicted. The 

comparison of predicted output quantities of the developed model with the 

manufacturer’s datasheet values corresponding to above non-STC case are presented in 

Table 2.2. 

It is obvious from Table 2.2 that the developed model with Rs, Rsh and n at STC 

condition, is also able to predict very closely the output quantities, e.g., maximum power, 

maximum power point voltage and currents, corresponding to the non STC case. 
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Table 2.2 Comparison of simulated model with manufacturer’s datasheet for FS 272 

PV module at 0.8 radiation level at 45 
o
C. 

Item Description Symbols Datasheet value Model value Error (%) 

Nominal Power (±5%) PMPP (W) 54.4 54.14 0.49 

Voltage at PMPP Vms (V) 62.4 62.46 0.098 

Current at PMPP Ims (A) 0.87 0.867 0.34 

Shunt Resistance  Rsh (ohm) Not provided 822.85 - 

Series Resistance  Rs (ohm) Not provided 0.038 - 

Diode Ideality Factor  n Not provided 2.6588 - 

2.4 Conclusion 

In this chapter, a complete generalized model of a grid connected PV solar system in 

EMTDC/PSCAD has been presented with the necessary mathematical formulas. The PV 

module is modeled by using only manufacturer datasheet values. The proposed technique 

determines all of the PV module parameters without any explicit repetitive iteration. This 

model includes converter-less MPPT controller to get the maximum power output at any 

level of solar irradiation, and temperature without using any DC-DC converter, thus 

reducing overall losses. The selection of filter parameters and the size of DC link 

capacitors are explained. The EMTDC/PSCAD simulation study demonstrates that this 

model: (i) maintains unity power factor at any level of power; (ii) ensures maximum 

power point tracking and, (iii) maintains acceptable ranges of harmonics. The 

EMTDC/PSCAD simulation results for the PV modules have been validated with two 

levels of solar insolation and temperature levels for a commercial PV system with respect 

to a manufacturer datasheet’s values of voltage, current, and power quantities. This 

generalized EMTDC/PSCAD model can be adopted for any other PV module and system 

operating conditions. 
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Chapter 3  

3 New Fault Detection and Management Technique for 
Inverter Based DGs. 

3.1 Introduction 

Inverter based DGs such as PV solar systems use solid state devices such as IGBT 

switches to convert the DC power harnessed from PV modules into AC power supply for 

the grid. These IGBT switches are capable of operating within a few hundred 

nanoseconds [8]. This chapter presents a new fast fault detection technique based on the 

rate of rise of current together with the current magnitude in a PV solar system based DG. 

The fault is detected very rapidly and IGBT switches are operated to disconnect the PV 

inverter before the fault current exceeds the rated output current of the inverter. 

Implementation of such a strategy can alleviate the problem of short circuit currents from 

inverter based DGs. It may be mentioned that several PV solar systems have been denied 

connections in Ontario due to their potential short circuit current contributions [61].  

In Section 3.2, the study system model is described with the proposed controller. Section 

3.3 presents case studies for symmetrical fault, asymmetrical fault, and fault at different 

locations. Finally, Section 3.4 concludes the outcome of this work.  

3.2 System Model 

The study system is comprised of a typical distribution network with a PV solar farm 

connected at the end of the feeder [162] as shown in Fig. 3.1. The different components 

of the network are described below. 

3.2.1 System Description 

The study system consists of a 25 km long 27.6 kV overhead feeder connected to a 

transmission network through a substation having two 47 MVA transformers [162]. Each 

set of a three phase transformer is configured with three single phase transformers having 

an impedance of 18.5%. The equivalent grid system is assumed to have a very large short 

circuit capacity i.e., very low grid impedance. Hence the equivalent positive sequence 
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source impedance is modeled with the transformer impedance only. All positive and zero 

sequence impedances are modeled and referred to the 27.6kV side of the transformers. 

The system data is given in Appendix-B. In EMTDC/PSCAD, the overhead line is 

configured as several PI sections for different spans of line lengths between the loads. A 

total distributed load of 15 MVA is modeled as three groups of fixed impedance three 

phase static loads, connected with the feeder. The adjacent feeder loads of around 60MW 

at 0.9 pf. are modeled as a single aggregated fixed P-Q load connected at the beginning of 

the feeder. A 7.5MW PV solar farm is connected at the end of feeder. 

Inverter
PV 

Modules

Static Load 

(6 MW)
Static Load 

(8 MW)

Static Load 

(0.6MW)
Feeder Load 

(60 MW)

3L-G 

Fault

PV Solar Farm (7.5 MW)

Grid Bus 

(27.6kV)

Source

230 V

27.6kV

6km 6.5 km 12.5 km

PCC

 

Figure 3.1 One line diagram of the study system. 

3.2.2 PV System Model 

Fig. 3.2 presents the detailed PV system model. The PV solar system consist of the PV 

solar modules depicted in Fig. 3.2 (a), inverter shown in Fig. 3.2 (b), AC filter described 

in Fig. 3.2 (c), MPPT module illustrated in Fig. 3.2 (d), and the inverter controller 

elaborated in Fig. 3.2 (e). These subsystems are already described in Section 2.2. 

Therefore, Fig. 2.2, Fig. 2.5, and Fig. 2.7 in Chapter 2 are used to develop a 7.5MW PV 

solar system with the data provided in [162] and given in Appendix-B. The PV inverter 

output of 230 V connects to the grid through a 0.23/27.6kV, 7.5MVA step up 

transformer. The filter parameters are chosen in accordance with the size of the PV solar 
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farm while satisfying the criterion given in [64], [70], [164]. The controller parameters 

and L-C-L filter parameter calculation are given in Appendix-B. A novel supplementary 

control block named ‘Fault Detection Module’ is added with the conventional PV solar 

farm inverter controller as depicted in Fig. 3.2 (f). A solid state GTO or IGBT based 

switch is incorporated to isolate the solar panels as shown in Fig. 3.2 (g).  

 

Figure 3.2 Detailed PV system inverter and conventional controller with 

incorporated fault detection module. 

The inverter is a voltage sourced converter which is comprised of IGBT switches and 

associated snubber circuits. Each phase has a pair of IGBT devices which converts the 

DC voltage into a series of variable width pulsating voltages, using the sinusoidal pulse 

width modulation (SPWM) technique. The gating signals (gt1, gt2, gt3, gt4, gt5, gt6) of 

the IGBT switches are generated from the inverter controller which uses two current 

control loops to control the active and reactive power at the inverter output along with the 
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regulation of DC link voltage by taking a three phase current signal from the inverter 

output as feedback signal to the controller. During short circuit scenarios, the firing 

pulses to the IGBTs are disabled as soon as the “fault detection module” establishes that a 

fault has occurred. 

3.2.3 Fault Detection Module 

3.2.3.1 Concept 

The concept of the proposed fault detection module in Fig. 3.2 (f) is described in Fig. 3.3. 

 
Figure 3.3 Fault detection module. 

The proposed fault detector has three separate channels to measure three phase 

instantaneous inverter output currents (I0_a, I0_b, I0_c) at the PCC. These currents are 

passed through a low pass filter to reject all the higher order frequencies due to solar 

inverter injection, feeder capacitor switching, or transformer energization [92]. The 

filtered current is passed through in two parallel paths in each channel; one is through a 

slope detector (d/dt), and another is through a magnitude detector |Ϊ|. The slope detector 

is comprised of a comparator which compares the derivative of the PV system current to 

determine the slope, and compares with the reference slope (d/dt)max. Similarly, the 

magnitude detector is comprised of a comparator which compares the magnitude of the 

PV system current with respect to a reference value |Ϊ|max ,which is the peak magnitude of 

instantaneous rated current. The output of these detectors becomes high only if either of 

the monitored values, (d/dt) or |Ϊ| exceeds their corresponding reference values, (d/dt)max 

or  |Ϊ|max. The output of the detectors referred to here as ‘trigger signal’ are passed 
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through the ORa gate. The ORa gate output signal is then applied to the RS flip-flop to 

hold the trigger signal once it becomes high. Finally, the output of all triggering signals 

from all other channels are passed through a digital ‘ORb’ gate to ensure the output 

triggering signal, ‘PVIso’, to be high due to the detection of fault with any of the phase 

signals. 

It is noted that in a transient event such as the load switching, transformer energization, 

or capacitor switching which is not completely filtered out in the low pass filter can cause 

a high d/dt for a very short period of time. This high d/dt may generate an undesirable 

trigger signal. Therefore, to avoid the generation of undesired triggering signal in these 

transient events, a time delay in the clock signal of the RS flip-flop is introduced. This 

prevents the instant trigger signals generated due to transient action to pass through the 

RS flip-flop. Once the operation of the fault detector is complete and the fault is cleared a 

reset signal (not shown here) is used to reset all the triggering signals and as well as all 

the flip-flops to bring back the PV solar farm to normal operation.  

3.2.3.2 Implementation in EMTDC/PSCAD 

The proposed fault detector shown in Fig. 3.3 is implemented in EMTDC/PSCAD 

software as shown in Fig. 3.4 which is divided in two sections: Section-A and Section-B. 

There are three identical channels corresponding to phase a, phase b, and phase c 

currents. The channel corresponding to phase a, is described in detail below. 

 

Figure 3.4 Fault detection module implementation in EMTDC/PSCAD. 



63 

 

The fault detector uses a synchronization section labeled as Section-A. In this section the 

current signals, I0_a, monitored at the PCC, as explained earlier, is passed through a low 

pass filter. To avoid a false operation of the fault detection module due to a start up 

transient of the solar farm, a time delay (typically 1 sec) is added through a comparator. 

The output of the comparator becomes high after this preset time delay of 1 second. It is 

further required to accomplish a zero crossing synchronization prior to transmitting the 

filtered current signal to the input of section-B. This synchronization ensures that the 

section-B operation will start only from the zero crossing instants of the current. 

Otherwise, the rate comparator in section-B will see a sudden jump in current or, 

alternately, a high rate of rise of current which will generate a false triggering signal. To 

synchronize with the zero crossing, a D flip-flop is used at the output of the comparator. 

The clock signal of the D flip-flop is twice the fundamental frequency which is 

implemented through a zero crossing detector of the input signal. The clock frequency is 

twice that of the fundamental frequency so that the synchronization can occur at either of 

the two positive going or negative going zero crossings. Therefore, when the comparator 

output becomes high after 1 second, the output of the D flip-flop waits for the zero 

crossing of the current signal. Until this time, the output of D flip-flop remains zero and 

thereby, no current signal passes to section B. Once the synchronization with zero 

crossing is accomplished, the current signals from section-A are transmitted to Section-B.  

In Fig. 3.4, the synchronized signals from Section-A are passed through two parallel 

paths in section-B, in each channel as explained in the previous section 3.2.3.1. In 

EMTDC/PSCAD, the rate limiters replicate the input signals as long as the rate of change 

of the input (d/dt) does not exceed the specified threshold limits [165]. Therefore, the 

output of the rate limiters is based on the slope of the input signal. During a system fault 

the rate of change of input current (d/dt) becomes more than the threshold limit.  The 

threshold limit can be determined approximately with the magnitude of (d/dt) of the rated 

current as shown in the following expression [91]. 

For a current signal of ( = ~; sin ��,  
Ë-(-�Ë ≈ z�~; ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (3.1) 
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where, Im is the peak magnitude of instantaneous inverter current, k is the tolerance 

constant, and ɷ is the angular frequency of the current. The threshold value for the rate 

limiter labeled as ‘Ref rate’ in Fig. 3.4 is based on the peak instantaneous value of rated 

current, Im= Im_rated. This rate limiter, therefore, does not replicate the current signal at its 

input if Im> Im_rated. For the study system, the detailed calculation for the threshold level 

and the rated peak magnitude of current is described in Appendix B by arbitrarily 

choosing a tolerance constant of 1.06 times of Im_rated. Note that, depending on the 

requirements of the utility, the value of the tolerance constant can be chosen to be any 

value above 100% or 1 p.u. of the rated current.  

Meanwhile, the threshold value of the other rate limiter is set to a very high value such 

that it can replicate the input current signal at its output even if the current signal exceeds 

its rated peak. As a result, by comparing the signals from the two rate limiters the 

comparator can generate a trigger signal at its output if Im> Im_rated, in other words, when 

the actual rate of rise of current is more than the permissible rate of rise of current. Note 

that, prior to the input of the comparator, two absolute value detectors, |x|, are used to 

eliminate the comparison with negative signals. 

In the other path, the magnitude detector compares the magnitude of instantaneous 

current signal with the maximum allowable instantaneous peak current magnitude as 

shown in section-B of Fig. 3.4.  

As explained earlier, the output of these detectors are then passed through OR gate and 

R-S flip-flop to generate the triggering signal ‘PVIso’. The PVIso signal thus becomes 

high when either the rate of rise of the current violates the acceptable limit, or when the 

instantaneous current magnitude exceeds the rated current of the inverter (multiplied with 

the tolerance constant).  

The operation of this fault detector can be further explained with the flowchart given in 

Fig. 3.5. During the start-up operation of a PV solar farm the fault detector is disabled. A 

delay of 1 second is provided, after which the fault detector is synchronized with the PV 

inverter output current. The fault detector then monitors the output current for any 

abnormal situation in the grid. During normal operation, the slope and the magnitude of 
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the current are within acceptable threshold limits and the comparator outputs associated 

with the slope detector or the magnitude detector do not become ‘high’. Therefore, the 

trigger signal ‘PVIso’ remains low. However, during a fault or any other abnormal 

condition of the system during which either the current magnitude or slope of current 

exceeds acceptable limits, a high signal is sent to the input of the RS flip-flop. However, 

this ‘high’ triggering signal is transmitted to the output of the R-S flip-flop after a certain 

time delay. The time delay in the clock signal of this R-S flip flop plays an important role 

in preventing the generation of undesired trigger signal, as explained earlier. Finally, the 

output of all triggering signals from all other channels are passed through a digital ‘OR’ 

gate to generate the output triggering signal, ‘PVIso’. This signal can therefore become 

high due to the detection of fault with any of the phase current signals. 

As soon as the triggering signal ‘PVIso’ is generated upon detection of fault in the grid, it 

immediately stops the gating signals to all IGBTs in the inverter through the ANDing 

operation with the inverter gating signals generated from the inverter controller as shown 

in Fig. 3.2. As a result, the PV solar inverter stops the power transfer from the PV 

modules to the grid within a few hundred micro-seconds.  

It is noted that once the gating signal is stopped the DC voltage across the capacitor starts 

to increase due to the incoming PV module current. According to the I-V characteristics 

of the PV module, the current output gradually decreases with the increase of voltage at 

the output of the PV module and, eventually, stops at the rated open circuit voltage of the 

PV module. However, to reduce the DC voltage stress across each IGBT switch, the same 

triggering signal ‘PVIso’ is used to operate a solid state DC breaker as shown in Fig. 3.2 

(g), to disconnect the PV modules from the inverter. 

In addition, this triggering signal ‘PVIso’ is used to isolate the AC filter capacitor by 

switching off the back-to-back connected gate turn off (GTO) thyristors, or IGBTs, as 

demonstrated in Fig. 3.2 (c) to prevent high ringing currents between filter capacitance 

and inductance [59]. 
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Synchronization at next current zero crossing through D flip flop
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No
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'DCIso'  s ignal turns off the gating signal, open DC side solid s tate
breaker and disconnects AC filter capacitor.
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inverter ratings even during the

fault.Trigger signal 'PVIso'
remains Low.

The current is predicted to exceed the inverter rating. After a c ertain amount of
time delay in clock signal of R-S flip flop,Trigger Signal 'PVIso' becomes High.

PV Inverter Disconnected From Grid

Fault detector monitors PV output current at PCC
through di/dt and peak magnitude comparator

PV system generates power with
synchronized fault detector.

PCC current Io_a, Io_b, Io_c
passes through filter.

Time delay 1 sec.

 
Figure 3.5 Fault detector operation flowchart. 

3.3 Case Studies 

Fault studies are performed at two locations – at the grid bus and at the PCC for a 

duration of either 0.1 seconds, or 6 cycles. Both the symmetrical (three phase to ground) 

and asymmetrical faults cases are investigated with the proposed fault current controller. 

In each case, two scenarios are considered: fault occurs when the inverter current is not at 

its peak, and second, when the inverter current is at its peak. This is done in order to 

demonstrate the effectiveness of the controller. Moreover, a load switching is simulated 
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to ensure that the controller does not respond in such an event. Finally, the ringing effect 

of the filter capacitor is demonstrated, as well as the controller operation, to isolate the 

filter during such a fault event. The simulation results are presented below. 

3.3.1 Symmetrical Fault at PCC 

Fig. 3.6 depicts the instantaneous current from solar farm without the fault current 

controller. At the occurrence of fault at t=5 seconds, the current exceeds its rated value. 

The dotted line in the figure represents the rated current of the inverter which is 0.25 kA. 

It is noted that while simulating the fault, a high frequency switching spike is observed in 

EMTDC/PSCAD which is due to the mismatch between simulation time step (1 µsec) 

and the plotting time step (10 µsec). This spike can be eliminated by using the same time 

step for both simulations and plotting the time step. It is noted that setting a lower 

simulation time step gives a precise output but taking a large amount of computer 

memory to plot at the same time step which crashes the simulation most of the time 

whereas the higher simulation time step causes lack of accuracy. Therefore, the 

aforementioned settings are considered as acceptable settings to explain the concept by 

overlooking the high frequency spike prior to the fault for rest of the simulation analysis. 

It is clearly seen that the fault current achieves a value of 1.5 p.u., which is acceptable to 

certain utilities. 

 
Figure 3.6 PV system operation for fault at t=5 sec, at rated power output. 
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3.3.1.1 PV Solar Farm operating at rated power: 

For a symmetrical fault at PCC, Fig. 3.7 shows the instantaneous current waveform when 

the fault takes place at a non-peak fault instant (at t=5 seconds) with the proposed fault 

controller enabled. Fig. 3.8 shows the instantaneous current waveform when the fault 

takes place at a peak fault instant at t=4.996 seconds with the proposed fault controller 

enabled. 

 

Figure 3.7 Inverter output current at non-peak fault instant. 

 

Figure 3.8 Inverter output current at peak fault instant. 
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In both the cases, while the PV solar farm is operating at rated power the tendency of 

over current is sensed immediately, and with the use of the proposed controller, a trip 

signal is issued which stops the gating signals of the inverter. The current output from the 

inverter stops immediately without exceeding the rated peak current as demonstrated in 

Fig. 3.7 and Fig. 3.8, respectively 

3.3.1.2 PV Solar Farm operation at low power: 

For a symmetrical fault at PCC, Fig. 3.9 shows the instantaneous current waveform with 

the fault detector enabled when the fault takes place at a peak fault instant at t=4.996 

seconds while the PV solar farm is generating 40% of its rated power. When the PV solar 

farm is operating at such a low power level, the fault current contribution from the solar 

farm does not exceed its rated current (0.25 kA) regardless of its fault occurring instants. 

In this case, the use of the proposed fault current controller does not generate any trip 

signal. This allows the solar farm to remain online and deliver the current to the grid as 

demonstrated in Fig. 3.9. The switching spike as seen in the figure at t=4.996 seconds is 

due to a simulation features of EMTDC/PSCAD as discussed in the previous section and 

is not a performance of the controller.   

 

Figure 3.9 Inverter output current waveform with 0.4 pu PV solar farm generation 
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3.3.2 Symmetrical Fault at Grid Bus 

For a symmetrical fault at grid bus, Fig. 3.10 shows the instantaneous current waveform 

when the fault takes place at a non-peak fault instant at t=5 seconds with the proposed 

fault controller enabled. Whereas Fig. 3.11 shows the instantaneous current waveform 

when the fault takes place at a peak fault instant at t=4.996 seconds with the proposed 

fault controller enabled.  

 

Figure 3.10 Inverter output current at non-peak fault instant 

 

Figure 3.11 Inverter output current at peak fault instant. 
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In the case of a Grid Bus fault, the rate of rise of current is much slower due to a lower 

current contribution to the remote fault. As a result, it takes comparatively longer to 

detect the fault but the fault current controller still responds within 1ms, as demonstrated 

in Fig. 3.10 and Fig. 3.11. Note that the rated current limit is set arbitrarily to 1.06 times 

of the rated peak for the study system. As a result of slow response, the inverter output 

current reaches its peak value as seen in Fig. 3.10 and then the PV solar farm gets 

disconnected. However, for the peak fault instant as shown in Fig. 3.11 the fault detector 

disconnects the PV solar farm before it exceeds the peak. 

It is noted that when the PV solar farm generates low power, similar to the fault event at 

the PCC bus, the fault detector does not respond to grid bus fault as well. In these cases 

the contributed fault current does not exceed its rated limit and generate the identical 

waveforms as shown in Fig. 3.9. 

3.3.3 Asymmetrical Fault at PCC and Grid Bus 

Fig. 3.12 depicts the instantaneous current from solar farm during an asymmetrical fault 

(single line to ground fault) at PCC with the fault controller disabled. At the occurrence 

of fault at one phase t=5 seconds, while the PV solar farm is generating its rated power, 

the current exceeds its rated value at other two phases.  

 

Figure 3.12 Different phase currents of PV inverter for fault at PCC. 
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Fig. 3.13 depicts the instantaneous current from the solar farm during an asymmetrical 

fault (single line to ground fault on phase B) at PCC with the fault controller enabled. At 

the occurrence of a fault on phase B at t=4.996 seconds (peak fault instant), while the PV 

solar farm is generating its rated power, the fault detector generates the trigger signal and 

disconnects the solar farm.  

Fig. 3.14 presents the instantaneous current from the solar farm during an asymmetrical 

fault (single line to ground fault on phase B) at the Grid bus with the fault controller 

enabled. It also shows the same performance and disconnects the PV solar farm from the 

grid for the case of this asymmetrical grid fault event.  

 

Figure 3.13 Inverter output current for a SLG fault at PCC (peak fault instant). 
 

 

Figure 3.14 Inverter output current for a SLG fault at Grid Bus (peak fault instant). 
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3.3.4 Performance comparison of slope detector and magnitude 
detector in the fault controller 

To compare the performance of the slope detector and magnitude detector, the PV solar 

farm is exposed to a fault at the PCC bus. The current wave shapes and the trigger signals 

generation by monitoring the current signals are demonstrated in Fig. 3.15 for a fault 

instant at t=5 seconds (i.e., at non-peak current instant). It is evident from this figure that 

the slope detectors on phase b and phase C respond before the magnitude detector. The 

slope detector of phase a responds last as it has a lower (d/dt) value before its triggering 

instant.  

 
(a) 

 
(b) 

Figure 3.15 (a) Inverter output current and (b) generation of trip signals. 
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However, when the PV solar farm operates with the proposed controller, the fastest 

triggering signal (in this case ‘Trigc’) will disconnect the solar farm from the grid and, 

thus, no over current will be observed. Similar investigation is done for all of the cases 

described in the earlier sections (3.3.1 to section 3.3.2) and the response of the slope 

detector is found to be the faster than the magnitude detector. Hence, the magnitude 

detector technique is used as a secondary detection technique if the primary slope 

detector technique fails to respond. 

3.3.5 Load Switching 

Fig. 3.16 illustrates the output current waveforms of the PV solar farm with the fault 

controller enabled for a fault instance at t=4 seconds (non-peak instant) to test the 

proposed controller for a load switching event. It is observed that the fault detector does 

not respond to a distributed load switching of approximately 8.9 MVA near the PCC, or a 

large feeder load switching of 66.7 MVA, as demonstrated in Fig. 3.16 (a) and 3.16 (b) 

respectively. The PV solar farm is generating 65% of its rated power in this study. During 

the load switching, the steep change (d/dt) in current is considered as the slope of high 

frequency spike which does not last long. Therefore, the time delay in the RS flip-flop 

does not allow the triggering signal output from ORa (Fig. 3.3) to pass through the RS 

flip-flop for this transient event and hence the false triggering is avoided at this switching 

event, as discussed earlier in section 3.2.3.1. 

 
(a) 
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(b) 

Figure 3.16 PV current with (a) 8.9 MVA and (b) 66.7 MVA load switching. 

3.3.6 Filter Capacitor Ringing Effect  

Fig. 3.17 shows the current waveforms at inverter output for a symmetrical fault at t=5 

seconds.  

 

(a) 
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(b) 

 

(c) 

Figure 3.17 Current at PCC with the proposed controller when (a) filter unit uses 

smaller damping resistor (b) filter unit disconnects and (c) filter unit uses larger 

damping resistor. 

It is observed that the use of a very small value of damping resistor in the AC filter 

creates a ringing effect after disconnecting the PV solar inverter upon detection of a fault, 

as demonstrated in Fig. 3.17 (a). To prevent the ringing effect, the generated triggering 

signal from the proposed controller ‘PVIso’ is applied to a set of back-to-back connected 
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(GTO) thyristor or IGBT switches placed in series with the AC filter capacitors, as shown 

in Fig. 3.2 (c), to instantly disconnect the filter capacitor from the grid. Thus the ringing 

effect is eliminated, as demonstrated in Fig. 3.17 (b). The ringing effect may be avoided 

by using a comparatively larger damping resistor in the AC filter, as demonstrated in Fig. 

3.17 (c). In this case, the isolation of the filter capacitor from the AC filter may not be 

needed to eliminate the ringing effect. However, it should still be isolated as a back-up 

safety measure. 

3.4 Conclusion 

In this chapter, a new fast fault detection technique is proposed for PV inverter based 

DGs. The proposed controller is based on the slope (d/dt) and the magnitude of the PV 

system output current |I| computation. As soon as it detects the fault it (a) disables firing 

pulses to inverter, (b) disconnects the PV solar modules from the inverter and, (c) isolates 

the filter from the PCC. In this new controller, the slope (d/dt) detection technique is used 

as primary detection strategy whereas the magnitude detection technique is used as a 

secondary detection strategy. The new proposed controller responds successfully 

regardless of the type of fault or the location of the fault on the distribution system. It can 

effectively distinguish between large load switching and fault current. 

The performance of this novel fault current controller is demonstrated with 

EMTDC/PSCAD software on an NRCAN network. As discussed earlier in Chapter 1, the 

use of traditional technique takes about 7-8 cycles [61] to disconnect a DG with an 

overcurrent being observed for typically 7-8 cycles. Whereas, the proposed technique 

does not allow the overcurrent to exceed the peak limit even for the first cycle. Therefore, 

this new fault detection and management of fault current can create an opportunity to 

integrate more inverter based DGs into the network. A patent has been filed on this 

controller design [P.1]. 
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Chapter 4  

4 Novel Control of PV Solar System as STATCOM (PV-
STATCOM). 

4.1 Introduction 

A conventional grid connected Photovoltaic PV solar farm utilizes an inverter for 

converting the DC power output from PV arrays into AC power to be supplied to the 

grid. As already described in Section 1.5, the STATCOM (a FACTS device) is also based 

on a voltage sourced converter which functions both as an inverter and rectifier [94]-[96]. 

A novel control technology was proposed in [57], [117] by which a PV solar farm can be 

operated as a STATCOM in the night time as well as during day. During the night time 

the entire inverter capacity of the PV solar farm is utilized as STATCOM, whereas 

during the day, the inverter capacity remaining after real power generation is utilized for 

STATCOM operation. Since this STATCOM is based on a PV solar system, it has been 

given the name PV-STATCOM [166], [167]. Fig. 4.1 demonstrates the operation of a PV 

solar farm as PV-STATCOM during the night time when the conventional PV solar farm 

is absolutely idle. 

