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Preface

This Workshop on Membrane Computing, at the Conference of Unconventional
Computation and Natural Computation (UCNC), 12th July 2016, Manchester,
UK, is the second event of this type after the Workshop at UCNC 2015 in
Auckland, New Zealand1. Following the tradition of the 2015 Workshop the
Proceedings are published as technical report.

The Workshop consisted of one invited talk and six contributed presentations
(three full papers and three extended abstracts) covering a broad spectrum of
topics in Membrane Computing, from computational and complexity theory to
formal verification, simulation and applications in robotics. All these papers –
see below, but the last extended abstract, are included in this volume.

The invited talk given by Rudolf Freund, “P Systems Working in Set Modes”,
presented a general overview on basic topics in the theory of Membrane Com-
puting as well as new developments and future research directions in this area.

Radu Nicolescu in “Distributed and Parallel Dynamic Programming Algo-
rithms Modelled on cP Systems” presented an interesting dynamic programming
algorithm in a distributed and parallel setting based on P systems enriched with
adequate data structure and programming concepts representation. Omar Bel-
ingheri, Antonio E. Porreca and Claudio Zandron showed in “P Systems with
Hybrid Sets” that P systems with negative multiplicities of objects are less pow-
erful than Turing machines. Artiom Alhazov, Rudolf Freund and Sergiu Ivanov
presented in “Extended Spiking Neural P Systems with States” new results re-
gading the newly introduced topic of spiking neural P systems where states are
considered.

“Selection Criteria for Statistical Model Checker”, by Mehmet E. Bakir and
Mike Stannett, presented some early experiments in selecting adequate statistical
model checkers for biological systems modelled with P systems. In “Towards
Agent-Based Simulation of Kernel P Systems using FLAME and FLAME GPU”,
Raluca Lefticaru, Luis F. Maćıas-Ramos, Ionuţ M. Niculescu, Laurenţiu Mierlă
presented some of the advatages of implementing kernel P systems simulations in
FLAME. Andrei G. Florea and Cătălin Buiu, in “ An E�cient Implementation
and Integration of a P Colony Simulator for Swarm Robotics Applications”
presented an interesting and e�cient implementation based on P colonies for
swarms of Kilobot robots.

The Workshop organisers would like to thank the Programme Committee
members that have contributed with comments and suggestions to the improve-
ment of the contributed papers - Erzsébet Csuhaj-Varjú, Alberto Leporati, Radu
Nicolescu, Agust́ın Riscos-Núñez, Mike Stannett, György Vaszil and Gexiang
Zhang.

Marian Gheorghe and Savas Konur

1 http://ucnc15.wordpress.fos.auckland.ac.nz/workshop-on-membrane-computing-
wmc-at-the-conference-on-unconventional-computation-natural-computation/
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Abstract. In P systems working in the set derivation mode, even in the
maximally parallel derivation mode, rules are only applied in at most
one copy in each derivation step. We also consider the set mode in the
cases of taking those sets of rules with the maximal number of applicable
rules or with affecting the maximal number of objects. For many variants
of P systems, the computational completeness proofs even literally still
hold true for these new set derivation modes. On the other hand, for P
systems using target selection for the rules to be chosen together with
these set derivation modes we obtain new results.

1 Introduction

In their basic variants, P systems (with symbol objects), usually apply multi-
sets of rules in parallel to the objects in the underlying configuration, i.e., in
the maximally parallel derivation mode (abbreviated max), a non-extendable
multiset of rules is applied to the current configuration. Here we consider the
derivation modes, where each rule is only used in at most one copy, i.e., we con-
sider sets of rules to be applied in parallel, for example, in the set-maximally
parallel derivation mode (abbreviated smax) we apply non-extendable sets of
rules.

Taking sets of rules instead of multisets is a quite natural restriction which
has already appeared implicitly in [6] as the variant of the min1-derivation mode
where each rule from its own partition. In an explicit way, the set derivation
mode first was investigated in [8] where the derivation mode smax was called
flat maximally parallel derivation mode and where it was shown that in some
cases the computational completeness results established for the max-mode also
hold for the flat maximally parallel derivation mode, i.e., for the smax -mode.

In this paper we consider several well-known variants of P systems where the
proofs for computational completeness for max can be taken over even literally

4



for smax as well as for the derivation modes maxrules, maxobjects and smaxrules,
smaxobjects, where multisets or sets of rules with the maximal number of rules
and multisets or sets of rules affecting the maximal number of objects, respec-
tively, are taken into account. For P systems using target selection for the rules
to be chosen these set derivation modes yield even stronger new results. Full
proofs of the results mentioned in this paper and a series of additional results
can be found in [3].

2 Variants of P Systems

In this section we recall the well-known definitions of several variants of P sys-
tems as well as some variants of derivation modes and also introduce the variants
of set derivation modes considered in the following.

For all the notions and results not referred to otherwise we refer the reader
to the Handbook of Membrane Computing [9].

A (cell-like) P system is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, fO, fI) where

– O is the alphabet of objects,
– C ⊂ O is the set of catalysts,
– µ is the membrane structure (with m membranes, labeled by 1 to m),
– w1, . . . , wm are multisets of objects present in the m regions of µ at the

beginning of a computation,
– R1, . . . , Rm are finite sets of rules, associated with the regions of µ,
– fO is the label of the membrane region from which the outputs are taken (in

the generative case),
– fI is the label of the membrane region where the inputs are put at the

beginning of a computation (in the accepting case).

fO = 0/fI = 0 indicates that the output/input is taken from the environ-
ment. If fO and fI indicate the same label, we only write f for both labels.

If a rule u → v has at least two objects in u, then it is called cooperative,
otherwise it is called non-cooperative. Catalytic rules are of the form ca → cv,
where c ∈ C is a special object which never evolves and never passes through a
membrane, it just assists object a to evolve to the multiset v.

In catalytic P systems we use non-cooperative as well as catalytic rules. In a
purely catalytic P system we only allow catalytic rules.

2.1 Derivation Modes

In the maximally parallel derivation mode (abbreviated by max), in any com-
putation step of Π we choose a multiset of rules from R (which is defined as the
union of the sets R1, . . . , Rm) in such a way that no further rule can be added to
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it so that the obtained multiset would still be applicable to the existing objects
in the regions 1, . . . ,m.

The basic set derivation mode is defined as the derivation mode where in
each derivation step at most one copy of each rule may be applied in parallel
with the other rules; this variant of a basic derivation mode corresponds to the
asynchronous mode with the restriction that only those multisets of rules are
applicable which contain at most one copy of each rule, i.e., we consider sets of
rules:

Appl(Π,C, set) ={R ∈ Appl(Π,C, asyn) | |R|r ≤ 1 for each r ∈ R}

In the set-maximally parallel derivation mode (this derivation mode is ab-
breviated by smax for short), in any computation step of Π we choose a non-
extendable multiset R of rules from Appl(Π,C, set); following the notations elab-
orated in [6], we define the mode smax as follows:

Appl(Π,C, smax) ={R ∈ Appl(Π,C, set) | there is no R′ ∈ Appl(Π,C, set)
such that R′ ⊃ R}

The smax-derivation mode corresponds to the min1-mode with the discrete
partitioning of rules (each rule forms its own partition), see [6].

As already introduced for multisets of rules in [4], we now consider the
variant where the maximal number of rules is chosen. In the derivation mode
maxrulesmax only a maximal multiset of rules is allowed to be applied. But it
can also be seen as the variant of the basic mode max where we just take a
multiset of applicable rules with the maximal number of rules in it, hence, we
will also call it the maxrules derivation mode. Formally we have:

Appl(Π,C,maxrules) ={R ∈ Appl(Π,C, asyn) |
there is no R′ ∈ Appl(Π,C, asyn)

such that |R′| > |R|}

The derivation mode maxrulessmax is a special variant where only a maximal
set of rules is allowed to be applied. But it can also seen as the variant of the
basic set mode where we just take a set of applicable rules with the maximal
number of rules in it, hence, we will also call it the smaxrules derivation mode.
Formally we have:

Appl(Π,C, smaxrules) ={R ∈ Appl(Π,C, set) |
there is no R′ ∈ Appl(Π,C, set)
such that |R′| > |R|}

We also consider the derivation modes maxobjectsmax and maxobjectssmax
where from the multisets of rules in Appl(Π,C,max) and from the sets of rules
in Appl(Π,C, smax), respectively, only those are taken which affect the maxi-
mal number of objects. As with affecting the maximal number of objects, such
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multisets and such sets of rules are non-extendable anyway, we will also use the
notations maxobjects and smaxobjects.

As usual, with all these variants of derivation modes as defined above, we
consider halting computations. We may generate or accept or even compute
functions or relations. The inputs/outputs may be multisets or strings, defined
in the well-known way.

For any derivation mode γ,

γ ∈{sequ, asyn,max, smax}∪
{maxrules, smaxrules,maxobjects, smaxobjects} ,

the families of number sets (Y = N) and Parikh sets (Y = Ps) Yγ,δ (Π), gener-
ated (δ = gen) or accepted (δ = acc) by P systems with at most m membranes
and rules of type X, are denoted by Yγ,δOPm (X).

3 Computational Completeness Proofs also Working for
Set Derivation Modes

In this section we list several variants of P systems where the computational
completeness proofs also work for the set derivation modes even being taken
literally from the literature.

3.1 P Systems with Cooperative Rules

We first consider simple P systems with cooperative rules having only one mem-
brane (the skin membrane), which also serves as input and output membrane,
and cooperative rules of the form u→ v. Only specifying the relevant parts, we
may write Π = (O,w1, R1) where

– O is the alphabet of objects,
– w1 is the finite multiset of objects over O present in the skin membrane at

the beginning of a computation,
– R1 is a finite set of cooperative rules.

For a rule u→ v ∈ R1, |uv| is called its size.

Theorem 1. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a simple P system Π =
(O,w1, R1) with cooperative rules of size 3 working in one of the derivation modes
from

{max,maxrules,maxobjects} ∪ {smax, smaxrules, smaxobjects}

and simulating the computations of M such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R).
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Proof. Let
M = (m,B, l0, lh, R)

be an arbitrary register machine. We now construct a simple P system with
cooperative rules of size 3 simulating M . The number in register r is represented
by the corresponding number of symbol objects or.

