359 research outputs found

    Autonomous Pathfinding for Planetary Rover by Implementing A* Algorithm on an Aerial Map Processed Using MATLAB Image Processing Tool

    Get PDF
    Human curiosity to discover new things and exploring unknown regions, have continually to development of robots, which became a powerful tools for accessing dangerous environments or exploring regions too distant for human. Previous robot technology functioned under continues human supervision, limiting the robot to confined area and pre-programmed task. However,as exploration moved to regions where communication is ineffective or unviable, robots were used to carry out complex tasks without human supervision. To empower such capacities, robots are being upgraded by advances extending from new sensor improvement to automated mission planning software, circulated automated control, and more proficient power systems. With the advancement of autonomy science robotics technology developed and the robots became more and more capable of operating multi task, under minimal human supervision. In this project work we aim at designing an ONS (Offline Navigation System) system for the planetary rover which will use aerial map taken from satellite and pre-process into a grid map which is then will be used by the rover to travel from one place to another place and completing its mission. The aerial map is processed using Matlab image processing tool to convert into a grid map and search for shortest route is implemented using A* algorithm. The shortest route result is then converted into microcontroller signal to move the rover. With this system the rovers will have the ability to predict the best possible path even if the communication to the satellite is broken

    Adaptive Polar-Space Motion Control for Embedded Omnidirectional Mobile Robots with Parameter Variations and Uncertainties

    Get PDF
    This paper presents an adaptive polar-space motion controller for trajectory tracking and stabilization of a three-wheeled, embedded omnidirectional mobile robot with parameter variations and uncertainties caused by friction, slip and payloads. With the derived dynamic model in polar coordinates, an adaptive motion controller is synthesized via the adaptive backstepping approach. This proposed polar-space robust adaptive motion controller was implemented into an embedded processor using a field-programmable gate array (FPGA) chip. Furthermore, the embedded adaptive motion controller works with a reusable user IP (Intellectual Property) core library and an embedded real-time operating system (RTOS) in the same chip to steer the mobile robot to track the desired trajectory by using hardware/software co-design technique and SoPC (system-on-a-programmable-chip) technology. Simulation results are conducted to show the merit of the proposed polar-space control method in comparison with a conventional proportional-integral (PI) feedback controller and a non-adaptive polar-space kinematic controller. Finally, the effectiveness and performance of the proposed embedded adaptive motion controller are exemplified by conducting several experiments on steering an embedded omnidirectional mobile robot

    Embedded system for motion control of an omnidirectional mobile robot

    Get PDF
    In this paper, an embedded system for motion control of omnidirectional mobile robots is presented. An omnidirectional mobile robot is a type of holonomic robots. It can move simultaneously and independently in translation and rotation. The RoboCup small-size league, a robotic soccer competition, is chosen as the research platform in this paper. The first part of this research is to design and implement an embedded system that can communicate with a remote server using a wireless link, and execute received commands. Second, a fuzzy-Tuned proportional-integral (PI) path planner and a related low-level controller are proposed to attain optimal input for driving a linear discrete dynamic model of the omnidirectional mobile robot. To fit the planning requirements and avoid slippage, velocity, and acceleration filters are also employed. In particular, low-level optimal controllers, such as a linear quadratic regulator (LQR) for multiple-input-multiple-output acceleration and deceleration of velocity are investigated, where an LQR controller is running on the robot with feedback from motor encoders or sensors. Simultaneously, a fuzzy adaptive PI is used as a high-level controller for position monitoring, where an appropriate vision system is used as a source of position feedback. A key contribution presented in this research is an improvement in the combined fuzzy-PI LQR controller over a traditional PI controller. Moreover, the efficiency of the proposed approach and PI controller are also discussed. Simulation and experimental evaluations are conducted with and without external disturbance. An optimal result to decrease the variances between the target trajectory and the actual output is delivered by the onboard regulator controller in this paper. The modeling and experimental results confirm the claim that utilizing the new approach in trajectory-planning controllers results in more precise motion of four-wheeled omnidirectional mobile robots. 2018 IEEE.Scopu

    FPGA for Robotic Applications: from Android/Humanoid Robots to Artificial Men

    Get PDF
    Researches on home robots have been increasing enormously. There has always existed a continuous research effort on problems of anthropomorphic robots which is now called humanoid robots. Currently, robotics has evolved to the point that different branches have reached a remarkable level of maturity, that neural network and fuzzy logic are the main artificial intelligence as intelligent control on the robotics. Despite all this progress, while aiming at accomplishing work-tasks originally charged only to humans, robotic science has perhaps quite naturally turned into the attempt to create artificial men. It is true that artificial men or android humanoid robots open certainly very broad prospects. This “robot” may be viewed as a personal helper, and it will be called a home-robot, or personal robot

    Modeling, Analysis, and Control of a Mobile Robot for \u3ci\u3eIn Vivo\u3c/i\u3e Fluoroscopy of Human Joints during Natural Movements

    Get PDF
    In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while dynamically tracking the desired skeletal joint of interest. In addition to the joint tracking, this also requires the robotic platform to move along with the subject, allowing the manipulators to operate within their ranges of motion. A comprehensive dynamic model of the robotic fluoroscope prototype was created, incorporating the dynamic coupling of the system. Empirical data collected from an RGB-D camera were used to create a human kinematic model that can be used to simulate the joint of interest target dynamics. This model was incorporated into a computer simulation that was validated by comparing the simulation results with actual prototype experiments using the same human kinematic model inputs. The computer simulation was used in a comprehensive dynamic analysis of the prototype and in the development and evaluation of sensing, control, and signal processing approaches that optimize the subject and joint tracking performance characteristics. The modeling and simulation results were used to develop real-time control strategies, including decoupling techniques that reduce tracking error on the prototype. For a normal walking activity, the joint tracking error was less than 20 mm, and the subject tracking error was less than 140 mm

    Advances in Stereo Vision

    Get PDF
    Stereopsis is a vision process whose geometrical foundation has been known for a long time, ever since the experiments by Wheatstone, in the 19th century. Nevertheless, its inner workings in biological organisms, as well as its emulation by computer systems, have proven elusive, and stereo vision remains a very active and challenging area of research nowadays. In this volume we have attempted to present a limited but relevant sample of the work being carried out in stereo vision, covering significant aspects both from the applied and from the theoretical standpoints
    corecore