79 research outputs found

    Road Network Simulation Using FLAME GPU

    Get PDF
    Demand for high performance road network simulation is increasing due to the need for improved traffic management to cope with the globally increasing number of road vehicles and the poor capacity utilisation of existing infrastructure. This paper demonstrates FLAME GPU as a suitable Agent Based Simulation environment for road network simulations, capable of coping with the increasing demands on road network simulation. Gipps’ car following model is implemented and used to demonstrate the performance of simulation as the problem size is scaled. The performance of message communication techniques has been evaluated to give insight into the impact of runtime generated data structures to improve agent communication performance. A custom visualisation is demonstrated for FLAME GPU simulations and the techniques used are described

    A formula-driven scalable benchmark model for ABM, applied to FLAME GPU

    Get PDF
    Agent Based Modelling (ABM) systems have become a popular technique for describing complex and dynamic systems. ABM is the simulation of intelligent agents and how these agents communicate with each other within the model. The growing number of agent-based applications in the simulation and AI fields led to an increase in the number of studies that focused on evaluating modelling capabilities of these applications. Observing system performance and how applications behave during increases in population size is the main factor for benchmarking in most of these studies. System scalability is not the only issue that may affect the overall performance, but there are some issues that need to be dealt with to create a standard benchmark model that meets all ABM criteria. This paper presents a new benchmark model and benchmarks the performance characteristics of the FLAME GPU simulator as an example of a parallel framework for ABM. The aim of this model is to provide parameters to easily measure the following elements: system scalability, system homogeneity, and the ability to handle increases in the level of agent communications and model complexity. Results show that FLAME GPU demonstrates near linear scalability when increasing population size and when reducing homogeneity. The benchmark also shows a negative correlation between increasing the communication complexity between agents and execution time. The results create a baseline for improving the performance of FLAME GPU and allow the simulator to be contrasted with other multi-agent simulators

    Performance Optimization and Statistical Analysis of Basic Immune Simulator (BIS) Using the FLAME GPU Environment

    Get PDF
    Agent-based models (ABMs) are increasingly being used to study population dynamics in complex systems such as the human immune system. Previously, Folcik et al. developed a Basic Immune Simulator (BIS) and implemented it using the RePast ABM simulation framework. However, frameworks such as RePast are designed to execute serially on CPUs and therefore cannot efficiently handle large simulations. In this thesis, we developed a parallel implementation of immune simulator using FLAME GPU, a parallel ABM simulation framework designed to execute of Graphics Processing Units(GPUs). The parallel implementation was tested against the original RePast implementation for accuracy by running a simulation of immune response to a viral infection of generic tissue cells. Finally, a performance benchmark done against the original RePast implementation demonstrated a significant performance gain 13X for the parallel FLAME GPU implementation

    Data-parallel agent-based microscopic road network simulation using graphics processing units

    Get PDF
    Road network microsimulation is computationally expensive, and existing state of the art commercial tools use task parallelism and coarse-grained data-parallelism for multi-core processors to achieve improved levels of performance. An alternative is to use Graphics Processing Units (GPUs) and fine-grained data parallelism. This paper describes a GPU accelerated agent based microsimulation model of a road network transport system. The performance for a procedurally generated grid network is evaluated against that of an equivalent multi-core CPU simulation. In order to utilise GPU architectures effectively the paper describes an approach for graph traversal of neighbouring information which is vital to providing high levels of computational performance. The graph traversal approach has been integrated within a GPU agent based simulation framework as a generalised message traversal technique for graph-based communication. Speed-ups of up to 43 ×  are demonstrated with increased performance scaling behaviour. Simulation of over half a million vehicles and nearly two million detectors at a rate of 25 ×  faster than real-time is obtained on a single GPU

    Simulating heterogeneous behaviours in complex systems on GPUs

    Get PDF
    Agent Based Modelling (ABM) is an approach for modelling dynamic systems and studying complex and emergent behaviour. ABMs have been widely applied in diverse disciplines including biology, economics, and social sciences. The scalability of ABM simulations is typically limited due to the computationally expensive nature of simulating a large number of individuals. As such, large scale ABM simulations are excellent candidates to apply parallel computing approaches such as Graphics Processing Units (GPUs). In this paper, we present an extension to the FLAME GPU 1 [1] framework which addresses the divergence problem, i.e. the challenge of executing the behaviour of non-homogeneous individuals on vectorised GPU processors. We do this by describing a modelling methodology which exposes inherent parallelism within the model which is exploited by novel additions to the software permitting higher levels of concurrent simulation execution. Moreover, we demonstrate how this extension can be applied to realistic cellular level tissue model by benchmarking the model to demonstrate a measured speedup of over 4x