A deterministic ADD-instruction p : (ADD(r), q) is simulated by the rule
p→ orq.

An ADD-instruction p : (ADD(r), q, s) is simulated by the two rules p→ orq
and p→ ors.

A SUB-instruction p : (SUB(r), q, s) is simulated by the following rules:

1. p→ p′p′′;
2. p′ → p̃, p′′or → p̄

(executed in parallel if register is not empty);
3. p̃p′ → s (if register was empty),
p̃p̄→ q (if register was not empty).

In the case of a deterministic register machine, the simulation by the P system
is deterministic, too.

We observe that again the construction works for every maximal derivation
mode, even if only sets of rules are taken into account. ut

3.2 Catalytic and Purely Catalytic P Systems

We now investigate the proofs elaborated for catalytic and purely catalytic P
systems working in the max-mode for the other (set) maximal derivation modes.

Based on the construction elaborated in [1] we state the following result:

Theorem 2. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a simple catalytic P
system

Π = (O,C, µ = [ ]1, w1, R1, f = 1)

working in any of the derivation modes γ,

γ ∈{sequ, asyn,max, smax}∪
{maxrules, smaxrules,maxobjects, smaxobjects} ,

and simulating the computations of M such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 5×m+ 1.

The proof given in [1] can be used for all derivation modes γ, the only excep-
tion is that in the set derivation modes in non-successful computations where
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more than one trap symbol # has been generated, the trap rule #→ # is carried
out at most once.

For the purely catalytic case, one additional catalyst cm+1 is needed to be
used with all the non-cooperative rules. Unfortunately, in this case a slightly
more complicated simulation of SUB-instructions is needed, a result established
in [11], where for catalytic P systems

|R1| ≤ 2×ADD1(R) + 3×ADD2(R) + 6× SUB(R) + 5×m+ 1,

and for purely for catalytic P systems

|R1| ≤ 2×ADD1(R) + 3×ADD2(R) + 6× SUB(R) + 6×m+ 1,

is shown. Yet also this proof literally works for the other (set) derivation modes
as well, with the only exception that the trap rule #→ # is carried out at most
once.

3.3 Computational Completeness of (Purely) Catalytic P Systems
with Additional Control Mechanisms

In this subsection we mention results for (purely) catalytic P systems with ad-
ditional control mechanisms, in that way reaching computational completeness
with only one (two) catalyst(s).

P Systems with Label Selection

For all the variants of P systems of type X, we may consider labeling all the
rules in the sets R1, . . . , Rm in a one-to-one manner by labels from a set H and
taking a set W containing subsets of H. In any transition step of a P system
with label selection Π we first select a set of labels U ∈ W and then apply a
non-empty multiset R of rules such that all the labels of these rules in R are
in U in the maximally parallel way. The families of sets Yγ,δ (Π), Y ∈ {N,Ps},
δ ∈ {gen, acc}, and

γ ∈{sequ, asyn,max, smax}∪
{maxrules, smaxrules,maxobjects, smaxobjects} ,

computed by P systems with label selection with at most m membranes and
rules of type X is denoted by Yγ,δOPm (X, ls).

Theorem 3. Yγ,δOP1 (cat1, ls) = Yγ,δOP1 (pcat2, ls) = Y RE for any Y ∈
{N,Ps}, δ ∈ {gen, acc}, and any (set) derivation mode γ,

γ ∈{sequ, asyn,max, smax}∪
{maxrules, smaxrules,maxobjects, smaxobjects} .
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The proof given in [5] for the maximally parallel mode max can be taken
over for the other (set) derivation modes word by word; the only difference again
is that in set derivation modes, in non-successful computations where more than
one trap symbol # has been generated, the trap rule # → # is only applied
once.

Controlled P Systems and Time-Varying P Systems

Another method to control the application of the labeled rules is to use
control languages (see [7] and [2]). In a controlled P system Π, in addition we
use a set H of labels for the rules in Π, and a string language L over 2H (each
subset of H represents an element of the alphabet for L) from a family FL.
Every successful computation in Π has to follow a control word U1 . . . Un ∈ L:
in transition step i, only rules with labels in Ui are allowed to be applied (in
the underlying derivation mode, for example, max or smax), and after the n-
th transition, the computation halts; we may relax this end condition, i.e., we
may stop after the i-th transition for any i ≤ n, and then we speak of weakly
controlled P systems. If L = (U1 . . . Up)

∗
, Π is called a (weakly) time-varying

P system: in the computation step pn + i, n ≥ 0, rules from the set Ui have
to be applied; p is called the period. The family of sets Yγ,δ (Π), Y ∈ {N,Ps},
computed by (weakly) controlled P systems and (weakly) time-varying P systems
with period p, with at most m membranes and rules of type X as well as control
languages in FL is denoted by Yγ,δOPm (X,C (FL)) (Yγ,δOPm (X,wC (FL)))
and Yγ,δOPm (X,TVp) (Yγ,δOPm (X,wTVp)), respectively, for δ ∈ {gen, acc}
and

γ ∈{sequ, asyn,max, smax}∪
{maxrules, smaxrules,maxobjects, smaxobjects} .

Theorem 4. Yγ,δOP1 (cat1, αTV6) = Yγ,δOP1 (pcat2, αTV6) = Y RE, for any
α ∈ {λ,w}, Y ∈ {N,Ps}, δ ∈ {gen, acc}, and

γ ∈{sequ, asyn,max, smax}∪
{maxrules, smaxrules,maxobjects, smaxobjects} .

The proof given in [5] for the maximally parallel mode max again can be
taken over for the other (set) derivation modes word by word, e.g., see [3].

4 Atomic Promoters and Inhibitors

As shown in [10], P systems with non-cooperative rules and atomic inhibitors
are not computationally complete when the maximally parallel derivation mode
is used. P systems with non-cooperative rules and atomic promoters can at least
generate PsET0L. On the other hand, already in [8], the computational com-
pleteness of P systems with non-cooperative rules and atomic promoters has
been shown. In the following we recall our new proof from [3] for the simulation
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of a register machine where the overall number of promoters only depends on
the number of decrementable registers of the register machine. Moreover, we also
recall the proof of a new rather surprising result, establishing computational com-
pleteness of P systems with non-cooperative rules and atomic inhibitors, where
the number of inhibitors again only depends on the number of decrementable
registers of the simulated register machine. Finally, in both cases, if the register
machine is deterministic, then the P system is deterministic, too.

4.1 Atomic Promoters

We now recall our new proof from [3] for the computational completeness of
P systems with non-cooperative rules and atomic promoters when using any of
the set derivation modes smax, smaxrules, smaxobjects. The overall number of
promoters only is 5m where m is the number of decrementable registers of the
simulated register machine.

Theorem 5. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with atomic
inhibitors

Π = (O,µ = [ ]1, w1 = l0, R1, f = 1)

working in any of the set derivation modes smax, smaxrules, smaxobjects and
simulating the computations of M such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 7×m.

The number of atomic inhibitors is 5m. Finally, if the register machine is deter-
ministic, then the P system is deterministic, too.

Proof. The numbers of objects or represent the contents of the registers r, 1 ≤
r ≤ d; moreover, we denote BSUB = {p | p : (SUB(r), q, s) ∈ R}.

O = {or | 1 ≤ r ≤ d} ∪ {o′r, cr, c′r, c′′r , c′′′r | 1 ≤ r ≤ m}
∪ (B \ {lh}) ∪ {p′, p′′, p′′′ | p ∈ BSUB}

The symbols from {o′r, cr, c′r, c′′r , c′′′r | 1 ≤ r ≤ m} are used as promoters.
An ADD-instruction p : (ADD(r), q, s) is simulated by the two rules p→ qor

and p→ sor.
A SUB-instruction p : (SUB(r), q, s) is simulated in four steps as follows:

1. p→ p′cr;
2. p′ → p′′c′r, or → o′r |cr , cr → λ;
3. p′′ → p′′′c′′′r , c′r → c′′r |o′r , o′r → λ;
4. p′′′ → q |c′′r , p′′′ → s |c′r , c′r → λ |c′′′r

, c′′r → λ, c′′′r → λ.

As final rule we could use lh → λ, yet we can omit this rule and replace every
appearance of lh in all rules as described above by λ. ut
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4.2 Atomic Inhibitors

We now show that even P systems with non-cooperative rules and atomic pro-
moters using the derivation mode smax, smaxrules, smaxobjects can simulate
any register machine needing only 2m + 1 inhibitors where m is the number of
decrementable registers of the simulated register machine.

Theorem 6. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with atomic
inhibitors

Π = (O,µ = [ ]1, w1 = l0, R1, f = 1)

a P system with atomic inhibitors Π = (O,µ = [ ]1, w1 = l0, R1, f = 1) working
in any of the set derivation modes smax, smaxrules, smaxobjects and simulating
the computations of M such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 3×m+ 1.

The number of atomic inhibitors is 2m + 1. Finally, if the register machine is
deterministic, then the P system is deterministic, too.

Proof. The numbers of objects or represent the contents of the registers r, 1 ≤
r ≤ d. The symbols dr prevent the register symbols or, 1 ≤ r ≤ m, from evolving.

O = {or | 1 ≤ r ≤ d} ∪ {o′r | 1 ≤ r ≤ m} ∪ {dr | 0 ≤ r ≤ m}
∪ (B \ {lh}) ∪ {p′, p′′, p̃ | p ∈ BSUB}

We denote D =
∏m
i=1 di and Dr =

∏m
i=1,i6=r di.

An ADD-instruction p : (ADD(r), q, s) is simulated by the two rules p →
qorD and p→ sorD.

A SUB-instruction p : (SUB(r), q, s) is simulated in four steps as follows:

1. p→ p′Dr;
2. p′ → p′′Dd0; in parallel, the following rules are used:
or → o′r |¬dr , dk → λ, 1 ≤ k ≤ m;

3. p′′ → p̃D |¬o′r ; o′r → λ, d0 → λ;
again, in parallel the rules dk → λ, 1 ≤ k ≤ m, are used;

4. p′′ → qD |¬d0 , p̃→ sD.

