1,019 research outputs found

    Application of Neural Networks (NNs) for Fabric Defect Classification

    Get PDF
    The defect classification is as important as the defect detection in fabric inspection process. The detected defects are classified according to their types and recorded with their names during manual fabric inspection process. The material is selected as “undyed raw denim” fabric in this study. Four commonly occurring defect types, hole, warp lacking, weft lacking and soiled yarn, were classified by using artificial neural network (ANN) method. The defects were automatically classified according to their texture features. Texture feature extraction algorithm was developed to acquire the required values from the defective fabric samples. The texture features were assessed as the network input values and the defect classification is obtained as the output. The defective images were classified with an average accuracy rate of 96.3%. As the hole defect was recognized with 100% accuracy rate, the others were recognized with a rate of 95%

    Automated classification of African embroidery patterns using cellular learning automata and support vector machines

    Get PDF
    Embroidery is the art that is majorly practised in Nigeria, which requires creativity and skills. However, differentiating between two standard embroidery patterns pose challenges to wearers of the patterns. This study developed a classification system to improve the embroiderer to user relationship. The specific characteristics are used as feature sets to classify two common African embroidery patterns (handmade and tinko) are shape, brightness, thickness and colour. The system developed and simulated in MATLAB 2016a environment employed Cellular Learning Automata (CLA) and Support Vector Machine (SVM) as its classifier. The classification performance of the proposed system was evaluated using precision, recall, and accuracy. The system obtained an average precision of 0.93, average recall of 0.81, and average accuracy of 0.97 in classifying the handmade and tinko embroidery patterns considered in this study. This study also presented an experimental result of three validation models for training and testing the dataset used in this study. The model developed an improved and refined embroiderer for eliminating stress related to the manual pattern identification process

    Economic Complexity Unfolded: Interpretable Model for the Productive Structure of Economies

    Full text link
    Economic complexity reflects the amount of knowledge that is embedded in the productive structure of an economy. It resides on the premise of hidden capabilities - fundamental endowments underlying the productive structure. In general, measuring the capabilities behind economic complexity directly is difficult, and indirect measures have been suggested which exploit the fact that the presence of the capabilities is expressed in a country's mix of products. We complement these studies by introducing a probabilistic framework which leverages Bayesian non-parametric techniques to extract the dominant features behind the comparative advantage in exported products. Based on economic evidence and trade data, we place a restricted Indian Buffet Process on the distribution of countries' capability endowment, appealing to a culinary metaphor to model the process of capability acquisition. The approach comes with a unique level of interpretability, as it produces a concise and economically plausible description of the instantiated capabilities

    SEMANTIC MAPPING THOUGH NEURAL NETWORKS: THE SELF-ORGANIZING MAPS (SOM) AS REPRESENTATION OF PATTERNS AND FIELDS

    Full text link
    [EN] The Science of Artificial Intelligence provides us with techniques to improve our understanding and characterization of the coherences and patterns which constitute reality. Among these, artificial neural networks and more specifically Self Organizing Maps (SOM) stand out because of their ability to map reality in such a way that their objectives are represented distributed and structured two-dimensionally, with their properties as a single starting point. In this way an entire series of topological relations is generated, which in their turn enable the grouping and characterization of reality. In this research these representations are explored as a valid method to obtain information and to interpret reality. By means of experimentation this kind of methods are implemented to further understanding of diverse exemplary residential fabrics, while obtaining a typological grouping which enables the characterization of urban forms starting from their defining variables[ES] Las ciencias de la Inteligencia Artificial proporcionan técnicas para la comprensión y caracterización de las coherencias y de los patrones que constituyen la realidad. Entre ellas destacan las redes neuronales artificiales y concretamente los Mapas Auto-organizados (SOM) por su capacidad de cartografiar la realidad, representando sus objetivos distribuidos estructurados bidimensionalmente, a partir únicamente de sus propiedades. Se generan así toda una serie de relaciones topológicas que permiten a su vez la agrupación y caracterización de la realidad. En la investigación se exploran estas representaciones como método válido de obtención de información e interpretación de la realidad. Como experimentación se implementan tales técnicas para la comprensión de diversos tejidos residenciales ejemplares, obteniéndose un agrupamiento tipológico que permite caracterizar las formas urbanas a partir de sus variables definidoras.Abarca-Alvarez, FJ.; Osuna Pérez, F. (2013). Cartografías semánticas mediante redes neuronales: los mapas auto-organizados (SOM) como representación de patrones y campos. EGA. Revista de Expresión Gráfica Arquitectónica. 18(22):154-163. doi:10.4995/ega.2013.1692.SWORD154163182

