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ABSTRACT

This paper introduces the Weighted Linear Discriminant Anal-
ysis (WLDA) technique, based upon the weighted pairwise Fisher
criterion, for the purposes of improving i-vector speaker verifica-
tion in the presence of high inter-session variability. By taking ad-
vantage of the speaker discriminative information that is available
in the distances between pairs of speakers clustered in the develop-
ment i-vector space, the WLDA technique is shown to provide an im-
provement in speaker verification performance over traditional Lin-
ear Discriminant Analysis (LDA) approaches. A similar approach
is also taken to extend the recently developed Source Normalised
LDA (SNLDA) into Weighted SNLDA (WSNLDA) which, simi-
larly, shows an improvement in speaker verification performance
in both matched and mismatched enrolment/verification conditions.
Based upon the results presented within this paper using the NIST
2008 Speaker Recognition Evaluation dataset, we believe that both
WLDA and WSNLDA are viable as replacement techniques to im-
prove the performance of LDA and SNLDA-based i-vector speaker
verification.

Index Terms— speaker verification, i-vector, linear discrimi-
nant analysis

1. INTRODUCTION

Recent research in speaker verification has focused on the i-vector
front-end factor analysis technique. This technique was first pro-
posed by Dehak et al. [1] to provide an intermediate speaker rep-
resentation between the high dimensional Gaussian Mixture Model
(GMM) supervector and traditional low dimensional feature repre-
sentations. The extraction of these intermediate-sized vectors, or i-
vectors, were motivated by the existing supervector-based Joint Fac-
tor Analysis (JFA) approach, but rather than modelling the speaker
and channel variability space separately, i-vectors are formed by
modelling a single low-dimensional total-variability space that cov-
ers both speaker and channel variability [2]. Because channel vari-
ability is not explicitly removed in the i-vector extraction approach,
channel compensation techniques must be implemented to limit the
effects of channel variability in the i-vector speaker representations.

While the choice of channel compensation techniques is very
much an active area of research, the use of Linear Discriminant
Analysis (LDA) followed by Within Class Covariance Normaliza-
tion (WCCN) used by Dehak et al. [2] has shown good perfor-
mance. More recently, this approach was extended by McLaren
and van Leeuwen [3] by proposing a new LDA-based approach,

This project was supported by the Cooperative Research Centre for Ad-
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Source-Normalized LDA (SNLDA), which improve the i-vector-
based speaker recognition in both mismatched conditions and con-
ditions for which limited system development speech resources are
available.

In this paper, we propose to investigate a new LDA technique,
based upon the weighted pair-wise Fisher criteria [4], that has
recently shown promise in the field of template-based face recog-
nition [5]. This technique, known as Weighted LDA (WLDA),
takes advantage of the discriminatory information between pairs of
classes, or speakers for our application, in the between-class scatter
that has not yet been investigated for i-vector-based speaker verifi-
cation. By applying a weighted parameter to class pairs that weights
closer pairs higher, WLDA should provide an improvement in dis-
criminative ability between classes that would otherwise be difficult
to distinguish in the LDA- or SNLDA-transformed i-vector space.
Motivated by the improvements obtained for WLDA over traditional
LDA for face recognition [5], our aim in this paper is to investigate if
a similar approach can be taken with WLDA and Weighted SNLDA
(WSNLDA) to provide improvements for i-vector-based speaker
verification.

This paper is structured as follows. Section 2 gives a brief in-
troduction to process of i-vector based speaker verification system.
Section 3 details the proposed W-LDA and W-SNLDA techniques.
The experimental protocol and corresponding results are given in
Section 4 and Section 5.

2. SPEAKER VERIFICATION USING I-VECTORS

In contrast to the separate speaker and channel dependent subspaces
of JFA, i-vectors represent the GMM supervector using a single
total-variability subspace. This single-subspace approach was mo-
tivated by the discovery that the channel space of JFA contains
information that can be used to distinguish between speakers [6].
An i-vector speaker and channel dependent GMM supervector can
be represented by

μ = m + Tw, (1)

where m is the speaker and channel independent background UBM
supervector, T is a low rank matrix representing the primary direc-
tions variation across a large collection of development data. Fi-
nally, w is normally distributed with parameters N (0, 1), and is the
i-vector representation used for speaker verification.

For details of the total variability subspace training and subse-
quent i-vector extraction, the reader is encouraged to investigate the
techniques covered by Dehak et al. [2].
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2.1. Channel compensation techniques

As i-vectors are defined by single variability space, containing
both speaker and channel information, there is a requirement that
additional intersession, or channel variability, compensation ap-
proaches be taken before verification. These channel compensation
techniques are designed to maximize the effect of between-class
variability and minimize the effects of within-class variability due
to differences in microphones, acoustic environment and variation
in speaker’s voices.