 

Figure 4.1 PV Solar Farm operation as PV-STATCOM in the night. 

The desired STATCOM functionality is implemented by providing an auxiliary PV-

STATCOM controller as shown in Fig 4.1. In this thesis, different types of PV-

STATCOM controllers have been developed for providing alternative new functions.  
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4.2 Novel PV-STATCOM Control Concept 

While the concept of PV-STATCOM is itself new, two novel types of PV-STATCOM 

are proposed in this thesis for which a patent has been filed [168],[169]. These are: 

i) PV-STATCOM utilizing “unused” PV solar farm inverter capacity both in 

night and day, and 

ii) PV-STATCOM utilizing “used” PV solar farm inverter capacity during the 

day. 

These two types of PV-STATCOMs along with the various benefits they offer to power 

systems are described below:  

4.2.1 PV-STATCOM Based on “Un-Used” PV Solar Farm Inverter 
Capacity 

As the PV solar farm remains completely idle during nighttime, the entire capacity of its 

inverter can be used as STATCOM. However, during daytime the PV solar farm 

generates real power for the grid either by using the whole inverter capacity (at rated 

power generation around noon time on sunny days or partial inverter capacity (at a lower 

level of real power generation during early mornings and late evenings or anytime in a 

cloudy day). As a result, substantial inverter capacity is left unutilized during the 

morning, evening, and on cloudy days. Hence, during the daytime the remaining PV 

inverter capacity can be used to act as STATCOM during daytime without affecting the 

normal real power generation functionality of the PV solar farm. In other words, there is 

no real power curtailment due to PV-STATCOM operation and the PV modules do not 

need to be disconnected from the inverter.  

From the rated inverter capacity of ‘S’ MVA, the remaining available reactive power ‘Q’ 

for PV-STATCOM operation is obtained as . = √Í − % , where P is the real power 

produced by the solar farm. With the data provided by Hydro One from 80MW Sarnia 

Solar farm in Sarnia, ON, Canada, the real power P and Q capability of the PV solar farm 

inverter are plotted in Fig. 4.2. 
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Figure 4.2 Reactive power capability of PV-STATCOM. 

This clearly shows that there is a significant amount of unused capacity of a PV solar 

farm inverter over a 24 hour period, which can be utilized for PV-STATCOM operation. 

4.2.2 PV-STATCOM Based on “Used” Solar Farm Inverter Capacity  

Another novel control concept of PV-STATCOM examined in this thesis is the 

disconnection of PV solar farm modules on an emergency demand basis for a temporary 

period. The PV modules are disconnected completely or partially from the inverter to 

curtail the PV generation. The newly made available inverter capacity is now utilized as 

PV-STATCOM to provide dynamic reactive power support for short durations of time 

during critical events. These are events which could have serious implications on power 

systems such as critical Induction Motor (IM) failures, or impending blackouts. In Fig. 

4.3, for an event of duration t, the shaded area ABCD denotes the curtailment of PV solar 

farm real power generation, whereas the dotted area AEFD denotes the newly made 

available ‘Q’ support during these events. 
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Figure 4.3 PV-STATCOM operation during an event. 

4.3 Novel Application of PV-STATCOM Utilizing “Unused” 
Inverter Capacity. 

4.3.1 Line Loss Reduction 

In this application an individual PV solar farm or multiple PV solar farms are operated as 

PV-STATCOMs in a coordinated manner to regulate their PCC voltages at optimal or 

near-optimal values in order to reduce I2R heating losses in transmission and distribution 

networks. The voltage set points at each solar farm are provided through an optimal 

power flow study. This new application of PV-STATCOM is presented in Chapter 5. 

4.3.2 Improvement of Power Transfer Capacity in Transmission 
Lines 

The PV solar farm is operated as a PV-STATCOM for providing controlled reactive 

power exchange with the transmission system. This results in voltage regulation as well 

as damping enhancement of electromechanical and inter area oscillations [95],[96]. Both 

of these functions lead to a much desired increase in transient stability and power transfer 

capacity across long lines. This novel control aspect is presented in Chapter-7. 

In both the above applications, the real power generation capability of the PV solar 

farm(s) is not affected at all. 
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4.4   Novel Application of PV-STATCOM Utilizing “Used” 
Inverter Capacity. 

In power systems, there exist critical induction motor loads such as in petrochemical 

plants, rolling mills, and batch processing plants, where their shutdown, even for a few 

minutes, could result in a very high loss of revenues, up to millions of dollars. Also 

during cascading faults, the voltages in the network start sinking, leading to a potential 

blackout situation. 

In both of the above scenarios, there is a strong need for reactive power support at the 

critical buses. 

If PV solar farms are located close to such buses, they can shut down their real power 

production and operate as PV-STATCOM utilizing their used capacity for a limited 

duration of time under a pre agreed arrangement with the owners of the critical induction 

machines or the system operator. This novel control is presented in Chapter-6, for helping 

the improvement of critical induction motor loads stability. 

4.5 Conclusion 

PV solar farms remain absolutely unutilized during the night and are only partially 

utilized during the day. This chapter presents the concepts of a novel use of a PV solar 

farm inverter as a PV-STATCOM, which can potentially lead to complete utilization of 

the PV solar farm inverter asset both during night and day. Two sets of novel PV-

STATCOM technologies are presented: one based on the “unused” capacity of the solar 

inverter, and the other based on “used” capacity of the solar inverter. These new 

applications of PV solar farms can help to improve the performance of power systems. In 

addition, they can potentially bring new sources of revenue for PV solar farms by 

providing these benefits, in addition to those earned from the sale of real power.  
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Chapter 5  

5 Reduction of Line Losses Through a Novel Control of 
PV Solar Farm as PV-STATCOM 

5.1 Introduction 

Transmission and distribution networks experience I2R heating losses due to the flow of 

current I through the resistance R of the lines. In North American systems, the line losses 

are typically 4-5% of the total power delivered [170]-[172], whereas, in some Asian 

countries the line losses can be more than 20% [173]. This results in a significant loss of 

revenue for the system operator. 

Line losses are a function of voltages at different buses in a transmission or distribution 

network. One of the objectives of optimal power flow studies [174] is to determine the 

voltage set points at different generator buses for optimal power flow by minimizing the 

losses subject to system operating constraints [174]. 

This chapter presents a novel patent pending technology whereby PV solar farms 

operating as PV-STATCOM are utilized for controlling their bus voltages to levels at 

which line losses can be minimized or substantially reduced. The “optimal” bus voltages 

can be determined locally by solar farms themselves, or may be computed by the system 

operator and transmitted to individual PV solar farms. Studies are conducted for both the 

above scenarios and the resulting decreases in line losses are demonstrated. 

The rest of the sections are organized as follows: Section 5.2 formulates an expression for 

system line loss in a simple two bus network, whereas, Section 5.3 describes the study 

system and the PV-STATCOM controller. Section 5.4 describes the control strategy of 

the proposed system. Two case studies are performed for a long feeder in a rural area and 

presented in Section 5.5 and Section 5.6; one is with a single DG, and the other is with 

multiple DGs. An economic evaluation of this PV-STATCOM technology is presented in 

Section 5.7.  Finally, the work is concluded in Section 5.8.  
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5.2 Loss Formulation of a Two Bus Network with a 
Distributed Generator. 

Fig. 5.1 depicts a typical line having resistance R and reactance X. The sending end 

voltage is VS∠δ 
ο
  where the receiving voltage is VR∠0 o. Ps and Qs denote the sending 

end real and reactive power flow in the line, and PR and QR denote the net receiving end 

real and reactive power. A Distributed Generator (DG) is connected at the end of the line 

where the aggregated load is also connected. The line current is I ∠θ
o. The complex 

power flow Í�ÎÎÎ in the line at the receiving end is expressed as: 

 

Figure 5.1 A two bus network. 

Í�ÎÎÎ = %� + w.� = M�ÎÎÎ. ~∗Ð, − − − − − − − − − − − − − − − − − − − − − − − − (5.1)  

�|, Í�∗ÎÎÎ = %� − w.� = M�∗ÎÎÎ. ~ ̅ − − − − − − − − − − − − − − − − − − − − − (5.2)  

The real power loss in the line Ploss is given by: 

%Å�rr = ~2. � = �. (%�2 + .�2) M�2Ò − − − − − − − − − − − − − − − − − − − −(5.3) 

 

where,  

~ = v(%�2 + .�2)M�2 	 , Í� = ?%�2 + .�2 	,				M�∗ÎÎÎ = M�ÎÎÎ = M�∠0.	 
 

By neglecting the line charging of the overhead line, the receiving end voltage can be 

expressed as:  

M�∠0° = MÍ∠Z° − ~(̅� + wY) − − − − − − − − − − − − − − − − − − − − − (5.4) 

Substituting I from (5.3) in (5.1) and combining with (5.3), we get: 
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M�2 = MÍ2 − 2. �1 ± 6�(MÍ2 − 2. �1)2 − 4. (�12 + �22)�2 , − − − − − − − − − − − − (5.5)		 
+,-,			Z = tan−1 Ó �2M�2 + �1Ô				− − − − − − − − − − − − − − − − − − − − − −(5.6) 

 

where,  �1 = (%� . � + .� . Y), +,-,			�2 = (%� . Y − .� . �)  

The receiving end power PR, QR is the net power consumption at the receiving end:  

 %� = (%Å − %�), +,-,			.� = (.Å − .�)  

Therefore, (5.3) becomes:  

%Å�rr = ~2 . � = �. /(%Å − %�)2 + (.Å − .�)20 M�2Ò − − − − − − − − − − − − − (5.7) 

 

Using the positive quantity before the radical in the receiving end voltage expression of 

(5.5) [175], the loss can be found from (5.7) as follows: 

%Å�rr = ~2. � = 2�. /(%Å − %�)2 + (.Å − .�)20MÍ2 − 2. �1 + 6�(MÍ2 − 2. �1)2 − 4. (�12 + �22)� − − − − − − − −(5.8) 

 

where, K1 and K2 can be rewritten as 

 �: = /(%P − %Õ). � + (.P − .Õ). Y0, +,-, � = /(%P − %Õ). Y − (.P − .Õ). �0 
It is evident that Ploss=f(PL,QL,VS,R,X, PG,QG), where all the quantities are constant for a 

given network with known DG power generation and loads. Thus by variation of ‘QG’ the 

loss can be varied. The receiving end voltage VR also changes with the variation of ‘QG’ 

as seen from (5.5). Therefore, an optimal VR can be determined for which the loss 

becomes a minimum. 

The derivative of ‘Ploss’ with respect to ‘QG’ in (5.8) is equated to zero, which returns an 

optimal value of ‘QG’. Inserting this ‘QG’ into (5.5) gives the optimal set point of the 

voltages VR for minimum system loss. Therefore, this optimal VR is achieved by 

controlled reactive power exchange with the PV-STATCOM.  

The above analysis is for a simplistic network. It is obvious that for a more complex 

network an Optimal Power Flow (OPF) solution is required which provides the voltage 

set point for minimum line loss. According to OPF formulation the voltage magnitudes 
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and the angles at each bus acts as state variables, real and reactive powers acts as the 

control variables [203]. 

There are also some internal losses for operating the DGs. For power inverter based DGs 

like PV solar farms these losses, Ploss_inv, are associated with IGBT conduction, switching 

and snubber losses which can be expressed in terms of a polynomial expression [176]-

[178]:%º�rr _(,' = ¿Í + ¿M . Í + ¿� . Í2	(	Ö. ×. ) − − − − − − − − − − − − − − − − − −(5.9)  

where, S is the apparent power output from the DG inverter expressed in p.u., CS is 

associated with the standby fixed losses, CV is associated with voltage dependent losses 

and CR is associated with resistive losses for IGBT conduction. The efficiency, η, of the 

inverter can be expressed as:  Ø = Í �Í + %º�rr _(,' �Ò − − − − − − − − − − − − − − − − − − − − − − − − − (5.10) 

Therefore, for a typical inverter efficiency curve [179] having an efficiency of 98%, by 

using the curve fitting technique of MATLAB with (5.9) and (5.10), the values of  CS, CV, 

and CR are determined to be 0.2414%, 0.00364% and 0.0002%, respectively. 

5.3 System Model 

5.3.1 System Description 

As network losses are associated with steady state operation of the power system, the 

study is performed using load flow software PowerWorld Simulator [180]. However, for 

a better understanding of the control concepts of the PV-STATCOM, the system is 

simulated in EMTDC/PSCAD and the output is validated with the PowerWorld 

Simulator output. In PowerWorld Simulator the PV solar farm is modeled as a P-Q bus 

providing zero reactive power, while acting as conventional PV system. However, when 

the PV solar farm operates as PV-STATCOM, it is modeled as a P-V bus considering that 

the PV solar farm is producing power P (based on its maximum power point- MPP) at the 

optimal voltage VR to result in minimum loss.   

On the other hand, in EMTDC/PSCAD, the conventional PV solar farm along with the 

Maximum Power Point Tracking (MPPT) feature is modeled as given in Chapter 2.  
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5.3.2 PV System Control 

Fig. 5.2 depicts the detailed diagram for a conventional PV solar farm to act as PV-

STATCOM with an auxiliary PV-STATCOM voltage controller, and the optimal power 

flow (OPF) unit.  

2
C

D
C

2
C

D
C

V
D

C

 

Figure 5.2 Detailed PV-STATCOM configuration in the study system (a) PV array 

model, (b) IGBT matrix of inverter, (c) L-C-L filter, (d) MPPT module, (e) 

conventional inverter controller, (f) PCC voltage regulator and (g) Optimal Power 

Flow unit. 

5.3.2.1 Conventional PV System Control 

The conventional PV solar farm controller regulates the reactive power output of the 

inverter such that it can perform unity power factor operation along with the DC link 

voltage control, as demonstrated in Chapter 2. The d-axis current control loop regulates 

the DC voltage and the real power transfer through two PI regulators (PI-1 and PI-3), as 

shown in Fig. 5.2 (e). However, the q-axis current control loop regulates the reactive 
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power to zero through a single PI controller (PI-2), as shown in Fig. 5.2 (e). The DC link 

voltage reference is set by the MPPT output as shown in Fig. 5.2 (d) such that, 

corresponding to MPP voltage, all of the available real power output from the PV 

modules is transferred to the network through the inverter. 

5.3.2.2 PV-STATCOM with PCC Voltage Controller 

To operate the PV system as PV-STATCOM and to control the PCC bus voltage, a ‘PCC 

voltage control module’, as shown in Fig. 5.2 (f), is added to the q-axis current control 

loop by adding an additional PI controller PI-4 [62],[108]. It regulates the voltage at the 

Point of Common Coupling (PCC) by comparing the measured voltage signal at PCC, 

VPCC, with the reference voltage value of PCC, VPCC_ref. The output of this module sets 

the reference value of ‘Iq’ which ultimately controls the reactive power flow from the 

inverter using the remnant capacity of the inverter after real power generation. The Id 

current control loop serves the same purpose of the DC link voltage control as in a 

conventional PV solar system control. The rest of the controller is the same as the 

conventional controller. In the proposed novel control, the “optimal” set point voltage of 

the PCC, VPCC_ref, is determined locally by the DG operator, by running an optimal power 

flow program as shown in Fig. 5.2 (g). This utilizes system data which includes real 

power, Pi and reactive power Qi of all ‘i’ generators, loads Pj, Qj at all ‘j’ bus, network 

resistance R, inductance, X, succeptance, B values, and the slack bus voltage Vs, and 

angle δs. 

5.4 Control Strategy for Line Loss Reduction 

5.4.1 Single PV System as PV-STATCOM 

It is proposed that at the outset, the PV solar farm reaches an agreement with the 

connecting utility to provide voltage regulation at its PCC for reducing loss in the feeder 

to which it is connected, and receives revenue for loss reduction. The utility agrees to 

provide all system data required regarding the generators, loads, and line parameters to 

the PV solar farm. The PV solar farm performs this optimal load flow at regular intervals 

and determines a desired voltage reference for the PCC, VPCC_ref. The PV solar farm acts 

as a PV-STATCOM and with its available inverter capacity (fully in the night and 
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partially during the day), exchanges (injects or absorbs) controlled reactive power with 

the network to bring the PCC voltage equal to or as close as possible to VPCC_ref.  

5.4.2 Coordinated Control of Multiple PV Systems as PV-
STATCOMS 

In this case, the utility reaches an agreement with multiple PV solar farms to maintain 

their PCC voltages at “optimal” levels in a coordinated manner to reduce line losses in 

the complete utility network and to be financially compensated for providing this service. 

The control strategy is depicted in Fig. 5.3, where the utility’s Energy Control Center 

centrally performs an optimal load flow at regular intervals and determines the desired 

PCC voltage references for each of the participating PV solar farms. The voltage 

reference set points are communicated to all the participating PV solar farms through 

bidirectional communication links as shown in Fig. 5.3. 

 

Figure 5.3 Schematic diagram of control co-ordination strategy 

5.5 Case Study 1: Radial Feeder with Single PV System 

5.5.1 Scenario-1 

Fig 5.4 depicts a radial feeder with a length of 48 km connected with a 12 MW PV solar 

farm at the end of the feeder. A load of 4MW, 2MVAr is also connected at the end of the 

feeder. The network loss is studied for this system at different levels of power generation 

with the proposed function of the PV solar farm as a PV-STATCOM.  
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Figure 5.4 Scenario 1: PV system connected at feeder end. 

The voltage profile for different levels of PV power generation at unity power factor is 

presented in Fig. 5.5.  

 

Figure 5.5 Voltage profile with conventional PV solar farm operation. 

It is seen that the voltage rises with injection of real power and hence reduces the system 

losses, which is expected [118]-[125], [130]. The observed magnitude of voltage increase 

is compared to the voltage rise predicted by (5.5) and (5.6). For instance, in the case of a 

12 MW solar farm operating at unity power factor with a load of 4MW and 2MVAr, the 

observed voltage rise at the receiving end is 0.113 pu, while the analytically predicted 

rise is 0.118 pu. This 4% discrepancy is attributed to line charging effect which is 

neglected in the analytical prediction. 
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Fig. 5.6 shows the total losses for different power outputs with varying PCC voltages. 

These plots are used to determine the “best” value of PCC voltage for minimizing line 

losses. The PCC voltage is controlled to always remain between 0.94 pu to 1.06 pu, as 

stipulated by the utility. It is seen that for certain specific PCC voltages, the line losses 

become very low or the lowest.  

 

Figure 5.6 Loss profile to identify optimal set point of PCC voltage. 

Fig. 5.7 illustrates the feeder voltage profile when the PV solar system is operated as a 

PV-STATCOM to maintain the PCC voltage at the above obtained PCC voltage set point, 

Vset for different real power outputs from the PV system.  

The line losses for each value of real power output from the PV system, when it is 

operated conventionally and as a PV-STATCOM, are illustrated in Table 5.1. The 

corresponding PCC voltage set point Vset, PV-STATCOM reactive power QPV, and the 

STATCOM internal loss computed from (5.9) are compiled in the Table (5.7). It is noted 

that the STATCOM loss during the night is considerably higher than the daytime 

operation. This is due to the fact that during the night, the PV-STATCOM does not 

generate any real power and the whole inverter is used solely as a PV-STATCOM. 

Therefore, all of the losses in the STATCOM correspond to PV-STATCOM operation 
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during the night. On the other hand, during the daytime, as the PV system is producing 

real power, the losses due to the additional reactive power support of PV system as PV-

STATCOM are only accounted for as STATCOM loss. Finally, the net loss reduction due 

to PV-STATCOM operation as compared to that of the conventional PV system 

operation is presented in Table 5.1. It is seen that the net loss savings are substantial and 

are in the range of 42-60kW. 

 

Figure 5.7 Voltage profile with PV-STATCOM operation. 

Table 5.1 Line Loss Evaluation for Scenario 1. 

PV Active 

Power 

Generation 

(MW) 

CONVENTIONAL 

OPERATION: 

Line Loss (kW) 

[x]  

PROPOSED PV-STATCOM OPERATION Net Loss 

Reduced

(kW)  

[x-y-z] 

PCC  Set Point 

Voltage  

Vset, (pu) 

Reactive 

Power, 

QPV MVAr 

Line 

Loss 

(kW) [y] 

STATCOM 

Loss (kW) 

[z] 

Night 0 250.7 0.994 2.415 176.1 29 45.6 

D
a

y
 

2 92.1 1.01 2.021 42.1 0.03 49.97 

4 42.1 1.03 1.918 0 0.016 42.084 

6 83.7 1.052 2.026 38.8 0.012 44.89 

8 207 1.06 1.738 152.8 0.0068 54.19 

10 406.5 1.06 1.272 347.3 0.003 59.2 

12 680.4 - - - - - 
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5.5.2 Scenario 2 

In this scenario, the 12 MW PV solar farm is relocated to the middle of the same feeder, 

as depicted in Fig 5.8.  The load of 4MW, 2MVAr remains connected at the end of the 

feeder. The network loss is studied for this system at different levels of power generation, 

as well with the proposed operation of the PV solar farm as a PV-STATCOM.  

 

Figure 5.8 Scenario 2: PV system connected in the middle of feeder. 

As in Scenario 1, the voltage magnitude at the PCC also increases and satisfies equations 

(5.5) and (5.6) in Scenario2. The network losses with the conventional operation of the 

PV system are compiled in Table 5.2.  

Table 5.2 Line Loss Evaluation for Scenario 2. 

PV Active 

Power 

Generation 

(MW) 

CONVENTIONAL 

OPERATION: 

Line Loss (kW) 

[x]  

PROPOSED PV-STATCOM OPERATION Net Loss 

Reduced 

(kW)  

[x-y-z] 

PCC Voltage 

Set Point 

Vset, (pu) 

Reactive 

Power, 

QPV MVAr 

Line 

Loss 

(kW) [y] 

STATCOM 

Loss (kW) 

[z] 

Night 0 250.7 1.015 2.766 204.1 29 17.6 

D
a

y
 

2 173.7 1.025 2.612 135.1 0.047 38.55 

4 144.6 1.035 2.534 109.5 0.0268 35.07 

6 159.9 1.045 2.527 124.9 0.0185 34.98 

8 216.9 1.06 2.936 179.1 0.019 37.78 

10 313.7 1.06 2.365 270.4 0.01 43.29 

12 448.7 - - - - - 

With PV-STATCOM, the PCC voltage is maintained between 0.94 pu to 1.06 pu. It is 

observed from Table 5.2 that there is a net reduction in losses while operating as a PV-

STATCOM. However, comparing Table 5.1 and Table 5.2, it is seen that the net loss 

reduction in Scenario 2 is generally lower than in Scenario 1. This is because the PV 
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solar system is located at a distance from the load, thus the net current and power flow on 

the line is relatively higher, causing more losses.  

5.6 Case Study 2: Radial Feeder with two PV Systems 

5.6.1 Scenario-3 

In this scenario, a total of 12 MW PV solar farm (as considered in Case Study 1) is 

connected in a distributed manner with two 6 MW PV solar farms, as shown in Fig. 5.9. 

One is connected at the middle of the feeder and the other is connected at the end of the 

feeder. The same load of 4MW, 2MVAr remains connected at the end of the feeder. The 

network loss is studied for this system at different levels of power generation as well with 

the proposed operation of the PV solar farm as a PV-STATCOM.  

 

Figure 5.9 Scenario 3: Two PV systems connected at the middle of feeder and at the 

end of the feeder. 

Fig. 5.10 illustrates the voltage profile at different levels of PV power generation at unity 

power factor for the system of Scenario 3. The rise in voltage at each PCC, due to the 

injection of real power by the conventional PV solar farm operation, is observed to be in 

agreement with the modified versions of equations (5.5) and (5.6) for 2 DG systems. The 

real power generation at two conventional PV systems is varied simultaneously by the 

same amount (assuming similar solar radiation) and the losses in the network are 

presented in Table 5.3. In this scenario, with the use of both solar farms as PV-

STATCOMs, the PCC voltages are also maintained within 0.94 pu to 1.06 pu. The net 

loss reduction for a different combination of PCC set point voltages at both PCCs is 

illustrated in Table 5.3. It is observed that the net loss reduction is higher than in Scenario 

1, as presented in Table 5.1. This is due to the relative locations of the load and 
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generation in the system, and to the amount of additional generated power from the PV 

system transferred as a reverse power flow to the grid. 

 

Figure 5.10 Voltage profile with two solar farms for Scenario 3 

Table 5.3 Line Loss Evaluation for Scenario 3. 

Total PV 

Active 

Power 

Gen. 

(MW) 

CONVENTIONAL 

OPERATION: 

Line Loss (kW) 

[x] 

PROPOSED PV-STATCOM OPERATION Net 

Loss 

Reduce 

(kW)  

[x-y-z] 

PCC-1 PCC-2 Line 

Loss 

kW 

[y] 

STATCOM 

Loss (kW) 

[z] 
VSET1 

(pu) 

‘QPV1’ 

(MVAr) 

VSET2 

(pu) 

‘QPV2’ 

(MVAr) 

Night 0 250.7 1.01 0.3061 0.99 2.1122 175.8 29.05 45.85 

D
a

y
 

2 125.5 1.02 -0.0032 1.005 2.092 69.3 0.0486 56.15 

4 67.1 1.03 -0.0832 1.02 2.0225 20.5 0.031 46.57 

6 67.9 1.04 -0.0844 1.035 1.9788 24.8 0.0217 43.078 

8 122.5 1.05 -0.0128 1.05 1.96 78.4 0.0166 44.08 

10 227.1 1.06 0.5304 1.06 1.5629 178.3 0.01 48.79 

12 379.4 - - - - - - - 

5.6.2 Scenario 4 

Fig. 5.11 depicts two 6MW solar farms (totaling 12 MW as considered in Scenario 1) 

connected at 1/3rd and 2/3rd distance from the utility bus. As well, the same load of 4MW, 

2MVAr is connected at the end of the feeder. The network losses are determined in a 
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similar manner for this study system at different levels of power generation with the PV 

solar farm operating as a PV-STATCOM. 

 

Figure 5.11 Scenario 4: Two PV systems connected at 1/3
rd

 and 2/3
rd

 distance. 

Table 5.4 summarizes the loss reduction results for Scenario 4, for both cases of 

conventional PV system operation and PV-STATCOM operation. A rise in voltage at 

each PCC due to the injection of real power by the conventional PV solar farm is 

observed. Both solar farms are assumed to generate same amount of real power for the 

same solar radiation. Also, both solar farms act as PV-STATCOMs and regulate the 

corresponding PCC voltages within 0.94 pu to 1.06 pu. The different PCC set point 

voltages, Vset1 and Vset2, at both PCCs at different levels of PV solar power generation, 

and the net loss reduction using the PV-STATCOM, are illustrated in Table 5.4. In this 

scenario, the net loss reduction is comparatively higher than in the scenario presented in 

Table 5.2 which uses a single 12 MW PV system at the mid bus of the feeder. Therefore, 

it is inferred that distributed PV-STATCOMs give higher loss reductions. 

Table 5.4 Line Loss Evaluation for Scenario 4. 

