45 research outputs found

    CA-CFAR Adjustment Factor Correction with a priori Knowledge of the Clutter Distribution Shape Parameter

    Get PDF
    Oceanic and coastal radars operation is affected because the targets information is received mixed with and undesired contribution called sea clutter. Specifically, the popular CA-CFAR processor is incapable of maintaining its design false alarm probability when facing clutter with statistical variations. In opposition to the classic alternative suggesting the use of a fixed adjustment factor, the authors propose a modification of the CA- CFAR scheme where the factor is constantly corrected according on the background signal statistical changes. Mathematically translated as a variation in the shape parameter of the clutter distribution, the background signal changes were simulated through the Weibull, Log-Normal and K distributions, deriving expressions which allow choosing an appropriate factor for each possible statistical state. The investigation contributes to the improvement of radar detection by suggesting the application of an adaptive scheme which assumes the clutter shape parameter is known a priori. The offered mathematical expressions are valid for three false alarm probabilities and several windows sizes, covering also a wide range of clutter conditions

    Adaptive CFAR PN Code Acquisition for DSSS Systems

    Get PDF
    The communication between transmitter and receiver in Direct Sequence Spread Spectrum (DSSS) systems starts with synchronisation, which can be carried out in two steps: acquisition and tracking. Acquisition is the coarse searching of the delay of PN code in transmitted signal, and tracking is to find the exact delay of PN code in transmitted signal and maintain the alignment of the two PN codes.This thesis “Adaptive PN code Acquisition for DSSS Systems” presents research on PN code acquisition in DSSS systems. The research focused on the adapitve threshold optimisation with Constant False Alarm Rate (CFAR) techniques in different noise background. Both homogeneous and non-homogeneous noise background are analysed to check the performance of different CFAR techniques, in the terms of Probability of detection ( Pd), Probability of false alarm (Pja) and Mean Acquisition Time (MAT). Thelimitations of general CFAR techniques in non-homogeneous noise background are disclosed in the research, and adaptive censoring technique is applied into general CFAR techniques, showing significant improvement in performance. In the research, MATLAB is used for mathematical simulations, and Monte Carlo simulation is used for independent validation of the theoretical results obtained. ISE, Modelsim, and System generator are used for the hardware implementation in Field Programmable Gate Array (FPGA).Results show that all the kinds of CFAR techniques perform well in homogeneous noise background, with high Pd and short MAT, however, the general CFAR techniques without automatic censoring suffer serious degradation in non-homogeneous noise background. In this thesis, after disclosing the limilation of general CFAR techniques, Greatest-Of/ Smallest-Of CFAR (GO/SO-CFAR) was introduced to solve the problem in non-homogeneous noise background. The simulation results show that GO/SO-CFAR has much better performance than the general CFAR in non-homogeneous noise background, especially in noise background with high interferences, GO/SO-CFAR can maintain high Pd and short MAT. FPGA is used to analyse the complexity of achievement for GO/SO- CFAR detector, and the results illustrate that GO/SO-CFAR is only slightly more complex and slower than the CA-CFAR and OS-CFAR detectors. Therefore, GO/SO- CFAR is much more suitable than general CFAR techniques in non-homogeneous noise background, when the noise condition is unknown

    Embedded System Optimization of Radar Post-processing in an ARM CPU Core

    Get PDF
    Algorithms executed on the radar processor system contributes to a significant performance bottleneck of the overall radar system. One key performance concern is the latency in target detection when dealing with hard deadline systems. Research has shown software optimization as one major contributor to radar system performance improvements. This thesis aims at software optimizations using a manual and automatic approach and analyzing the results to make informed future decisions while working with an ARM processor system. In order to ascertain an optimized implementation, a question put forward was whether the algorithms on the ARM processor could work with a 6-antenna implementation without a decline in the performance. However, an answer would also help project how many additional algorithms can still be added without performance decline. The manual optimization was done based on the quantitative analysis of the software execution time. The manual optimization approach looked at the vectorization strategy using the NEON vector register on the ARM CPU to reimplement the initial Constant False Alarm Rate(CFAR) Detection algorithm. An additional optimization approach was eliminating redundant loops while going through the Range Gates and Doppler filters. In order to determine the best compiler for automatic code optimization for the radar algorithms on the ARM processor, the GCC and Clang compilers were used to compile the initial algorithms and the optimized implementation on the radar post-processing stage. Analysis of the optimization results showed that it is possible to run the radar post-processing algorithms on the ARM processor at the 6-antenna implementation without system load stress. In addition, the results show an excellent headroom margin based on the defined scenario. The result analysis further revealed that the effect of dynamic memory allocation could not be underrated in situations where performance is a significant concern. Additional statements from the result demonstrated that the GCC and Clang compiler has their strength and weaknesses when used in the compilation. One limiting factor to note on the optimization using the NEON register is the sample size’s effect on the optimization implementation. Although it fits into the test samples used based on the defined scenario, there might be varying results in varying window cell size situations that might not necessarily improve the time constraints