    Implementazione e analisi del modello Flocking con FLAME GPU

    Get PDF
    In questa tesi verranno studiati i modelli basati su agenti e i software al supporto delle simulazioni ad agenti. In particolare sarĂ  approfondito il modello Flocking, che riguarda la formazione di stormi di uccelli in volo. Questo modello Ăš parte della libreria di un software per simulazioni ad agenti chiamato NetLogo, ma verrĂ  implementato con un nuovo ambiente di sviluppo ad alte prestazioni che fa uso della GPU, chiamato FLAME GPU. Questa nuova implementazione permette al modello di essere simulato con una popolazione molto piĂč vasta. E' interessante studiare come si comporta il modello secondo alcuni parametri e come cambiano le prestazioni dalla versione in NetLogo. Saranno analizzati e confrontati NetLogo e FLAME GPU, i due principali supporti per realizzare simulazioni ad agenti. In particolare sarĂ  approfondito FLAME GPU, usato nell’implementazione di Flocking. Inoltre sarĂ  discussa anche l’implementazione di un altro modello sulla formazione di stormi a ”V” chiamato Flocking Vee Formations

    PI-FLAME: A parallel immune system simulator using the FLAME graphic processing unit environment

    Get PDF
    Agent-based models (ABMs) are increasingly being used to study population dynamics in complex systems, such as the human immune system. Previously, Folcik et al. (The basic immune simulator: an agent-based model to study the interactions between innate and adaptive immunity. Theor Biol Med Model 2007; 4: 39) developed a Basic Immune Simulator (BIS) and implemented it using the Recursive Porous Agent Simulation Toolkit (RePast) ABM simulation framework. However, frameworks such as RePast are designed to execute serially on central processing units and therefore cannot efficiently handle large model sizes. In this paper, we report on our implementation of the BIS using FLAME GPU, a parallel computing ABM simulator designed to execute on graphics processing units. To benchmark our implementation, we simulate the response of the immune system to a viral infection of generic tissue cells. We compared our results with those obtained from the original RePast implementation for statistical accuracy. We observe that our implementation has a 13× performance advantage over the original RePast implementation

    Parallel pair-wise interaction for multi-agent immune systems modelling

    Get PDF
    Agent Based Modelling (ABM), is an approach for modelling dynamic systems and studying complex and emergent behaviour. ABM approach is a very common technique in biological domain due to high demand for a large scale analysis tool to collect and interpret information to solve biological problems. However, simulating large scale cellular level models (i.e. large number of agents/entities) require a high degree of computational power which is achievable through parallel computing methods such as Graphics Processing Units (GPUs). The use of parallel approaches in ABMs is growing rapidly specifically when modelling in continuous space system (particle based). Parallel implementation of particle based simulation within continuum space where agents contain quantities of chemicals/substances is very challenging. Pair-wise interactions are different abstraction to continuous space (particle) models which is commonly used for immune system modelling. This paper describes an approach to parallelising the key component of biological and immune system models (pair-wise interactions) within an ABM model. Our performance results demonstrate the applicability of this method to a broader class of biological systems with the same type of cell interactions and that it can be used as the basis for developing complete immune system models on parallel hardware

    Parallelisation strategies for agent based simulation of immune systems

    Get PDF
    Background In recent years, the study of immune response behaviour using bottom up approach, Agent Based Modeling (ABM), has attracted considerable efforts. The ABM approach is a very common technique in the biological domain due to high demand for a large scale analysis tools for the collection and interpretation of information to solve biological problems. Simulating massive multi-agent systems (i.e. simulations containing a large number of agents/entities) requires major computational effort which is only achievable through the use of parallel computing approaches. Results This paper explores different approaches to parallelising the key component of biological and immune system models within an ABM model: pairwise interactions. The focus of this paper is on the performance and algorithmic design choices of cell interactions in continuous and discrete space where agents/entities are competing to interact with one another within a parallel environment. Conclusions Our performance results demonstrate the applicability of these methods to a broader class of biological systems exhibiting typical cell to cell interactions. The advantage and disadvantage of each implementation is discussed showing each can be used as the basis for developing complete immune system models on parallel hardware
    • 

    corecore