While the choice of channel compensation techniques for i-
vector representations is very much an active area of research, the
use of a LDA-based technique followed by WCCN has been shown
to provide a good level of performance [2, 3]. Within this section
we will outline the existing LDA + WCCN technique of Dehak et
al. [2] and the extension into the SNLDA + WCCN technique of
McLaren et al. [3].

2.1.1. LDA followed by WCCN (LDA + WCCN)

In the first stage of the LDA + WCCN sequential approach, LDA
is used to define a new spatial axes A that minimizes the within-
class variance caused by channel effects and maximizes the variance
between speakers in the i-vector space. WCCN is then used as an
additional channel compensation technique to scale the subspace in
order to attenuate dimensions of high within-class variance.

Both LDA and WCCN calculations are based up the standard
within- and between-class scatter estimations Sw and Sb, calculated
as

Sb =
S∑

s=1

ns(w̄s − w̄)(w̄s − w̄)T , (2)

Sw =
S∑

s=1

ns∑

i=1

(ws
i − w̄s)(ws

i − w̄s)
T , (3)

where S is the total number of speakers, ns is number of utterances
of speaker s, and N is the total number of sessions. The mean i-
vectors, w̄s for each speaker, and w̄ is the across all speakers are
defined by

w̄s =
1

ns

ns∑

i=1

ws
i , (4)

w̄ =
1

N

S∑

s=1

ns∑

i=1

ws
i . (5)

In the first stage, LDA attempts to find a reduced set of axes
A that minimizes the within-class variability while maximizing the
between-class variability through the eigenvalue decomposition of
Sbv = λSwv.

In the second stage, the WCCN transformation matrix (B) is
trained using the LDA-projected i-vectors [1] from the first stage.
The WCCN matrix (B) is calculated using Cholesky decomposition
of BBT = W−1, where the within-class covariance matrix W is cal-
culated using

W =
1

S

S∑

s=1

ns∑

i=1

(AT (ws
i − w̄s))(AT (ws

i − w̄s))
T . (6)

2.1.2. SNLDA followed by WCCN (SNLDA + WCCN)

In [3], McLarenet al. found that the between-class scatter calculated
using the standard LDA approach can be influenced by source vari-
ation under mismatched conditions. This influence can be reduced
by estimating the between-class scatter using source-normalized i-
vectors and fixing the within-class scatter as the residual variations in
the i-vector space [3]. The source-normalized between-class scatter,
Ssrc
b , can be composed of the source-dependent between-class scat-

ter matrices for telephone and microphone-recorded speech, which
can be calculated as follows,

Ssrc
b = Stel

b + Smic
b (7)

Rather than estimate the within-class scatter separately as in
(3), McLaren et al. calculated the within-class scatter matrix as
the difference between a total variance matrix, St, and the source-
normalized between-class scatter:

Sw = St − Ssrc
b , (8)

where

St =
N∑

n=1

wnw
t
n. (9)

This approach allows Sw to be more accurately estimated when
development dataset do not provide examples of each speech source
from every speaker. Similarly to the LDA + WCCN approach out-
lined previously, after the i-vectors are first projected into the re-
duced dimensionality SNLDA space, a WCCN matrix is calculated
to scale the dimensions in order to minimize the within class covari-
ance.

2.2. Cosine similarity scoring

Scoring of channel-compensated i-vectors for speaker verification
is accomplished using a Cosine Similarity Scorer (CSS), which
was found to provide similar performance to Support Vector Ma-
chine (SVM) based approaches with a considerable increase in
efficiency [6]. The CSS operates by comparing the angles between a
channel compensated test i-vector, ŵtest, and a channel-compensated
target i-vector ŵtarget:

score(ŵtarget, ŵtest) =
〈ŵtarget, ŵtest〉
‖ŵtarget‖ ‖ŵtest‖ . (10)

3. WEIGHTED LDA AND SNLDA

The within and between-class scatter matrices estimated for LDA
and SNLDA in the previous section attempt to project high dimen-
sional i-vectors into a more discriminative lower-dimensional sub-
space. However, these approaches do not take advantage of the dis-
criminative relationships between pairs of classes. This is particu-
larly the case when pairs are positioned closely together, often due
to channel similarities, and traditional estimation of between-class
scatter matrix are not able to adequately compensate. Intuitively one
would surmise that the classes that are closer to each other should
be weighted more heavily to reduce class confusion within adjacent
class pairs. By applying a pair-wise weighting based upon the pair-
wise Fisher criterion, Weighted LDA (WLDA) has been shown to
improve template based face recognition [5].