    Evaluation of CFAR detectors performance

    Get PDF
    The operation of coastal and off-shore radars is affected because the targets are surrounded by a background filled with sea clutter. According on the Neyman-Pearson criterion, radar detectors must always try to maintain a constant false alarm probability before trying to improve other system variables. Using the MATLAB mathematic software, the authors evaluated the performance of the CA, OS, MSCA, AND, OR and ISCFAR processors concerning their ability to maintain the constant false alarm probability conceived in the design. After testing the schemes with different test profiles whose samples were Rayleigh distributed, it was concluded that most of the alternatives exhibit problems when facing certain situations that may appear in real environments. Consequently, recommendations on which solution is best to use are offered for guaranteeing a reduced deviation of the operational false alarm probability from the value conceived in the design when processing heterogeneous clutter. La operación de los radares costeros y oceánicos se ve afectada porque los blancos se encuentran embebidos en un fondo de clutter marino. De acuerdo con el criterio de Neyman-Pearson, los detectores de radar siempre buscan garantizar un valor determinado de probabilidad de falsa alarma antes de mejorar otras variables del sistema. Utilizando la herramienta matemática MATLAB, los autores evaluaron el desempeño de los procesadores CA, OS, MSCA, AND, OR e IS-CFAR con respecto al mantenimiento de la probabilidad de falsa alarma concebida a priori en el diseño. Luego de someter los esquemas a diferentes perfiles de prueba con clutter distribuido Rayleigh, se concluyó que la mayoría de las alternativas presentan problemas ante determinadas situaciones que pueden aparecer con relativa frecuencia en ambientes reales. Consecuentemente, se ofrecen recomendaciones sobre cuál es el mejor esquema para emplear y garantizar una desviación reducida de la probabilidad de falsa alarma operacional con respecto a la de diseño cuando se enfrenta clutter heterogéneo

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    An Adaptive Design Methodology for Reduction of Product Development Risk

    Full text link
    Embedded systems interaction with environment inherently complicates understanding of requirements and their correct implementation. However, product uncertainty is highest during early stages of development. Design verification is an essential step in the development of any system, especially for Embedded System. This paper introduces a novel adaptive design methodology, which incorporates step-wise prototyping and verification. With each adaptive step product-realization level is enhanced while decreasing the level of product uncertainty, thereby reducing the overall costs. The back-bone of this frame-work is the development of Domain Specific Operational (DOP) Model and the associated Verification Instrumentation for Test and Evaluation, developed based on the DOP model. Together they generate functionally valid test-sequence for carrying out prototype evaluation. With the help of a case study 'Multimode Detection Subsystem' the application of this method is sketched. The design methodologies can be compared by defining and computing a generic performance criterion like Average design-cycle Risk. For the case study, by computing Average design-cycle Risk, it is shown that the adaptive method reduces the product development risk for a small increase in the total design cycle time.Comment: 21 pages, 9 figure

    Selección óptima del factor de ajuste CA-CFAR para clutter marino de potencia K estadísticamente variable