As final rule we could use lh → λ, yet we can omit this rule and replace every
appearance of lh in all rules as described above by λ. ut

5 P Systems with Target Selection

In P systems with target selection, all objects on the right-hand side of a
rule must have the same target, and in each derivation step, for each region
a (multi)set of rules – non-empty if possible – having the same target is chosen.
In [3] it was shown that for P systems with target selection in the derivation
mode smax no catalyst is needed any more, and with maxrulessmax, we even
obtain a deterministic simulation of deterministic register machines.
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Theorem 7. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with non-
cooperative rules working in the set derivation mode smax and simulating the
computations of M .

When taking the sets of rules with the maximal number of rules which are
applicable, the simulation of SUB-instructions can even be carried out in a de-
terministic way.

Theorem 8. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with non-
cooperative rules

Π = (O,µ = [ [ ]2 . . . [ ]2m+1 ]1, w1, λ, . . . , λ,R1 . . . R2m+1, f = 1)

working in the derivation mode smaxrules and simulating the computations of
M such that

|R1| ≤ 1×ADD1(R) + 2×ADD2(R) + 4× SUB(R) + 10×m+ 3.

Proof. The contents of the registers r, 1 ≤ r ≤ d, is represented by the num-
bers of objects or, and for the decrementable registers we also use a copy of the
symbol o′r for each copy of the object or. This second copy o′r is needed during
the simulation of SUB-instructions to be able to distinguish between the decre-
ment and the zero test case. For each r, the two objects or and o′r can only be
affected by the rules or → (λ, inr+1) and o′r → (λ, inr+1) sending them into the
membrane r + 1 corresponding to membrane r (and at the same time erasing
them; in fact, we could also leave them in the membrane unaffected forever as
a garbage). These are already two rules, so any other combination of rules with
different targets has to contain at least three rules.

One of the main ideas of the proof construction is that in the skin membrane
the label p of an ADD-instruction is represented by the three objects p and
e, e′, and the label p of any SUB-instruction is represented by the eight objects

p, e, e′, e′′, dr, d′r, d̃r, d̃r
′
. Hence, for each p ∈ (B \ {lh}) we define R(p) = pee′ for

p ∈ BADD and R(p) = pee′e′′drd′rd̃rd̃r
′

for p ∈ BSUB as well as R(lh) = λ; as
initial multiset w1 in the skin membrane, we take R(l0).

O = {or | 1 ≤ r ≤ d} ∪ {o′r | 1 ≤ r ≤ m} ∪ (B \ {lh})
∪

{
dr, d

′
r, d̃r, d̃r

′ | 1 ≤ r ≤ m
}
∪ {e, e′, e′′}

An ADD-instruction p : (ADD(r), q, s) is simulated by the rules p→ R(q)or
and p→ R(s)or as well as the rules e→ λ and e′ → λ. This combination of three
rules supersedes any combination of rules or → (λ, inr+1) and o′r → (λ, inr+1),
for some 1 ≤ r ≤ m.

A SUB-instruction p : (SUB(r), q, s) is simulated in two steps as follows:
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1. In R1, for the first step we take one of the following tuples of rules:
p→ (p, inr+1), dr → (λ, inr+1), d′r → (λ, inr+1), d̃r → (λ, inr+1),
or → (λ, inr+1), o′r → (λ, inr+1);
p→ (p, inm+r+1), dr → (λ, inm+r+1), d′r → (λ, inm+r+1),

d̃r → (λ, inm+r+1), d̃r
′ → (λ, inm+r+1);

the application of the rules or → (λ, inr+1), o′r → (λ, inr+1) in contrast to

the application of the rule d̃r
′ → (λ, inm+r+1) determines whether the first

or the second tuple of rules has to be chosen. Here it becomes clear why we
have to use the two register symbols or and o′r, as we have to guarantee that
the target r + 1 cannot be chosen if none of these symbols is present, as in
this case then only four rules could be chosen in contrast to the five rules
for the zero test case. On the other hand, if some of these symbols or and
o′r are present, then six rules are applicable superseding the five rules which
could be used for the zero test case.

2. In the second step, the following three or four rules, again superseding any
combination of rules or → (λ, inr+1) and o′r → (λ, inr+1) for some 1 ≤ r ≤
m, are used in the skin membrane:

e→ λ, e′ → λ, e′′ → λ, and in the decrement case also the rule d̃r
′ → λ.

In the second step, we either find the symbol p in membrane r + 1, if a
symbol or together with its copy o′r has been present for decrementing or in
membrane m+ r + 1, if no symbol or has been present (zero test case).
In the decrement case, the following rule is used in Rr+1: p→ (R(q), out).
In the zero test case, the following rule is used in Rm+r+1: p→ (R(s), out).

The simulation of the SUB-instructions works deterministically, hence, although
the P system itself is not deterministic syntactically, it works in a deterministic
way if the underlying register machine is deterministic. ut

6 Conclusions

Many of the computational completeness proofs elaborated in the literature for
the derivation mode max also work for the set derivation mode smax and usually
even for the other (set) derivation modes maxrules and smaxrules as well as
for maxobjects and smaxobjects, because many constructions just “break down”
maximal parallelism to near sequentiality in order to work for the simulation
of register machines. On the other hand, we also have shown that due to this
fact some variants of P systems become even stronger with the modes smax and
smaxrules. A comprehensive overview of variants of P systems we have already
investigated can be found in [3], many more variants wait for future research.
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11. Sośık, P., Langer, M.: Small catalytic P systems simulating register machines.
Theoretical Computer Science accepted (2015)

15



Distributed and Parallel
Dynamic Programming Algorithms

Modelled on cP Systems

Radu Nicolescu

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand

r.nicolescu@auckland.ac.nz

Abstract. We discuss a membrane computing prototype for a sim-
ple but typical bottom-up dynamic programming algorithm: finding the
longest common subsequence (LCS) of two strings. Conceptually, this
problem can be solved by systematically considering all possible subprob-
lems and organising their partial results in a 2D matrix. Large problems
can be solved by partitioning this matrix (grid) into blocks, which can be
distributed among existing processors. The system evolves by diagonal
wavefronts: the blocks are activated by a high-level diagonal wavefront
and each active block is swept over by its own diagonal wavefront. We
base our work on cP, a slightly revised version of our earlier P systems
with complex symbols. We propose a composite prototype of two layers
with similar data flows: (i) a message based distributed macro model,
and (ii) a shared memory parallel micro model. We discuss the tradeoffs
and we conjecture that the same approach can be used to model more
complex related algorithms. The asynchronous versions of these proto-
types can be efficiently mapped to a distributed Actor system, such as
Akka.

Keywords: Dynamic programming, the 13 Berkeley dwarfs, longest
common subsequence (LCS), membrane computing, P systems, cP sys-
tems, inter-cell parallelism, intra-cell parallelism, Prolog terms and unifi-
cation, complex symbols, subcells, generic rules, parallel and distributed
models, synchronous and asynchronous models, Actor model, Akka.

1 Introduction

We have previously used membrane systems extended with complex symbols
(objects) to successfully model a wide variety of applications: image processing
and computer vision, graph theory, distributed algorithms, high-level P systems
programming, numerical P systems, NP-complete problems. Membrane systems
with complex objects include tissue systems as special cases; additionally, they
can solve complex problems with fixed sized (and typically small) alphabets and
rulesets (independent of the problem size).

For details, please see Nicolescu [10], where a basic image processing task
(seeded region growing) is used as a prototype for structured grid algorithms,
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one of the 13 fundamental classes of parallel patterns, collectively known as the
13 Berkeley dwarfs [3, 2].

In this paper, we propose the cP framework, a slightly revised version of our
earlier version of P systems with complex symbols. Using this, we investigate
another parallel pattern of the Berkeley collection: dynamic programming algo-
rithms. This research is partially based on our earlier modeling exercises related
to dynamic programming [11, 5]. In contrast with our earlier papers, here we
leverage the power of cP systems to investigate a composite design.

We propose a composite prototype consisting of two layers with similar data
flows: (i) a message based distributed macro model, and (ii) a shared memory
parallel micro model. The macro model is a high-level grid having one node for
each block. Each macro model node is then mapped to (substituted by) a new
instance of the micro model, which is a complex cell, with subcells corresponding
to nodes of the original grid (matrix). Essentially, the macro model leverages
the inter-cell parallelism potential, while the micro model exploits the intra-cell
potential present in P systems. We discuss various tradeoffs and their effect on
the main complexity measures.

The proposed cP model was validated by hand-translation to Akka, a well-
known distributed Actor system, with clustering and cloud capabilities. This
experiment reinforces our earlier conjectures [9, 8, 10] that (i) membrane sys-
tems with complex symbols are adequate for modelling practical parallel and
distributed algorithms, succinctly and efficiently (i.e. in “real time“); and (ii)
the translation from CP systems to Actors can be largely automatised.

Because of space constraints, for the rest of the paper, we assume some basic
familiarity with:

– The basic longest common subsequence (LCS) problem and the related dy-
namic programming concepts. Section 2 presents a bird’s eye view; for further
details see any monograph on algorithms, e.g. [4].

– The dynamic programming pattern in parallel processing. Section 3 presents
a bird’s eye view; for further details see the classical Berkeley papers on the
13 parallel dwarfs topic, e.g. [3, 2].

– The Actor model in functional programming, e.g. as discussed in any Akka
tutorial or monograph, e.g. [1].

– The basic definitions used in traditional tissue-like transition P systems,
including state based rules, weak priority, promoters and inhibitors, e.g. as
discussed in the membrane computing handbook [15].

– The membrane extensions collectively known as complex symbols, proposed
by Nicolescu et al. [13, 12, 14, 10], i.e. complex symbols, generic rules, etc.

However, to ensure some degree of self-containment, our revised extensions
are reviewed in Appendix A. The reader is encouraged to check the main changes
from our earlier version: simplified definition for complex symbols (subcells); bet-
ter designed data structures (numbers, associative arrays, lists, trees, and their
alternative more readable notations); a standard set of complexity measures.
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2 Background: LCS and Dynamic Programming

Given a finite set of finite strings, a common subsequence is subsequence which
appears in all given strings. The longest common subsequence (LCS) problem
finds one of the common subsequences of maximum length. For example, given
two strings ”acba” and ”abcdad”, there are two common subsequences of maximal
length 3: ”aca” and ”aba”.

The naive algorithm which solves this problem is an archetypal representative
of the bottom-up dynamic programming family. To simplify the border cases, the
two strings are left padded with one extra character. The algorithm also uses
a cost matrix C and a pointer matrix P , both of size m × n, where m,n are
the lengths of the two padded strings, s and z. The leftmost column and the
topmost row of matrix C are initially filled with sentinel 0’s. To allow a better
visualization, the leftmost column and the topmost row of matrix P are here
filled with the chars of s and z (respectively).