Total PV 

Active 

Power 

Generation 

(MW) 

Conven-

tional PV 

Operation

: Line Loss 

(kW) [x] 

Proposed PV-STATCOM Operation Net Loss 

Saving 

(kW) 

 [x-y-z] 

PCC-1 PCC-2 Line 

Loss 

(kW) 

[y] 

STATCOM 

Loss (kW) 

[z] 
VSET1 

(pu) 

‘QPV1’ 

(MVAr) 

VSET2 

(pu) 

‘QPV2’ 

(MVAr) 

Night 0 250.7 1.02 0.2845 1.008 2.4583 193.2 29.07 28.43 

D
a

y
 

2 169 1.03 0.6426 1.02 2.2276 121.7 0.06 47.24 

4 128.4 1.034 0.0077 1.03 2.4894 86.4 0.044 41.95 

6 126.1 1.04 0.0876 1.038 2.2981 86.5 0.029 39.57 

8 159.7 1.0475 0.0698 1.05 2.4172 120.2 0.025 39.47 

10 227.4 1.05 -0.1497 1.055 2.3145 185.9 0.019 41.48 

12 327.9 - - - - - - - 
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5.7 Economic Evaluation and Discussion 

Fig. 5.12 (a) depicts the real power output (solid line) and reactive power capability (bold 

dotted line) of an actual 12 MW (name withheld due to confidentiality) PV solar farm 

over one day. For the study system, the PV system is assumed to change its power output 

in several steps shown by dotted lines representing its average value during different 

periods of the day. It is considered that the generation remains constant around an 

average value of generation for a certain period of time and changes to another step of 

generation for another period of time.  

Fig. 5.12 (b) presents the losses and net loss savings with the PV-STATCOM operation 

for Scenario 1. The total loss reduction is calculated with the use of Table 5.3 for every 

step change of PV power generation, as given in Fig. 5.12 (a), and plotted over one day in 

Fig. 5.12 (b). It is noted that during night time when the conventional PV system is not 

generating any power, the network losses (presented by blue dotted line) are higher than 

the losses while operating as a PV-STATCOM. Therefore, a net loss reduction is 

achieved during the night time with the use of a PV-STATCOM. Similarly, during early 

morning and late evening the PV-STATCOM also reduces line losses. 

Similar results of net loss reductions with the use of PV-STATCOMs are obtained for 

Scenarios 2-4. Fig. 5.12(c) plots the net loss reduction with the use of a PV-STATCOM 

operation for all scenarios. By comparing these plots, the net energy loss reductions over 

one day are compiled in Table 5.5. The cost of the energy is calculated at a rate of $0.06 

per kWh. It is evident from Fig. 5.12 (c) that the power loss reduction for Scenario 1 with 

a single DG at the load bus is much higher than the Scenario 3 with distributed DGs at 

the mid-bus and load bus during the day. As a result, it leads to higher net energy savings 

for Scenario 1 as presented in Table 5.5. On the other hand, the energy savings for 

Scenario 4 with distributed DGs at 1/3rd and 2/3rd locations on the feeder are much higher 

than in Scenario 2, with single DG at the mid-bus. It is noted that there is always a net 

loss reduction with the proposed control of a PV-STATCOM, which is dependent upon 

the location and size of the DGs and loads. The amount of energy savings with the 

proposed PV-STATCOM for the study system in Scenario 1 is capable of providing 



98 

 

electricity to 30 homes free of cost all year long, assuming a single home consumes 

1000kW/h per month [181]. 
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(c) 

Figure 5.12 (a) PV-STATCOM reactive capability, (b) line loss reduction with PV-

STACOM for scenario 1 and (c) comparison of loss reduction with PV-STATCOMs 

in different scenarios. 

Table 5.5 Summary of Energy Loss Savings and Cost Savings. 

Scenarios Energy Savings 

(kWh/day) 

Energy Consumption of 

Equivalent Number of Homes 

Cost Savings  

(CAD $/year) 

1 1005.6 30 22,022 

2 557.88 16 12,217 

3 939.19 28 20,568 

4 710.27 21 15,555 

5.8 Conclusion 

It is known that Distributed Generators (DGs), while conventionally generating real 

power at unity power factor, improve the network voltage profile based on the generation 

levels, and hence reduce the line losses [118]-[125], [130]. In this chapter, a novel control 

of a PV-STATCOM with the use of remnant inverter capacity is demonstrated to reduce 

line losses even further in a radial system through appropriate voltage control. The 
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optimal voltage reference is obtained from the network operator running a centralized 

Optimal Power Flow (OPF) for the whole system, or by the individual owner of the 

participating DGs. The voltage regulation with the proposed PV-STATCOM technology 

at these optimal set points gives a net loss reduction even after accounting for the 

operational losses of the PV-STATCOM. Following are the conclusions for the four 

scenarios in a radial network. 

(i) Comparing Scenarios 1 to 4, it is observed that the PV-STATCOM control is more 

effective in reducing line losses when connected close to the load.  

(ii) Comparing Scenarios 2 and 4, it is noted that more distributed voltage control than a 

centralized mid-point voltage control by the PV-STATCOM results in higher loss 

reduction. 

Overall, the annual cost of energy savings by such a novel PV-STATCOM control is 

substantial. For the 12MW PV solar farm based study system, the energy saving is 

sufficient enough to power 30 homes. It is recommended that a mechanism be evolved to 

compensate solar farms for providing such loss reduction in utility networks. 

In this chapter, optimal load flow studies have not been performed. However, best (near 

optimal) voltage set points have been determined by a set of systematically conducted 

load flow studies. The objective here is to demonstrate the novel concept of PV-

STATCOM control for loss reduction by appropriately selecting voltage set points. 

However, the recommendation is to use OPF in large real power networks.  
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Chapter 6  

6 Prevention of Instability of Critical Induction Motor Load 
with a Novel Control of PV Solar Farm as PV-
STATCOM. 

6.1 Introduction 

Power systems are commonly faced with disturbances, such as faults and outages of 

equipment (transformers, lines, generators etc.). These disturbances cause voltage 

fluctuations which can be severe if the power system is weak. Faults in such weak 

networks can potentially result in shut down of Induction Motor (IM) loads due to 

voltage instability, lack of reactive power support, etc. In some cases IM loads are critical 

such as those used in process control, rolling mills, etc. Shutdown of these critical IM 

loads even for a very short duration as few minutes can result in huge losses to the 

industrial facility using these IMs [182].  

This chapter presents another new application of PV-STATCOM to provide voltage 

support to a critical voltage sensitive induction motor load connected in the vicinity of a 

solar farm. The novel fast fault detection technique described in Chapter-3 is integrated 

with the PV system to sense any fault on the grid. Upon detection of a fault, the PV solar 

farm inverter transforms into a PV-STATCOM and provides the required voltage 

regulation. A set of PV solar panels are temporarily disconnected from the DC side of the 

inverter while the inverter still remains connected with the AC grid. As a result, during 

day time, the real power generation is partially or fully curtailed as required. The inverter 

capacity is thus freed up to provide required amount of reactive power support to the grid 

for a short duration of time during fault and post fault recovery period.  

In this chapter, the performance of PV solar system is compared for (i) conventional 

operation, and (ii) PV-STATCOM operation. 

In section 6.2, the system model is described whereas in section 6.3 the performance and 

detailed simulation study results of the proposed PV-STATCOM are presented. Finally, 

section 6.4 concludes the chapter. 
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6.2 System Model 

The one line diagram for the study system is presented in Fig. 6.1 which is modeled in an 

EMTDC/PSCAD environment.  

6.2.1 Study System  

The same study system described in Chapter 3 is adopted for this study. However, the 

static load at the end of the feeder is replaced with an Induction Motor (IM) load. The 

detailed parameters of the source and network are given in Chapter 3. A 7.5MW PV solar 

farm is connected at the feeder end as given in Chapter 3. The parameters of the solar 

farm model are given in Appendix-B. 

 

Figure 6.1 One line diagram of study system. 

6.2.2 Induction Motor (IM)  

A 400 HP (300kW) squirrel cage IM load is modeled in detail. The IM parameters are 

obtained from the manufacturer’s datasheet of American Motors [183] and given in 

Appendix-C. The obtained parameters are converted to fit into the EMTDC/PSCAD 

library model [165] by using the conversion expressions given in [184], and calculated in 

Appendix-C. As the IM is rated for lower voltage, a step down transformer (not shown in 

the one line diagram) is used to match the IM voltage ratings.  
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6.2.3 Proposed PV-STATCOM Control 

The proposed operation of a PV system as a PV-STATCOM is illustrated in Fig. 6.2, in 

the form of a generalized block diagram.  

 

Figure 6.2 Conceptual block diagram of proposed PV-STATCOM system. 

In this figure, the inverter IGBT, DC link capacitor, AC filter, MPPT, and the 

conventional PV inverter controller are the components of a conventional PV solar farm. 

The PCC voltage controller is incorporated with the conventional PV system to operate it 

as a PV-STATCOM upon sensing any fault on the network. The fault detector unit 

comprises the fault detection module and the associated switches to turn off the PV 

modules and MPPT, and turns on the PCC voltage controller for PV-STATCOM 

operation. 

The simulation model of this system is presented in detail in Fig. 6.3. The current control 

module representing the PV modules, the inverter IGBT matrix with DC link capacitor, 

AC filter, MPPT, and the conventional controller are shown in Fig 6.3 (a)-(e), 

sequentially. The descriptions for modeling these components are provided in Chapter 2. 

Fig 6.3 (g) presents the PCC voltage control module that was discussed in Chapter 5. Fig. 

6.3 (f) depicts the fault detection module, whereas Fig. 6.3 (h) illustrates the DC switches 

to disconnect the PV modules from the inverter.      



104 

 

 

Figure 6.3 Detailed system diagram in EMTDC/PSCAD 

The normal operation of a PV solar farm, through conventional controller of the PV 

inverter, ensures unity power factor at PCC, as described in Chapte 2. The MPPT 

technique is implemented with the inverter controller while operating as a conventional 

PV solar farm. The DC link terminal voltage Vdc and PV current Ipv are used for MPPT 

operation as described Chapter 2. It is noted that during normal operation, the fault 

detection module does not generate any triggering signal. 

For the proposed PV-STATCOM operation, the control technique is described as follows: 

As soon as any fault is detected the grid connected PV solar farm begins operating as a 

PV-STATCOM with the help of a fault detection module. The fault detection module 

shown in Fig. 6.2 (f) monitors the inverter output currents and generates a triggering 

signal ‘PVIso’ in case of any fault event in the network and does the following: 

(i) Disconnects the PV modules from the inverter and disables the MPPT 

(ii) Enables the PV-STATCOM PCC voltage controller.  
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As discussed in Chapter 3, the fault detector is capable of detecting any fault within a few 

hundred microseconds and the power electronics devices (e.g., solid state breakers, 

IGBTs of the inverter, GTOs, etc.) are capable of responding within a few hundred 

nanoseconds to several microseconds [185], [63]. The complete operation of the fault 

detection and switching to PV-STATCOM operation takes a few milliseconds.  

Once a fault is detected, the output signal of the fault detector enables the PV-

STATCOM voltage controller through a multiplier inside the PCC voltage control 

module as shown in Fig. 6.3 (g). The voltage control module then begins regulating the 

voltage at the PCC, as described in Chapter 5. The PCC rms voltage is chosen as the 

feedback signal; thus, the PCC rms voltage is regulated to the reference value. As a 

result, the PV inverter completely behaves like a STATCOM with the PCC voltage 

control mode of operation upon detection of fault in the network.   

During the PV-STATCOM operation the DC link voltage is maintained constant to a 

predefined reference value, VDC_ref. This is chosen arbitrarily around the maximum power 

point voltage, Vmpp at rated power, such that the DC link voltage is more than twice the 

AC voltage at the inverter output for smooth operation of the inverter [56], [108]. In both 

the operation modes either as conventional PV solar farm or as PV-STATCOM, the grid 

synchronization is accomplished through the use of a phase lock loop (PLL) oscillator 

[108], [165]. 

6.3 Study Results 

The simulation study is performed and an IM response is obtained for the following 

cases: 

Case 1: Conventional PV system becomes disconnected, as per grid code [59], [60],  

Case 2: Conventional PV system stays connected with the network during the fault,  

Case 3: PV system acts as proposed PV-STATCOM during and after the fault. 

In all of these studies a three phase to ground fault, which is considered as a worst case 

scenario in terms of speed recovery of the motor [186], is applied for 9 cycles at the grid 

bus. The fault is initiated at t=5 seconds and cleared at t=5.15 seconds. The maximum 

size of IM that can be supported by a 7.5 MVA PV-STATCOM is also determined in this 
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study. Finally, the reconnection of the solar farm after successful recovery of fault is 

demonstrated.  

6.3.1 Case-1: Conventional PV system disconnected during fault: 

The grid code [59], [60] requires a conventional PV solar farm to generate power at unity 

power factor and to disconnect within 6 cycles if there is a fault on the network. System 

relays are incorporated to disconnect the PV system from the grid. However, in this 

study, a fast fault detection technique, as discussed in Chapter 3, is integrated to 

disconnect the PV system. Fig. 6.4 illustrates the IM response at this event. Three phase 

triggering signals generated by the PV system fault detector are depicted in Fig. 6.4 (a), 

real and reactive power generation by the PV solar farm are demonstrated in Fig. 6.4 (b), 

voltages both at the PV solar farm and IM terminal are illustrated in Fig. 6.4 (c), IM 

speed is shown in Fig. 6.4 (d), and the real and reactive power drawn by the IM are 

presented in Fig. 6.4 (e). 

As soon as the fault is detected, the fault detector generates a triggering signal on phase-a 

as shown in Fig. 6.4 (a). As discussed in Chapter 3, a triggering signal generated by the 

fault detector on any one of the three phases can disconnect the PV modules from the 

inverter and stop DC power generation. It can also stop the gating signal of the PV 

inverter as discussed in Chapter 3, which, eventually, stops the AC power output at the 

PV inverter terminal, as evident from Fig. 6.4 (b). A gradual decrease in AC power 

output is observed; this is due to the inductive effect of the filter and transformer.  

During the fault, the voltage at the IM terminal becomes considerably low as illustrated 

in Fig. 6.4 (c). Therefore, the IM speed decreases and drops to 0.78 pu as seen in Fig. 6.4 

(d). After the fault is cleared at t=5.15 seconds, the voltage at the IM terminal recovers 

but the IM speed becomes unstable. By examining the power drawn by the IM as shown 

in Fig. 6.4 (e), it is observed that both the active and reactive power drawn by the IM 

reduce substantially during fault. However, the reactive power increases more than its 

nominal value right after the fault is cleared. This leads to a destabilization of the IM 

oscillations: around 58 Hz are observed in IM power, which relate to the low stator and 

rotor resistances of the IM. 
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Figure 6.4 Conventional operation of the PV solar farm. 

6.3.2 Case 2: Conventional PV system stays connected during fault 

In this case, the conventional PV solar farm is allowed to remain connected during and 

after the fault. Fig. 6.5 illustrates the IM response at this event. The PV system DC link 

(a) 

(b) 

(c) 

(d) 

(e) 
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voltage is depicted in Fig. 6.5 (a), real and reactive power from the PV solar farm are 

demonstrated in Fig. 6.5 (b), voltage at the IM terminal is illustrated in Fig. 6.5 (c), IM 

speed is shown in Fig. 6.5 (d), and real and reactive power at the IM terminal are 

presented in Fig. 6.5 (e). 

 

Figure 6.5 Conventional PV solar farm operates during and after the fault. 

(i) Period I - During a fault, t=5 seconds to t=5.15 seconds. 

 When the fault initiates, the PV solar farm does not disconnect and continues generating 

real power as shown in Fig. 6.5 (b). The AC power output at the inverter terminal 

(a) 

(b) 

(c) 

(d) 

(e) 
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decreases rapidly during a fault, due to the sudden drop of PCC voltage as shown in Fig. 

6.5 (c). On the other hand, the DC power generation from the PV modules decreases 

relatively slow, as seen in Fig. 6.5 (b), because the PV modules act as a voltage 

controlled current source, as described in Chapter 2. The balance of real power increases 

the DC link voltage across the DC link capacitor of the solar farm as shown in Fig. 6.5 

(a). During this transient period of fault a small amount of reactive power output from the 

solar farm inverter is observed in Fig. 6.5 (b), which occurs due to the decoupled power 

model of the solar farm for steady state condition as described in Chapter 2. In this 

period, power consumption by the IM reduces, as illustrated in Fig. 6.5 (e). During the 

fault the IM speed, as shown in Fig. 6.5 (d), also reduces due to the drop in voltage at its 

terminal, as shown in Fig. 6.5 (c).  

(ii) Period II - At post fault clearance, t=5.15 seconds to t= 5.26 seconds.  

The voltage at PCC recovers but takes much longer to stabilize, as seen in Fig. 6.5 (c). As 

a result, the power output from the PV inverter increases momentarily from t=5.15 

seconds to t=5.18 seconds and then falls again from t=5.18 seconds to t=5.26 seconds, as 

seen in Fig. 6.5 (b) following the PCC voltage. The fall in real power to a negative value 

within this period is due to the inverter switching action which indicates more power 

consumption by the DC link capacitor. As a result, the voltage across the DC link 

capacitor increases further which results in lower DC power output from the module, as 

shown in Fig. 6.5 (b). In this period the IM speed decelerates further, as shown in Fig. 6.5 

(d), and the reactive power consumption by IM increases as illustrated in Fig. 6.5 (e). 

(iii) Period III - At Post Fault Clearance, after t= 5.26 seconds. 

The power output from the PV solar farm follows the PCC voltage and settles to steady 

state at t=5.37seconds. The DC link voltage decreases gradually to follow the MPPT 

voltage at t=7 seconds. The additional time taken after t=5.37 seconds to settle the DC 

link voltage, as shown in Fig. 6.5 (a), is due to the response time of the MPPT controller. 

During this period, the reactive power output from the PV solar farm, as illustrated in Fig. 

6.5 (b), shows a transient behavior also according to the PCC voltage, as shown in Fig. 

6.5 (c). The IM speed further deteriorates at this period and does not recover further, as 
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seen in Fig. 6.5 (d). The demand for motor reactive power also increases, as shown in 

Fig. 6.5 (e).     

6.3.3 Case 3: PV system operation as PV-STATCOM 

In this case, the PV solar farm is operated as a PV-STATCOM as soon as the fault is 

detected in the network. Two scenarios are investigated. 

6.3.3.1 Scenario 1: PV solar farm located at induction motor 
terminals 

Fig. 6.6 depicts the IM response when the solar farm acts as a PV-STATCOM and is 

located at the IM terminal.  The PV system DC link voltage is depicted in Fig. 6.6 (a), the 

real and reactive power from the PV solar farm are demonstrated in Fig. 6.6 (b), voltage 

at IM terminal is illustrated in Fig. 6.6 (c), IM speed is shown in Fig. 6.6 (d), and the real 

and reactive power at IM terminal are presented in Fig. 6.6 (e).  

(i) Period I - During fault, t=5 seconds to t=5.15 seconds. 

After the fault is initiated, the fault detector detects the fault and transforms the PV solar 

farm into a PV-STATCOM with a PCC voltage control mode of operation, as discussed 

earlier in section 6.2.3. As a result, the DC power generated by the PV modules reduces 

immediately to zero and the active power output of the PV inverter also gradually 

decreases to zero, as shown in Fig. 6.6 (b). The reactive power output of the PV-

STATCOM provides voltage support during this period. The DC link voltage decreases 

gradually, as seen in Fig. 6.6 (a), due to this reactive power support. The IM terminal 

voltage also falls to a low value, as shown in Fig. 6.6 (c). The IM speed in Fig. 6.6 (d) 

and power in Fig. 6.6 (e) drop due to the fall of IM terminal voltage. 

(ii) Period II - At post fault clearance, t= 5.15 seconds to t= 5.75 seconds. 

The DC link voltage of the PV solar system shows a transient behavior (t=5.15 seconds 

to t= 5.5 seconds) as shown in Fig. 6.6 (a). Although, this transient behavior is due to the 

combined transient effect of real and reactive power of the inverter, the transient effect of 

real power is dominant, as observed in Fig. 6.6 (b). It is noted that there is no real power 

input at the inverter. Therefore, during this transient period when the active power flows 



111 

 

in the reverse direction, from PCC to inverter due to the switching action of the inverter, 

it increases the DC link voltage. When the active power flows towards the PCC from the 

inverter, it decreases the DC link voltage. The DC link voltage finally settles to its 

predefined value of 550Volts at t= 5.5 seconds when the real power transient has ended. 

On the other hand, the PCC voltage recovers much faster, as seen in Fig. 6.6 (c). During 

the period of t= 5.15 seconds to t= 5.3 seconds, the PCC voltage follows the transient 

behavior of the reactive power output of the PV-STATCOM inverter and settles to a 

predefined value of 1 pu at t= 5.3 seconds.  

 

Figure 6.6 PV-STATCOM operation at the motor terminal. 

(a) 

(b) 

(c) 

(d) 

(e) 
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During this period (t= 5.15 seconds to t= 5.75 seconds), the IM speed rises and settles to 

its pre-fault level at t= 7.5 seconds, as shown in Fig. 6.6 (d). The real and reactive power 

at the IM terminal shoot up with decreasing oscillation, as discussed earlier, and 

subsequently start decreasing, as shown in Fig. 6.6 (e). The increased power consumption 

by the IM during the transient period from t= 5.15 seconds to t= 5.75 seconds is due to 

the additional torque to bring back the IM to its pre-fault speed. The reactive power of the 

IM stabilizes at the pre-fault level, as seen in Fig. 6.6 (e), when the speed is settled at t= 

5.75 seconds. It is noticed that after t= 5.3 seconds, the reactive power consumption by 

the IM in Fig. 6.6 (e) follows exactly the same behavior as the reactive power output of 

the PV-STATCOM inverter as shown in Fig. 6.6 (b). Therefore, it is obvious that the PV-

STATCOM provides reactive power to meet the reactive power need of the IM until the 

speed of the IM stabilizes successfully. The PV-STATCOM reactive power then remains 

constant after t=5.75 seconds to maintain the PCC voltage constant. 

6.3.3.2 Scenario 2: PV solar farm located far from motor terminal 

To observe the effectiveness of this PV-STATCOM control on IM stability, the PV solar 

farm is located at a remote location: 19 km away from the IM terminals. Fig. 6.7 depicts 

the IM response for this scenario. The triggering signals of the fault detector are depicted 

in Fig. 6.7 (a), the real and reactive power from the PV solar farm are demonstrated in 

Fig. 6.7 (b), voltage at IM terminal is illustrated in Fig. 6.7 (c), IM speed is shown in Fig. 

6.7 (d), and the real and reactive power at IM terminal are presented in Fig. 6.7 (e).   

It is evident that even when the PV system is connected 19 km away from the motor 

terminal, it prevents the IM instability through its PV-STATCOM operation. The 

behavior of different variables shown in Fig. 6.7 is very similar to those depicted in Fig 

6.6. However, the IM speed recovery takes much longer than previously. This delay is 

attributed to the line impedances between the motor and the PV solar farm. It is noted 

that although there are two triggering signals generated by the fault detector from the 

monitoring of all three phase currents at different time instants, as shown in Fig. 6.7 (a), 

the first triggering signal which is based on the phase-b current signal, initiates the 

disconnection of PV modules and starts the PV-STATCOM operation, in this scenario. 
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Figure 6.7 PV-STATCOM operation when located 19 km far from motor terminal. 

6.3.4 Determination of maximum size of induction motor stabilized 
with 7.5 MVA PV-STATCOM 

This study is performed to determine the largest size of IM load that can be stabilized 

with the same 7.5 MVA PV-STATCOM. For the same fault and same PV-STATCOM 

control, the size of the IM load is increased, until it becomes unstable. It is observed 

through simulation studies that the 7.5 MVA PV-STATCOM can prevent instability of 

up to 2.7MW IM load connected at the PCC with a PCC voltage set point of 1.0 pu for 

the study system. On the other hand, when the solar farm PCC is relocated 19 km away 

from the IM terminal with a voltage set point at PCC of 1.01 pu, it can prevent the 

(a) 

(b) 

(c) 

(d) 

(e) 
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instability of a maximum size of IM load of 0.9 MW. Different PCC set point voltages 

are selected for different locations of the solar farm in order to attain the same IM 

terminal voltage of 1.0 pu. It is also noticed from the simulations that the IM speed 

recovery takes much longer if the motor size is larger. Moreover, relocating the PV solar 

farm to a farther point from the IM terminal also increases the recovery time due to the 

network impedance. Therefore, the IM speed recovery time is system dependent and 

influenced by several factors such as network strength, PV solar farm reactive support 

capability, and network loading condition. 

6.3.5 Reinstatement of a conventional PV solar farm operation 
following PV-STATCOM operation 

In the above study, the PV solar system is converted to a PV-STATCOM as soon as a 

fault is sensed in the network. However, it is required to revert the PV-STATCOM back 

to a conventional PV solar farm after successful post fault recovery of the IM.  

To determine the time taken for motor recovery by PV-STATCOM operation for this 

specific study system, a number of cases have been investigated with respect to IM size 

and location of PV solar farm on the network. It is found that for a maximum size of 2.7 

MW IM, with the solar farm located at IM terminal, the time to recover the nominal 

speed from the fault initiation is 2seconds. This is the longest recovery time for this study 

system. Hence, the time to transform the PV-STATCOM back into a PV solar farm after 

fault is considered as k times 2seconds where the factor k depends upon various factors 

such as choice of safety margin, and requires prior investigation based on different 

loading and network conditions. This is outside the scope of this chapter. However, in 

this study system this factor is chosen arbitrarily as 1.5. 

Fig. 6.8 depicts the IM response for t= 4.8 seconds to t= 7.5 seconds, when the PV solar 

farm acts as a PV-STATCOM connected at the terminal of 2.7 MW IM terminal. The DC 

link voltage of the PV system is depicted in Fig. 6.8 (a), triggering signals are shown in 

Fig. 6.8 (b), real and reactive power from the PV solar farm are demonstrated in Fig. 6.8 

(c), voltage at IM terminal is illustrated in Fig. 6.8 (d), IM speed is shown in Fig. 6.8 (e), 

and real and reactive power at IM terminal are presented in Fig. 6.8 (f). Meanwhile Fig. 
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6.9 (a)-(f), depict the same quantities for an extended period of time, from t=7.5 seconds 

to t= 15 seconds. 

(i) Period I - During a fault, t= 5 seconds to t= 5.15 seconds. 

After the fault is initiated, the fault detector detects the fault and transforms the PV solar 

farm into a PV-STATCOM. All of the quantities in Fig. 6.8 (a)-(e) show a similar 

behavior, as shown in Fig. 6.6.  

(ii) Period II - At post fault clearance, t= 5.15 seconds to t= 7.5 seconds. 

All of the quantities shown in Fig. 6.8 (a)-(f) show similar behavior to those shown in 

Fig. 6.6. In this case, as the size of IM is large, the demand of reactive power by the IM is 

high, shown in Fig. 6.8 (f). Therefore, during the transient period of t= 5.15 seconds to t= 

7.0 seconds, the whole PV-STATCOM capacity is used for reactive power support, as 

shown in Fig. 6.8 (c), to stabilize such a large size of IM. Although the PCC voltage 

recovers right after the post fault clearance, it is not able to maintain its predefined set 

value as shown in Fig. 6.8 (d). The PCC voltage achieves its predefined set value of 1.0 

pu after the IM speed recovers successfully at t= 7.0 seconds, as illustrated in Fig. 6.8 (e). 

