1,388 research outputs found

    Historical biogeography of Melastomataceae

    Get PDF
    Melastomataceae and Memecylaceae are pantropically distributed sister groups for which an ndhF gene phylogeny for 91 species in 59 genera is here linked with Eurasian and North American fossils in a molecular clock approach to biogeographical reconstruction. Nine species from the eight next-closest families are used to root phylogenetic trees obtained under maximum likelihood criteria. Melastomataceae comprise ∼3000 species in the neotropics, ∼1000 in tropical Asia, 240 in Africa, and 225 in Madagascar in 150-166 genera, and the taxa sampled come from throughout this geographic range. Based on fossils, ranges of closest relatives, tree topology, and calibrated molecular divergences, Melastomataceae initially diversified in Paloecene/Eocene times in tropical forest north of the Tethys. Their earliest (Eocene) fossils are from northeastern North America, and during the Oligocene and Miocene melastomes occurred in North America as well as throughout Eurasia. They also entered South America, with earliest (Oligocene) South American fossils representing Merianieae. One clade (Melastomeae) reached Africa from the neotropics 14-12 million years ago and from there spread to Madagascar, India, and Indochina. Basalmost Melastomataceae (Kibessieae, Astronieae) are species-poor lineages restricted to Southeast Asia. However, a more derived Asian clade (Sonerileae/Dissochaeteae) repeatedly reached Madagascar and Africa during the Miocene and Pliocene. Contradicting earlier hypotheses, the current distribution of Melastomataceae is thus best explained by Neogene long-distance dispersal, not Gondwana fragmentation

    Convergence and divergence in the evolution of cat skulls: temporal and spatial patterns of morphological diversity

    Get PDF
    Background: Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective. Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats. Methodology/Principal Findings: A new phylogenetic analysis supports the monophyly of saber-toothed cats (Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various sabertoothed tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae, we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats. Conclusions/Significance: Ancestors of large cats in the ‘Panthera’ lineage tend to occupy, at a much later stage, morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in reconstructing temporal transitions across two-dimensional trait spaces, can be used in ecophenotypical and functional diversity studies, and may reveal novel patterns of morphospace occupation

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Perceptual Asymmetries and Lateralization in Adults with Attention Deficit Hyperactivity Disorder

    Get PDF
    Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurobehavioral disorder characterized by one or more of the following: poor attention, impulsivity, and kinetic over-activity. Many studies have found support for the theory that ADHD is the result of right hemisphere dysfunction. Additionally, those with ADHD often resemble older adults or patients with right hemisphere lesions who show clear signs of left hemi-spatial neglect. Several studies have attempted to identify differences in lateralization between the ADHD subtypes, although the results have been conflicting. The current study aims to clarify these conflicting results by controlling for a number of relevant factors including age, gender, and ADHD sub-type. In part 1 of the study, participants completed a screening task comprised of both ADHD and handedness measures. In part 2, participants found to be eligible completed a number of lateralization measures. Results of a line bisection task were not significant, however the overall trends were consistent with those found in previous research, indicating evidence of a slight leftward perceptual bias in controls known as pseudo-neglect, a stronger leftward bias in ADHD-I groups, and a contrasting rightward bias in ADHD-C/H groups. On a cancellation task, participants with ADHD-C/H made significantly more left- than right-sided omissions, as well as more left-sided omissions than the ADHD-I group. Results of the lateralization drawing task indicated that both ADHD groups showed a tendency to draw objects more toward the right side than controls. Implications of the current study and ideas for future research are discussed

    Objective-Based Hierarchical Clustering of Deep Embedding Vectors

    Full text link
    We initiate a comprehensive experimental study of objective-based hierarchical clustering methods on massive datasets consisting of deep embedding vectors from computer vision and NLP applications. This includes a large variety of image embedding (ImageNet, ImageNetV2, NaBirds), word embedding (Twitter, Wikipedia), and sentence embedding (SST-2) vectors from several popular recent models (e.g. ResNet, ResNext, Inception V3, SBERT). Our study includes datasets with up to 4.54.5 million entries with embedding dimensions up to 20482048. In order to address the challenge of scaling up hierarchical clustering to such large datasets we propose a new practical hierarchical clustering algorithm B++&C. It gives a 5%/20% improvement on average for the popular Moseley-Wang (MW) / Cohen-Addad et al. (CKMM) objectives (normalized) compared to a wide range of classic methods and recent heuristics. We also introduce a theoretical algorithm B2SAT&C which achieves a 0.740.74-approximation for the CKMM objective in polynomial time. This is the first substantial improvement over the trivial 2/32/3-approximation achieved by a random binary tree. Prior to this work, the best poly-time approximation of 2/3+0.0004\approx 2/3 + 0.0004 was due to Charikar et al. (SODA'19)

    Cognitive and anatomical correlates of neglect for peripersonal and extrapersonal space

    Get PDF
    Spatial neglect is a neurological disorder where patients typically fail to orient or respond to events on their left side. Moreover, recent studies suggest that the severity of neglect may depend specifically on whether stimuli are presented within or beyond arm's reach. However, the evidence for such a general functional dissociation between near and far space processing in the brain remains conflicting: The majority of research has been focussed on line bisection errors which reflect only one small aspect of neglect behaviour. In addition, some behavioural findings suggest a functional dissociation only if a motor response is required. Finally, to date, the critical areas involved in distance related space processing have not been identified.Thus, it remains not only unclear whether neglect in near and far space is a task- and response independent phenomenon but also which damaged brain areas impair distance related space processing. In order to answer these questions the present study compared line bisection and visual search performance and its anatomical correlates in near and far space by using a combined single case- and group study approach.The results showed that neglect restricted to near or far space can vary not only depending on the type of task but also on the type of response required. Visual search tasks were particularly sensitive in detecting the dissociation between those two space sectors. Anatomically, neglect for near space was mainly associated with occipito-parietal lesions and medio-temporal structures, including the posterior cingulate. Neglect for far space was found to result from focal damage of medial, ventro-temporal structures and the prefrontal cortex. In conclusion, neglect for near and far space does not seem to result from a general impairment in distance related processing but from a combination of factors related to specific task demands as well as the location and extent of the brain damage

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    Towards Thompson Sampling for Complex Bayesian Reasoning

    Get PDF
    Paper III, IV, and VI are not available as a part of the dissertation due to the copyright.Thompson Sampling (TS) is a state-of-art algorithm for bandit problems set in a Bayesian framework. Both the theoretical foundation and the empirical efficiency of TS is wellexplored for plain bandit problems. However, the Bayesian underpinning of TS means that TS could potentially be applied to other, more complex, problems as well, beyond the bandit problem, if suitable Bayesian structures can be found. The objective of this thesis is the development and analysis of TS-based schemes for more complex optimization problems, founded on Bayesian reasoning. We address several complex optimization problems where the previous state-of-art relies on a relatively myopic perspective on the problem. These includes stochastic searching on the line, the Goore game, the knapsack problem, travel time estimation, and equipartitioning. Instead of employing Bayesian reasoning to obtain a solution, they rely on carefully engineered rules. In all brevity, we recast each of these optimization problems in a Bayesian framework, introducing dedicated TS based solution schemes. For all of the addressed problems, the results show that besides being more effective, the TS based approaches we introduce are also capable of solving more adverse versions of the problems, such as dealing with stochastic liars.publishedVersio
    corecore