This algorithm works in two phases: (i) first, a forward phase which com-
putes the maximum cost; and (ii) next, a backward phase which finds one of
the optimal subsequences. Figure 1 shows the forward phase of this algorithm,
which systematically fill all cells of the cost and pointer matrices C and P . Cell
C[i, j] represents maximum partial cost up to string positions s[i], z[j], while cell
P [i, j] points back to one of the optimal paths giving cost C[i, j] (here it enables
backtracing of the topmost optimal path).

for i = 1 to m−1 do
for j = 1 to n−1 do

i f s [ i ] = z [ j ] then
C[ i , j ] <− C[ i −1, j −1] + 1
P[ i , j ] <− ’↖ ’

e l i f C[ i −1, j ] < C[ i , j −1] then
C[ i , j ] <− C[ i , j −1]
P[ i , j ] <− ’← ’

else // C[ i −1, j ] >= C[ i , j −1] then
C[ i , j ] <− C[ i −1, j ]
P [ i , j ] <− ’↑ ’

Fig. 1: The forward phase of LCS.

Figure 1 shows sample code to evaluate matrices C and P . Note that each
cell in matrix C (or P ) depends on three of its adjacent neighbors, situated in
these three directions: N (up), W (left), NW (up+left). These two matrices need
not be evaluated row-by-row, as indicated in the sample code of the forward
pass; any dependency compatible order is correct. For example, one could use a
column-by-column evaluation order. Or, a diagonal approach, where a SW-NE
diagonal k sweeps over the matrix, from its NW (top-left) corner C[0, 0] to its
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SE (bottom-right) corner C[m− 1, n− 1], ensuring that cells {C[i, j] ‖ i+ j = k}
are all evaluated before cells {C[i, j] ‖ i+ j = k + 1}.

Figure 2 shows the matrices C and P evaluated for strings ”acba” and
”abcdad”. The maximum cost is found on C[4, 6] = 3 and the topmost opti-
mal path can be retraced to ”aca”.

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1

2 0 1 1 2 2 2 2

3 0 1 2 2 2 2 2

4 0 1 2 2 2 3 3

(a) Matrix C

0 1 2 3 4 5 6

0 a b c d a d

1 a ↖←←←↖←
2 c ↑ ↑ ↖ ←←←
3 b ↑ ↖ ↑ ↑ ↑ ↑
4 a ↖ ↑ ↑ ↑ ↖ ←

(b) Matrix P

Fig. 2: Matrices C and P , for input strings ”acba” and ”abcdad”.

3 Background: Parallel Dynamic Programming

As also discussed in the Berkley documentation [3, 2], a dynamic programming
algorithm can be parallelised by partitioning the original m×n grid into m′×n′
blocks (1 ≤ m′ ≤ m, 1 ≤ n′ ≤ n) and allocating these blocks to different
processing nodes. We exclusively focus on the forward phase of one of the two
arrays (C) – including the other array would only add complexity, without any
clear benefits for the current discussion.

Here, the final S (bottom) row, E (right) column and SE corner of one block
become part of the borderline conditions required by the depending blocks. In
physically distributed systems, these sentinel values can be sent via messages.
Figure 3 illustrates this approach, where our former m × n = 4 × 6 sample is
partitioned into 6 blocks by m′ = 2 horizontal bands and n′ = 3 vertical bands.

The arrows suggest the direction of the data flow. The thick arrows indicate
the actual exchange of messages between blocks. The thin arrows detail the
contents of these messages: (i) the full thin arrows are actual part of the messages;
and (ii) the dotted thin arrows are only virtual, because they are equivalent to
simple compositions of full thin arrows (the diagram is commutative).

The thick arrows between blocks define a partial dependency order, showing
the possible activation order among blocks. In a strict synchronous settings, the
active blocks form a SW-NE diagonal, which sweeps over the m′× n′ grid, from
the NW corner to the SE corner. Blocks on the same diagonal can run in parallel.
In our sample, the synchronous activation diagonal will sweep over the existing
block in the following order: (i) block [0, 0]; (ii) blocks [0, 1], [1, 0] (in parallel);
(iii) blocks [0, 2], [1, 1] (in parallel); (iv) block [1, 2].
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[1,2][1,1][1,0]

Fig. 3: Original grid partitioned into 6 blocks, by 2× 3 bands.

In the asynchronous settings, the activation may get out of the strict diag-
onal, as permitted by the dependency order. For example, in our sample, the
synchronous activation may also include a scenario like the following: (i) block
[0, 0]; (ii) block [0, 1]; (iii) block [0, 2], [1, 0] (in parallel); (iii) block [1, 1]; (iv)
block [1, 2].

4 cP Macro Model

We model the pattern discussed in Section 3 with one cell for each block and
arrows indicating the direction of forward messages – note that messages imply
a dependency partial order.

We define an abstract macro model called Σm′,n′ , which focuses on the mes-
saging pattern and does not perform any real internal computation. The model
has m′ × n′ cells, {σi,j ‖ i ∈ [0,m′ − 1], j ∈ [0, n′ − 1]}. The grid is defined by
direct arcs N → S and W → E.

Initially: (i) each W (left) border cell σi,0 is filled with one subcell r(x(1i) X);
and (ii) each N (top) border cell σ0,j is filled with one subcell c(y(1j) Y ) – where
X,Y are not yet specified multisets.

Intuitively, terms x(), y() indicate the row index, respectively column index of
the current cell and variables X,Y may carry over any additional data required
for a concrete instance. For readability, we alias r(x(1i) X), c(y(1j) Y ) by the

more expressive notations (i
r7→ X), (j

c7→ Y ) (respectively). Figure 4a shows a
sample macro model, Σ2,3, in its initial configuration.

At this abstract level, the evolution rules are simple: each cell is idle until it
gets two subcells, one (I

r7→ X ′) and one (J
c7→ Y ′). When this eventuates: (i)

the cell becomes active; (ii) creates new subcells X ′, Y ′; (iii) sends one copy of

(I
r7→ X ′) to E (right) and one (J

c7→ Y ′) to S (down); and, finally, (iv) becomes
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σ0,0 σ0,1 σ0,2

σ1,0 σ1,1 σ1,2

(0 r7→ X)
(1 c7→ Y ) (2 c7→ Y )

(1 r7→ X)

(0 c7→ Y )

S S S

E E

E E

(a) Initial configuration, time=0.

Time Updates

1 (0
r7→ X) ⇒ σ0,1

1 (0
c7→ Y ) ⇒ σ1,0

2 (0
r7→ X) ⇒ σ0,2

2 (1
r7→ X) ⇒ σ1,1

2 (1
c7→ Y ) ⇒ σ1,1

3 (1
r7→ X) ⇒ σ1,2

3 (2
c7→ Y ) ⇒ σ1,2

(b) Messages received – one
possible trace.

Fig. 4: Evolution of Σ2,3, a 2× 3 grid of complex cells.

again idle. Assuming the identity transformation, X ′ = X,Y ′ = Y , the ruleset
can be expressed by the following rules:

S1 →min⊗min S2 (I
r7→ X) ↓E ‖ (I

r7→ X) (J
c7→ Y )

S1 →min⊗min S2 (J
c7→ Y ) ↓S ‖ (I

r7→ X) (J
c7→ Y )

Figure 4b details one possible evolution of Σ2,3 (compatible with the induced
dependency order). While several evolution orders are possible, Σ2,3 is confluent
and will always reach the same final configuration.

In the synchronous setting, this model will activate its cells along the strict
diagonal pattern mentioned in Section 3. In the asynchronous setting, this model
will activate its cells along a “looser” diagonal pattern, where any dependency
compliant order will be possible. In both settings, the evolution starts from
the NW corner cell σ0,0 and completes when the SW corner cell σm′−1,n′−1
completes, when all the other cells have completed. The following proposition
indicates the time and message complexities of a macro model, assuming that
we have an unlimited supply of complex cells.

Proposition 1. The distributed macro system Σm′,n′ has time complexity O(m′+
n′) and message complexity O(m′n′) .

5 cP Micro Model

We now substitute the nodes (blocks) of the abstract macro model Σm′,n′ by
instances of a new model which works “directly” on the original matrix of Sec-
tion 2. Each σi,j corresponds to an mi,j×ni,j block [i, j] and is now is mapped to
one complex cell Θi,j . The block dimensions are internally stored as one subcell
δ(mi,j , ni,j). Except their dimensions, all these Θ cells are identical.

This cell uses a 2D associative array (cf. Appendix A) defined by θ sub-
cells, which have the following general format: θ(x(1i) y(1j) s(S) z(Z) c(C)),
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0 ≤ i ≤ mi,j , 0 ≤ j ≤ ni,j – note that there is one extra sentinel row on
top (N) and one extra sentinel column on the left (W). The x, y components
represent the associative array keys (indexes); the s, z components represent
the corresponding chars from the left string, right string (respectively); and
the c component represents the corresponding cost in matrix C. For readabil-
ity, we alias θ(x(1i) y(1j) s(s′) z(z′) c(c′)) by the more expressive notation

([i, j]
θ7→ (s′, z′, c′)) – the enclosing parentheses may improve the readability, but

are not strictly necessary.

Initially, only the topmost and leftmost Θ’s contain θ sentinel subcells:

(i) ∀j ∈ [0, n], Θ0,j is initialised with {[0, k]
θ7→ (s[0], z[k], 0) ‖ k ∈ [0,m0,j ]};

(ii) ∀i ∈ [0,m], Θi,0 is initialised with {[k, 0]
θ7→ (s[k], z[0], 0) ‖ k ∈ [0,mi,0]}.

Other θ subcells will only appear after local Θ computations or from messages
sent across neighbouring Θ’s.

Each cell Θ remains idle until it receives sentinel subcells θ[i, j], i = 0∨j = 0,
either from the initial setup or from its N, W neighbours. After becoming active,
Θ progressively creates all subcells θ[i, j], i > 0 ∧ j > 0. After all θ’s have been
generated, Θ sends copies of its own S, E border subcells to its S, E neighbours
(respectively): its bottom border will become the top row of the S neighbour’s
associative array, and its rightmost border will become the W leftmost row in
the E neighbour’s associative array.