(iii) Period III - At post fault clearance, t= 7.5 seconds to t= 15 seconds. 

As shown in Fig. 6.9 (b), the reconnect signal triggers at t= 8 seconds and resets all other 

trigger signals from the fault detector. As a result, the PV-STATCOM reverts into a 

conventional PV solar farm which starts generating rated DC power as shown in Fig. 6.9 

(c). This DC power initially increases the DC link voltage from t= 8 seconds to t= 8.5 

seconds, as shown in Fig. 6.9 (a). During this transient period the input and output power 

of the inverter reach their equilibrium position, i.e., all of the input DC power transfers to 

the output of the inverter, as shown in Fig. 6.9 (c). After t= 8.5 seconds, the DC link 

voltage starts to decrease towards the MPPT voltage which gradually increases the real 

power output and finally settles at t= 14.5 seconds. On the other hand, the reactive power 

output from the PV solar farm decreases to zero to ensure unity power factor operation 

after t= 8 seconds. The PCC voltage is no longer regulated and follows the pre-fault 

network voltage, as shown in Fig. 6.9 (d). As a result of the reinstatement, a small 

transient is observed in motor speed at t= 8 seconds, as illustrated in Fig. 6.9 (e), and IM 

power as shown in Fig. 6.9 (f), due to the change in PCC voltage.    
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Figure 6.8 PV solar farm operating as PV-STATCOM. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Figure 6.9 PV solar farm reinstated following the PV-STATCOM operation. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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6.4 Conclusion 

In this chapter, a new application of a PV solar farm as a PV-STATCOM is presented for 

preventing instability of a critical induction motor load. The performance of the PV-

STATCOM is compared to a conventional PV solar farm operation to determine whether 

it stays connected or is disconnected during the fault. The induction motor (IM) becomes 

destabilized due to the fault and the conventional operation of PV solar farm does not 

alleviate the situation. For the specific study system it is seen that a 7.5 MW solar farm 

acting as PV-STATCOM can stabilize (i) an induction motor (IM) load of 2.7 MW if 

connected at motor terminals, and (ii) an induction motor (IM) load of 0.9 MW, if 

connected 19 km away from motor terminals. The PV solar farm is transformed into a 

PV-STATCOM only when there is a need or prior agreement to provide dynamic voltage 

support to stabilize a critical induction motor load. Once the motor is stabilized, the PV-

STATCOM transforms into a conventional PV solar farm and starts generating real 

power as usual. The operation of a PV-STATCOM utilizes the entire or partial PV 

inverter capacity depending upon the dynamic reactive power demand of the induction 

motor for its recovery. The effectiveness of the proposed PV-STATCOM operation is 

dependent on the size and location of the PV solar farm and the system strength. It is 

recommended that the solar farm be suitably remunerated for providing this service to the 

customer owning the large induction motor during a critical period.  
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Chapter 7  

7 Improvement of Power Transfer Limit Over a Long 
Transmission Line with a Novel Control of PV Solar 
Farm as PV-STATCOM. 

7.1 Introduction 

This chapter presents a new application of a grid connected PV solar farm inverter as a 

PV-STATCOM, during both night and day for increasing transient stability and 

consequently, the power transmission limit of long transmission line. It utilizes the entire 

solar farm inverter capacity during the night and the remainder inverter capacity after real 

power generation during the day; both of which remain unused in conventional solar farm 

operation. Similar STATCOM control functionality can also be implemented in inverter 

based wind turbine generators during no-wind or partial wind scenarios for improving the 

transient stability of the system. Studies are performed for two variants of a Single 

Machine Infinite Bus (SMIB) system. One SMIB system uses only a single PV solar farm 

as PV-STATCOM connected at the midpoint; whereas, the second system uses a 

combination of a PV-STATCOM and another PV-STATCOM or an inverter based wind 

Distributed Generator (DG) with similar STATCOM functionality. Three-phase fault 

studies are conducted using the electromagnetic transient software EMTDC/PSCAD, and 

the improvement in stable power transmission limit is investigated for different 

combinations of STATCOM controllers on the solar and wind farm inverters, during both 

night and day.  

Section 7.2 describes the study systems. The results for various fault studies are presented 

in section 7.3. Performances of different proposed controls both during daytime and 

nighttime are presented. The implications of this new PV-STATCOM technology and the 

conclusions are presented in Section 7.4 and Section 7.5, respectively. 

7.2 System Model 

The single line diagrams of two study systems - Study System 1 and Study System 2 are 

depicted in Fig. 7.1 and Fig. 7.2, respectively. Both systems are Single Machine Infinite 
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Bus (SMIB) systems in which a large equivalent synchronous generator (1110 MVA) 

operating at 22kV system supplies power to the infinite bus over a 200 km, 400 kV 

transmission line. An 1110 MVA, 22/400kV transformer having leakage reactance of 

8.66% is coupled with the generator. This line length is typical of a long line carrying 

bulk power in Ontario. In Study System 1, a 100 MW PV solar farm (DG) as a 

STATCOM (PV-STATCOM) is connected at the midpoint of the transmission line. 

 

Figure 7.1 One line diagram of Study System 1. 

In Study System 2, two 100 MVA inverter based Distributed Generators (DGs) are 

connected at 1/3rd (bus 5) and 2/3rd (bus 6) of the line length from the synchronous 

generator. The DG connected at bus 6 is a PV-STATCOM and the other DG at bus 5 is 

either a PV-STATCOM or a wind farm with STATCOM functionality. In this case, the 

wind farm employs Permanent Magnet Synchronous Generator (PMSG) based wind 

turbine generators with a full AC-DC-AC converter. It is understood that both the solar 

DG and wind DG employ several inverters. However, for this analysis, each DG is 

considered to have a single equivalent inverter with the rating equal to the total rating of 

solar DG or wind DG, respectively. The wind DG and solar DG are considered to be of 

the same rating, hence they can be interchanged in terms of location, depending upon the 

studies being performed. Fig. 7.3 presents the detailed diagrams of various subsystems of 

the two equivalent DGs. All of the system parameters [95], [113] are given in Appendix-

D. 
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Figure 7.2 One line diagram of Study System-2. 

 

Figure 7.3 Detailed DG control diagram of study systems 

7.2.1 Generator and Line Models  

The synchronous generator is represented by a detailed sixth order model and a DC1A 

type exciter [113]. The associated parameter values are given in Appendix-D. The 

transmission line segments TL1, TL2, TL11, TL12, and TL22 shown in Fig. 7.1 and Fig. 

7.2 are represented by lumped pi-circuits. The positive and zero sequence R, X, B values 

of the line are given in Appendix-D. The saturation is neglected in both sending and 

receiving end transformers.  
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7.2.2 Distributed Generator Models 

The PV solar DG, as shown in Fig. 7.3, is modeled as an equivalent voltage sourced 

inverter along with a voltage controlled DC current source which follows the I-V 

characteristics of Photovoltaic (PV) panels, as described in Chapter 2. The wind DG is 

similarly modeled as an equivalent voltage sourced inverter. In the solar DG, the DC 

power is provided by the solar panels, whereas in the wind DG, the DC power comes 

from thyristor controlled rectifiers connected to the output of PMSG wind turbines, 

denoted here as ‘wind T-G-R’ and shown in Fig. 7.4. A maximum power point tracking 

(MPPT) system (as implemented in Chapter 2) is also incorporated with the inverter 

controller to operate the solar DGs at its maximum power point at all times. The wind 

DG is also assumed to be operating at its maximum power point. The proposed 

STATCOM control utilizes only the inverter capacity left after the maximum power point 

operation of both the solar DG and wind DG. 

 

Figure 7.4 Gearless Wind Turbine-Generator-Rectifier (Wind T-G-R) Model 

The DC power produced by each DG is fed into the DC bus of the corresponding 

inverter, as illustrated in Fig. 7.3. The magnitude of real power injection from the DGs to 

the grid depends upon the level of solar insolation, temperature, wind availability, etc. 

For PV-STATCOM operation during the night, the solar panels are disconnected from 

the inverter and a small amount of real power is drawn from the grid to charge the DC 

capacitor. The DC capacitor size is selected appropriately to reduce the DC side ripple. 

The inverter uses the Sinusoidal Pulse Width Modulation (SPWM) technique to transfer 

the DC power to the AC grid as described in Chapter 2. An L-C-L filter is also connected 

at the AC side of the inverter to mitigate harmonics generated by each DG inverters.  
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7.2.3 Control System 

7.2.3.1 Conventional Reactive Power Control 

The conventional reactive power control only regulates the reactive power output of the 

inverter such that it can perform unity power factor operation along with the DC link 

voltage control [24]. The switching signals for the inverter switching are generated 

through two current control loops in a d-q-0 co-ordinate system as described in Chapter 

2. The inverter operates in conventional controller mode only, provided that ‘Switch-2’ is 

in the ‘OFF’ position. In this controller, Qref is proportional to Iq, which sets the reference 

Iq_ref for the quadrature current control loop. Therefore, setting the value of Qref =0 

ensures unity power factor operation of the solar farm. 

7.2.3.2 PCC Voltage Control: 

In the PCC voltage control mode of operation, the PCC voltage is controlled through 

reactive power exchange between the DG inverter and the grid. In this control mode of 

operation, the conventional ‘Q’ control channel is replaced by the PCC voltage controller 

in Fig. 7.3 (f), simply by switching the ‘Switch-1’ to position ‘A’. Hence, the measured 

signal, VPCC, at the PCC is compared with the preset reference value VPCC_ref and is 

passed through the PI regulator, PI-4, to generate Iq_ref.  The rest of the controller settings 

remain unchanged. The quadrature axis current control loop is used to regulate the PCC 

voltage; whereas, the direct axis current control loop is used for DC voltage control as 

well as for the supply of DG power to the grid. The amount of reactive power flow from 

the inverter to the grid depends on set point voltage at PCC. The parameters of the PCC 

voltage controller are tuned by systematic hit and trial method to achieve the fastest step 

response, least settling time, and a maximum overshoot of 10-15%. The procedures of the 

hit and trial method for selecting the parameters for all four PI controllers are described 

in Appendix-D. 

7.2.3.3 Damping Control: 

A novel auxiliary damping control mode is added to the PV control system, shown in 

Fig. 7.3 (g). This output is compared with Iq_ref. The transfer function of this damping 

controller can be expressed along the general expression given in [187] as follows: 
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ÀV = �. r�Ä1 + r�Ä . �:. 1 + r�:1 + r� 				⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (7.1) 

The transfer function is comprised of a gain, a washout stage, and a 1st order lead-lag 

block. This controller is utilized to damp the rotor mode oscillations of the synchronous 

generator and to thereby improve system transient stability; it is activated by toggling the 

‘Switch-2’ to the ‘ON’ position. The principle of this damping controller is to modulate 

the voltage at the PCC with the auxiliary damping signal. An auxiliary line current signal 

ILINE(X) is chosen as the input of the damping controller. The direct axis component 

Id_LINE(X), of ILINE(X) reflects the active power oscillation in the system. As the PCC 

voltage is mainly controlled by the q-axis component, the output of the auxiliary 

controller Id_LINE(X) is given to the q-axis control loop through a low pass filter or 

washout block and a lead-lag compensator with proper gain. The purpose of the low pass 

filter or the washout block is to make the system observable for rotor mode oscillation up 

to 2Hz. The lead lag compensator is developed along the concepts presented in [95], 

[187], [188], and the parameter values are selected with systematic hit and trial method 

using EMTDC/PSCAD simulation, based on the procedure explained in [187]. The 

detailed procedure of systematic hit and trial method to determine the damping controller 

parameters and the parameter values are given in Appendix-D.  

It is emphasized that these controller parameters are not optimal and better parameters 

could be obtained by following more rigorous control-design techniques: [96],[188]-

[190]. Since the objective of this chapter is only to demonstrate a novel concept showing 

that a solar DG can be used for damping rotor mode oscillations while operating as a 

STATCOM, a rigorous damping controller design has not been undertaken. This 

damping controller can operate in conjunction with either the conventional reactive 

power control mode or with the PCC voltage control mode by toggling the ‘Switch-1’ to 

position ‘B’ or ‘A’, respectively. In this controller, although line current magnitude signal 

is used as the control signal, other local or remote signals which reflect the rotor mode 

oscillations of the generator [95] may also be utilized. 

7.3 System Studies 

Transient stability studies are carried out using EMTDC/PSCAD simulation software for 
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both the study systems during night and day, by applying a 3-Line to Ground (3LG) fault 

at bus 1 for 5 cycles. It is recommended that the damping ratio should be at 5% and the 

time frame of interest for rotor mode oscillation of approximately 1 Hz should be 

considered as 10 seconds followed by the disturbance [174], [190]. In other words, for a 

5% damping ratio of the rotor mode having oscillation frequency of 1 Hz, the post-fault 

clearance settling time of the oscillations (to arrive at and maintain within 5% of its 

steady state value) is almost 10 seconds. The peak overshoot of PCC voltage is 

considered to stay within 1.1pu of nominal voltage. This maximum stable generator 

power limit for the system is determined for different modes of operation of the solar DG 

in Study System 1 and those of the solar DG and the solar/winds DGs in Study System 2.  

7.3.1 Case Study 1: Power Transfer Limits in Study System 1  

7.3.1.1 Conventional Reactive Power Control with the Novel 
Damping Control 

In this study, the solar DG is assumed to operate with its conventional reactive power 

controller through which the reactive power output from the solar DG is maintained at 

zero in steady state, and the DG operates at near unity power factor. For the nighttime 

operation of the solar DG, the DC sources (solar arrays) are disconnected and the solar 

DG inverter is connected to the grid using appropriate controllers, as described below. 

Power transmission limits are now determined for the following four cases. The stable 

power transmission limits obtained from fault studies and the corresponding load flow 

results are presented in Table 7.1, where –ve Q represents the inductive power drawn 

from network, and +ve Q represents capacitive power injected into the network. 

i)  Solar DG operation during the night with conventional reactive power controller: 

The maximum stable power output from the generator Pg is 731 MW when the solar DG 

is simply sitting idle during the night and is disconnected from the network. This power 

flow level is chosen to be the base value against which the improvements in power flow 

with different proposed controllers are compared and illustrated later in Table 7.3. The 

real power from generator Pg and that entering into the infinite bus Pinf for this fault study 

are shown in Fig. 7.5 (a). The sending end voltage at the generator is shown in Fig 7.5 

(b), showing a voltage overshoot of 1.1pu. 
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Table 7.1 Power Flows and Voltages for Study System I for Solar DG with 

Conventional Reactive Power Control and Proposed Damping Control both during 

Nighttime and Daytime  (Vg=1.05 pu) 

Simulation 

Description 

Generator Bus  

(Sending End) 

PCC/Middle Bus (3) Infinite Bus 

(Receiving End) 

Pg 

MW 

Qg 

MVAr 

θg 

deg 

VPCC 

pu 

θPCC 

deg 

Psolar 

MW 

 

Qsolar 

MVAr 

Pinf 

MW 

Qinf 

MVAr 

N
ig

h
tt

im
e

 

Conventional 

operation of 

solar DG 

731 139 26.92 1.010 13.75 0 0 -708 82 

Solar DG with 

damping 

Controller 

850 196 37.71 1.000 16.21 -0.2 0.08 -819 153 

D
a

y
ti

m
e

 

Conventional 

Operation of 

Solar DG 

730 140 27.25 1.010 14.1 19.0 -0.50 -725 89 

719 144 28.48 1.008 15.43 91.0 -0.20 -786 115 

Solar DG with 

Damping 

Controller 

851 200 32.21 1.000 16.65 19.0 -0.06 -839 164 

861 216 34.15 0.994 18.36 91.0 -0.20 -917 208 

 

 
(a) 
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(b) 

Figure 7.5 (a) Maximum nighttime power transfer (731 MW) from a generator 

when a solar DG remains idle (b) Voltage at generator terminal. 

ii) Solar DG operation during night with a damping controller: 

The quantities Pg, Pinf, Psolar, and Qsolar are illustrated in Fig. 7.6 (a). The damping 

controller utilizes the full rating of the DG inverter at night to provide controlled reactive 

power Qsolar and effectively damps the generator rotor mode oscillations. The voltages at 

generator bus Vg and at PCC bus Vrms(PCC) are depicted in Fig. 7.6 (b).  

 
(a) 
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(b) 

Figure 7.6 (a) Maximum nighttime power transfer (850 MW) from a generator with 

a solar DG using a damping controller, (b) Voltages at generator terminal and PCC. 

A very small amount of negative power flow from the solar farm Psolar is observed during 

night time. This reflects the losses in the inverter IGBT switches, transformer, and filter 

resistances caused by the flow of real current from the grid into the solar farm inverter to 

charge the DC link capacitor and maintain its voltage constant while operating the PV 

inverter as STATCOM with the damping controller (or even with voltage controller). 

During nighttime, the reference DC Link voltage Vmpp_ref is chosen around the typical 

daytime rated maximum power point (MPP) voltage to ensure VDC remains more than 

twice that of Vac for smooth inverter operation [108], [56].  

The oscillation observed in the PV power is essentially due to the oscillation in the PCC 

voltage that is significantly low and continues as long as the voltage oscillation occurs at 

the PCC. In nighttime, during the negative half cycle of the oscillations, the active power 

is consumed by the DC link capacitor of the PV inverter resulting in the rise in DC link 

voltage as seen in Fig. 7.6. Meanwhile, during the positive half cycle of the oscillations, 

the DC link capacitor of the PV inverter supplies real power, resulting in the fall of DC 

link voltage across the capacitor. Due to this rise (charging) and fall (discharging) at the 

oscillation frequency, the DC link capacitor voltage also becomes oscillatory which 

reflects the oscillation of real power output of the PV inverter.   

iii) Solar DG operation during day with conventional reactive power controller: 

Fig. 7.7 illustrates the quantities Pg, Pinf, Psolar, and Qsolar when the conventional solar 

farm generates a high level of power of 91MW. In this case the maximum power transfer 
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from the generator is 719MW. Hence it is evident that the conventional control of a PV 

solar DG does not alter the stable transmission limit in any appreciable manner. 

 

Figure 7.7 Maximum daytime power transfer (719 MW) from generator with solar 

DG generating 91 MW real power. 

iv) Solar DG operation during day with damping controller: 

The quantities Pg, Pinf, Psolar, and Qsolar are shown for the case with a damping controller 

in Fig. 7.8. The available inverter capacity  after real power generation of 91 MW is, Q= 

√(S2-P2)= 41.5 MVAr, which is utilized for damping the oscillations during this lower 

power generation period.  

It is noticed from Table 7.1 that the maximum power transfer during the night  (850 MW) 

is actually less than the maximum power transfer during the day (861 MW). This is 

because of an additional constraint that while increasing the power transfer, the overshoot 

in PCC voltage should not exceed 1.1pu. If the power transfer is allowed until its 
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damping ratio limit of 5% is reached, regardless of voltage overshoot, the maximum 

nighttime power transfer is observed to be 964MW; whereas, the maximum daytime 

power transfer is expectedly seen to be lower at 940MW (plots not shown).  

 

Figure 7.8 Maximum daytime power transfer (861 MW) from generator with solar 

DG generating 91 MW real power and using the damping controller. 

7.3.1.2 PCC Voltage Control with the Novel Damping Control  

Transient stability studies are now carried out to investigate the impact of a new control 

strategy involving PCC voltage control together with damping control. The results are 

shown in Table 7.2 for the following four cases: 

i) Solar DG operation during  night with voltage controller 

The increase in power transfer limit is dependent upon the choice of reference values for 

PCC voltage Vpcc. In the best scenario, when Vpcc is regulated to 1.01pu, the maximum 

power output from the generator increases to 833 MW, as compared to 731 MW when 

the solar DG operates with conventional reactive power control.  



131 

 

Table 7.2 Power Flows and Voltages for Study System I for Solar DG with Proposed 

PCC  Voltage Control and Damping Control, both during Nighttime and Daytime.  

Simulation 

Description 

Generator Bus  

(Sending End) 

PCC/Middle Bus (3) Infinite Bus 

(Receiving End) 

Pg 

MW 

Qg 

MVAr 

Θg 

deg 

VPCC 

pu 

θPCC 

deg 

Psolar 

MW 

Qsolar 

MVAr 

Pinf 

MW 

Qinf 

MVAr 

N
ig

h
tt

im
e

 

Solar DG with 

voltage 

Controller 

789 222 29.75 0.988 15.25 -1.5 -95.8 -761 170 

824 222 30.95 0.990 15.86 -0.8 -66.0 -793 175 

830 191 30.96 1.000 15.83 -0.3 -9.5 -801 146 

833 160 30.87 1.010 15.74 -0.5 46.8 -803 116 

803 116 29.33 1.022 14.91 -1.5 99.0 -775 68 

Solar DG 

with both 

voltage and 

damping 

Controller 

855 197 31.91 1.000 16.31 -0.3 4.0 -824 154 

899 174 33.22 1.010 16.92 -1.2 85.0 -866 133 

D
a

y
ti

m
e

 

Solar DG with 

voltage 

controller 

781 216 29.81 0.990 15.49 19.0 -90.0 -773 171 

815 188 30.79 1.000 15.92 19.0 -13.7 -804 147 

782 116 29.00 1.021 14.93 19.0 86.0 -775 72 

726 172 28.73 0.990 15.60 91.0 -43.0 -792 143 

719 170 28.61 1.000 15.53 91.0 -44.0 -786 140 

Solar DG with 

both voltage 

and damping 

Controller 

823 190 31.09 1.000 16.08 19.0 -9.0 -813 150 

755 184 29.95 1.000 16.22 91.0 -41.0 -817 159 

ii) Solar DG operation during  day with voltage controller 

If the solar farm is operated with the proposed voltage control while producing a 

relatively high amount of real power of 91 MW, the maximum generator power output 

can be increased to be 726 MW, as shown in Table 7.2. The net increase in the power 

transfer limit is 7 MW (726 MW - 719 MW) compared to the results for the 

corresponding case from Table 7.1. For a low amount of real solar power output of 19 

MW, the voltage controller increases the generator power output to 815 MW. A 

substantial increase of 85 MW (815 MW – 730 MW) is observed in the generator power 

limit as compared to the result with conventional reactive power controller, shown in 

Table 7.1. As seen from Table 7.2, the power transfer increases for both high (91 MW) 

and low (19 MW) power outputs from the solar farm are seen to be highly sensitive to the 

PCC bus voltage set point. It is also noted that with lower availability of reactive power 
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capacity after real power production, the ability to change the bus voltage is limited, 

leading to a lower increase in power transmission capacity. 

iii) Solar DG operation during the night with both voltage and damping controllers 

The generator power and infinite bus power are depicted in Fig. 7.9 (a), and 

corresponding voltages are shown in Fig. 7.9 (b).  

 
(a) 

 

 
(b) 

Figure 7.9  (a) Maximum nighttime power transfer (899 MW) from generator while 

the solar DG uses damping controller with voltage control and  (b) Voltages at 

generator terminal and solar DG PCC (1.01pu). 
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Although rotor mode oscillations settle faster, the power transfer cannot be improved 

beyond 899 MW due to high overshoot in voltages. 

iv) Solar DG operation during  day with both voltage and damping controller. 

A further increase in power transfer is observed when both voltage control and damping 

control are employed, as compared to case (ii), when only a voltage controller is utilized. 

For Study System 1, the net increases in power transfer capability as achieved with 

different PV-STATCOM controls, in comparison with that obtained from conventional 

reactive power control of the solar DG, are summarized in Table 7.3. 

Table 7.3 Increase in Stable Power Transfer Limit (MW) for Study System 1 with 

Different PV-STATCOM Controls. 

PV-STATCOM Control Nighttime Power 

Limit Gain 

(MW) 

Daytime Power Limit Gain (MW) 

Solar DG Power 

output 19MW 

Solar DG Power 

output 91MW 

Voltage control 102 85 7 

Damping Control 119 121 142 

Voltage control with damping control 168 93 36 

 

The maximum increase in power transfer limit during the night is achieved with a 

combination of voltage control and damping control; whereas, the same during the day is 

accomplished with damping control alone.  This is because during the night, the entire 

MVA rating of the solar DG inverter is available for reactive power exchange, and can be 

utilized for achieving the appropriate voltage profile at PCC conducive for increasing the 

power transfer, and for increasing the damping of oscillations. 

During daytime, firstly, the generation of real power from the solar DG tends to increase 

the voltage at PCC and secondly, the net reactive power availability is also reduced, 

especially with large solar real power outputs. Therefore, it becomes difficult with limited 

reactive power to accomplish the appropriate voltage profile at PCC for maximum power 

transfer as well as to impart adequate damping to the oscillations. However, if only 

damping control is exercised during daytime, power transfer limits appear to improve 

with higher real power outputs from the solar DG. This is because real power generation 
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increases the PCC voltage which can be potentially helpful in increasing the power 

transfer capacity. 

Since damping control is found to be more effective during daytime, the same is explored 

further for the following studies. 

7.3.2 Case Study 2: Power Transfer Limits in Study System 2 

In this study, the proposed damping control strategy is compared with the conventional 

reactive power control strategy for Study System 2, shown in Fig. 7.2. A three phase to 

ground fault of 5 cycles is applied to generator bus at t = 8 seconds. The power transfer 

limits for different cases are illustrated in Table 7.4.  

Table 7.4 Power Flows and Voltages for Study System 2 for both Solar DG and 

Wind DG with Conventional Reactive Power Control and Proposed Damping 

Control both during Nighttime and Daytime (Vg =1.05 pu) 
System 

Descrip-

tion 

Generator Bus Wind DG Bus (5) Solar DG Bus (6) Infinite Bus 

Pg 

MW 

Qg 

MVAr 

Θg 

deg 

Vwnd 

pu 

Pwnd 

MW 

Qwnd 

MVAr 

Vsol 

pu 

Psol 

MW 

Qsol 

MVAr 

Pinf 

MW 

Qinf 

MVAr 

N
ig

h
tt

im
e

 (
P

so
la

r=
0

) 

C
o

n
ve

n
ti

o
n

a
l 

C
o

n
tr

o
l 

Case-1: None of the DGs generate real power 

731 139 26.92 1.019 0 0 1.004 0 0 -708 82 

Case-2: Only wind DG generates real power but both DGs operate at unity pf. 

716 146 28.6 1.017 95 -0.3 1.01 0 0 -785 119 

729 141 27.4 1.018 20 -0.1 1.003 0 0 -726 92 

W
it

h
 

d
a

m
p

in
g

 

Case-3: None of the DG generate real power but both DG operate with damping control 

960 260 36.2 0.998 -0.7 0.07 0.982 -0.2 0.01 -918 229 

Case-4: Only wind DG generates real power but both DGs operate with damping control 

936 270 37.86 0.995 95 0.4 0.976 -0.3 0.03 -987 275 

948 258 36.34 0.998 20 -0.01 0.981 -0.7 0.01 -927 234 

D
a

y
ti

m
e

 (
P

so
la

r≠
0

) 

C
o

n
ve

n
ti

o
n

a
l 

C
o

n
tr

o
l 

Case-5: Both DGs generate real power 

700 149 29.67 1.016 95 -0.4 1.000 95 -0.4 -865 148 

726 142 27.55 1.019 20 -0.05 1.004 20 -0.05 -743 96 

Case-6: Only solar DG generates real power 

719 140 27.9 1.017 0 0 1.002 95 -0.3 -790 111 

730 139 27.17 1.018 0 0 1.003 20 -0.1 -727 89 
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Case-7: Both DGs generate real power and operate on damping control. 