    Get PDF
    The presence of the sea clutter interfering signal sets limitations on the quality of radar detection in coastal and ocean environments. The CA-CFAR processor is the classic solution for detecting radar targets. It usually operates keeping constant its adjustment factor during the entire operation period. As a consequence, the scheme does not take into account the slow statistical variations of the background signal when performing the clutter discrimination. To solve this problem, the authors conducted an intensive processing of 40 million computer generated clutter power samples in MATLAB. As a result, they found the optimal adjustment factor values to be applied in 40 possible clutter statistical states, suggesting thus the use of the CA-CFAR architecture with a variable adjustment factor. In addition, a curve fitting procedure was performed, obtaining mathematical expressions that generalize the results for the whole addressed range of clutter statistical states. The experiments were executed with a 64 cells CA-CFAR and found the adjustment factor values for three common false alarms probabilities. The K distribution was used as clutter model, thanks to its wide popularity. This paper facilitates the handling of the K power distribution avoiding the use of Gamma and Bessel functions, commonly found in developments related to the K model. Moreover, requirements for building an adaptive clutter detector in K power clutter with a priori knowledge of the shape parameter were fulfill. Also, several recommendations are given to continue the development of a more overall solution which will also include the estimation of the shape parameter.La presencia de la señal interferente de clutter marino establece limitaciones en la calidad de la detección de radar en ambientes costeros y de alta mar. El procesador CA-CFAR es la solución clásica para detectar blancos de radar. Usualmente mantiene su factor de ajuste constante todo el período de operación. Como consecuencia, el esquema no toma en consideración las variaciones estadísticas de la señal de fondo cuando realiza la discriminación del clutter. Para resolver este problema, los autores realizaron un procesamiento intensivo de 40 millones de muestras de clutter de intensidad, generadas en computadora a través de MATLAB. Como resultado, encontraron los valores óptimos del factor de ajuste a ser aplicados para 40 posibles estados estadísticos del clutter, sugiriendo el uso de la arquitectura CA-CFAR con un factor de ajuste variable. Adicionalmente, fue llevado a cabo un ajuste de curvas, obteniéndose expresiones matemáticas que generalizan los resultados en todo el intervalo de considerado de estados estadísticos del clutter. Los experimentos se ejecutaron con un CA-CFAR de 64 celdas y apuntaron a encontrar los valores del factor de ajuste para tres probabilidades de falsa alarma comunes. La distribución K fue elegida como el modelo usado para el clutter, gracias a su amplia popularidad. Este artículo facilita el manejo de la distribución K de intensidad, evitando el uso de funciones Gamma y Bessel, comúnmente encontradas en desarrollos relacionados con el modelo K. Además, fueron cumplidos los requerimientos necesarios para construir un detector adaptativo en clutter de potencia K con conocimiento previo del parámetro de forma. Al mismo tiempo, fueron dadas varias recomendaciones para continuar el desarrollo de una solución más general que también incluirá la estimación del parámetro de forma

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    Towards a Common Software/Hardware Methodology for Future Advanced Driver Assistance Systems

    Get PDF
    The European research project DESERVE (DEvelopment platform for Safe and Efficient dRiVE, 2012-2015) had the aim of designing and developing a platform tool to cope with the continuously increasing complexity and the simultaneous need to reduce cost for future embedded Advanced Driver Assistance Systems (ADAS). For this purpose, the DESERVE platform profits from cross-domain software reuse, standardization of automotive software component interfaces, and easy but safety-compliant integration of heterogeneous modules. This enables the development of a new generation of ADAS applications, which challengingly combine different functions, sensors, actuators, hardware platforms, and Human Machine Interfaces (HMI). This book presents the different results of the DESERVE project concerning the ADAS development platform, test case functions, and validation and evaluation of different approaches. The reader is invited to substantiate the content of this book with the deliverables published during the DESERVE project. Technical topics discussed in this book include:Modern ADAS development platforms;Design space exploration;Driving modelling;Video-based and Radar-based ADAS functions;HMI for ADAS;Vehicle-hardware-in-the-loop validation system

    A scalable real-time processing chain for radar exploiting illuminators of opportunity

    Get PDF
    Includes bibliographical references.This thesis details the design of a processing chain and system software for a commensal radar system, that is, a radar that makes use of illuminators of opportunity to provide the transmitted waveform. The stages of data acquisition from receiver back-end, direct path interference and clutter suppression, range/Doppler processing and target detection are described and targeted to general purpose commercial off-the-shelf computing hardware. A detailed low level design of such a processing chain for commensal radar which includes both processing stages and processing stage interactions has, to date, not been presented in the Literature. Furthermore, a novel deployment configuration for a networked multi-site FM broadcast band commensal radar system is presented in which the reference and surveillance channels are record at separate locations
    corecore