Figure 5 shows a sample micro model, Θ1,1, corresponding to block [1, 1] of
our sample, of size 2 × 2. Dashed frames enclose sentinel θ’s received from its
N, W neighbours. Full frames enclose θ’s which will be locally created by the
evolution rules. Dotted lines represent logical data flow, which will be achieved
by local computations (there is no internal messaging). The visual layout of the
internal multiset of the θ subcells is intentionally consistent with the conceptual
associative array.

The ruleset is a fixed set of six rules, which work with maximum parallelism
(synchronously, as there are no internal messages). First, cell Θ loops in state
S1 until all its θ’s are generated. As dictated by the dataflow, each iteration
involves the first three rules and generates a new SW-NE diagonal, starting
from the NW corner. These first three rules represent the bulk of the local
computation, closely following the lines of the algorithm of Figure 1. The SE

corner ([mi,j , ni,j ]
θ7→ ( , , )) is the last one generated; its appearance signals

the end of this computing phase.

1. if @ C[i+1,j+1] and s[i+1] = z[j+1] then C[i+1,j+1] <− C[i,j] + 1

S1 →max⊗min S′1 ([I1, J1]
θ7→ (S, S,C1)) ¬ ([I1, J1]

θ7→ ( , , ))

‖ ([I, J ]
θ7→ ( , , C)) ([I1, J ]

θ7→ (S, , )) ([I, J1]
θ7→ ( , S, ))

2. elif @ C[i+1,j+1] and C[i+1,j] >= C[i,j+1] + 1 then C[i+1,j+1] <− C[i+1,j]
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[0, 0] θ→ [0, 1] θ→ [0, 2] θ→

[1, 0] θ→ [1, 1] θ→ [1, 2] θ→

[2, 0] θ→ [2, 1] θ→ [2, 2] θ→

(c, b, 1) (c, c, 2) (c, d, 2)

(b, b, 2) (b, c, 2) (b, d, 2)

(a, b, 2) (a, c, 2) (a, d, 2)

δ(2, 2)

Θ1,2

Θ1,1

Fig. 5: Final configuration of Θ1,1. Its subcells have been evaluated in the follow-
ing order: (i) θ[1, 1]; (ii) θ[1, 2] and θ[2, 1], in parallel; (iii) θ[2, 2]. One message
has been sent to its E neighbour Θ1,2. The S message was silently dumped, as
there is no S neighbour.

S1 →max⊗min S′1 ([I1, J1]
θ7→ (S,Z,C1C ′)) ¬ ([I1, J1]

θ7→ ( , , ))

‖ ([I1, J ]
θ7→ (S, , C1C ′)) ([I, J1]

θ7→ ( , Z, C))

3. elif @ C[i+1,j+1] then C[i+1,j+1] <− C[i,j+1]

S1 →max⊗min S′1 ([I1, J1]
θ7→ (S,Z,C)) ¬ ([I1, J1]

θ7→ ( , , ))

‖ ([I1, J ]
θ7→ (S, , )) ([I, J1]

θ7→ ( , Z, C))

The above three rules change the state, from S1 to S′1; this ensures that only
one of these rules is applied. The next and fourth rule loops back from state S′1
to S1:

S′1 →max⊗min S1

The last two rules correspond to the ruleset of the macro-model Σm′,n′ and
fire exactly once, in the same single step, after the appearance of the SE corner
θ. The first rule packs copies of all S border θ’s and sends these as one message
to Θ’s S neighbour. The second rule packs copies of all E border θ’s and sends
these as one message to Θ’s E neighbour. Cell Θ ends in a new idle state, S2.
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S1 →max⊗min S2 ([0, J ]
θ7→ (S,Z,C)) ↓S

‖ ([M,J ]
θ7→ (S,Z,C)) ([M,N ])

θ7→ ( , , ) δ(M,N)

S1 →max⊗min S2 ([I, 0]
θ7→ (S,Z,C)) ↓E

‖ ([I,N ]
θ7→ (S,Z,C)) ([M,N ])

θ7→ ( , , ) δ(M,N)

It is straightforward to prove that this model generates its θ subcells following
a strict diagonal pattern and its time complexity is linear in its dimensions,
assuming that each complex cell has unlimited parallel processing potential.

Proposition 2. The parallel micro system Θi,j, has time complexity O(mi,j +
ni,j).

6 Evaluation

Let us assume that all micro-models, Θi,j , have the same dimension, m′′ × n′′,
i.e. mi,j = m′′, ni,j = n′′,∀(i, j) ∈ [0,m′ − 1] × [0, n′ − 1]. This gives the fol-
lowing relations between the lengths of the two strings and the dimensions of
our models: m = m′m′′, n = n′n′′. Let Υm,n,m′,n′,m′′,n′′ be the final composite
model, obtained by substituting the m′ × n′ nodes of the distributed abstract
model Σm′,n′ with these equally dimensioned instances of the parallel model
Θi,j , i ∈ [0,m′ − 1], j ∈ [0, n′ − 1].

Assuming that we have an unlimited supply of complex cells and that each
complex cell has unlimited parallel processing potential, the complexity of the
final composited model Υm,n,m′,n′,m′′,n′′ can be derived from the complexity of
its two layers, by combining Proposition 1 and Proposition 2.

Proposition 3. The distributed and parallel system Υm,n,m′,n′,m′′,n′′ has time
complexity O((m′ + n′)(m′′ + n′′)) and message complexity O(m′n′).

The table in Figure 6 details several interesting scenarios. As generally agreed,
overly slow (1,2) or overly chatty (3) scenarios should not be considered (and
they may have additional issues). This singles out two scenarios with good the-
oretical measures:

– Scenario (4) seems the best, but it is not very practical. It requires the
availability of huge and powerful complex cells, with very large and fast
memories and very massive parallel capabilities. This seems unlikely in the
real world (unless we live in a place called Utopia or Shangri-La)...

– Scenario (5) seems the next best one and is probably the most practical.
It offers a nice balance between its distributed vs. parallel requirements, so
can be used to practically process much larger strings than other alternate
scenarios.
At the first sight, this seems to require

√
n
√
n = n distributed nodes. How-

ever, this requirement can be reduced to
√
n nodes. A diagonal sweep over
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a
√
n × √n grid uses at most only active node per row (or column). Thus,√

n active nodes can impersonate all the apparently required n conceptual
nodes.

m′ n′ m′′ n′′ O Time complexity O Message complexity Brief notes

0 m′ n′ m′′ n′′ (m′ + n′)(m′′ + n′′) m′n′

1 n 1 1 n n2 n Too slow

2 1 n n 1 n2 n Too slow

3 n n 1 1 n n2 Too chatty

4 1 1 n n n 1 See discussion

5
√
n
√
n
√
n
√
n n n See discussion

Fig. 6: Complexity measures for Υm,n,m′,n′,m′′,n′′ .

7 Conclusions

We discussed a membrane model which solves a typical dynamic programming
algorithm in a combined distributed and parallel way. Our proposed model is
based on our cP version of the P systems framework. The solution uses a fixed
atomic alphabet size, a fixed size ruleset with only six rules (!) and has the same
time complexity as a much longer hand-written parallel/distributed implementa-
tion. Our model can be straightforwardly mapped as a distributed Actor model
with cluster and cloud capabilities (Akka.NET).

Together with our previous results, these new results provide additional sup-
port for the conjecture that cP systems define expressive, succinct, real-time
simulations of hand-written parallel/distributed implementations for practical
algorithms and applications.

Like other versions of P systems, our cP systems are formal models which
can become directly executable, if properly supported by tools. Further research
should address this issue, by reducing the still existing gap between cP systems
and the Actor model and by formalising the cP semantics and its translation
to a generic Actor model. Ideally, a cP-to-Actors translation should allow the
automatic generation of combined message-based distributed macro models with
shared-memory parallel micro models and including flexible ways for experiment-
ing with various block granularities.

Acknowledgments. We are deeply indebted to the anonymous reviewers
for their valuable comments and suggestions.
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14. Nicolescu, R., Wu, H.: Complex objects for complex applications. Romanian Jour-
nal of Information Science and Technology 17(1), 46–62 (2014)
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A Appendix
cP Systems : P Systems with Complex Symbols

We present the details of our complex-symbols framework, slightly revised from
our earlier papers [9, 10].

A.1 Complex symbols as subcells

Complex symbols play the roles of cellular micro-compartments or substructures,
such as organelles, vesicles or cytoophidium assemblies (“snakes”), which are
embedded in cells or travel between cells, but without having the full processing
power of a complete cell. In our proposal, complex symbols represent nested data
compartments which have no own processing power: they are acted upon by the
rules of their enclosing cells.

Technically, our complex symbols, also called subcells, are similar to Prolog-
like first-order terms, recursively built from multisets of atoms and variables.
Atoms are typically denoted by lower case letters (or, occasionally, digits), such
as a, b, c, 1. Variables are typically denoted by uppercase letters, such as X,
Y , Z. For improved readability, we also consider anonymous variables, which
are denoted by underscores (“ ”). Each underscore occurrence represents a new
unnamed variable and indicates that something, in which we are not interested,
must fill that slot.

Terms are either (i) simple atoms, or (ii) atoms (called functors), followed by
one or more parenthesized multisets (called arguments) of other symbols (terms
or variables), e.g. a(b2X), a(X2c(Y )), a(b2)(c(Z)). Functors that are followed by
more than one parenthesized argument are called curried (by analogy to func-
tional programming) and, as we see later, are useful to precisely described deep
‘micro-surgical” changes which only affect inner nested symbols, without directly
touching their enclosing outer symbols. Terms that do not contain variables are
called ground, e.g.:

– Ground terms: a, a(λ), a(b), a(bc), a(b2c), a(b(c)), a(bc(λ)), a(b(c)d(e)),
a(b(c)d(e)), a(b(c)d(e(λ))), a(bc2d); or, a curried form: a(b2)(c(d)e3).

– Terms which are not ground: a(X), a(bX), a(b(X)), a(XY ), a(X2), a(XdY ),
a(Xc()), a(b(X)d(e)), a(b(c)d(Y )), a(b(X)d(e(Y ))), a(b(X2)d(e(Xf2))); or,
a curried form: a(b(X))(d(Y )e3); also, using anonymous variables: a(b ),
a(X ), a(b(X)d(e( ))).