930 277 39.23 0.99 95 -0.4 0.972 95 -0.5 -1023 321 

923 245 35.66 1.0 20 -0.3 0.983 20 -0.3 -924 224 

Case-8: Only solar DG generates real power but both DGs operate on damping control. 

938 257 37.01 0.998 -0.5 0.1 0.98 95 -0.3 -991 259 

944 253 35.97 0.999 -0.3 -0.1 0.982 20 -0.2 -925 228 
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7.3.2.1 Nighttime: 

i)  Case 1 - None of the DGs generate real power 

The maximum power transfer limit is 731 MW, as reported in Table 7.1.  

ii) Case 2 - Only the wind DG generates real power. Both DGs operate with conventional 

reactive power control 

The power transfer limit decreases slightly with increasing wind power output. 

iii) Case 3 - None of the DGs generate real power but both DGs operate with damping 

control 

The different variables: generator power Pg, infinite bus power Pinf, real power of wind 

DG Pwind, reactive power of the wind DG Qwind, real power of the solar DG Psolar, and the 

reactive power of the solar DG Qsolar are illustrated in Figure 7.10.  

 

Figure 7.10 Maximum nighttime power transfer from generator with both DGs 

using damping controller but with no real power generation. 
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Even though the entire ratings (100 MVar) of the wind DG and solar DG inverters are not 

completely utilized for damping control, the power transfer limit increases significantly 

to 960 MW. 

iv) Case 4 - Only wind DG generates real power but both DGs operate on damping 

control. 

There is only a marginal improvement in the power limit with decreasing power output 

from the wind DG. 

7.3.2.2 Daytime:  

i) Case 5 - Both DGs generate real power 

The power transfer limit from the generator decreases as the power output from both DGs 

increase. 

ii) Case 6 - Only solar DG generates power 

The power transfer limit from the generator decreases as the power output from the solar 

DG increases. However, no substantial changes in power limits are observed as compared 

to the case when both DGs generate power (Case 5).  

iii) Case 7 - Both DGs generate real power and operate on damping control: 

This case is illustrated by different variables Pg, Pinf, Pwind, Qwind, Psolar, and Qsolar in Fig. 

7.11. The power limit does not change significantly with increasing power output from 

DGs. 

iv) Case 8 - Only the solar DG generates real power but both of the DGs operate on 

damping control: 

The power limit does not appear to change significantly with increasing power output 

from the solar DG. 

For Study System 2, the net increases in power transfer limits accomplished with the 

proposed novel damping control for different real power outputs from both DGs as 

compared to those attained with the conventional operation of both DGs, are depicted in 

Table 7.5. 
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Figure 7.11 Maximum daytime power transfer from generator where both DGs 

generate 95MW each while using a damping controller.   

Table 7.5 Increase in Power Transfer Limits for Study System 2 with Different DG 

Power Outputs. 

DG Real Power Outputs (MW) Increase of Power Transfer Limits (MW) 

Nighttime 

Psolar=0; Pwind=0 229 

Psolar=0; Pwind=20 219 

Psolar=0; Pwind=95 220 

Daytime 

Psolar=20; Pwind=20 197 

Psolar=95; Pwind=95 230 

Psolar=20; Pwind=0 214 

Psolar=95; Pwind=0 219 
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It is seen that with the proposed damping control on the two DGs (of rating 100 MW 

each) during the night increases the power transfer limits substantially, by about 220 

MW. This is expected as, during the night, the entire inverter MVA rating of both the 

DGs is available for damping control. The improvement is slightly less when the wind 

DG produces a high level of real power. This is also expected as the reactive power 

availability decreases with the wind DG real power output. 

During daytime, the proposed damping control on both of the DGs also increases the 

power transfer limits substantially. A greater increase is seen for high real power 

generation by either one or both the DGs. This is because high real power output can 

potentially improve the voltage profile at the PCC, which can assist in increasing the 

power transfer capacity. 

7.4 Implementation of PV-STATCOM on Large Scale Solar 
System 

The PV-STATCOM technology will be showcased, for the first time, on two 10 kW solar 

systems in the networks of two electrical distribution utilities in Ontario, Canada, in late 

Fall 2012. These utilities are Bluewater Power in Sarnia, and London Hydro in London. 

The 10 kW solar systems will be utilized for voltage regulation and power factor 

correction in addition to generating real power. Several detailed testing and validation 

studies are required to be completed before the PVSTATCOMs will be allowed to 

connect to the wires of the two utilities. These include: (i) PV-STATCOM controller 

testing with EMTDC/PSCAD simulation studies [166], [191], (ii) controller validation 

using Real Time Digital Simulation (RTDS) [192], and finally, a full scale 10 kW lab 

demonstration of the PV-STATCOM performance in accomplishing the above desired 

objectives [192]. In the lab, some of the tests that would be performed to meet the 

requirements of IEEE standards 519 [69] and 1547 [59], in addition to others, are: 

• Power Efficiency 

• Current Harmonics 

• Power Losses 

• AC/DC Disconnection tests 

• Response to Abnormal Utility Conditions 
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• Response to Short Circuit at PV System AC Terminals 

The path for implementing PV-STATCOM technology in large real scale solar power 

systems is much more complex than that for the 10 kW systems. Major issues have to 

examined and addressed. With respect to inverter technologies, adapting the PV-

STATCOM concept to different configurations of inverters – 6 pulse, multi pulse, 

multilevel, etc., and control coordination amongst multiple inverters in a PV solar plant, 

with each operating in PV-STATCOM mode, need to be addressed. Grid connection 

issues, such as protection and control, voltage rise and harmonics, short circuit current 

limitations, and disconnection during faults or staying connected with Low Voltage Ride 

Through (LVRT) Capabilities, need to be examined. Retrofitting PV inverters in large 

solar plants with PV-STATCOM technology will have to deal with warranty issues of 

inverters, in addition to revalidation of the solar system performance with the new PV-

STATCOM retrofit. Another aspect that must be considered is conformance to grid 

connectivity standards, such as, IEEE 1547 and its planned updates. 

7.5 Conclusion 

STATCOM and other FACTS controllers have been extensively used in power systems 

for enhancing the power transfer limits. However, this is the first time that a study is 

being presented for a large PV solar farm (typically 100 MW) to be employed as a 

STATCOM during the night to increase the power transmission limits [193]. This chapter 

proposes a new application of a PV solar DG as a STATCOM utilizing a novel voltage 

and damping control for improving the transient stability and, consequently, the stable 

power transfer limit in a transmission system. This new control of a PV solar DG as 

STATCOM is termed PV-STATCOM.  

Similar control can also be implemented on inverter based wind turbine generators. The 

effectiveness of the proposed controls is demonstrated on two study systems in which a 

large equivalent generator supplies power over a long transmission line. In Study System 

1, a single 100 MW PV solar DG is connected in the middle of transmission line. In 

Study System 2, two 100 MW DGs are used – one solar/wind and another PV solar, 

located at 1/3rd and 2/3rd of line length, respectively. Three-phase fault studies using 
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EMTDC/PSCAD software are conducted to obtain the stable power transfer limits for 

different DG controls.  

Three different types of STATCOM controls are demonstrated for both the PV solar DG 

and inverter based wind DG. These are pure voltage control, pure damping control, and a 

combination of voltage control and damping control. The following conclusions are 

made: 

Solar farms are presently idle during the night. The proposed novel control brings a 

paradigm change in the operation of PV solar farms, whereby they can be operated 

during the night as STATCOMs, for providing significant improvements in the power 

transfer limits of the transmission system. 

In Study System 1, the maximum increase in power transfer limit (up to 168 MW) during 

the night is achieved with a combination of voltage control and damping control. The 

level of power transfer increase with voltage control is dependent on the choice of bus 

voltage reference. During the daytime, the PV-STATCOM can also improve the power 

transfer limit substantially (up to 142 MW) with the proposed damping control even 

when the solar DG is generating a high amount of real power. Damping control is seen to 

be more effective than a combination of voltage control and damping control.  

In Study System 2, during the night, when both the 100 MW solar DG and 100 MW wind 

DG are operated as STATCOMs with the proposed damping control (with no voltage 

controller), the transmission capacity is increased substantially (up to 229 MW) if none 

are producing real power. During both nighttime and daytime, the proposed damping 

control on both the DGs also increases the power transfer limits substantially (of about 

200 MW), even when one or both of the DGs are generating high real power. The power 

transfer limit enhancements will understandably vary for different transmission systems, 

sizes, and locations of the PV solar and wind DGs.  

It is understood that solar DGs, while performing as PV-STATCOMs, will be utilizing 

almost the full inverter capacity, which may lead to increased inverter losses. However, 

the economic benefits to the transmission system in the form of increased stability limit 
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are very significant. This study, thus, makes a strong case for relaxing the present grid 

codes to allow selected inverter based renewable generators (solar and wind) to exercise 

damping control, thereby increasing much needed power transmission capability. Such 

novel controls on PV solar DGs (and inverter based wind DGs) will potentially reduce 

the need for investments in additional expensive devices such as series/ shunt capacitors 

and FACTS. The PV-STATCOM operation opens up a new opportunity for PV solar 

DGs to earn revenues during both the night and day, in addition to revenue from the sale 

of real power during the day. This will of course require appropriate agreements between 

the regulators, network utilities, solar farm developers, and inverter manufacturers.  
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Chapter 8  

8 Harmonic Analysis of Distribution Network with Large 
Scale PV Solar Farm. 

8.1 Introduction 

In this chapter, a harmonics impact study is presented for a distribution network which 

connects the largest solar farm in Canada. This study is performed utilizing detailed 

network data, a central Geographical Information System (GIS) database, and 

Supervisory Control And Data Acquisition (SCADA) infrastructure made available by 

the utility service provider, Bluewater Power Corporation (BWP), Sarnia. The network is 

modeled in detail by using EMTDC/PSCAD software which is validated through CYME 

software based load flow study and SCADA measurements. The validated network model 

is used for network resonance study and analysis of harmonics injection by the 80 MW 

solar farms for different network conditions. The objective is to investigate if such a large 

solar farm can cause any harmonic distortion issues in the network of Bluewater Power. 

Section 8.2 provides the general system description for the real distribution network 

connecting to the large scale solar farm. Section 8.3 describes the general overview of 

various sources of data acquisition system for the real network. In Section 8.4, the system 

modeling both in CYME [194] and EMTDC/PSCAD [165] are discussed. Section 8.5 

presents the load flow validation results for the modeled network with SCADA 

measurements. Section 8.6 describes the frequency scan results for the network during 

different scenarios based on EMTDC/PSCAD simulations. Section 8.7 presents the 

impact of harmonic currents injected by the large scale solar farm on the network. 

Section 8.8 presents a discussion of the results and finally, the conclusions from this 

work.  

8.2 System Description 

8.2.1 Sarnia Solar Farm 

The total size of the Sarnia solar farm is 80MW, which makes this solar, farm the largest 

in Canada [195]. The entire solar farm is interfaced with the Bluewater Power (BWP) 
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distribution network operating at 27.6 kV voltage level and is connected on four feeders 

with an equal generation of 20 MW on each feeder. These four feeders are 96M23, 

96M27, 96M28 and 18M14. The first three are connected at the downstream of the 

Modeland substation and the fourth is connected at the downstream of the St. Andrews 

Substation. This thesis deals with the solar farms on feeder 18M14 only. 

8.2.2 St. Andrews Substation and Feeder Capacitors 

The St. Andrews substation is supplied from the 115 kV network of Hydro One Inc. 

through two 50/66.6/83.3 MVA, 110/28.4kV tap changer substation transformers having 

percentage impedances of 12.4% (ONS)
1
/16.5% (ONP)

2
/20.7% (OFP)

3
. However, this 

impedance can vary with the change in transformer tap at any side of the transformer. At 

the secondary of the substation transformers the nominal voltage is 27.6 kV. The 

operating voltage varies between 28 kV to 29kV throughout the day and night depending 

upon the tap settings of the substation transformers and the loading condition of the 

feeder. There are two sets of feeder capacitors or station capacitors installed on this 

substation with a capacity of 20MVAr each, for voltage support. In this chapter, one of 

the feeders from the St. Andrews substation, 18M14, is modeled for various case studies. 

8.2.3 Feeder 18M14 and Major Loads 

The feeder 18M14 is connected with ‘Q’ bus at the St. Andrews substation. This feeder 

basically feeds two large industrial customers. The largest customer consumes 

approximately 10-11 MW; whereas, the second large customer consumes approximately 

2 MW. A set of power factor correction capacitors of 1.2 MVAr in size is installed on the 

second large customer’s premises. A small number of residential and commercial 

customers are also connected with this feeder. However, the load profile is almost flat all 

day and night, at around 13-14 MW. The total number of distribution transformers 

connected with 27.6kV system on this feeder is 54; feeding all of the customers on this 

                                                 

1
 ONS stands for Oil-immersed, Natural-cooling, Self-circulation.  

2
 ONP stands for Oil-immersed, Natural-cooling, Pumped-circulation. 

3
 OFP stands for Oil-immersed, Fan-cooling, Pumped-circulation. 
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feeder. Almost all of the distribution lines are overhead except two small segments of 

three phase underground cable.  The length of the feeder supplying the farthest 

distribution transformer is approximately 7.8 km. There are two 10MW solar farms on 

this feeder; Sarnia Solar 2 and Sarnia Solar 5. Both are installed at a distance of 

approximately 6.2 km from the substation. As a result, occasionally this feeder can have a 

total generation of 20 MW, which is partially fed back to the substation. 

8.3 Network Data Acquisition Systems 

For this research, data corresponding to each of the feeder, solar farms, and substations 

are obtained from different authentic sources such as, Supervisory Control and Data 

Acquisition System (SCADA) installed at BWP office, Geographical Information System 

(GIS), central customer data storage vault etc. All of the data for different network 

elements are given in Appendix-E. 

8.3.1 SCADA System 

The SCADA system grabs the online data from the field wherever the monitoring 

equipment or sensors are placed on the network. In the BWP network, the sensors or 

monitoring equipment are placed mostly at the substation feeder level, solar farms or at 

some other specific points on the network. Historic data can also be obtained from 

SCADA archives. The SCADA monitoring system is capable of showing graphically the 

online power flow, voltages, currents, power factors, and status of switches, etc. The 

snapshots for monitored quantities in each substation are attached in Appendix E. 

8.3.2 GIS System 

GIS stores specific technical parameters of the electrical network laid on a geographical 

map with all geographical data. Therefore, the location of loads, line lengths, cable 

specification, transformer specifications, etc. can be obtained from GIS. Thus, it 

graphically depicts the overall network structure. The GIS networks of the concerned 

feeders and the location of the substation and solar farms are presented in Appendix E. 
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8.4 System Model 

In modeling the system for feeder 18M14, two software are used; CYME [194] and 

EMTDC/PSCAD [165]. In BWP, the CYMEdist module from CYME software is used to 

construct the network model from GIS and SCADA information, and performs steady 

state load flow studies. As CYMEdist does not have any network frequency scanning 

capability, the network is modeled in EMTDC/PSCAD, which is capable of performing 

the frequency scan of the network. The CYMEdist model is basically used to calculate 

network parameters and validate the network model of EMTDC/PSCAD through steady 

state load flow.  

8.4.1 Grid/Source Model and Capacitor Banks Model 

The St. Andrews substation is modeled as Grid or Source from the given short circuit 

data behind two parallel transformers. It is noted that the St. Andrews substation includes 

two station capacitors, which are also included in the source model.    

8.4.1.1 CYME Model 

In CYME, the St. Andrews substation is modeled as an ideal voltage source behind an 

impedance, according to the short source circuit data available from BWP on the 

downstream (LV side) of the substation transformer for feeder 18M14. Based on the 3-

phase fault MVA and X/R ratio at the downstream of the transformer, CYMEdist is used 

to calculate the equivalent source parameters, which includes substation transformer 

impedances. It is noted that the transformer configuration is delta-wye grounded with 

delta winding at HT side. In CYME, incorporating the equivalent impedances inside the 

source does not show any voltage drop effects as the CYME source model always 

presents a constant voltage at the terminal of the sources. To address this problem, the 

equivalent source impedance is calculated first with the CYME source model by using 

given short circuit data and X/R ratio. Finally, the calculated impedance is modeled by 

connecting a 1:1 delta-wye grounded transformer as equivalent source impedance. 

Therefore, an ideal source connected behind the transformer shows the source voltage 

drop effect. However, the zero sequence impedances calculated with CYME source 

parameters are included as grounding impedance at the wye side windings of the modeled 
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transformer. The snapshots for the CYME software modeling are illustrated in Appendix-

E.  

8.4.1.2 EMTDC/PSCAD Model 

In EMTDC/PSCAD software, the St. Andrews substation is modeled as an ideal voltage 

source behind the short circuit impedances as given in Appendix-E. It is noted that, in 

EMTDC/PSCAD, incorporating the source impedance in the source itself is able to show 

the voltage drop effect due to the source impedances at its terminal. The substation 

transformers are modeled in detail with their percentage impedance given in Appendix-E. 

8.4.2 Feeder Model 

8.4.2.1 CYME Model 

In modeling 18M14, each overhead line and cable is modeled based on the data from 

GIS, BWP material list documents for underground cables and overhead line conductors, 

conductor manufacturer’s datasheet, visual inspection at the sites, and discussion with 

BWP linesman and technical personnel. Based on the information gathered from these 

sources for the cables, conductors, and overhead lines, the parameter values for R, X and 

B are modeled in CYME. The values of R are found in the conductor manufacturer’s 

datasheet; whereas, the value of X and B are calculated by using the conductor and its 

spacing as defined in the dialog box of ‘conductor’ and ‘single circuit spacing’ under 

‘equipment’ menu in CYMEdist [194]. In a similar fashion the cable parameters are also 

calculated by using CYME and the manufacturer’s datasheet by defining the conductor 

structures [194]. The corresponding lengths and sizes of the cables and overhead line 

conductors used in the network are taken, specifically, from an existing ArcGIS database. 

The snapshot for the CYME software modeling is illustrated in Appendix-E. 

8.4.2.2 EMTDC/PSCAD Model 

In EMTDC/PSCAD, the overhead line and underground cables are modeled as nominal 

PI section which is a multiphase coupled equivalent PI circuit representation [165]. It is 

recommended that overhead line segments lower than 150/h miles and underground 

cables lower than 90/h miles should be modeled as multiphase coupled equivalent circuits 
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[143], [196], [197] where ‘h’ represents the harmonic number. Therefore, in this study for 

a harmonic of maximum 30th order, the threshold length for modeling as a nominal PI 

section for overhead line segment is calculated as 5 miles, and the underground cable 

segment is calculated as 3 miles. In the feeder modeling, none of the overhead line 

segment or cable segment exceeds this threshold value, thus, modeling as a nominal PI 

section satisfies the recommended guideline. In modeling this nominal PI section in 

EMTDC/PSCAD, the line length and positive and zero sequence parameters are used. 

These parameters are obtained from the CYME feeder model as illustrated in Appendix-

E.  

8.4.3 Loads and Load Capacitor Models 

8.4.3.1 CYME Model 

The solar farm is connected with the 27.6kV system. The low voltage network of the 

concerned feeders does not include any long cables or capacitors, hence the modeling of 

low voltage networks with the load transformers is avoided [196]. For the feeder 18M14, 

each distribution transformer at the 27.6kV level is considered as a passive spot load and 

is modeled as a constant power load at a fundamental frequency [143], [149].  Since the 

details of each individual load are not available, the loads are distributed based on the 

total connected capacity of distribution transformers obtained from ArcGIS database and 

the total loading information of the feeder as obtained from historical data of SCADA. 

For large customers, wherever the load data is available from metering units, they are 

modeled as constant power or fixed spot load based on historic data.  

8.4.3.2 EMTDC/PSCAD Model 

As in the CYME load model, all of the spot loads are modeled in EMTDC/PSCAD as 

fixed P,Q loads by choosing both dP/dV and dQ/dV indexes as zero. Since the feeder 

18M14 is the most critical feeder at the St. Andrews substation, the remaining feeders on 

this substation are modeled as aggregated fixed loads [143]. 
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8.4.4 PV System Model 

In modeling the PV system both for harmonics and load flow analysis, each 10 MW PV 

system is modeled as a single aggregated source, both in CYME and EMTDC/PSCAD, 

as follows: 

8.4.4.1 CYME Model 

The PV system injects only real power at unity power factor and is coupled electronically 

with PCC. Hence, it is modeled as an electronically coupled generator given in the 

CYME library. 

8.4.4.2 EMTDC/PSCAD Model 

In EMTDC/PSCAD, the modeling of the inverter based PV solar farm is simplified by 

modeling the solar farm as an equivalent P-Q bus for load flow validation purposes only. 

However, for a detailed harmonics analysis, the inverter based DGs are represented as 

current sources with multiple harmonic current sources injecting into the network [198]. 

The network is considered to be balanced and the ambient harmonics from prior 

investigations are found to be less than 5%, which validates the modeling of the PV 

system by harmonics current sources [143], [149]. The line impedance between the PCCs 

of two 10 MW PV systems is negligible, and hence, does not create any significant phase 

differences between the harmonic current sources of same order of two 10MW units 

[143], [149], [197]. Moreover, modeling corresponding harmonics with the same phase 

angle adds them arithmetically; which is the worst-case scenario for multiple sources 

[149]. Modeling the ambient harmonics due to the harmonics current drawn by the loads 

[198] is outside the scope of this work. It is, therefore, assumed that the phase angles of 

the ambient PV harmonics do not influence the harmonic distortion study [143], [149].  

However, the phase angle of the fundamental current from the solar farm is adjusted 

according to the voltage at the PCC through load flow study [143], [149] for unity power 

factor operation. Further, the phase angles of the harmonics are adjusted relative to the 

fundamental current component. All of the harmonic current sources up to the 25th order 

are modeled for the analysis as recommended in [149]. As the harmonics of interest are 

less than the 30th order, the modeling of transformers connected to the PV solar farm is 
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avoided [196]. The current source model of each 10MW PV solar farm unit in 

EMTDC/PSCAD is attached in Appendix E with proper phase sequence for each 

harmonic source. 

8.5 Steady State Load Flow Validation of System Model 

A load flow study is performed to validate the network model in EMTDC/PSCAD with 

CYME and real time data from SCADA. Although, EMTDC/PSCAD is electromagnetic 

transient simulation software, the load flow results can be validated with its steady state 

simulation output. The validation is performed in terms of voltages at different points on 

the feeder with corresponding power flow. The voltage at the source modeled in CYME 

representing the substation is chosen such that it matches the substation bus voltage.  

Table 8.1 and Table 8.2 present the voltages and power flow from load flow for feeder 

18M14. It is seen that the bus voltages from the CYME model data closely match with 

the SCADA measurements. The power generation mismatch between the CYME results 

and SCADA is also less than 4%. This validates the CYME model of the feeder 18M14.  

Table 8.1 Daytime Data on 18M14 (time stamp-25/05/2011 at 12:22PM) 

Measurement 

Location 

SCADA CYME EMTDC/

PSCAD 

Deviations  

(%) SCADA 

vs. CYME  

Deviations  (%) 

CYME vs. 

EMTDC/PSCAD  

Voltage (kV) 

St. Andrews Substation 

(‘Q’ Bus)  

28.615 

(Avg.) 

28.618 28.618 0.01 0 

Sarnia Solar 2 (SS2) 28.579 28.53 28.538 0.171 0.028 

Sarnia Solar 5 (SS5) 28.579 

(16.5 L-N) 

28.529 

(16.47 L-N) 

28.537 0.171 0.028 

Load end Capacitor - 28.486 28.486 - 0 

Largest load end - 28.321 28.24 - 0.01 

Real Power (MW) 

St. Andrews Substation 

(Feeder relay 18M14) 

6.821 6.825 682 0.058 0.073 

Sarnia Solar 2 (SS2) 3.023 3.136 3.023 3.74 3.6 

Sarnia Solar 5 (SS5) 3.252 3.136 3.25 3.57 3.63 

Reactive Power (MVAr) 

St. Andrews Substation 

(Feeder relay 18M14) 

2.694 2.688 2.69 0.222 0.074 
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Table 8.2 Nighttime Data on 18M14 (time stamp-7/10/2011 at 12:05 am) 

Measurement 

Location 

SCADA CYME EMTDC/P

SCAD 

Deviations  

(%) SCADA vs. 

CYME  

Deviations  

(%) CYME vs. 

PSCAD  

Voltage (kV) 

St. Andrews Substation 

(‘Q’ Bus)  

28.911 

(Avg.) 

28.914 28.916 0.01 0.007 

Sarnia Solar 2 (SS2) 28.694 28.618 28.633 0.265 0.05 

Sarnia Solar 5 (SS5) 28.752 28.618 28.633 0.466 0.052 

Load end Capacitor - 28.651 28.66 - 0.031 

Largest load end - 28.469 28.449 - 0.07 

Real Power (MW) 

St. Andrews Substation 

(Feeder relay 18M14) 

14.44 14.44 14.46 0 0.138 

Sarnia Solar 2 (SS2) 0 0 0 - - 

Sarnia Solar 5 (SS5) 0 0 0 - - 

Reactive Power (MVAr) 

St. Andrews Substation 

(Feeder relay 18M14) 

4.417 4.42 4.42 0.068 0 

It is further seen that both bus voltage and the power flow obtained from the 

EMTDC/PSCAD model are in close correlation (less than 4%). Therefore, it is 

demonstrated that the EMTDC/PSCAD model represents the network of feeder 18M14 

with high accuracy. The validated EMTDC/PSCAD model of the feeder 18M14 is now 

used for harmonic studies. 

8.6 Network Impedance and Resonance 

Every electrical system has resonance at certain frequency(s) due to the presence of 

inductive and capacitive elements in the network. Resonance condition of a network 

varies depending on different operating scenarios such as loading conditions, short circuit 

levels (SCL), capacitor switching schemes, and line outages, etc. However, if for any 

aforementioned condition(s), the network resonance frequency aligns with the harmonics 

injected by PV system or any other harmonic generating loads, excessive voltage and 

current harmonic distortions may occur, which can potentially lead to malfunction or 

damage of a customer’s or utility’s protective devices and equipment.  
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To analyze the network resonances in the 18M14 feeder, a frequency scan technique is 

adopted by using the EMTDC/PSCAD software. The frequency scan calculates the 

network Thevenin equivalent impedances seen from a certain point of interest on the 

network at different frequencies. By plotting the impedance magnitude versus frequency 

obtained from this frequency scan, the network resonance frequency can be identified as 

that at which the impedance exhibits a peak. If one of the harmonic frequencies injected 

by a harmonic source on the network matches with this resonance frequency, the 

corresponding harmonic voltage may become amplified based on corresponding 

impedance magnitudes [147], [148]. The MATLAB software is used to plot the data 

exported from the EMTDC/PSCAD frequency scan simulation in the feeder network for 

various network conditions.  

