453 research outputs found

    Weighted LDA techniques for I-vector based speaker verification

    Get PDF
    This paper introduces the Weighted Linear Discriminant Analysis (WLDA) technique, based upon the weighted pairwise Fisher criterion, for the purposes of improving i-vector speaker verification in the presence of high intersession variability. By taking advantage of the speaker discriminative information that is available in the distances between pairs of speakers clustered in the development i-vector space, the WLDA technique is shown to provide an improvement in speaker verification performance over traditional Linear Discriminant Analysis (LDA) approaches. A similar approach is also taken to extend the recently developed Source Normalised LDA (SNLDA) into Weighted SNLDA (WSNLDA) which, similarly, shows an improvement in speaker verification performance in both matched and mismatched enrolment/verification conditions. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that both WLDA and WSNLDA are viable as replacement techniques to improve the performance of LDA and SNLDA-based i-vector speaker verification

    A Subspace Projection Methodology for Nonlinear Manifold Based Face Recognition

    Get PDF
    A novel feature extraction method that utilizes nonlinear mapping from the original data space to the feature space is presented in this dissertation. Feature extraction methods aim to find compact representations of data that are easy to classify. Measurements with similar values are grouped to same category, while those with differing values are deemed to be of separate categories. For most practical systems, the meaningful features of a pattern class lie in a low dimensional nonlinear constraint region (manifold) within the high dimensional data space. A learning algorithm to model this nonlinear region and to project patterns to this feature space is developed. Least squares estimation approach that utilizes interdependency between points in training patterns is used to form the nonlinear region. The proposed feature extraction strategy is employed to improve face recognition accuracy under varying illumination conditions and facial expressions. Though the face features show variations under these conditions, the features of one individual tend to cluster together and can be considered as a neighborhood. Low dimensional representations of face patterns in the feature space may lie in a nonlinear constraint region, which when modeled leads to efficient pattern classification. A feature space encompassing multiple pattern classes can be trained by modeling a separate constraint region for each pattern class and obtaining a mean constraint region by averaging all the individual regions. Unlike most other nonlinear techniques, the proposed method provides an easy intuitive way to place new points onto a nonlinear region in the feature space. The proposed feature extraction and classification method results in improved accuracy when compared to the classical linear representations. Face recognition accuracy is further improved by introducing the concepts of modularity, discriminant analysis and phase congruency into the proposed method. In the modular approach, feature components are extracted from different sub-modules of the images and concatenated to make a single vector to represent a face region. By doing this we are able to extract features that are more representative of the local features of the face. When projected onto an arbitrary line, samples from well formed clusters could produce a confused mixture of samples from all the classes leading to poor recognition. Discriminant analysis aims to find an optimal line orientation for which the data classes are well separated. Experiments performed on various databases to evaluate the performance of the proposed face recognition technique have shown improvement in recognition accuracy, especially under varying illumination conditions and facial expressions. This shows that the integration of multiple subspaces, each representing a part of a higher order nonlinear function, could represent a pattern with variability. Research work is progressing to investigate the effectiveness of subspace projection methodology for building manifolds with other nonlinear functions and to identify the optimum nonlinear function from an object classification perspective

    Heterogeneous Techniques used in Face Recognition: A Survey

    Get PDF
    Face Recognition has become one of the important areas of research in computer vision. Human Communication is a combination of both verbal and non-verbal. For interaction in the society, face serve as the primary canvas used to express distinct emotions non-verbally. The face of one person provides the most important natural means of communication. In this paper, we will discuss the various works done in the area of face recognition where focus is on intelligent approaches like PCA, LDA, DFLD, SVD, GA etc. In the current trend, combination of these existing techniques are being taken into consideration and are discussed in this paper.Keywords: Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Genetic Algorithm (GA), Direct Fractional LDA (DFLD