Note that we may abbreviate the expression of complex symbols by removing
inner λ’s as explicit references to the empty multiset, e.g. a(λ) = a().

Complex symbols (subcells, terms) can be formally defined by the following
grammar:

<term> ::= <atom> | <functor> ( ’(’ <argument> ’)’ )+

<functor> ::= <atom>

<argument> ::= λ | ( <term-or-var> )+

<term-or-var> ::= <term> | <variable>
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Natural numbers. Natural numbers can be represented via bags containing re-
peated occurrences of the same atom. For example, considering that 1 represents
an ad-hoc unary digit, then the following complex symbols can be used to de-
scribe the contents of a virtual integer variable a: a() = a(λ) — the value of a is 0;
a(13) — the value of a is 3. For concise expressions, we may alias these number
representations by their corresponding numbers, e.g. a() ≡ a(0), b(13) ≡ b(3).
Nicolescu et al. [13, 12, 14] show how arithmetic operations can be efficiently
modelled by P systems with complex symbols.

Lists. Using complex symbols, the list [u, v, w] can be represented as
γ(u γ(v γ(w γ()))), where the ad-hoc atom γ represents the list constructor cons
and γ() the empty list. Hiding the less relevant representation choices, we may
alias this list by the more expressive notation γ[u, v, w].

Trees. Consider the binary tree z = (a, (b), (c, (d), (e))), i.e. z points to a root
node which has: (i) the value a; (ii) a left node with value b; and (iii) a right
node with value c, left leaf d, and right leaf e. Using complex symbols, tree y can
be represented as z(a φ(b) ψ(c φ(d) ψ(e))), where ad-hoc atoms φ, ψ introduce
left subtrees, right subtrees (respectively).

Associative arrays. Consider the associative array {1 7→ a; 13 7→ c; 17 7→ g},
where the “mapsto” operator, 7→, indicates key-value mappings. Using com-
plex symbols, this array can be represented as a multiset with three items,
{µ(κ(1) υ(a)), µ(κ(13) υ(c)), µ(κ(17) υ(g)) }, where ad-hoc atoms µ, κ, υ intro-
duce mappings, keys, values (respectively). Hiding the less relevant represen-
tation choices, we may alias the items of this multiset by the more expressive

notation { (1
µ7→ a), (13

µ7→ c), (17
µ7→ g) } ≡ { 1 µ7→ a, 13

µ7→ c, 17
µ7→ g }. In

this context, the “mapsto” operator, 7→, is considered to have a high associa-
tive priority, so the enclosing parentheses are mostly required for increasing the
readability (e.g. in text). If we are not interested in the actual mapping value,

instead of (a
µ7→ ), we refer to this term by the succinct abbreviation x[a].

Unification. All terms (ground or not) can be (asymmetrically) matched against
ground terms, using an ad-hoc version of pattern matching, more precisely, a one-
way first-order syntactic unification, where an atom can only match another copy
of itself, and a variable can match any bag of ground terms (including the empty
bag, λ). This may create a combinatorial non-determinism, when a combination
of two or more variables are matched against the same bag, in which case an
arbitrary matching is chosen. For example:

– Matching a(b(X)fY ) = a(b(cd(e))f2g) deterministically creates a single set
of unifiers: X,Y = cd(e), fg.

– Matching a(XY 2) = a(de2f) deterministically creates a single set of unifiers:
X,Y = df, e.

– Matching a(XY ) = a(df) non-deterministically creates one of the following
four sets of unifiers: X,Y = λ, df ; X,Y = df, λ; X,Y = d, f ; X,Y = f, d.

Performance note. If the rules avoid any matching non-determinism, then this
proposal should not affect the performance of P simulators running on existing
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machines. Assuming that bags are already taken care of, e.g. via hash-tables,
our proposed unification probably adds an almost linear factor. Let us recall
that, in similar contexts (no occurs check needed), Prolog unification algorithms
can run in O(ng(n)) steps, where g is the inverse Ackermann function. Our
conjecture must be proven though, as the novel presence of multisets may affect
the performance.

A.2 Generic rules

Rules use states and are applied top-down, in the so-called weak priority order.
Rules may contain any kind of terms, ground and not-ground. In concrete mod-
els, cells can only contain ground terms. Cells which contain unground terms can
only be used to define abstract models, i.e. high-level patterns which characterise
families of similar concrete models.

Pattern matching. Rules are matched against cell contents using the above
discussed pattern matching, which involves the rule’s left-hand side, promoters
and inhibitors. Moreover, the matching is valid only if, after substituting vari-
ables by their values, the rule’s right-hand side contains ground terms only (so
no free variables are injected in the cell or sent to its neighbours), as illustrated
by the following sample scenario:

– The cell’s current content includes the ground term:
n(aφ(b φ(c)ψ(d))ψ(e))

– The following rewriting rule is considered:
n(X φ(Y φ(Y1)ψ(Y2))ψ(Z)) → v(X) n(Y φ(Y2)ψ(Y1)) v(Z)

– Our pattern matching determines the following unifiers:
X = a, Y = b, Y1 = c, Y2 = d, Z = e.

– This is a valid matching and, after substitutions, the rule’s right-hand side
gives the new content :
v(a) n(b φ(d)ψ(c)) v(e)

Generic rules format. We consider rules of the following generic format (we
call this format generic, because it actually defines templates involving variables):

current-state symbols . . . →α target-state (immediate-symbols)! . . .

(in-symbols) . . . (out-symbols)δ . . .

| promoters . . . ¬ inhibitors . . .

Where:

– All symbols, including states, promoters and inhibitors, are multisets of terms,
possibly containing variables (which can be matched as previously described).

– Parentheses can be used to clarify the association of symbols, but otherwise
have no own meaning.
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– Subscript α ∈ {min, max} × {min, max}, indicates a combined instantiation and
rewriting mode, as further discussed in the example below.

– Out-symbols are sent, at the end of the step, to the cell’s structural neigh-
bours. These symbols are enclosed in round parentheses which further in-
dicate their destinations, above abbreviated as δ. The most usual scenarios
include:

• (a) ↓i indicates that a is sent to child i (unicast);
• (a) ↑i indicates that a is sent to parent i (unicast);
• (a) ↓∀ indicates that a is sent to all children (broadcast);
• (a) ↑∀ indicates that a is sent to all parents (broadcast);
• (a) l∀ indicates that a is sent to all neighbours (broadcast).

All symbols sent via one generic rule to the same destination form one single
message and they travel together as one single block (even if the generic rule
has multiple instantiations).

– Both immediate-symbols and in-symbols remain in the current cell, but there
is a subtle difference:

• in-symbols become available after the end of the current step only, as in
traditional P systems (we can imagine that these are sent via an ad-hoc
loopback channel);

• immediate-symbols become immediately available (i) to the current rule,
if it uses the max instantiation mode, and (ii) always, to the succeeding
rules (in weak priority order).

Immediate symbols can substantially improve the runtime performance, which
could be required for two main reasons: (i) to achieve parity with best tra-
ditional algorithms, and (ii) to ensure correctness when proper timing is
logically critical. However, they are seldom required and not used in the
systems presented in this paper.

Example. To explain our combined instantiation and rewriting mode, let us con-
sider a cell, σ, containing three counter-like complex symbols, c(12), c(12), c(13),
and the four possible instantiation⊗rewriting modes of the following “decrement-
ing” rule:

(ρα) S1 c(1X)→α S2 c(X),where α ∈ {min,max} × {min,max}.

1. If α = min⊗min, rule ρmin⊗min nondeterministically generates and applies (in
the min mode) one of the following two rule instances:

(ρ′1) S1 c(1
2)→min S2 c(1) or

(ρ′′1) S1 c(1
3)→min S2 c(1

2).

Using (ρ′1), cell σ ends with counters c(1), c(12), c(13). Using (ρ′′1), cell σ
ends with counters c(12), c(12), c(12).
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2. If α = max⊗min, rule ρmax⊗min first generates and then applies (in the min mode)
the following two rule instances:

(ρ′2) S1 c(1
2)→min S2 c(1) and

(ρ′′2) S1 c(1
3)→min S2 c(1

2).

Using (ρ′2) and (ρ′′2), cell σ ends with counters c(1), c(12), c(12).

3. If α = min⊗max, rule ρmin⊗max nondeterministically generates and applies (in
the max mode) one of the following rule instances:

(ρ′3) S1 c(1
2)→max S2 c(1) or

(ρ′′3) S1 c(1
3)→max S2 c(1

2).

Using (ρ′3), cell σ ends with counters c(1), c(1), c(13). Using (ρ′′3), cell σ ends
with counters c(12), c(12), c(12).

4. If α = max⊗max, rule ρmin⊗max first generates and then applies (in the max mode)
the following two rule instances:

(ρ′4) S1 c(1
2)→max S2 c(1) and

(ρ′′4) S1 c(1
3)→max S2 c(1

2).

Using (ρ′4) and (ρ′′4), cell σ ends with counters c(1), c(1), c(12).

The interpretation of min⊗min, min⊗max and max⊗max modes is straightforward.
While other interpretations could be considered, the mode max⊗min indicates that
the generic rule is instantiated as many times as possible, without superfluous
instances (i.e. without duplicates or instances which are not applicable) and each
one of the instantiated rules is applied once, if possible.

If a rule does not contain any non-ground term, then it has only one pos-
sible instantiation: itself. Thus, in this case, the instantiation is an idempotent
transformation, and the modes min⊗min, min⊗max, max⊗min, max⊗max fall back onto
traditional modes min, max, min, max, respectively.

Special cases. Simple scenarios involving generic rules are sometimes seman-
tically equivalent to loop-based sets of non-generic rules. For example, consider
the rule

S1 a(x(I) y(J)) →max⊗min S2 b(I) c(J),

where the cell’s contents guarantee that I and J only match integers in ranges
[1, n] and [1,m], respectively. Under these assumptions, this rule is equivalent to
the following set of non-generic rules:

S1 ai,j →min S2 bi cj , ∀i ∈ [1, n], j ∈ [1,m].

However, unification is a much more powerful concept, which cannot be gen-
erally reduced to simple loops.