On the feeder 18M14, as there are two large station capacitor banks of 20MVAr each, 

and a load capacitor bank of 1.2 MVAr, a wide range of studies is conducted in 

EMTDC/PSCAD. The frequency scan study is performed at several locations on the 

feeder: at the substation, at the solar farm, at the load capacitor bank, and at a large 

customer end consuming about 80% loads on the feeder 18M14. The following cases are 

studied at these locations:  

Case-I: Base case 

Case-II: Variation in Short Circuit Level (SCL) of source 

Case-III: Loss of substation transformer. 

Case-IV: Loss of large distribution line segment with largest customer on the feeder.  

All of these cases are studied with respect to the total station capacitors providing 20 

MVAr and 40 MVAr reactive supports to the substation. 

8.6.1 Case-I: Base Case 

Fig. 8.1 shows the frequency scan at different locations for the case when there is no 

capacitor bank connected with the feeder. Therefore no impedance peak is observed. 

Fig. 8.2 illustrates the frequency scan for the case when the load capacitor of 1.2 MVAr 

is connected to the feeder. In this case, the resonance peak occurs between the 11th 

harmonic and the 23rd harmonic at different locations. Fig. 8.3 and Fig. 8.4 depict the 

frequency scans for the cases when 20 MVAr and 40 MVAr feeder capacitors are 
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connected, respectively. In these cases, the resonance peaks shift further towards higher 

frequency regions and at the same time another resonance peak occurs in the low 

frequency region, between the 2nd and 5th harmonics, as illustrated in Fig. 8.3. Usually, 

the load capacitor (1.2 MVAr) and one station capacitor (20MVAr) remain connected to 

the feeder; this is considered to be a base case scenario. Fig. 8.3, thus, represents the 

network impedances for the base case scenario.  

 
Figure 8.1 Network Impedance vs. Harmonic Frequencies plot when no capacitor is 

on 18M14. 

 
Figure 8.2 Network Impedances vs. Harmonic Frequencies plot when only load 

capacitor is on 18M14. 
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Figure 8.3 Network Impedance vs. Harmonic Frequencies plot when load capacitor 

and 20 MVAr station capacitors are on 18M14. 

 

Figure 8.4 Network Impedance vs. harmonic frequencies plot when load capacitor 

and 40 MVAr station capacitors are on 18M14. 
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capacitors. Fig. 8.5 and Fig. 8.6 represent the frequency scan plot for 1/3rd SCL and 10 

SCL of source, respectively, with 20MVAr reactive support at the substation. It is 

observed that with the decrease of SCL of source, the low frequency peak shifts further 

towards the lower frequency region as shown in Fig. 8.5, which coincides with third 

harmonic frequency for 1/3rd SCL. However, with the increase of SCL of source the low 

frequency peak shifts toward the high frequency region as presented in Fig. 8.6 for 10 

SCL. Fig. 8.7 and Fig. 8.8 represent the frequency scan plots for 4 SCL and 10 SCL of 

source, respectively, with 40MVAr reactive support at the substation. It is observed from 

Fig. 8.7 that for 4 SCL the low frequency peak coincides with the third harmonic 

frequency. However, it is evident from these figures that after the 3rd harmonics 

alignment they never coincide with any other higher order odd harmonics regardless of 

the value of SCL. In fact, at higher SCL, the source impedance at the HV side of the 

transformer becomes relatively lower than the transformer impedance. As a result, the 

transformer impedance itself dominates the peak resonance which becomes almost 

constant after a certain network resonance frequency. The high frequency peak due to 

load capacitor remains almost unaffected due to this variation and is therefore not shown. 

 

Figure 8.5 Network Impedances vs. Harmonic Frequencies plot when load capacitor 

and 20 MVAr station capacitors are on 18M14 with 1/3rd SCL of the source.  
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Figure 8.6 Network Impedances vs. Harmonic Frequencies plot when load capacitor 

and 20 MVAr station capacitors are on 18M14 with 10 SCL of the source. 

 

Figure 8.7 Network Impedances vs. Harmonic Frequencies plot when load capacitor 

and 40 MVAr station capacitors are on 18M14 with 4 SCL of the source. 
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Figure 8.8 Network Impedances vs. Harmonic Frequencies plot when load capacitor 

and 40 MVAr station capacitors are on 18M14 with 10 SCL of the source. 

8.6.3 Case-III: Loss of Substation Transformer 

Fig. 8.9 and Fig. 8.10 illustrate the cases with the loss of one substation transformer when 

20 MVAr and 40 MVAr feeder capacitors are connected, respectively. This case is also 

equivalent to the low short circuit level at the LV side.  

 

Figure 8.9 Network Impedance vs. Harmonic Frequencies plot when load capacitor 

and 20 MVAr station capacitors are on 18M14 with the loss of one transformer. 
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Figure 8.10 Network Impedance vs. Harmonic Frequencies plot when load capacitor 

and 40 MVAr station capacitors are on 18M14 with the loss of one transformer. 

In these cases, the peaks in the low frequency region move towards the lower frequency 

region around the 2nd harmonic resonance with relatively higher peak magnitudes. 

However, the second peak resonance, due to customer capacitor, remains almost 
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here. 

8.6.4 Case-IV: Loss of Large Distribution Line Segment with Large 
Customer Load 
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capacitors connected, respectively. As a result, the low frequency resonance peak moves 

toward the 5th harmonics by a small amount, and the magnitude of the peak increases due 

to the loss of large load. The change in magnitude is much more significant for the case 

of high frequency resonant peaks which more than doubles, compared to those shown in 

Fig. 8.3 and Fig. 8.4 for 20MVAr and 40MVAr reactive support, respectively. It is thus 

seen that the large loads decrease the magnitude of impedance peak. 
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Figure 8.11 Network Impedance vs. Harmonic Frequencies plot when load capacitor 

and 20 MVAr station capacitors are on 18M14 with the loss of largest load on the 

feeder. 

 

Figure 8.12 Network Impedance vs. Harmonic Frequencies plot when load capacitor 

and 40 MVAr station capacitors are on 18M14 with the loss of largest load on the 

feeder. 
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8.7 Impact of PV Solar Farm Harmonics Injection on 
Network Impedance 

The harmonic currents generated by the PV system are injected into the network. This 

results in harmonics voltages due to the network impedances. These harmonics voltages 

may be amplified due to network resonances at certain frequencies, as discussed earlier. 

These harmonic voltages appears across each linear and non-linear loads which may 

distort both voltage and currents on the network leading to potential malfunction or 

damage to protective and other equipment. Therefore, the injection of harmonics from the 

PV system needs to be investigated with respect to network impedance and network 

resonance. This is also as recommended by IEEE standard 519. 

A wide range of harmonics, voltage, and power data from two 10 MW PV solar systems 

are recorded for the month of June, 2012 by Hydro One Inc. At the same time, the 

corresponding harmonics, voltage, and power data are also recorded at the St. Andrews 

substation, by Hydro One Inc. From the data analysis of these two 10MW systems, it is 

observed that both of them generate identical harmonic currents. The calculated Total 

Demand Distortion (TDD) for the output harmonics current and the Total Harmonic 

Distortion (THD) of voltage measured from each 10 MW PV system satisfies the IEEE 

standard 519, and remains within the specified limits for a wide range of power 

generation. From the analysis of harmonics data, the 5th,7th,11th and 13th current 

harmonics are found to be relatively dominant.  However, as the network conditions and 

system short circuit levels change continuously, the harmonic distortions are investigated 

for different short circuit levels and network resonance conditions for different levels of 

harmonics injection from the solar farms. 

8.7.1 Selection of Worst Network Condition by Varying SCL 

The conditions for which the network resonance coincides with one or more of the 

harmonics injected by the solar farm are investigated first. It is observed from the 

frequency scan in Fig. 8.5 and Fig. 8.7 that the network resonance coincides with the 

third harmonic for the condition of 1/3rd SCL for 20 MVAr capacitor connection, and 

4SCL with 40 MVAr feeder capacitor connection. These are taken to be the worst 



160 

 

network conditions. The harmonics data set from the solar farm is then chosen for the 

time instant at which it injects the largest third harmonic current into the network.  

Fig. 8.13 presents the different harmonic currents injected by each 10 MW solar farm 

when the third harmonic current injection is highest. 

 
Figure 8.13 Harmonics Dataset for High Third Harmonics Injection 

Table 8.3, Table 8.4 and Table 8.5 represent the simulated power, voltage, TDD, THD, 

voltage harmonic distortion, and some selected individual voltage harmonic quantities for 

the base case, 1/3rd SCL with 20 MVAr feeder capacitor case and for the 4SCL with a 40 

MVAr feeder capacitor case, respectively. The quantities are tabulated for the St. 

Andrews substation and each of the 10 MW solar systems: Sarnia Solar SS2 and Sarnia 

Solar SS5.  

Table 8.3 Power, Voltage and Harmonics for Base Case Scenario of Fig. 8.3 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) -6.561+j5.141 10+j0.2831 10.02+j0.2771 
Fundamental Phase  Voltage, Vf (kV) 16.6277 16.738 16.735 
Fundamental Current, If (Amp) 167.88 199.52 199.84 
Current TDD (%) - 1.063 1.063 
Voltage THD (%) 0.2053 0.66 0.653 
HONI Measured Voltage THD (%) 0.875 1.264 1.274 
Voltage Harmonic Distortion (kV) 0.03415 0.1104 0.1092 
3rd harmonic voltage (kV) 0.0137 0.02056 0.0204 
5th harmonic voltage (kV) 0.02485 0.0235 0.02336 
7th harmonic voltage (kV) 0.01132 0.01715 0.01687 
11th harmonic voltage (kV) 0.011 0.06 0.05067 

Harmonics Number 

A
m

p 
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Table 8.4 Power, Voltage and Harmonics for the Network Impedance of Fig. 8.5 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) -6.397+j6.239 9.927-j0.2483 9.941-j0.2551 
Fundamental Phase  Voltage, Vf (kV) 16.554 16.61 16.608 
Fundamental Current, If (Amp) 180.64 199.52 199.84 
Current TDD (%) - 1.063 1.063 
Voltage THD (%) 0.185 0.66 0.653 
Voltage Harmonic Distortion (kV) 0.03065 0.1097 0.1085 
3rd harmonic voltage (kV) 0.0137 0.02056 0.0204 
5th harmonic voltage (kV) 0.0206 0.017 0.0169 
7th harmonic voltage (kV) 0.01 0.0178 0.01754 
11th harmonic voltage (kV) 0.0105 0.061 0.0602 

Table 8.5 Power, Voltage and Harmonics for the Network Impedance of Fig. 8.7 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) -6.931+j4.736 10.19+j0.4582 10.2+j0.4525 
Fundamental Phase  Voltage, Vf (kV) 16.926 17.057 17.054 
Fundamental Current, If (Amp) 166.23 199.52 199.84 
Current TDD (%) - 1.063 1.063 
Voltage THD (%) 0.1085 0.6874 0.6805 
Voltage Harmonic Distortion (kV) 0.018376 0.117259 0.116056 
3rd harmonic voltage (kV) 0.00816 0.018 0.0177 
5th harmonic voltage (kV) 0.0129 0.015 0.0147 
7th harmonic voltage (kV) 0.0056 0.02178 0.0215 
11th harmonic voltage (kV) 0.0056 0.0671 0.0664 

The following observations are made regarding harmonics from these tables: 

1. From Table 8.3, it is observed that there is a mismatch between the measured quantity 

and the simulated quantity of THD which is due to the presence of network 

harmonics. In the simulation model the ambient harmonics are not considered. 

2. In comparison with Table 8.3, the 3rd harmonic voltage at the solar farm is almost the 

same as the base cases, as shown in Table 8.4 and Table 8.5, which tabulate the peak 

resonance cases at the 3rd harmonic frequencies. This is due to the same impedance 

magnitudes at third harmonics for all cases.  

3. The fifth harmonics voltage in both Table 8.4 and Table 8.5 are lower compared to 

Table 8.3. From the frequency scan in Fig. 8.5 and Fig. 8.7, it is observed that the 5th 

harmonic impedance falls in the valley region. Therefore, the magnitude of voltage 

harmonics for 5th order is lower. 

4. The seventh and eleventh harmonics voltage in Table 8.5 is much lower compared to 

Table 8.3 and Table 8.4 which is mainly due to the lower impedance magnitudes at 

those certain frequencies. 
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5. As compared to base case given in Table 8.3, the voltage THDs as seen from Table 

8.4 and Table 8.5 are lower than the base case at the bus of the St. Andrews 

substation. This is because of the relatively lower net harmonic voltages VHD due to 

the lower 5th harmonic voltages. Hence, Table 8.4 could be the worst case for third 

harmonics voltage, but not the worst-case scenario in terms of VTHD or overall 

harmonics voltages. It is noted that the harmonics current injection by the solar farms 

always remains the same regardless of network condition. 

 

From the above observations, it is evident that the 3rd harmonic resonance at the 18M14 

network does not make the worst situation for voltage distortion. 

 

The frequency scan plots in an earlier section are re-examined and it is noted that the 

network with no capacitors results in high 5th,7th,11th, and 13th harmonic impedances 

(much higher than 3rd) as seen in Fig. 8.1. It is also observed that there is a high injection 

of 5th, 7th,11th, and 13th harmonics. Therefore, the network condition in Fig. 8.1 is chosen 

as the next base case system for the study of harmonics amplification (in a non-resonant 

case). Table 8.6 represents the simulated power, voltage, TDD, THD, voltage harmonic 

distortion, and some selected individual voltage harmonic quantities for the case when 

there are no capacitors connected to the feeder. 

Table 8.6 Power, Voltage and Harmonics for the Network Impedance of Fig. 8.1 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) -6.568+j6.469 10.01+j0.2542 10.02+j0.2482 
Fundamental Phase  Voltage, Vf (kV) 16.66 16.74 16.737 
Fundamental Current, If (Amp) 166.23 199.52 199.84 
Current TDD (%) - 1.063 1.063 
Voltage THD (%) 0.3 0.827 0.82 
Voltage Harmonic Distortion (kV) 0.0499 0.13848 0.13726 
3rd harmonic voltage (kV) 0.0122 0.0313 0.03106 
5th harmonic voltage (kV) 0.01946 0.0413 0.041 
7th harmonic voltage (kV) 0.01674 0.03786 0.0376 
11th harmonic voltage (kV) 0.03055 0.0795 0.0788 

From this table it is observed that the voltage THD and the voltage harmonic distortion is 

higher compared to all of the earlier cases presented in Table 8.3, Table 8.4 and Table 

8.5. Note that, as there is no valley in the plot of corresponding frequency scan presented 

in Fig. 8.1, all of the harmonics voltages over third harmonics are higher than the 
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previous cases. Therefore, the network condition, without any capacitors is considered to 

be the worst network condition for the successive studies. 

8.7.2 Harmonics Distortion Due to Worst Network Condition 

Fig. 8.14 presents the power output from the solar farm during a sunny day with 

measured harmonics, current THD, and the calculated TDD.      

 

Figure 8.14 10 MW Solar Farm Output for a Sunny Day 

Three arbitrary harmonic datasets are chosen: evening time, noon time, and the moment 

of the highest harmonic injection in that day, which are depicted in Fig. 8.15, Fig. 8.16 

and Fig. 8.17, respectively. The corresponding simulation results are presented in Table 

8.7, Table 8.8 and Table 8.9 for the evening, noon, and the high harmonics injection time, 

respectively. Note that the simulation results are obtained for worst network condition in 

Fig. 8.1. 

It is observed from Fig. 8.14, Fig. 8.15, Fig. 8.16, and Fig. 8.17 that the pattern of 

harmonics is similar at different times, but the magnitude of harmonics varies with the 

power output level of the solar farm. Comparing Table 8.7, Table 8.8 and Table 8.9, the 

voltage THD as well as the voltage harmonics are seen to be higher for the case of high 

harmonic injection from the solar farm, as seen in Table 8.9. 
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Figure 8.15 Harmonics Dataset in the Evening of a Sunny Day 

Table 8.7 Power, Voltage, Harmonics Distortion during the Evening of a Sunny Day 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) 2.639+j6.789 5.33-j0.1482 5.33-j0.1501 
Fundamental Phase  Voltage, Vf 
(kV) 

16.532 16.463 16.461 

Fundamental Current, If (Amp) 145.56 108.08 108.08 
Current TDD (%) - 1.3 1.3 
Voltage THD (%) 0.356 0.927 0.919 
Voltage Harmonic Distortion (kV) 0.0589 0.15263 0.15136 

 

Figure 8.16 Harmonics Dataset around noon on a Sunny Day 



165 

 

Table 8.8 Power, Voltage, and Harmonics Distortion at noon on a Sunny Day. 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) -6.508+j6.471 9.983+j0.2518 9.981+j0.2455 
Fundamental Phase  Voltage, Vf 
(kV) 

16.66 16.738 16.736 

Fundamental Current, If (Amp) 184.46 199.12 199.12 
Current TDD (%) - 1.175 1.175 
Voltage THD (%) 0.32 0.864 0.857 
Voltage Harmonic Distortion (kV) 0.05345 0.14467 0.14342 

 

Figure 8.17 High Harmonics Dataset on a Sunny Day 

Table 8.9 Power, Voltage, and Harmonics Distortion for High Harmonics Injection 

on a Sunny Day. 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) 7.852+j6.756 2.712-j0.1716 2.712-0.1721 
Fundamental Phase  Voltage, Vf 
(kV) 

16.65 16.513 16.512 

Fundamental Current, If (Amp) 205.75 54.88 54.88 
Current TDD (%) - 1.474 1.474 
Voltage THD (%) 0.4085 1.0457 1.0372 
Voltage Harmonic Distortion (kV) 0.06801 0.17269 0.17127 

Further investigation is made for a cloudy day. Fig. 8.18 presents the power output from 

the solar farm during a cloudy day with measured harmonics, current THD, and the 

calculated TDD. Like the sunny day case, three arbitrary harmonic datasets are chosen: 

evening, noon, and the moment of highest harmonic injection in the day, which are 
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depicted in Fig. 8.19, Fig. 8.20 and Fig. 8.21, respectively. The corresponding harmonics 

simulation results are presented in Table 8.10, Table 8.11 and Table 8.12 for the evening, 

noon, and the high harmonics injection time, respectively. The same worst case network 

is used for this simulation study as well.  

 

Figure 8.18 10 MW Solar Farm Output for a Cloudy Day 

 

Figure 8.19 Harmonics Dataset during the Evening on a Cloudy Day 
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Table 8.10 Power, Voltage, Harmonics Distortion during the Evening on Cloudy 

Day 

Quantiites St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) 11.97+j6.582 0.6519-j0.05674 0.6519-j0.05681 
Fundamental Phase  Voltage, Vf 
(kV) 

16.599 16.416 16.416 

Fundamental Current, If (Amp) 272.777 13.28 13.28 
Current TDD (%) - 0.736 0.736 
Voltage THD (%) 0.208 0.524 0.518 
Voltage Harmonic Distortion (kV) 0.0346 0.086 0.085 

 

Figure 8.20 Harmonics Dataset around noon on a Cloudy Day 

Table 8.11 Power, Voltage, and Harmonics Distortion at noon on a Cloudy Day 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) 5.785+j6.751 3.739-j0.1689 3.738-j0.1699 
Fundamental Phase  Voltage, Vf 
(kV) 

16.491 16.379 16.378 

Fundamental Current, If (Amp) 178.31 76.24 76.24 
Current TDD (%) - 1.446 1.446 
Voltage THD (%) 0.391 0.983 0.977 
Voltage Harmonic Distortion (kV) 0.0646 0.161 0.16 
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Figure 8.21 High Harmonics Dataset on a Cloudy Day 

Table 8.12 Power, Voltage, and Harmonics Distortion for High Harmonics Current 

Injection on a Cloudy Day 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) 7.175+j6.753 3.031-j0.18 3.031-j0.1807 
Fundamental Phase  Voltage, Vf 
(kV) 

16.66 16.53 16.53 

Fundamental Current, If (Amp) 195.8 61.28 61.28 
Current TDD (%) - 1.506 1.506 
Voltage THD (%) 0.4063 1.028 1.022 
Voltage Harmonic Distortion (kV) 0.0677 0.17 0.169 

From Fig. 8.18, Fig. 8.19, Fig. 8.20 and Fig. 8.21 it is seen that the harmonics data 

pattern is similar at different times. However, similar to the sunny day case, the 

magnitude of harmonics varies with the power output level of the solar farm. Comparing 

Table 8.10, Table 8.11 and Table 8.12, it is seen that the voltage THD becomes higher for 

the case of high harmonic injection from the solar farm for the worst condition of 

network, as in Table 8.9.  

However, on both the sunny and cloudy days, the above studies show that the maximum 

voltage harmonics distortion occurs for the case of maximum harmonic injection level 

from the solar farm on that particular day.  
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Fig. 8.22 presents the harmonics spectrum for highest harmonics injection by the solar 

farm over the period of one month. Table 8.13, Table 8.14, and Table 8.15 present the 

simulation results at 1SCL, 1/3rd SCL, and 4SCL of the source on the selected network 

condition of Fig 8.1, respectively. The voltage distortions along with the power and 

voltage quantities for this highest level of harmonics injection by the solar farm are 

compiled in these tables.  

 

Figure 8.22 Harmonics Spectrum for Highest Harmonics Current Injection Over 

the Whole Period. 

Table 8.13 Simulated Power, Voltage, and Harmonics Corresponds to Highest 

Harmonics Injection by the Solar Farm at 1SCL 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) 7.305+j6.77 2.98-j0.1796 2.98-j0.1802 
Fundamental Phase  Voltage, Vf 
(kV) 

16.657 16.5266 16.526 

Fundamental Current, If (Amp) 197.824 60.24 60.24 
Current TDD (%) - 1.567 1.567 
Voltage THD (%) 0.429 1.094 1.085 
Voltage Harmonic Distortion (kV) 0.0715 0.18084 0.17936 
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Table 8.14 Simulated Power, Voltage, and Harmonics Corresponds to Highest 

Harmonics Injection by the Solar Farm at 1/3rd SCL 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) 7.297+j6.572 2.981-j0.08409 2.981-j0.08469 
Fundamental Phase  Voltage, Vf 
(kV) 

15.662 15.498 15.497 

Fundamental Current, If (Amp) 222.693 60.24 60.24 
Current TDD (%) - 1.567 1.567 
Voltage THD (%) 0.4867 1.129 1.119 
Voltage Harmonic Distortion (kV) 0.076 0.175 0.173 

Table 8.15 Simulated Power, Voltage, and Harmonics Corresponds to Highest 

Harmonics Injection by the Solar Farm at 4SCL 

Quantities St. Andrew SS Sarnia Solar farm SS2 Sarnia Solar farm SS5 
Power, P+jQ (MVA) 7.297+j6.572 2.981-j08409 2.981-j0.08469 
Fundamental Phase  Voltage, Vf 
(kV) 

16.637 16.515 16.515 

Fundamental Current, If (Amp) 195.45 60.24 60.24 
Current TDD (%) - 1.567 1.567 
Voltage THD (%) 0.395 1.097 1.087 
Voltage Harmonic Distortion (kV) 0.066 0.181 0.1796 

By comparing Table 8.13, Table 8.14 and Table 8.15, it is demonstrated that the 

distortion in voltage increases with the decrease in short circuit level of the source on the 

selected worst network condition (with the frequency response presented in Fig. 8.1).  

8.8 Conclusion 

In this chapter, a detailed harmonics impact study is performed for a 20 MW solar farm 

on the distribution network of Bluewater Power. The network is modeled with actual 

network data. Load flow studies are conducted to validate the network model built in 

CYME and EMTDC/PSCAD with actual SCADA measurements with PV systems. 

Network resonance studies for different network conditions are performed for the feeder 

18M14, which connects the large-scale solar farms by using EMTDC/PSCAD. The 

measured harmonic data obtained from the solar farm is analyzed and utilized to 

demonstrate the impact on the network harmonic distortion for different short circuit 

levels.  

The following conclusions are made: 

1. Network resonances are caused by capacitors on the feeder. 
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2. The large substation capacitor (20 MVAr or 40 MVAr) causes resonance around 

the 3rd harmonics. 

3. The load capacitor 1.2 MVAr causes network resonance around the 25th 

harmonics. 

4. Presence of load on the feeder reduces the magnitude of network resonant 

impedances. 

5. The solar farm typically injects high 5th, 7th,11th, and 13th harmonics.  

6. A small number of ambient harmonics are observed in the network. 

7. Network resonance at 3rd harmonics does not cause any substantial increase in 

voltage THD on the feeders. 

8. The highest voltage distortion is observed for the case with no capacitor 

connected, and with high harmonics injection from the solar farm. Even in this 

case the voltage THD is seen to be 1.13%, which is much lower than the 5% level 

specified by the IEEE standard 519. 

9. Thus, based on the studies conducted, it is inferred that the large solar farm of 20 

MW may not cause any substantial voltage distortion on the feeder 18M14 during 

steady state operating conditions. 

This study has been conducted with a huge set of data provided by Bluewater Power 

Corp., Hydro One Inc., and with the cooperation of Enbridge Inc. and First Solar, who 

are all sincerely acknowledged.  
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Chapter 9  

9 Conclusion 

9.1 Introduction 

This thesis presents four novel applications of PV solar farms for providing various 

benefits to electric power systems in addition to generating real power from solar 

insolation. A conventional grid connected Photovoltaic (PV) solar farm utilizes an 

inverter for converting the DC power output from PV arrays into AC power to be 

supplied to the grid. During the night, the entire PV solar system remains completely idle 

and is also only partially utilized during the day, especially in the early morning and late 

evening hours. This thesis presents new technologies for a complete utilization of the 

inverter of a PV solar system, both during day and night time. These technologies 

transform the PV solar system inverter into a Static Synchronous Compensator 

(STATCOM) which is a major device in the family of Flexible AC Transmission 

Systems (FACTS). This novel technology is termed as PV-STATCOM.  

A STATCOM is a dynamic reactive power compensator which provides very rapid 

voltage regulation and damping at the point of connection with the grid. It is known in 

power systems operation that a capacitor increases voltage and an inductor decreases 

voltage at the terminal when it is controlled. The STATCOM functions as a variable 

inductor (consuming reactive power) and as a variable capacitor (injecting reactive 

power), and thus, performs very rapid voltage control. In a similar manner, the PV system 

transformed into a PV-STATCOM performs voltage control or damping control by using 

the entire PV inverter capacity during the night, and the remaining capacity of the PV 

inverter after real power generation during the day. 

In this thesis, novel control of PV-STATCOMs is proposed to perform loss reduction in a 

distribution network, to prevent the instability of a critical induction motor load, and to 

increase the power transfer limit of a long transmission line. These new applications of 

PV solar farms can help to improve the performance of power systems significantly. 

They can also potentially bring new sources of revenue for PV solar farms by providing 
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these benefits, in addition to those earned from the sale of real power. Moreover, a new 

technique for short circuit current management is presented for conventional PV solar 

farms that will potentially solve the problem which has caused several solar farms to be 

denied connectivity in Ontario. This thesis also presents a generalized PV solar system 

model in the EMTDC/PSCAD software environment. Another major study performed in 

this thesis is the harmonics impact of the largest PV solar farm in Canada, in the 

distribution utility network of Bluewater Power (BWP), located in Sarnia, Ontario.  