    Human Face Recognition

    Get PDF
    Face recognition, as the main biometric used by human beings, has become more popular for the last twenty years. Automatic recognition of human faces has many commercial and security applications in identity validation and recognition and has become one of the hottest topics in the area of image processing and pattern recognition since 1990. Availability of feasible technologies as well as the increasing request for reliable security systems in today’s world has been a motivation for many researchers to develop new methods for face recognition. In automatic face recognition we desire to either identify or verify one or more persons in still or video images of a scene by means of a stored database of faces. One of the important features of face recognition is its non-intrusive and non-contact property that distinguishes it from other biometrics like iris or finger print recognition that require subjects’ participation. During the last two decades several face recognition algorithms and systems have been proposed and some major advances have been achieved. As a result, the performance of face recognition systems under controlled conditions has now reached a satisfactory level. These systems, however, face some challenges in environments with variations in illumination, pose, expression, etc. The objective of this research is designing a reliable automated face recognition system which is robust under varying conditions of noise level, illumination and occlusion. A new method for illumination invariant feature extraction based on the illumination-reflectance model is proposed which is computationally efficient and does not require any prior information about the face model or illumination. A weighted voting scheme is also proposed to enhance the performance under illumination variations and also cancel occlusions. The proposed method uses mutual information and entropy of the images to generate different weights for a group of ensemble classifiers based on the input image quality. The method yields outstanding results by reducing the effect of both illumination and occlusion variations in the input face images

    A new approach to face recognition using Curvelet Transform

    Get PDF
    Multiresolution tools have been profusely employed in face recognition. Wavelet Transform is the best known among these multiresolution tools and is widely used for identification of human faces. Of late, following the success of wavelets a number of new multiresolution tools have been developed. Curvelet Transform is a recent addition to that list. It has better directional ability and effective curved edge representation capability. These two properties make curvelet transform a powerful weapon for extracting edge information from facial images. Our work aims at exploring the possibilities of curvelet transform for feature extraction from human faces in order to introduce a new alternative approach towards face recognition

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Grassmann Learning for Recognition and Classification

    Get PDF
    Computational performance associated with high-dimensional data is a common challenge for real-world classification and recognition systems. Subspace learning has received considerable attention as a means of finding an efficient low-dimensional representation that leads to better classification and efficient processing. A Grassmann manifold is a space that promotes smooth surfaces, where points represent subspaces and the relationship between points is defined by a mapping of an orthogonal matrix. Grassmann learning involves embedding high dimensional subspaces and kernelizing the embedding onto a projection space where distance computations can be effectively performed. In this dissertation, Grassmann learning and its benefits towards action classification and face recognition in terms of accuracy and performance are investigated and evaluated. Grassmannian Sparse Representation (GSR) and Grassmannian Spectral Regression (GRASP) are proposed as Grassmann inspired subspace learning algorithms. GSR is a novel subspace learning algorithm that combines the benefits of Grassmann manifolds with sparse representations using least squares loss §¤1-norm minimization for improved classification. GRASP is a novel subspace learning algorithm that leverages the benefits of Grassmann manifolds and Spectral Regression in a framework that supports high discrimination between classes and achieves computational benefits by using manifold modeling and avoiding eigen-decomposition. The effectiveness of GSR and GRASP is demonstrated for computationally intensive classification problems: (a) multi-view action classification using the IXMAS Multi-View dataset, the i3DPost Multi-View dataset, and the WVU Multi-View dataset, (b) 3D action classification using the MSRAction3D dataset and MSRGesture3D dataset, and (c) face recognition using the ATT Face Database, Labeled Faces in the Wild (LFW), and the Extended Yale Face Database B (YALE). Additional contributions include the definition of Motion History Surfaces (MHS) and Motion Depth Surfaces (MDS) as descriptors suitable for activity representations in video sequences and 3D depth sequences. An in-depth analysis of Grassmann metrics is applied on high dimensional data with different levels of noise and data distributions which reveals that standardized Grassmann kernels are favorable over geodesic metrics on a Grassmann manifold. Finally, an extensive performance analysis is made that supports Grassmann subspace learning as an effective approach for classification and recognition
    • …
    corecore