Micro-surgery: operations that only affect inner nested symbols. Such
operations improve both the crispness and the efficiency of the rules. Consider a
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cell that contains symbols o(abpq), r and a naive rule which attempts to change
the inner b to a d, if an inner p and a top–level r are also present:

S1 o(bR) →min⊗min S2 o(dR) | o(p ) r.

Unless we change the “standard” application rules, this rule fails, because symbol
p is locked as a promoter and cannot be changed at the same time (not even by
copy/paste from the left-hand side R to the right-hand side R). We solve this
problem without changing the standard application rules, by adding an access
path to the inner symbols needed. The access path is a slash delimited list of
outer symbols, in nesting order, which opens an inner bag for usual rewriting
operations; these outer symbols on the path are not themselves touched. For
example, this modified rule solves the problem by opening the contents of o for
processing:

S1 o/b →min⊗min S2 o/d | o/p r.
This extension helps even more when we want to localise the changes to inner

symbols of a specific outer symbol. For example, consider a similar operation that
needs to be applied on the innermost contents of symbol o(i, j)(abpq), identified
by its coordinates i, j.

S1 o(x(i) y(j))/b →min⊗min S2 o(x(i) y(j))/d | o(x(i) y(j))/p r.

If all or most symbols involved share the same path, then the path could
qualify the whole rule; existing top-level symbols could be qualified by usual
path conventions, e.g. in our case, r could be explicitly qualified by either of /
or ../:

o(x(i) y(j)) :: S1 b →min⊗min S2 d | p ../r.
Note that the usual rulesets are just a special case of this extension, when

all rules are by default qualified with the root path /.

Note. For all modes, the instantiations are conceptually created when rules are
tested for applicability and are also ephemeral, i.e. they disappear at the end of
the step. P system implementations are encouraged to directly apply high-level
generic rules, if this is more efficient (it usually is); they may, but need not, start
by transforming high-level rules into low-level rules, by way of instantiations.

Benefits. This type of generic rules allow (i) a reasonably fast parsing and pro-
cessing of subcomponents, and (ii) algorithm descriptions with fixed size alpha-
bets and fixed sized rulesets, independent of the size of the problem and number
of cells in the system (often impossible with only atomic symbols).

Synchronous vs asynchronous. In our models, we do not make any syntactic
difference between the synchronous and asynchronous scenarios; this is strictly
a runtime assumption [7]. Any model is able to run on both the synchronous
and asynchronous runtime “engines”, albeit the results may differ.

In the synchronous scenario of traditional P systems, all rules in a step
take together exactly one time unit and then all message exchanges (including
loopback messages for in-symbols) are performed at the end of the step, in
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zero time (i.e. instantaneously). Alternatively, but logically equivalent, we here
consider that rules in a step are performed in zero time (i.e. instantaneously) and
then all message exchanges are performed in exactly one time unit. We prefer
the second interpretation, because it allows us to interpret synchronous runs as
special cases of asynchronous runs.

In the asynchronous scenario, we still consider that rules in a step are per-
formed in zero time (i.e. instantaneously), but then, to arrive at its destination,
each message may take any finite real time in the (0, 1] interval (i.e. travelling
times are typically scaled to the travel time of the slowest message). Addition-
ally, unless otherwise specified, we also assume that messages traveling on the
same directed arc follow a FIFO rule, i.e. no fast message can overtake a slow
progressing one. This definition closely emulates the standard definition used
for asynchronous distributed algorithms [6]. Clearly, the asynchronous model is
highly non-deterministic, but most useful algorithms manage to remain conflu-
ent.

In both scenarios, we need to cater for a particularity of P systems, where
a cell may remain active after completing its current step and then will auto-
matically start a new step, without necessarily receiving any new message. In
contrast, in classical distributed models, nodes may only become active after
receiving a new message, so there is no self-activation without messaging. We
can solve this issue by (i) assuminging a hidden self-activation message that cells
can post themselves at the end of the step and (ii) postulating that such self-
addressed messages will arrive not later than any other messages coming from
other cells.

Obviously, any algorithm that works correctly in the asynchronous mode will
also work correctly in the synchronous mode, but the converse is not generally
true: extra care may be needed to transform a correct synchronous algorithm
into a correct asynchronous one; there are also general control layers, such as
synchronisers, that can attempt to run a synchronous algorithm on an existing
asynchronous runtime, but this does not always work [6].

Complexity measures. We consider a set of basic complexity measures similar
to the ones used in the traditional distributed algorithms field.

– Time complexity : the supremum over all possible running times (which, al-
though not perfect, is the most usual definition for the asynchronous time
complexity).

– Message complexity : the number of exchanged messages.

– Atomic complexity : the number of atoms summed over all exchanged mes-
sages (analogous to the traditional bit complexity).
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Abstract. In our investigation of the power of a new type of P system
which works with objects that can have negative multiplicities, we prove
that it is strictly less powerful than a Turing Machine. We get this result
by simulating such device using partially blind register machines.

1 Introduction

P systems are a computational model inspired by the structure of a biological
cell. Such a model contains several membranes, which can contain several ob-
jects; such objects can be transformed and moved from membrane to membrane
according to evolution rules. Evolution rules are applied at each step of the
computation, changing the configuration of the system until it eventually halts
(when no more rules can be applied). The result of a halting computation is the
multiset of objects contained in a specified output membrane (or expelled from
the system). If the computation does not halt, then it produces no output.

P systems are particularly interesting for their efficiency: trading space for
time, we can deal in a polynomial time with problems normally solvable in an
exponential time (for further information see [5]). This is possible thanks to the
maximal parallel manner in which they operate. A detailed definition of what a
P system and its components are can be found in [6].

Several variants of P systems have been investigated through the years. The
main differences among the variants usually include the use of new types of rules,
or the addition of special abilities to the membranes. However, our variant stands
out a little when compared to the others. In fact, we will deal with an aspect
regarding the very nature of the system, rather than just focusing on changing
specific aspects like its rules. So far the multiplicities representing the objects
within a membrane have only been allowed to be nonnegative. In this paper we
will let those multiplicities be negative too, expanding the range of their possible
values from the set N to Z (another attempt to generalize the multiset has been
explored in [3]). In doing so we will have to define a new type of P system, called
hybrid P system, in some ways similar to a catalytic P system (see [6], page 53).
After giving some formal definitions necessary to understand hybrid P systems
in Section 2, we will go on to investigate their power in Section 3. It will turn out
that such systems are less powerful than the Turing Machine, as we will show.
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2 Preliminaries

Definition 1. A P system is a construct

⇧ = (O, µ, w1, ..., wm, R1, ..., Rm, io),

where:

1. O is an alphabet whose elements are called objects;
2. µ is the membrane structure with m membranes, labelled with 1, ..., m;
3. wi, 1  i  m, are strings of the form a

M(a1)
1 a

M(a2)
2 ...a

M(an)
n representing

the multisets of objects in the regions 1, ..., m they are associated with (M(ai)
is the multiplicity of the i-th symbol);

4. Ri, 1  i  m are finite sets of evolution rules. Each Ri associated with
region i of µ. Evolution rules are of the form u ! v, where u is a string
over O and v is a string over Otar = O⇥TAR, where TAR = {here, out}[
{inj |1  j  m}. The symbols here, out, inj, are called target commands (or
target indications) and specify whether an object has to stay in its current
membrane (here), go to the outer membrane (out) or must be sent to an
inner membrane labelled with j (inj). Usually we omit the indication “here”
for simplicity;

5. io 2 {1, ..., m} is the label of an elementary membrane, called output mem-
brane.

In hybrid P systems we allow only standard rules to be used (like the ones
we just presented). In such rules only objects with positive multiplicities appear.
However we add one condition: objects do not necessarily have to be present for
the rules to be applied. This means we can apply a rule regardless of whether
its left-hand objects are present with positive multiplicity in a membrane. When
doing so, we must subtract from the membrane the amount of objects that were
used to apply the rule. For example, if a membrane contains a2, the rule a3 ! bc
can still be applied, the result of the application being a�1bc.

This immediately raises one problem: if the rules can be applied regardless of
the presence of an object, then at every step any rule can be applied an infinite
amount of times. One possible solution to prevent this from happening, is to
add catalysts to the rules. Catalysts are objects present in a finite number in
the system, they are used to apply the rules but are not changed by them, and
they are not allowed to have negative multiplicity. An example of this kind of
rule could be ak ! ck, where k is a catalyst.

Before hybrid P systems were conceived, we have always worked with mul-
tisets defined as mappings M : A �! N, with A an arbitrary set. In order to
consider multisets with negative multiplicities, we need to extend that definition
to hybrid sets, as defined in [1]:

Definition 2. Given a universe U, any function f : U �! Z is called a hybrid
set. As usual, the value f(x) for an element x 2 U is said to be the multiplicity
of x.
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From now on we will work with hybrid sets instead of multisets. This means
it will be normal, and actually very common, for an object to have a negative
multiplicity. What do “negative objects” represent in the real world? How can
an object be present a negative number of times? In this paper it is not our
purpose to answer that question. Our goal is not to model a real cell, but to
define and explore new theoretical models inspired by cells. However, notice that
some physical quantities, such as electrical charge, may indeed have negative
integer values and can possibly be modelled by hybrid sets.

Definition 3. A hybrid P system is defined as

⇧ = (O, K, µ, w1, ..., wm, R1, ..., Rm, io)

where all components are defined as for standard P systems (Definition 1), ex-
cept that all multisets are replaced by hybrid sets. We also have an alphabet of
objects K ✓ O used as catalysts; we require M(k) � 0 for all k 2 K and all hy-
brid sets M . Furthermore, the evolution rules are of the form uk ! vkt, where
u 2 O?, k 2 P and v is a string over Otar, where Otar = (O � K) ⇥ TAR, for
TAR = {here, out} [ {inj |1  j  m}, and t 2 TAR.

A configuration of a system is the m-tuple of hybrid sets of objects present in
the system in its m regions. The initial configuration of a system is (w1, ..., wm).

As time passes, the configuration of a system changes thanks to the applica-
tion of the evolution rules. A global clock is assumed to exist. Its function is to
mark the time for each membrane within the system, dividing the computation
in steps. At each step, the evolution rules are applied in a non-deterministic and
maximally parallel manner. This means that the rules to be applied are chosen
in a non-deterministic way within every membrane, and every object that can
use a rule to evolve must do so.