9.2 Modeling of a Conventional PV Solar Farm  

A detailed modeling of the complete grid connected PV solar system requires the 

electrical rating of PV solar panels, which is mainly dependent on the manufacturing 

materials and their physical properties. Many times, manufacturers do not disclose 

detailed physical properties of the PV module, except for some electrical quantities such 

as open circuit voltage (Voc), Short Circuit Current (Isc), Maximum Power Point voltage 

(Vmpp) Maximum Power Point Current (Impp), and maximum Power (Pmpp). However, to 

model the PV system comprehensively, it is required to determine other physical 

parameters, such as series resistance of PV cell (Rs), shunt resistance of PV cell (Rsh), and 

diode ideality factor (n) from generalized data. The use of a DC-DC converter based 

Maximum Power Point Tracking (MPPT) system at the output of a PV module causes 

additional losses and hence, reduces the overall efficiency. On the other hand, the 

converter-less MPPT system is much more efficient. However, modeling of a converter-

less MPPT system with the help of an iteration technique increases the complexity of the 

model and potentially increases the simulation time. 

Therefore in Chapter 2, a complete generalized model of a grid connected PV solar 

system in EMTDC/PSCAD is presented with the necessary mathematical relationships. A 

100 kW PV module is modeled by using only the quantities provided in manufacturer’s 

datasheet. The proposed technique determines all of the PV module parameters without 

any explicit repetitive iteration. This model also includes a converter-less MPPT 

controller to generate the maximum power output at any level of solar irradiation and 

temperature, thus reducing overall losses. The simulation results for the PV modules are 

validated for two levels of solar insolation and temperature for a commercial PV system, 
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with respect to the manufacturer’s datasheet values of voltage, current, and power. 

Simulation studies are performed using commercial grade electromagnetic transient 

simulation software EMTDC/PSCAD.  

The study demonstrates that this model: (i) maintains unity power factor at any level of 

power, (ii) ensures maximum power point tracking at any level of solar insolation and 

temperature and, (iii) maintains acceptable ranges of harmonics. This generalized 

EMTDC/PSCAD model can be adapted for any other PV module and system operating 

conditions. 

9.3 New Fault Detection and Management Technique for 
PV Solar System 

Several PV solar systems have been denied connections in Ontario due to their potential 

short circuit current contributions. Inverter based Distributed Generators (DGs) like PV 

solar systems typically contribute 1.2 pu to 1.8 pu fault current, which is not acceptable to 

utility companies due to the need for very expensive protective breaker upgrades. 

Therefore, to alleviate the short circuit current contribution, it is necessary to limit the 

current before it exceeds its rated peak values. 

In Chapter 3, a new fast fault detection technique is proposed for PV inverter based DGs. 

The proposed controller is based on the detection of a rate of rise, or slope (d/dt), of the 

PV inverter output current and the peak magnitude of current. In this new controller, the 

slope (d/dt) detection technique is used as the primary detection strategy, whereas, the 

magnitude detection technique is used as a secondary detection strategy. As soon as the 

proposed fault detector detects the fault, it (a) disables firing pulses to the inverter, (b) 

disconnects the PV solar modules from the inverter and, (c) isolates the filter from the 

PCC. A typical network of Ontario, Canada, obtained from Natural Resource Canada 

(NRCan) is used as the study system, which is comprised of 25km radial feeder with 

approximately a 103 MW load. A 7.5 MW PV system which incorporates the proposed 

fault detector is connected at the end of the feeder. To demonstrate the effectiveness of 

the proposed fault detector, both symmetrical (3-phase to ground) and asymmetrical 

(single line to ground) fault studies are conducted for 9 cycles. The faults are initiated 
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both at the point of common coupling of the PV system, and at the beginning of the 

feeder. Simulation results are also presented for peak and non-peak fault instances of 

instantaneous output current of the PV system inverter. EMTDC/PSCAD software 

simulations are used to demonstrate the performance.  

The simulation study shows that the new proposed fault current controller responds and 

disconnects the PV solar farm within one millisecond, regardless of the type of fault or 

the location of the fault on the distribution system. The controller can also effectively 

distinguish between large load switching and fault current.  

A patent has been filed on this short circuit current management system [P.1]. 

9.4 Novel Control of PV Solar Farm as PV-STATCOM  

Chapter 4 presents the concepts of a novel use of a PV solar farm inverter as a PV-

STATCOM, which can potentially lead to complete utilization of the PV solar farm 

inverter asset during both night and day. Two sets of novel PV-STATCOM technologies 

are presented: one based on the “unused” capacity of the solar inverter, and the other 

based on “used” capacity of the solar inverter. The entire solar farm inverter capacity 

during the night, S MVA, and the remainder inverter capacity √(S2-P2) after real power 

‘P’ MW generation during the day, remain unused in conventional solar farm operation. 

These are referred to as the “unused” capacity of the inverter. In the proposed new 

control, during an emergency need in the daytime, the real power generation of a PV 

solar farm is curtailed to create new capacity for reactive power support by the PV-

STATCOM. This additional new capacity created through real power curtailment is 

referred as the “used” capacity of the solar inverter.  

9.4.1 Utilization of Unused Capacity of a PV Inverter 

In this strategy, two applications of PV-STATCOM are demonstrated by utilizing the 

“unused” capacity of the inverter.  
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9.4.1.1 Reduction in Line Losses 

In power systems, power is supplied to the loads over a network by both conventional 

generators and DGs. The flow of current ‘I’, in the lines causes ‘I2R’ heating losses due to 

line resistance ‘R’. These losses are a function of bus voltages and also increase as the 

square of the current. Injection of real power from a DG or PV solar farm into the 

network typically increases bus voltage and can indirectly reduce the system losses to 

some extent. 

However, Chapter 5 presents a new control of a PV system as a PV-STATCOM, to 

reduce the line losses even further through coordinated voltage control. In the proposed 

control, the optimal voltage set point may be provided to all participating solar farms by 

the network operator running a central Optimal Power Flow (OPF) for the entire system, 

or by the individual owner of the participating DGs. In this study, a radial feeder having 

an aggregated load of 4 MW, 2MVAr connected at the end of the feeder is used. By using 

a 12 MVA PV solar system as a PV-STATCOM connected either at a single bus or at 

two distributed buses on the feeder, four different scenarios are studied. The best voltage 

set points are determined by a set of systematically conducted load flow studies in 

PowerWorld Simulator.  

It is demonstrated that with the above voltage regulation by a PV-STATCOM, a 

substantial net loss reduction is achieved even after accounting for the operational losses 

of the PV-STATCOM. From the comparison of all four scenarios, it is observed that the 

PV-STATCOM control is more effective in reducing line losses when connected close to 

the load. Further, a distributed voltage control as compared to a centralized mid-point 

voltage control by PV-STATCOM results in higher loss reduction. Overall, the annual 

cost of energy savings by such a novel PV-STATCOM control is substantial. For the 

12MW PV solar farm based study system the energy saving is sufficient enough to power 

30 homes annually.  

This study is one of the first applications of the filed patent [PR.1]. 
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9.4.1.2 Power Transfer Limit Improvement of a Long Transmission 
Line 

Transmission grids worldwide are presently facing a major challenge in integrating large-

scale renewable systems (wind farms and solar farms) due to their limited power 

transmission capacity. The power transfer over a transmission line is constrained by 

several limits such as: thermal limit, steady state stability limit, transient stability limit, 

and damping limit. To increase the transmission capacity of existing lines, series 

compensation and various Flexible AC Transmission System (FACTS) devices are 

utilized. In an extreme situation, new lines may need to be constructed at a very high 

expense. 

Chapter 7 presents three different types of PV-STATCOM controls. These are (i) pure 

voltage control, (ii) pure damping control, and (iii) a combination of voltage control and 

damping control. Studies are performed for two variants of a Single Machine Infinite Bus 

(SMIB) system.  One SMIB system uses only a single PV solar farm of 100MW as a PV-

STATCOM, connected at the midpoint, whereas the other system uses a combination of a 

PV-STATCOM and another PV-STATCOM, or an inverter based wind Distributed 

Generator (DG) with similar STATCOM functionality, of 100 MW each. Three-phase 

fault studies are conducted and the improvement in stable power transmission limit is 

investigated using the electromagnetic transient software EMTDC/PSCAD both during 

night and day. 

It is demonstrated that for the study system with a single 100 MW PV solar farm, the PV-

STATCOM can increase the power transfer capacity by 168 MW during the night with 

the use of voltage control, along with the damping control technique. This control further 

increases the power transfer by 142 MW during the day with the use of damping control, 

even at a high PV power generation of 91MW (91%). During the day, damping control is 

seen to be more effective than a combination of voltage control and damping control.  

In another case study with multiple DGs acting as PV-STATCOMs, the power transfer 

limits is increased up to 229 MW during the night through damping control, when none 

of the DGs generate any real power. During the day, the maximum limit of power 
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transfer achieved with the PV-STATCOM is 230 MW when both the DGs are generating 

a high amount of real power, typically around 95 MW each. Thus, with the proposed 

novel control of a PV-STATCOM, a substantial amount of power transfer improvement 

is achieved. 

A PCT patent application has been filed on this work and corresponding full patents are 

filed in five different countries USA, Canada, Europe, China and India [P.2], [P.3]. 

9.4.2 Utilization of Used Capacity of a PV Inverter for Prevention 
of Induction Motor Instability 

Power systems are commonly faced with disturbances, such as, faults and outages of 

equipment (transformers, lines, generators, etc.). These disturbances cause voltage 

fluctuations which can be severe if the power system is weak. Faults in such weak 

networks can potentially result in the shut down of Induction Motor (IM) loads due to 

voltage instability. In some cases, IM loads are very critical, such as those used in process 

control, rolling mills, etc. Shutdown of these critical IM loads even for a very short time 

can result in huge losses (in the order of million dollars) to the industrial facility using 

these IMs. 

Chapter 6 presents another new application of a PV-STATCOM to provide voltage 

support to a critical voltage sensitive IM load connected in the vicinity of a solar farm. In 

this strategy, the solar farm is controlled to temporarily stop its normal operation of 

power generation and instead to operate as a PV-STATCOM utilizing the whole or 

partial inverter capacity to support the grid for a very short amount of time. The novel 

fast fault detection technique proposed earlier in Section 9.3, is integrated with the PV 

system to sense any fault on the grid. Upon detection of a fault, the PV solar farm 

inverter transforms into a PV-STATCOM and provides the required voltage support. A 

set of PV solar panels are temporarily disconnected from the DC side of the inverter 

while the inverter remains connected with the AC grid. As a result, during the day, the 

real power generation is partially or fully curtailed, as needed. The inverter capacity is 

thus freed up to provide the needed amount of reactive power support to the grid for a 

short duration of time during fault and post fault period. A real NRCan network is 
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adopted for this study. One of the static loads is replaced with an industrial IM load at the 

end of the feeder. The performance of the PV-STATCOM operation is compared for (i) 

conventional PV operation and (ii) PV-STATCOM operation. The PV solar farm is 

transformed into a PV-STATCOM only when there is a need or prior agreement to 

provide dynamic voltage support to stabilize a critical induction motor load. Therefore, 

once the motor is stabilized, the PV-STATCOM transforms into a conventional PV solar 

farm and begins generating real power as usual. These simulation studies are conducted 

using EMTDC/PSCAD software.  

It is demonstrated that the induction motor (IM) becomes destabilized due to a three-

phase fault and the conventional operation of the PV solar farm does not alleviate the 

situation. For the study system it is shown that a 7.5 MW solar farm acting as a PV-

STATCOM can stabilize (i) an induction motor (IM) load of 2.7 MW, if connected at 

motor terminals, and (ii) an induction motor (IM) load of 0.9 MW, even if it is connected 

19 km away from the motor terminals. However, the effectiveness of the proposed PV-

STATCOM operation is dependent on the size and location of the PV solar farm and the 

system strength. 

This is the first study conducted for the filed patent [PR.2].  

9.5 Harmonic Impact Study of a Large Scale PV Solar 
Farm in a Distribution Network 

IEEE 519 Standard recommends that a utility should perform a harmonic analysis 

whenever significant number or certain sizes of DGs (that produce harmonics) are 

connected in their network. 

In Chapter 8, a harmonics impact study is presented for the distribution network of 

Bluewater Power (BWP), Sarnia which connects the largest solar farm in Canada, of 80 

MW. This study is performed utilizing detailed network data, central Geographic 

Information System (GIS) database, and Supervisory Control And Data Acquisition 

(SCADA) infrastructure, made available by BWP. The network is modeled in detail by 

using EMTDC/PSCAD software. The network model is validated through CYME 
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software based load flow studies and SCADA measurements. The validated model for the 

feeder 18M14 is used for performing a network resonance study by EMTDC/PSCAD for 

different network conditions. This feeder connects 20 MW solar farms. Hydro One 

(HONI) contributed to this study by installing meters to measure the harmonics injection 

by the 20 MW solar farms. From the analysis of solar farm data provided by HONI, 

(which is confidential) it is observed that the solar farm typically injects high 5th, 7th,11th, 

and 13th harmonics. A small amount of ambient harmonics is also observed in the 

network. The impact of these harmonics on the Bluewater Power distribution network is 

investigated for different Short Circuit Levels (SCL). 

It is concluded that network resonances (resulting in high network impedance) are caused 

by capacitors on the feeder. However, the magnitude of the resonance peak is not 

substantial. The large substation capacitors of 20 MVAr or 40 MVAr cause resonance 

around the 3rd harmonic, whereas, the load capacitor of 1.2 MVAr causes network 

resonance around the 25th harmonic. The network resonance at the 3rd harmonic does not 

cause any substantial increase in voltage THD on the feeders. The highest voltage 

distortion is observed for the case with no capacitor connected and with high harmonic 

injections from the solar farm. Even in this case the voltage THD is seen to be 1.13%, 

which is much lower than the 5% level specified by the IEEE standard 519. Thus, based 

on the studies conducted, it is inferred that the large solar farm may not cause any 

substantial voltage distortion on the feeder 18M14 during steady state operating 

conditions. 

This study has been conducted with a large set of data provided by Bluewater Power 

Corp. and Hydro One Inc. This study was also made possible by the cooperation of 

Enbridge Inc. and First Solar who are all sincerely acknowledged. 

It is noted that the PV system model used in Chapter 2 to Chapter 7 does not provide any 

representation of harmonics. Therefore, with the determination of harmonic injections for 

a real solar farm as demonstrated in Chapter  8, the model of the PV solar farm utilized in 

Chapter 2 to Chapter 7 can be updated to include harmonic current sources to make the 

PV system model more comprehensive and realistic for future studies.   
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9.6 Contribution and Significance of this Thesis 

This thesis presents several novel patent pending controls of PV solar farms which can 

bring significant benefits to power systems. Following are the main contributions of this 

thesis: 

1. A generalized electromagnetic transient model for a grid connected PV solar farm is 

developed, and which can generate all required parameters by using the standard 

datasheets of any PV module. This model is validated for different temperatures and 

solar insolation. A converter-less MPPT technique is also implemented, which can 

track maximum power effectively at any level of solar radiation and temperature.  

2. A new short circuit current management technique is developed for inverter based 

DGs for the first time which can sense the network fault and isolate the inverter 

within one millisecond. The technique thus enables the inverter based DGs to trip 

before the instantaneous output current reaches its rated peak.  This technique will 

help to integrate more inverter based DGs to the network. A patent is filed on this 

work [P.1]. 

3. A novel control of a PV solar farm as a PV-STATCOM utilizing the ‘used’ capacity 

to prevent critical Induction Motor (IM) load instability is demonstrated for the first 

time. This controller uses the above fast fault detection technique to transform the PV 

system into a PV-STATCOM upon sensing any fault by disconnecting the PV module 

for a short period of time. The controller subsequently reverts the PV-STATCOM 

into a conventional PV solar farm after successful recovery of the IM load. Although 

generation is curtailed for a short period of time, a significant gain is achieved in the 

form of avoidance of instability of critical IM. This is the first study conducted for 

the filed patent [PR.2]. 

4. A new coordinated control strategy for a PV solar farm as a PV-STATCOM is 

proposed to reduce the network I2R heating losses through the use of the PV 

inverter’s remnant capacity at any level of PV power generation. The saved energy is 
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significant and can power several homes annually. This work is the first time 

application of a filed patent [PR.1]. 

5. A novel control of a PV solar farm as a PV-STATCOM to enhance the transient 

stability and thereby the power transfer limit of a long transmission line is proposed. 

A significant improvement in power transfer limit is achieved both during the night 

and day with the use of proposed voltage control and damping control technique. This 

benefit is accomplished by utilizing the PV inverter remnant capacity after real power 

generation. Two patents are filed on this work [P.2], [P.3]. 

6. The impact of harmonics due to the largest solar farm in Canada, on a real 

distribution network is studied. Such a study has now been conducted for the first 

time in literature.   

In conclusion, this thesis makes a strong case for relaxing the present grid codes to allow 

selected inverter based renewable generators (solar and wind) to exercise these novel 

controls, thereby increasing much needed power transmission capability, reducing 

distribution losses, preventing instability of critical IMs, etc. Such novel controls on PV 

solar Distributed Generator (DGs) (and inverter based wind DGs) will potentially reduce 

the need for investments in additional expensive devices such as series/shunt capacitors 

and FACTS devices. The PV-STATCOM operation also creates a new opportunity for 

PV solar DGs to earn revenues during the night, and also during the day, in addition to 

the revenue from the sale of real power. This will of course require appropriate 

agreements between the regulators, network utilities, solar farm developers, and inverter 

manufacturers.   

9.7 Future Work 

The following tasks are proposed as future work emanating from this thesis: 

1. The developed electromagnetic transients model of a PV solar farm needs to be 

validated with respect to small scale PV systems (<10kW) and as well as the large 

scale PV systems (>10MW). 
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2. Detailed EMTDC/PSCAD studies need to be conducted on actual power systems in 

Ontario for demonstrating the benefit of the proposed novel PV-STATCOM control 

technologies.  

3. Real Time Digital Simulation (RTDS) studies need to be performed for development 

of a PV-STATCOM for 

(a) Fault detection and short circuit current management  

(b) Line loss reduction 

(c) Prevention of induction motor load instability 

(d) Improvement of transmission capacity 

4. Harmonics studies need to be conducted, including ambient harmonics, for both 

steady state and transient scenarios. 
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Appendices  

Appendix A: 100kW PV inverter modeling mathematical expression and calculation 

A.1  I-V characteristic curve of PV and the approximate value of Rs and Rsh: 

The following figure shows the effect of the diverged value of Rs and Rsh from actual 

value on an I-V characteristic curve [18]. 

 

The following figure shows the slope at VOC which determines the approximate value of 

Rs, and the the slope of ISC which determines the approximate value of Rsh [18]. 

 

 
Therefore, Rs_slope=(VOC-V1)/ISC. If we consider, Rs_aprox.=(VOC-Vm)/ISC, then 

Rs_approx>Rs_slope. 
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A.2 Space Phasor and Park’s Transformation 

In EMTDC/PSCAD, to transform the three phase signal in to rotary d-q form it uses 

Park’s transformation blocks which can be established in following way: 

In space phasor form, by definition, for a phase sequence of a-b-c, 

���� = �� + �� . �9Ù�/� + �� . �Ù�/�
= �� + �� . �cos 2�3 − w sin 2�3 � + �� . �cos 2�3 + w sin 2�3 � ⋯ (+) 

Or, 	
���� = �� + �� . Ó− 12 − w √32 Ô + �� . Ó− 12 + w √32 Ô

= ��� − 12 �� − 12 ��� + w Ó− √32 �� + √32 ��Ô = �Ú + w�Û 

In matrix form, 

��Ú�Û� = §̈̈
©1 − 12 − 120 − √32 √32 ¬

® . #������$ 

With respect to rotating frame at a synchronous speed of ω, multiplying (a) with �9ÙÜq, 
(by definition) we get  

�Æ = ���� . �9ÙÜq 
�Æ = �� . �9ÙÜq + �� . �cos 2�3 − w sin 2�3 � . �9ÙÜq + �� . �cos 2�3 + w sin 2�3 � . �9ÙÜq 

Or,  	
�Æ = �� . �9ÙÜq + �� . �cos 2�3 − w sin 2�3 � . �9ÙÜq + �� . �cos 2�3 + w sin 2�3 � . �9ÙÜq 
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{|, �Æ = �� . (cos �� − w sin ��) + �� . �cos 2�3 − w sin 2�3 � . (cos �� − w sin ��)
+ �� . �cos 2�3 + w sin 2�3 � . (cos �� − w sin ��) 

{|, �Æ = ��. (cos �� − w sin ��)
+ �� . (cos 2�3 . cos �� − sin 2�3 . sin ��) − w�� . (sin 2�3 . cos ��
+ cos 2�3 . sin ��)
+ �� . (cos 2�3 . cos �� + sin 2�3 . sin ��) − w�� . (−sin 2�3 . cos ��
+ cos 2�3 . sin ��)	 

{|, �Æ = �� . (cos �� − w sin ��) + �� . cos ��� + 2�3 � − w �� . sin ��� + 2�3 �
+ �� . cos ��� − 2�3 � − w�� . sin ��� − 2�3 � 

{|, �Æ = /�� . cos ��
+ �� . cos ��� + 2�3 � + �� . cos ��� − 2�3 �0 − w/��.sin �� + �� . sin ���
+ 2�3 � + �� . sin ��� − 2�3 �0 = �� + w�� 

In matrix form: 

������ = � cos �� cos ��� + 2�3 � cos ��� − 2�3 �
− sin �� −sin ��� + 2�3 � − sin ��� − 2�3 �" . #������ $ 

For a-c-b, phase sequence , the transformation is, 

������ = � cos �� cos ��� − 2�3 � cos ��� + 2�3 �
− sin �� −sin ��� − 2�3 � − sin ��� + 2�3 �" . #������ $ 
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A.3  Mathematical expressions for the PV inverter controller  

In developing the mathematical expression of the controller, first we have to determine 

the plant transfer function such that the circuit based components such as Plant and VSC 

can be represented in terms of functional block diagram for analysis purposes only. To 

obtain the plant transfer function in the system, given in Fig. 2.2, the PCC is considered 

to have shifted right after the filter parameters of L1 and R1. Therefore the simplified 

system becomes as follows:  

 

Here, R includes the IGBT on resistance, i.e., R=R1+ron and the loss component of 

current in DC side is presented as Iloss. Therefore, the IGBT or the VSC can be considered 

as ideal which confirms that PDC=Pt , Vt=mVDC/2 and the DC side loss is Ploss=VDC.Iloss.  

The AC side dynamic equations can be written as: 

Å -(�-� = −�(� + MqÝ − M�Ý − Mx ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (() 

Å -(�-� = −�(� + MqÞ − M�Þ − Mx ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ((() 

Å -(�-� = −�(� + Mq� − M�� − Mx ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (((() 

The space phasor form is expressed, by definition, ���� = ��. �Ùt + �� . �Ù��/� + �� . �Ù�/� 

for a phase sequence of a-b-c [108].  
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Therefore, to express equations (i), (ii) and (iii) in space phasor form, multiply (i) with �Ùt, (ii) with �Ù��/� and (iii) with �Ù�/� we get: 

Å -(�-� . �Ùt = −�(�. �Ùt + MqÝ . �Ùt − M�Ý . �Ùt − Mx. �Ùt ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ((') 

Å -(�-� . �Ù��/� = −�(� . �Ù��� + MqÞ . �Ù��� − M�Þ . �Ù��� − Mx. �Ù��/� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (') 

Å -(�-� . �Ù�/� = −�(� . �Ù�� + Mq� . �Ù�� − M�� . �Ù�� − Mx. �Ù�/� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ('() 

Now, (iv)+(v)+(vi), we get:  

Å -(�-� . �Ùt + Å -(�-� . �Ù��/� + Å -(�-� . �Ù�/�
= −�(�. �Ùt − �(� . �Ù��� − �(� . �Ù�� + MqÝ . �Ùt + MqÞ . �Ù��� + Mq� . �Ù��
− M�Ý . �Ùt − M�Þ . �Ù��� − M�� . �Ù�� − Mx. �Ùt − Mx. �Ù��/� − Mx. �Ù�/� 

Or, 	
Å --� �(�. �Ùt + (� . �Ù��� + (� . �Ù�� �

= −�((�. �Ùt + (� . �Ù��� + (� . �Ù�� ) + (MqÝ . �Ùt + MqÞ . �Ù��� + Mq� . �Ù�� )
− (M�Ý . �Ùt + M�Þ . �Ù��� + M�� . �Ù�� ) − Mx(�Ùt + �Ù��� + �Ù�� ) 

Or, 

Å -(���-� = −�(��� + MqÝÞ� − M�ÝÞ� − Mx(�Ùt + �Ù��� + �Ù�� ) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ('(() 

But, �Ùt + �ßàáâ + �ßoáâ = (cos 0 + w sin 0) + (cos ��� + w sin ��� ) + ¤cos �� + w sin �� ¥	 
= 1 + 0 − 12 − w sin 2�3 − 12 + w sin 2�3 = 0; 

Therefore, the equation (vii) in space phasor form can be expressed as: 

Å -(���-� = −�(��� + MqÝÞ� − M�ÝÞ� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ('((() 
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With the transformation of ��� = (�� + w��) = �ÚÛ . �9ÙÜq = ���� . �9ÙÜq,	in a d-q co-

ordinate system [108], the equation (viii) can be written as:  

Å -((�� . �ÙÜq)-� = −�((�� . �ÙÜq) + Mq=< . �ÙÜq − M�=< . �ÙÜq 
Or, 	 Å. �ÙÜq -(��-� + Å. (�� . (w�). �ÙÜq = −�((�� . �ÙÜq) + Mq=< . �ÙÜq − M�=< . �ÙÜq 
Or, 		 Å. ��=<�q = −�. (�� − Å. (�� . w� + Mq=< − M�=< 

Or, 	 Å -((� + w(�)-� = −��(� + w(�� − wÅ��(� + w(�� + ¤Mq= + wMq<¥ − (M�= + wM�<) 

Or,  	Å -(�-� + wÅ -(�-� = �−�(� + Å�(� + Mq= − M�=� + w ¤−�(� − Å�(�+Mq< − M�<¥ ⋯ ⋯ ⋯ (+) 

Equating real and imaginary parts, we get: 

Å -(�-� = −�(� + Å�(� + Mq= − M�= ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (K) 

Å -(�-� = −�(� − Å�(� + Mq< − M�< ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (L) 

In Laplace domain the expressions becomes as follows: År~� = −�~� + Å�~� + Mq� − M�� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (-) År~� = −�~� − Å�~� + Mq� − M�� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (�) 

Therefore, the plant can be expressed as shown in following figure:  
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Here, the plant input is Vtd and Vtq,, and the plant output is Id, Iq by considering VSd, VSq as 

the disturbance inputs. The coupling factor, Lω couples the quantity of Id and Iq. The 

disturbance input and the coupling factor can be eliminated by compensating through the 

controller where it acts as a disturbance input with opposite sign to the controller [108]. 