In this section, we will outline how the WLDA technique will
be applied to extend both the LDA + WCCN and SNLDA + WCCN
i-vector channel compensation approaches outlined in the previous
section.
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3.1. WLDA followed by WCCN (WLDA + WCCN)

In the WLDA approach, the between-class scatter matrix is redefined
by adding a weighting function, w(dij), according to the between-
class distance of each pair of classes i and j. This weighted between-
class scatter matrix, is defined as

Sw
b =

1

N

S−1∑

i=1

S∑

j=i+1

w(dij)ninj(w̄i − w̄j)(w̄i − w̄j)
T , (11)

where w̄x, and nx is the mean i-vector and session count respectively
of speaker x.

In (11), the weighting function w(dij) is defined such that the
classes that are closer to each other will be more heavily weighted.
As we show in Appendix A, when w(dij) equals to 1, the weighted
between-class scatter estimations will converge to the standard non-
weighted between-class scatter from (2). For this paper, we will
investigate two weighting functions, one based on the Euclidean dis-
tance, and a second based on the Bayes Error.

The Euclidean distance based monotonically-decreasing weight-
ing function wE(dij), can be defined as (dij)

−n where dij is the
Euclidean distance between the means of i-vector classes i and j, or
‖w̄i − w̄j‖. The degree parameter n was chosen as 6 for the speaker
verification results reported in this paper, based up a limited set of
development experiments.

The second weighting parameter was based upon the Bayes Er-
ror approximates of the mean accuracy amongst class pairs. The
Bayes Error based weighting function wB(dij)), can be calculated
as

wB(dij) =
1

2(�ij)2
Erf (

�ij

2
√
2
), (12)

where �ij is the Mahalanobis distance between the means of classes
i and j:

�ij =
√

(w̄i − w̄j)T (Sw)−1(w̄i − w̄j). (13)

Once the weighted between-class scatter, Sw
b , is estimated for

the chosen weighting function, the standard within-class scatter Sw

and the corresponding WLDA and WCCN transformation matrices
can be estimated and applied as described in the previous section.

3.2. WSNLDA followed by WCCN (WSNLDA + WCCN)

In order to apply the weighting parameter to the SNLDA approach,
the source-dependent between-class scatter matrices where calcu-
lated using the weighted between-class scatter calculation from (11)
and combined to form the source-normalized between-class scatter
matrix in the same manner as (7).

However, while in the original SNLDA algorithm, the within-
class scatter matrix was estimated as the difference between total
variance and the source-normalized between-class variance, this ap-
proach is not take for WSNLDA. Because the weighting parameters
destroy the relationship between the total variance and the between-
class variance, the within-class variance is estimated independently
using (3) as in the traditional LDA approach.

4. METHODOLOGY

The proposed methods were evaluated using the NIST 2008 SRE
telephone and interview based utterances from the short2-short3
enrol-verification partitions. Performance was evaluated using

the equal error rate (EER) and minimum decision cost function
(DCF) calculated using Cmiss = 10, CFA = 1, and Ptarget =
0.01. Evaluation was performed on the NIST 08 DET conditions
3, 4, 5 and 7, corresponding to interview-interview, interview-
telephone, telephone-interview, and telephone-telephone (English-
only) enrolment-verification trials. ZT normalization was applied
to all of the experiments with the normalization development data
pooled over microphone and telephone sources. Gender pooled
results are reported throughout.

Gender-dependent Universal Background Models (UBM), con-
sisting of 512 components were trained on 26-dimensional, feature-
warped MFCCs (including deltas) on data taken from the NIST
2004, 2005, and 2006 SRE corpora. These gender-dependent UBMS
were used to calculate the Baum-Welch statistics for calculation of a
total variability subspace of dimension Rw = 500 is to calculate the
i-vector speaker representations. The development data for the total
variability and channel compensation subspaces, were obtained from
NIST 2004, 2005 and 2006 SRE corpora as well as Switchboard II.
Both telephone and microphone data was pooled for development.
150 eigenvectors were selected as best value for LDA training by
performance on a development dataset.