    Design and optimization of self-deployable damage tolerant composite structures: A review

    Get PDF
    Composite deployable structures are becoming increasingly important for the space industry, emerging as an alternative to conventional metallic mechanical systems in space applications. In most cases, the life-cycle of these structures includes a single deployment sequence, once the spacecraft is in orbit. So long as reliability is ensured, this fact opens the possibility of using the materials past their elastic regime and, possibly, beyond the initiation of damage, increasing the efficiency and applicability of the developed designs. This review explores this possibility, surveying the design of deployable structures, as well as the state of the art on the design and damage tolerance in composites. An overview of the developments performed on the topology optimization of composite structures is included for its novelty and potential application in the design of deployable structures. Finally, the possibility of combining these topics into a single efficient design approach is discussed

    Applications of High Content Screening in Life Science Research

    Get PDF
    Over the last decade, imaging as a detection mode for cell based assays has opened a new world of opportunities to measure “phenotypic endpoints” in both current and developing biological models. These “high content” methods combine multiple measurements of cell physiology, whether it comes from sub-cellular compartments, multicellular structures, or model organisms. The resulting multifaceted data can be used to derive new insights into complex phenomena from cell differentiation to compound pharmacology and toxicity. Exploring the major application areas through review of the growing compendium of literature provides evidence that this technology is having a tangible impact on drug discovery and the life sciences

    Core dimensions of human material perception

    Get PDF
    Visually categorizing and comparing materials is crucial for our everyday behaviour. Given the dramatic variability in their visual appearance and functional significance, what organizational principles underly the internal representation of materials? To address this question, here we use a large-scale data-driven approach to uncover the core latent dimensions in our mental representation of materials. In a first step, we assembled a new image dataset (STUFF dataset) consisting of 600 photographs of 200 systematically sampled material classes. Next, we used these images to crowdsource 1.87 million triplet similarity judgments. Based on the responses, we then modelled the assumed cognitive process underlying these choices by quantifying each image as a sparse, non-negative vector in a multidimensional embedding space. The resulting embedding predicted material similarity judgments in an independent test set close to the human noise ceiling and accurately reconstructed the similarity matrix of all 600 images in the STUFF dataset. We found that representations of individual material images were captured by a combination of 36 material dimensions that were highly reproducible and interpretable, comprising perceptual (e.g., “grainy”, “blue”) as well as conceptual (e.g., “mineral”, “viscous”) dimensions. These results have broad implications for understanding material perception, its natural dimensions, and our ability to organize materials into classes

    ICS Materials. Towards a re-Interpretation of material qualities through interactive, connected, and smart materials.

    Get PDF
    The domain of materials for design is changing under the influence of an increased technological advancement, miniaturization and democratization. Materials are becoming connected, augmented, computational, interactive, active, responsive, and dynamic. These are ICS Materials, an acronym that stands for Interactive, Connected and Smart. While labs around the world are experimenting with these new materials, there is the need to reflect on their potentials and impact on design. This paper is a first step in this direction: to interpret and describe the qualities of ICS materials, considering their experiential pattern, their expressive sensorial dimension, and their aesthetic of interaction. Through case studies, we analyse and classify these emerging ICS Materials and identified common characteristics, and challenges, e.g. the ability to change over time or their programmability by the designers and users. On that basis, we argue there is the need to reframe and redesign existing models to describe ICS materials, making their qualities emerge

    Characterization and Modelling of Composites

    Get PDF
    Composites have increasingly been used in various structural components in the aerospace, marine, automotive, and wind energy sectors. The material characterization of composites is a vital part of the product development and production process. Physical, mechanical, and chemical characterization helps developers to further their understanding of products and materials, thus ensuring quality control. Achieving an in-depth understanding and consequent improvement of the general performance of these materials, however, still requires complex material modeling and simulation tools, which are often multiscale and encompass multiphysics. This Special Issue aims to solicit papers concerning promising, recent developments in composite modeling, simulation, and characterization, in both design and manufacturing areas, including experimental as well as industrial-scale case studies. All submitted manuscripts will undergo a rigorous review process and will only be considered for publication if they meet journal standards. Selected top articles may have their processing charges waived at the recommendation of reviewers and the Guest Editor
    corecore