Therefore, the core plant transfer function becomes as follows: 

�S = ~�ä� = ~�ä� = 1� + rÅ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (�) 

Where, ä� = Mq� − M�� + Å�~� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (é) 

	+,-,						ä� = Mq� − M�� − Å�~� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (ℎ) 

The VSC only performs the transformation as expressed [108]: 

Mq� = 1� . MVO2 , +,-	Mq� = 1� . MVO2 	⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (w) 

It is obvious that the output of the controller is md and mq.  

In order to develop the controller part, if we go backward from the modulating signals by 

adding a suffix on all of the quantities in terms of controller ‘c’ , it can be established 

from (g), (h) and (j), that the output modulating signals from the controller, md and mq, 

can be expressed as follows: 

1� = Mq��M�� 2W , +,-, 1� = Mq��M�� 2W ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (z) 

Mq�� = ä�� + M��� − Å�~� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (º) Mq�� = ä�� + M��� + Å�~� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (1) 

As the feedback signal is taken from the system, then: 

M��� = M��; 		M��� = M��;	 
Moreover, the feedback signal is not a clean sinusoidal signal which requires a feed 

forward filter, Gff [108]. 

It is noted that the compensator output of the controller Ud
c and Uq

c should be such that it 

can control the output of the plant. Therefore, a feedback compensator is chosen to 
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monitor and compare the output with the reference signal and generates the desired 

compensator outputs which can be expressed as follows: ä�� = (~�_ÆTê − ~�). �� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (,) 	+,-,						ä�� = (~�_ÆTê − ~�). �� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (Ö) 

Where, compensator gain Kd and Kq could be a proportional integral gain as follows: 

�� = zS� + z��r ,					+,-,				�� = zS� + z��r ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (£) 

However, using expressions, (k) to (q), the controller model can be represented by the 

following figure: 

 

Note that the VSC and Plant represent the inverter circuit and the power system, 

respectively. While implementing the controller output md and mq, it must be converted 

into ABC frame to obtain the three phase modulating signals, which is eventually 

compared with high frequency carrier signal and generates the gating signals. On the 

other hand, the monitoring signal Id, Iq as well as the feedback signal VSd and VSq from the 

power system are the converted into three phase current signals from the ABC frame. 

During this conversion processes, a phased locked loop (PLL) oscillator is used to 

synchronize the input and output signals.   

In the expressions (b) and (c), Vsd=Vd cos(ω+θ0) and Vsq=Vq sin(ωt+θ0). If the PLL 

output is θ = ωt+θ0, at steady state synchronization, then Vsd=Vd and Vsq=0 which means 

that the voltage vector is aligned with the direct axis component Vsd. This eliminates the 

need for feedback signal Vsq. Use of built in PLL in EMTDC/PSCAD, an offset angle of 

1.57 rad gives the θ = ɷt+θ0 such that Vsq=0. 
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However, in a d-q co-ordinate system, the three phase real and reactive power expression 

can be found as follows [108]: 

%(�) = 32 &M��(�). (� + M��(�). (�) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (|) 

.(�) = 32 &−M��(�). (� + M��(�). (�) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (r) 

At steady state synchronization, when the PLL is setting the voltage vector aligned with 

the direct axis component, both the real and reactive power can easily be decoupled and 

the expressions can be simplified as presented in Laplace domain: 

%� = 32 M�. ~� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (�) 

.� = − 32 M�. ~� ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (×) 

Therefore, while implementing with the controller, in the expression (t) and (u), for a 

reference value of power Pref and Qref, the Id becomes Idref and Iq becomes Iqref. Hence, the 

modified controller which controls power only can be represented by the following 

figure: 

 

In a grid connected PV system, the real power is not controlled directly with the inverter 

controller as the power generation is governed by the solar radiation and ambient 

temperature. Moreover, on the DC side of the inverter, the DC link capacitor maintains 

the constant DC voltage to get the maximum power output from the PV and needs 

compensation to overcome the loss. Therefore, the DC link voltage of a PV solar farm 

inverter needs to be controlled such that the inverter can inject the balance of generated 
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PV power to the grid and can maintain a constant DC link voltage. Usually, the DC link 

voltage is controlled either by using the DC-DC converter or a converter-less controller. 

This thesis is dealing with the converter-less DC controller. However, using a converter-

less technique, once the DC link voltage is controlled, the power output of the inverter 

will be governed automatically by injecting the balance of generated PV solar farm 

power to the inverter output. Hence, the DC link voltage controller replaces the active 

power control loop.  To develop the DC link voltage controller, the dynamics of the DC 

side at the PV inverter can be expressed as follows by incorporating the losses [106]: 

¿VO iMVOi� = (km − (ë��� − (VO ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (') 

In Laplace form by expressing in d-q co-ordinate [108], [106]:  

rMVO¿VO = ~km − ~ë��� − ~VO = − 34 �1�~� + 1�~��				⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (ì) 

In this expression, in the steady state, the DC voltage is only compensated through real 

power component or the direct axis component. Hence the expression in (w) can be re-

written as given in (x): 

rMVO¿VO = − 34 (1�~�) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (g) 

Equation (x) yields that the compensator for the DC link voltage controller can also be 

modeled as proportional integral controller as follows [106]: 

~�_ÆTê = − 4r¿VO31� M��íîï = −�VO(MVO − MVOíîï) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (ð) 

Where, the DC compensator gain, KDC, can be modeled as a proportional integral 

controller. 

Hence,  �VO = zSVO + U ½�� 		⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (Ê) 

Therefore, the controller is implemented in the direct axis current control loops as 

follows:  
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The above control system is the basic controller for the PV solar farm system with a 

converter-less DC voltage regulation. The reference DC voltage is coming from the 

MPPT controller as discussed in chapter 2. For unity power factor operation, the Qref is 

set to zero ,which ultimately sets the Iq_ref=0. Adding the filter on the AC side will 

change the Plant transfer function. Therefore, the overall modeling remains unchanged, 

except for the value of proportional and integral constants, which are tuned through 

systematic hit and trial procedure as explained next. 

A.4 Systematic hit and trial procedure to determine proportional gain, Kp, and integral 

gain, Ki=1/Ti, values for PI-1, PI-2 and PI-3 controllers. 

The PI Controller PI-1 is used in the reactive power output control of the conventional 

solar system. A step input is given at Iq input and the reactive power output of the PV 

solar farm is monitored. The Proportional and Integral gains are tuned in a systematic hit 

and trial manner with an objective to obtain a minimum settling time, a quick rise time, 

and a peak overshoot less than 10% in the reactive power output of the PV solar farm.  

The PI Controller PI-2 is employed in the real power output control of the conventional 

solar system. PI-3 is disabled and a step input is given in Id_ref . The real power output of 

the PV solar farm is then observed. The Proportional and Integral gains are once again 

determined in a systematic hit and trial manner with an objective to obtain a minimum 

settling time, a quick rise time, and a peak overshoot less than 10% in the real power 

output of the PV system.  

The PI Controller PI-3 is utilized in the control of DC link voltage. A step input is given 

at the Vmpp_ref input and the VDC is monitored. The Proportional and Integral gains are 
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selected in a systematic hit and trial manner with an objective to obtain a minimum 

settling time, a quick rise time, and a peak overshoot less than 10% in VDC. It is noted, 

that the VDC also depends upon PI-2 controller parameters and as such, a fine tuning is 

also required, while tuning PI-3. 

A.5  Base value and the parameter calculation for inverter controller [108] 

At the HT side of the transformer: 

M���T = MS�ñîÝµ = 0.4zM × √2 √3Ò = 0.3266zM;	%���T = 100zó 

~���T = 2 3W × %���TM���T = 0.204zô 

At the LT side of the transformer: 

M���TP� = MS�ñîÝµõ� = 0.23zM × √2 √3Ò = 0.188zM;	%���T = 100zó 

~���TP� = 2 3W × %���TM���TP� = 0.3546zô 

ö���TP� = M���TP� ~���TP�W = 0.1880.3546 = 0.53÷, +,-,		 
����T = �x = 2. �. � = 314	|+-/ sec ��|	� = 50ÉÊ. 
É�,L�, Å���TP� = ö���TP� ����TW = 1.687	1É. 

The leakage reactance of the 0.1 MVA, 0.23/0.4kV, 3-phase transformer is 1.8%. 

Hence, to find out the leakage inductance, the following calculation is done: ~êë = t.:amN√�×t.�Um = 0.144zô	, +,-, M; = 0.4zM × 0.018 = 7.2	M�º�r  

É�,L�, ö� = 7.2M144ô = 0.05	÷	+�	0.4zM	r(-�	��	�ℎ�	�|+,r��|1�|. 
{|, ö� = 0.05 0.1`Mô(0.4zM) = 0.03125	Ö×	ì(�ℎ	�ℎ�	�|+,r�|1�|	K+r�	'+º×�. 

Alternately, this can be determined simply by  %ö × √3 = 0.018 × √3 = 0.0312	Ö×		 
ìℎ�,	�ℎ�	%ö	(r	é('�,	��|	+	r(,éº�	�ℎ|��	Öℎ+r�	�|+,r��|1�|. 
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Note that if this transformer would be comprised of three single phase transformer and 

the %Z is given for each transformer, then the leakage reactance in pu of the three phase 

transformer would be equal to the %Z i.e., ö(Ö×) = %ö. 
However, the transformer leakage reactance can be found based on inverter base value: 

 ö� = 0.0312 × 0.53 = 0.016536	÷, �ℎ�|���|�, Å� = 52.636	ùÉ = Å 

�ℎ�,, Å = Å: + Å = 500 + 52.636 = 552.636	ùÉ = 0.3276	Ö×. 
� = �x����T = 1Ö×, ℎ�,L�, �Å = 0.3276	Ö×. 

The base value of the DC side is based on the base value at LT side of the transformer as 

the LT side is the inverter output side. 

É�,L�, M�����T = 2 × M���TP� = 2 × 0.188zM = 0.376zM. , +r, MS� = 1 M��2  

The kp and Ti=1/ki of PI controllers, are found by hit and trial method as follows: 

PI-1: kp=1, Ti=0.05;  PI-2: kp=1, Ti=0.0015; PI-3: kp=1, Ti=0.2 

The source inductance is 30µH. 

The LPF filter parameters for the d-q components are G=1.0433 and τ=0.1 seconds.  

A.6 PV module parameters: (all are at STC) 

Table: Polycrystalline PV Module parameters from LDK-230P-235P-20 datasheet. 

(www.ldksolar.com) 

Item Description Symbols 230P-20 235P-20 

Nominal Power (±5%) PMPP (W) 230 235 

Voltage at PMPP Vms (V) 29.9 30.0 

Current at PMPP Ims (A) 7.68 7.84 

Open Circuit Voltage  VOC (Volt) 36.8 36.8 

Short circuit current ISC (Amp) 8.34 8.35 

Temperature co-efficient of PMPP  Kp (%/°C) -0.47 

Temparature Co-efficient of VOC High 

temp>25°C 

Kv (%/°C) -0.34 

Temparature Co-efficient of VOC Low 

temp (-40°C to + 25°C) 

Kv (%/°C) - 

Temperature Co-efficient of ISC Ki (%/°C) 0.06 

Cell Type Polycrystalline  silicon cell 6X10.   
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Table: Mono-crystalline PV Module parameters from HELIENE 72M datasheet. 

(www.heliene.ca) 

Item Description Symbols 310Wp 305Wp 

Nominal Power (±5%) PMPP (W) 310 305 

Voltage at PMPP Vms (V) 36.77 36.65 

Current at PMPP Ims (A) 8.43 8.32 

Open Circuit Voltage  VOC (Volt) 45.4 45.1 

Short circuit current ISC (Amp) 8.9 8.86 

Temperature co-efficient of PMPP  Kp (%/°C) -0.44 

Temparature Co-efficient of VOC High 

temp>25°C 

Kv (%/°C) -0.34 

Temparature Co-efficient of VOC Low 

temp (-40°C to + 25°C) 

Kv (%/°C) - 

Temperature Co-efficient of ISC Ki (%/°C) 0.07 

Cell Type Mono-crystalline silicon cell 72.   
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Appendix B: 7.5 MW PV solar system model parameters, fault detector parameters 

and calculation 

B.1 PV module parameters: 

Item Description Symbols Datasheet 

value 

Nominal Power (±5%) PMPP (W) 72.6 

Voltage at PMPP Vms (V) 67.9 

Current at PMPP Ims (A) 1.07 

Open Circuit Voltage  VOC (Volt) 90.0 

Short circuit current ISC (Amp) 1.19 

Temperature co-efficient of PMPP  Kp (%/°C) -0.25 

Temparature Co-efficient of VOC High 

temp>25°C 

Kv (%/°C) -0.25 

Temparature Co-efficient of VOC Low 

temp (-40°C to + 25°C) 

Kv (%/°C) -0.2 

Temperature Co-efficient of ISC Ki (%/°C) 0.045 

Cell Type CdS/CdTe with 116 active cells. 

* At STC, AM=1.5, T=25°C and G=1000 watt/m2 and all ratings ±10%, unless specified otherwise. 

No. of series modules= 8 and no. of parallel modules= 12905. 

The rating of the coupling transformer of the PV solar farm is 27.6/0.23 kV, 7.5 MVA 

with a nominal percentage of positive sequence leakage reactance of 5.7%. 

The distribution network is all overhead and is constructed with ACSR 336.4 kcmil 

conductors. The positive sequence resistance is 0.0682E-3 ohm/m, positive sequence 

inductive reactance 0.3636E-3 ohm/m, positive sequence capacitive reactance 251.395 

Mohm*m, zero sequence resistance 0.1643E-3 ohm/m, zero sequence inductive reactance 

1.1062E-3 ohm/m and zero sequence capacitive reactance 559.252 Mohm*m [163]. 

B.2 Base value and the parameter calculation [108] 

At HT side of the transformer: 

M���T = MS�ñîÝµ = 27.6zM × √2 √3Ò = 22.5353zM;	%���T = 7.5`ó 

~���T = 2 3W × %���TM���T = 0.222zô 



211 

 

At LT side of the transformer: 

M���TP� = MS�ñîÝµõ� = 0.23zM × √2 √3Ò = 0.1878zM;	%���T = 7.5`ó 

~���TP� = 2 3W × %���TM���TP� = 26.624zô 

ö���TP� = M���TP� ~���TP�W = 0.187826.624 = 7.054	1÷, +,-,
����T = �x = 2. �. � = 377	|+-/ sec ��|	� = 60ÉÊ. 

É�,L�, Å���TP� = ö���TP� ����TW = 18.71	ùÉ. 
The leakage reactance of the 7.5 MVA, 0.23/27.6 kV, 3-phase transformer is 5.7%. 

Hence, ö� = %ö × √3 = 0.057 × √3 = 0.1	Ö×		 
ìℎ�,	�ℎ�	%ö	(r	é('�,	��|	+	r(,éº�	�ℎ|��	Öℎ+r�	�|+,r��|1�|. 

However, the transformer leakage reactance can be found based on inverter base value, ö� = 0.1 × 7.054	1÷ = 0.70541÷, �ℎ�|���|�, Å� = 1.87	ùÉ = Å 

�ℎ�,, Å = Å: + Å = 8ùÉ + 1.87ùÉ = 9.87	ùÉ = 0.5276	Ö×. 
� = �x����T = 1Ö×, ℎ�,L�, �Å = 0.5276	Ö×. 

The base value of the DC side is based on the base value at LT side of the transformer as 

the LT side is the inverter output side. 

É�,L�, M�����T = 2 × M���TP� = 2 × 0.188zM = 0.3756zM. , +r, MS� = 1 M��2  

The kp and Ti=1/ki of PI controllers, are found by hit and trial method as follows: 

PI-1: kp=1, Ti=0.01;  PI-2: kp=2, Ti=0.0015; PI-3: kp=10, Ti=0.015 

The LPF filter parameters for the d-q components are G=1.0433 and τ=0.1 seconds. 

The filter parameter for Io_a, Io_b and Io_c feedback current is G=1.5 and τ=0.003 

seconds. 
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The threshold value for the rate limiter is 10038[1/s], and the R-S flip-flop delay time is 

0.1[µs]. 

B.3 Parameter calculation for the fault detector 

For a 7.5 MW PV solar farm connected with the LT side of the coupling transformer 

having a voltage level of 230 volts, the peak magnitude of the current is calculated as 

follows: 

~ú = √2√3 . %�ûMP9P = 26.625	zô	 
By considering a peak margin of 1.06pu, the value of the rated peak current is considered 

as 28.2kA. Hence, 	
Ë-(-�Ë ≈ �~;íÝüî= = 10038	+1Ör	Ö�|	r�L. 

 

 

 

 

 

 

 

 

 

 

 

 

 



213 

 

Appendix C: Induction motor parameters and calculation 

C.1 Induction motor parameters [183]  

Table : Double-Cage Model Parameters of American Motors** 

Item Description Symbols Value 

Stator resistance  rs 0.0071 

First cage rotor resistance r1 0.0140 

Second cage rotor resistance r2 0.1025 

Unsaturated magnetizing reactance xm 3.5189 

Unsaturated stator reactance xs 0.0956 

Unsaturated second cage reactance x2 0.0956 

Unsaturated first cage reactance x1 0.0970 

Inertia constant H 0.47sec 

**All units are in P.U unless specified otherwise. 
 

The induction motor is rated at 460 volts, 60Hz, 3 phase, 4 pole, 400 HP. 

The step down transformer with the induction motor load is rated for 27.6/0.46 kV, 0.5 

MVA with a nominal percentage of positive sequence leakage reactance of 5.7%. 

The 25 km long network is comprised of ACSR336.4 kcmil overhead lines. The positive 

sequence R,XL, Xc values are 0.0682E-3 [ohm/m], 0.3636E-3 [ohm/m] and 251.395 

[Mohm*m], respectively, whereas the zero sequence R, XL, and Xc are 0.1643E-3 

[ohm/m], 1.1062E-3 [ohm/m] and 559.252 [Mohm*m] respectively. 

C.2 Conversion formula of induction motor parameters for EMTDC/PSCAD input [184]:  

Å:~ = ôþ ;	�:~ = � − Å:~þ ;		�~ = ¿�:~�:~ − ¿ 	; 	��~ = 	 |�; 		Y�~ = Y~ = g� = g; 		Y;~ = g; 

ìℎ�|�, ô = Å:. Å|: + | ; 			� = Å:. | + Å. |:|: + | ; 		¿ = |:. ||: + | ; 		þ = Å: + Å|: + | ;			 
rs xs

x m

x
1

x
2

r 1
/s

r 2
/s

R~
s

R
~

1
/s

R
~

2
/s

X~
s

X
~

m

X~
12

X
~

2

to PSCAD

 É�,L�, Y:~ = 0.048	Ö×;	�:~ = 0.0295	Ö×;		�~ = 0.021	Ö×	; 	��~ = 	0.0071	Ö×;		 	Y�~ = Y~ = 0.0956	Ö×; Y;~ = 3.5189	Ö×		`�Lℎ+,(L+º	-+1Ö(,é = 0 +,-	� = 0.9	`ór/`Mô 
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Appendix D: SMIB system parameters and 100 MW solar farm parameter 

calculation. 

D.1 SMIB system [95] 

Machine parameter (on its own base): Sn =1110 MVA; Vn =22 kV; f =60 Hz; pf = 0.9; Ra 

=0.0036 pu; xl = 0.21 pu; R0 =0; x0 = 0.195 pu; T′d0 = 6.66 s; T′q0 = 0.44 s; T′′ d0 

=0.032 s; T′′ q0 =0.057 s; xd = 1.933 pu; xq = 1.743 pu; x′d = 0.467 pu; x′q = 1.144 pu; 

x′d′ = 0.312 pu; x′q′=0.312 pu; H =3.22 s; D = 0 

Transmission line parameter: Resistance (R) = 0.055 Ω/ phase/ mi, Reactance (XL) = 0.62 

Ω/ phase/ mi, Susceptance (BC) = 7.11 × 10−6 ʊ/ phase/ mi 

D.2 100 MW solar farm calculations. 

At the HT side of the transformer: 

M���T = MS�ñîÝµ = 400zM × √2 √3Ò = 326.6zM;	%���T = 100`ó 

~���T = 2 3W × %���TM���T = 0.204zô 

At the LT side of the transformer: 

M���TP� = MS�ñîÝµõ� = 0.208zM × √2 √3Ò = 0.17zM;	%���T = 100`ó 

~���TP� = 2 3W × %���TM���TP� = 392.157zô 

ö���TP� = M���TP� ~���TP�W = 0.17392.157 = 0.4335÷, +,-,
����T = �x = 2. �. � = 377	|+-/ sec ��|	� = 60ÉÊ. 

É�,L�, Å���TP� = ö���TP� ����TW = 1.1499 × 109�	É. 
The leakage reactance of the 100 MVA, 0.208/400 kV, 3-phase transformer is 5%. 

Hence,  %ö × √3 = 0.05 × √3 = 0.0866	Ö× = 0.03754	1÷	�|, Å� = 0.0995	ùÉ 

�ℎ�,, Å = Å: + Å� = (500 + 99.5) × 109� = 0.5995	ùÉ = 0.5217	Ö×. 
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� = �x����T = 1Ö×, ℎ�,L�, �Å = 0.5217	Ö×. 
The base value of the DC side is based on the base value at LT side of the transformer as 

the LT side is the inverter output side. 

É�,L�, M�����T = 2 × M���TP� = 2 × 0.17zM = 0.34zM.		��Ä = 5	zÉÊ 

The kp and Ti=1/ki of PI controllers, are found by hit and trial method as follows: 

 

Parameters Solar Farm/Wind Farm 

PI-1 PI-2 PI-3 PI-4 

Kp 1 1 2 10 

Ti 0.0015 0.1 0.2 0.0015 

The damping parameter can be found as follows: 

DGs Damping Controller Parameters 

Tw G T1 T2 

Solar farm*(study system-1) 0.1 1.2 1 0.37 

Solar farm (study sytem-2) 0.1 1.25 1 0.37 

  *For the wind farm model in Study Sytem 2, the same damping parameters are used. 

D.3 Hit and trial procedure for tuning PIs and Auxiliary controller parameters  

PI controller tuning: PI-1, PI-2 and PI-3 controller parameter tuning procedure is given in 

Appendix-A. However, the PI controller, PI-4, is used in the voltage control operation of 

the PV-STATCOM. A step input is given in the VPCC_ref  input signal and the voltage at 

the PCC is observed. The Proportional and Integral gains are tuned in a systematic hit and 

trial manner with the objective to obtain a minimum settling time, a quick rise time, and a 

peak overshoot lof ess than 10% in the PCC bus voltage. It is noted that a fine tuning is 

required in PI-1, while tuning PI-4 as the PCC voltage response is also dependent upon 

PI-1.  

Auxiliary controller tuning: at first the generator operating power level is selected for 

performing the damping control design studies. This power level is considered equal to 

the transient stability limit of the system with the solar farm being disconnected at night. 

At this operating power level, if a three phase fault occurs at Bus 1, the generator power 
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oscillations decay with a damping ratio of 5%.  The solar farm is now connected and 

operated in the PV-STATCOM mode. The parameters of the damping controller FD are 

selected as follows. The washout time constant, Tw, is chosen to allow the 

electromechanical oscillations in the range of 2 Hz to pass through. The gain G, and time 

constants T1 and T2 are sequentially tuned to get the fastest settling time of oscillation at 

that particular generation level of transient stability limit following the fault through 

repetitive simulation. Thus, the best combinations of the parameters are obtained with 

systematic hit and trial. Once the parameters for the damping controller are chosen for 

this generator operating power level, the output of the synchronous generator is now 

increased in a stepwise manner and fault studies are accomplished for the rest of the cases 

by using same damping controller parameters to determine the improvement of transient 

stability limit with the damping controller during both night and day. 

D.4 Calculation of damping ratio 

The damping ratio can be expressed as the rate of decay of the amplitude of oscillation 

[174], [190]. Hence, for an oscillatory mode having an eigenvalue of (� + w�), the 

damping ratio is } = 9�√�o�Üo	 , ìℎ�|�,� = 1
�	.W   The time constant τ is defined as the 

time taken to decay the oscillation to 37% from the first peak immediately after the 

disturbances, i.e., -�L+ð, þ = 1 ��qW , +�	� = �, þ = 1 �:W = 0.37.	Hence, for an 

oscillation frequency of 0.95Hz, with a damping ratio of 5%, as considered in this study, 

the value of σ=0.2988, or, the time constant is =3.178 seconds. Therefore, for an 

observation of a 10 second time frame immediately after the disturbances [174], for an 

acceptable damping ratio of 5%, [190] the -�L+ð, þ = 1 ��qW , +�	� = 10	r�L, þ =1 �.���W = 0.05	, or 5%. 
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Appendix E: Substation data, SCADA, CYME modeling and GIS snapshots for the 

feeder networks 

E.1 Substation data (Source: BWP Personnel)  

E.1.1 Short Circuit Data at substation relay of the feeder 

 

Substation 

Name 

Bus 

Name 

Three Phase 

Fault MVA 

Single Phase 

Fault MVA 

Three Phase  

X/R ratio 

Single Phase  

X/R ratio 

St. Andrews Q Bus 600.0 159 27.44 26.18 

E.1.2. Substation data in detail at St. Andrews  

Zero and Positive Sequences Impedances* for Short Circuit Calculations: 

(Base MVA=100 and Base kV=220) 
Source Circuit Positive Sequence (PU) Zero Sequence (PU) Three Phase  

X/R ratio R+ X+ R0 X0 

St. Andrew N6 115kV 0.00390 0.03736 0.00958 0.04418 9.579 

St. Andrew N7 115kV 0.00393 0.03750 0.00910 0.04477 9.542 

*Report: Hydro One Networks Inc. June30, 2006 

The above parameters are converted at 115 kV, 100 MVA system base. The pu 

conversion with respect to new voltage base (115 kV) is accomplished with the following 

formula: 

öS	_xTÄ = öS	_�ë� × MUm_�ë�`Mô�ë� × `MôxTÄMUm_xTÄ  

And the new base is defined as: 

ö���T_xTÄ = MUm_xTÄ`MôxTÄ 

The Reactors at each transformer have a zero sequence impedance of 4.74 ohms per 

phase and 4.78 ohms per phase. 

 

The substation transformer impedances of 12.4% (ONS)/16.5% (ONP)/20.7% (OFP) for 

the ratings 50/66.6/83.3 MVA respectively at 110/28.4 kV is calculated as 0.43 pu, based 

on 100 MVA base value at given operating voltage. 
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E.2 GIS map for 80MW solar farm location and the feeders. 

E.2.1. Four feeders at a glance 
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E. 2. 2. Feeder 18M14 
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E.3 SCADA snapshot for St. Andrews Substation (Courtesy: BWP SCADA) 

 

E.4 CYME snapshots for modeling 

E.4.1 Substation Modeling and calculation of source impedance from short circuit data 

and X/R ratio. 
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E.4.2 Conductor modeling 
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E.4.3 Overhead line space modeling 

 

E.4.4 Underground cable modeling 
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E.4.5 Spot load modeling 
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E.4.6 Overhead line modeling from conductor and line space modeling 

 

E.4.7 Solar farm modeling 
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E.5 Harmonic Source Model in EMTDC/PSCAD for 10MW PV System 
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