5. RESULTS AND DISCUSSION

The results of the weighted LDA and SNLDA techniques are shown
in comparison to their non-weighted baselines in Tables 1 and 2 re-
spectively. It can be seen that the weighted techniques have gen-
erally provided a useful improvement over the non-weighted tech-
niques in all but the telephone-telephone conditions, generally re-
gardless of the weighting function chosen. The choice of weight-
ing function appears to depend upon the baseline technique (LDA or
SNLDA). Euclidean distance weighted based WLDA performed bet-
ter than Bayes Error weighted based WLDA. WLDA achieved 10%
improvement over standard LDA under interview-interview condi-
tion. However the marginal improvement of the performance in the
telephone-telephone condition is likely to be due to the larger num-
ber of low session-count speaker recordings in the telephone devel-
opment data, causing poorly estimated class means to reduce the
quality of the estimations of the between-class scatter. This problem
will be extensively investigated in future research.

Bayes Error weighted based WSNLDA outperformed the Eu-
clidean distance weighted, because of the Bayes Error weight de-
pends upon source variations in the within-class scatter estimation.
WSNLDA system achieved 5% over SNLDA system under both
mismatched conditions.

6. CONCLUSION

In this paper, we have introduced novel WLDA and WSNLDA ap-
proaches to i-vector based speaker verification system. By taking
advantage of the weighted pairwise Fisher criterion, these weighted
LDA techniques can take advantage of the speaker discriminative
information present in the pairwise distances between classes that
are not available to traditional LDA techniques. Through evalu-
ations performed on the NIST 2008 SRE data, both WLDA and
WSNLDA have shown an improvement in speaker verification per-
formance in both matched and mismatched enrolment/verification
conditions, with the best improvement in the the microphone-based
interview conditions.

Based upon the results presented within this paper, we believe
that both WLDA and WSNLDA are viable as replacement tech-
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Table 1. Speaker verification performance of weighted and non-weighted LDA, followed by WCCN, on the common set of the 2008 NIST SRE
short2-short3 conditions. Column headers indicate enrolment-verification conditions.

System w(dij) interview-interview interview-telephone telephone-interview telephone-telephone
EER DCF EER DCF EER DCF EER DCF

WLDA Euclidean 4.14% 0.0199 5.35% 0.0287 4.89% 0.0213 2.73% 0.0128
WLDA Bayes Error 4.45% 0.0221 5.88% 0.0295 5.10% 0.0221 2.72% 0.0132

LDA - 4.61% 0.0228 5.99% 0.0293 5.09% 0.0223 2.80% 0.0134

Table 2. Speaker verification performance of weighted and non-weighted SNLDA, followed by WCCN, on the common set of the 2008 NIST
SRE short2-short3 conditions. Column headers indicate enrolment-verification conditions.

System w(dij) interview-interview interview-telephone telephone-interview telephone-telephone
EER DCF EER DCF EER DCF EER DCF

WSNLDA Euclidean 4.11% 0.0201 5.34% 0.0262 4.69% 0.0195 2.80% 0.0128
WSNLDA Bayes Error 4.02% 0.0196 5.53% 0.0251 4.41% 0.0184 2.80% 0.0130

SNLDA - 4.76% 0.0243 5.88% 0.0283 4.89% 0.0217 2.81% 0.0135

niques to improve the performance of LDA and SNLDA-based i-
vector speaker verification.
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A. WEIGHTED BETWEEN-CLASS SCATTER
ESTIMATION WITH UNITY WEIGHTING FUNCTION

When weighting function w(dij) equals to 1, weighted between
scatter estimations will converge as standard between class estima-
tions, it can be shown as follows,

Sw
b =

1

2N

S∑

i=1

S∑

j=1

ninj((w̄i − w̄) + (w̄ − w̄j))

×((w̄i − w̄) + (w̄ − w̄j))
T

Sw
b =

1

2N

S∑

i=1

S∑

j=1

ninj((w̄i − w̄)(w̄i − w̄)T

+(w̄i − w̄)(w̄ − w̄j)
T + (w̄ − w̄j)(w̄i − w̄)T

+(w̄ − w̄j)(w̄ − w̄j)
T )

Since
∑S

i=1
ni
N

= 1, we can combine the first and last outer product
terms above to get

Sw
b =

S∑

i=1

ni(w̄i − w̄)(w̄i − w̄)T

+
1

2N

S∑

i=1

S∑

j=1

ninj(w̄i − w̄)(w̄ − w̄j)
T

+
1

2N

S∑

i=1

S∑

j=1

ninj(w̄j − w̄)(w̄ − w̄i)
T

Examine the last two terms above, we note that
∑S

i=1
ni
N

w̄i = w̄ and

therefore
∑S

i=1
ni
N
(w̄ − w̄i) = 0. Weighted between-class scatter

will converge as follows,

Sw
b =

S∑

i=1

ni(w̄i − w̄)(w̄i − w̄)T
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