A rule Ri : uk ! vkt can be applied if k is present in membrane i. If it is, the
hybrid set u is removed from the membrane and the objects in v are introduced,
according to their multiplicity and target commands, and k is (possibly) moved
according to t. If v contains the pair (a, inj) but j is not a membrane immediately
inside i, then that rule cannot be applied. Whenever an object is sent out of the
skin into the environment, it cannot come back.

Given two configurations C1 = (w0
1, ..., w

0
m) and C2 = (w00

1 , ..., w00
m) of the

same system ⇧, we say that we have a transition from C1 to C2 if we can pass
from C1 to C2 using the evolution rules R1, ..., Rm in the regions of the system
(i.e. we simultaneously transform the hybrid sets in C1 to obtain C2). This can
be written as C1 =) C2.

A computation is a sequence of transitions between configurations of a sys-
tem. It is considered successful if and only if the system halts (i.e. no further
rules can be applied). In hybrid P systems, this can only happen when all cata-
lysts have been moved to regions where no rule involves them. Once it halts, the
result is given by the multiplicities of objects in the output membrane io of the
system. A computation that does not halt produces no output. P systems can be
seen as generators of numbers: we then denote by Z(⇧) the set of numbers that
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can be computed by the system, that is, all the possible vectors of multiplicities
of objects in the output membrane when the computation stops.

3 Negative multiplicities weaken the power of a system

We now prove that the use of hybrid sets, where objects are allowed to have
negative multiplicities, weakens P systems. Informally, one can expect such a
result because of the possibility to transform rules like uk ! vkt with target
t 2 {here, out, inj} into the form k ! u�1vkt, that is, we are losing the power
of the cooperation by moving u on the other side of the rule with opposite
multiplicities.

3.1 Partially blind register machines

We need to formally introduce a particular type of register machine (as in [2])
that is said to be partially blind.

We start from a register machine R = (m, B, l0, lh, P ), where m � 1 is the
number of counters, B is the finite set of instruction labels, l0 is the initial label,
lh is the halting label, and P is the program, a finite set of instructions from B.

There are three types of instructions:

– l1 : (ADD(r), l2, l3), 1  r  m;
– l1 : (SUB(r), l2, abort), 1  r  m (if r was not empty, then go to l2,

otherwise the machine aborts without producing any result);
– lh : HALT (which halts the machine).

The main feature of this register machine is that the subtracting instruction does
not check if the register is empty. When the RM executes a subtraction from an
empty register, it aborts the computation. Technically, even though there does
not seem to be a test for zero, this test is implicit: at the end of a successful
computation we require some specified registers to be empty; all computations
where this does not happen are discarded as aborted computations.

It is known that partially blind register machines are strictly less powerful
than Turing machines [4].

3.2 Simulation using partially blind register machines

The language of hybrid sets (resp., the set of vectors of integers) generated by
a system ⇧ is denoted by L(⇧) and it consists of all hybrid sets (resp., vectors
of multiplicities of hybrid sets) placed in the output membrane at the end of
halting computations. We will denote by NHP and NPBRG the sets generated
by a hybrid P system and a partially blind register machine, respectively. We
now prove that NHP ✓ NPBRG.

Theorem 1. Let L be a vector set of numbers generated by a hybrid P system
⇧ = (O, K, µ, w1, ..., wm, R1, ..., Rm, io). Then, there exist a PBRM that can
generate L.
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Proof. We can build a partially blind register machine

R = (2m · |O � K| + 2 · |O � K|, B, 1, 4, P )

generating L as follows:

1. For each a 2 O�K there are pairs of registers labelled a+
i and a�

i such that
the value a+

i �a�
i is the multiplicity of object a in membrane i, with 1  i 

m (a total of 2m·|O�K| registers). Note that we do not balance out positive
and negative occurrences of objects until the computation is over (plus, we
do this only in the output membrane); so it will be normal to have the
registers associated with the positive and negative multiplicities of an object
both nonnegative at the same time. This has no effect on the computation:
in fact, the multiplicities of non-catalysts are basically irrelevant until the
system stops and they become part of the result;

2. For each a 2 O � K we add two output registers labelled outputa+ and
outputa� . The register outputa+ (resp., outputa�) will contain the absolute
value of the final multiplicity of object a in the output membrane, if such
multiplicity is positive (resp., negative), and zero otherwise.

The simulation works like this: in the first part, the registers from (1) are used to
keep track of how many non-catalyst objects are being generated (resp., deleted);
this is performed by increasing the registers a+

i (resp., increasing the registers a�
i )

without ever decreasing those registers.
The number of catalysts never changes during the computation, but they

can only be moved around the membrane structure in a finite number of distinct
configurations. Hence, we can keep track of the position of the catalysts as part
of the label of the current instruction of the register machine. In particular,
some instruction labels correspond to configurations of catalysts where no rule
is applicable and thus ⇧ halts its computation.

Hence, each configuration of catalysts enabling one or more rules of ⇧ cor-
responds to a set of instructions of R updating the counters of (1) according to
those rules. In general, several possible maximally parallel choices of rules com-
peting for the catalysts are possible; however, since these are finite in number,
one of them can be nondeterministically chosen by jumping to a corresponding
instruction label. At the end of this update, the register machine jumps to the
first label corresponding to the new configuration of catalysts moved by the rules
they enabled (this might be the same as the current one if no catalyst has been
moved at this time step).

Then, when the P system cannot apply any more rules, because all catalysts
have been moved to a region where they have no applicable rules (this can
be detected by the label of the current instruction of R) we enter a second
phase of the simulation. The purpose of this phase is that of levelling the values
contained in the pairs of registers a+

o and a�
o (the ones associated with the output

membrane): that is, we calculate |a+
o | � |a�

o | and leave the result in a+
o (if the

multiplicity is nonnegative) or in a�
o (otherwise). This process is performed via a

nondeterministically guessed number of subtractions, since we cannot perform a
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zero test (if the number of subtractions leads to decrementing an empty register,
we simply obtain an aborted computation); the correct result of the subtraction
will be checked by exploiting the halting condition of the register machine.

In the third phase of the simulation we copy the results in outputa+ or
outputa� while deleting the contents of a+ or a� respectively. This is also per-
formed by repeated subtractions without zero testing (i.e., a nondeterministic
number of times). Finally, the machine halts.

We require all the registers a+
o , a�

o (8 a 2 O � K) to be zero when the
machine halts. This way we can make sure that two things have happened: (1) the
subtraction |a+

o | � |a�
o | has been performed correctly, and (2) the multiplicities

of the output objects have been copied correctly to the registers outputa+ or
outputa� .

To generate the instructions in P , we proceed as follows. First of all, we
take all the rules of the form uk ! vkt and we transform them into the form
k ! u�1vkt. We can then think of grouping the rules depending on the configu-
ration of catalyst that enable them and depending on simultaneous applicability,
and generate all the possible combinations of rules that can be applied in one
step. Once we have generated all the combinations, we can translate them into
instructions for the machine, adding and subtracting the elements from their
respective registers.

From the previous discussion, it is easy to see that the P systems can be
simulated by the PBRM , generating the same vector set of numbers.

We show a simple example to clarify the process just described in the proof.
The PBRM starts in a configuration that reflects the initial state of the P sys-
tem, which means that all of its registers have been initialized with the multiplic-
ities of the non-catalyst objects they represent, and that the initial instruction
label encodes the initial configuration of the catalysts. At each step of the com-
putation, the instructions from the first phase are used until the machine enters
the second phase, which calculates the final multiplicity of each non-catalyst ob-
ject (a, b, c). Finally, the machine “copies” these values into the output registers
using the instructions of the third phase and halts (the copy is attained by means
of subtracting and adding 1 to the registers).

Example 1. Let us assume to have only one membrane with label 1 and the
following rules (already in context-free notation):

k ! a�1b2k k ! kout `! b�1c` `! `out

and that this membrane only contains the catalysts k and ` with multiplicity 1
in the initial configuration. Thus, there exist only 4 possible configurations of
catalysts, depending on which have been already sent out. When both have been
sent out, the computation of the P system halts. All catalyst configurations
(except the halting one) involve one or two conflicting rules: each catalyst can
either remain where it is and rewrite some objects, or be sent out.

For instance, the block of instructions corresponding to the catalyst con-
figuration where both catalysts are still inside the membrane and the rules
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k ! a�1b2k and `! b�1c` are applied is

l1 : (ADD(a�
1 ), l11, l11)

l11 : (ADD(b+
1 ), l12, l12)

l12 : (ADD(b+
1 ), l13, l13)

l13 : (ADD(b�1 ), l14, l14)

l14 : (ADD(c+
1 ), l0, l0)

and the computation proceeds with label l0, where another maximally parallel
choice of rules enabled by the same catalyst configuration is nondeterministically
made. If the catalysts had been moved, the computation would instead have
jumped to the first label corresponding to the new configuration of catalysts.

Now suppose that the P system reaches a configuration where both catalysts
have been sent out (thus no more rule is applicable), and suppose that this
catalyst configuration corresponds to label l4. Now the registers corresponding to
the output region (membrane 1 in this case) are levelled by repeatedly applying
the following instructions for each object type x:

lx : (SUB(x+
1 ), lx2, abort)

lx2 : (SUB(x�
1 ), lx3, abort)

where the instructions at label lx3 nondeterministically guess whether one of the
two registers x+

1 and x�
1 have reached zero (and thus the difference has been

computed correctly) and, if so, the computation proceeds with the following
object type instead of repeating the previous two instructions again.

When all pairs of object registers have been levelled, the register machine
guesses, for each object type x, whether the final multiplicity is nonnegative
(resp., negative) and copies the value of register x+

1 (resp., x�
1 ) into the output

register outputx+ (resp., outputx�). This is, once again, performed by repeated
decrement and increment instructions until nondeterministically guessing that
the source register is empty.

This way the machine reaches the halt instruction and succeeds if and only
if the P system has stopped and its simulation has been performed correctly;
a simulation error is detected either when decrementing a register below zero,
or when some registers x+

1 or x�
1 are nonempty in the final configuration of the

register machine.

It is well known that PBRG ⇢ RE, where RE denotes the recursively enu-
merable languages. Hence, an immediate consequence of Theorem 1 is that hy-
brid P systems are strictly less powerful than Turing machines.

Corollary 1. NHP ⇢ RE.
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4 Conclusion

In this paper we introduced a new type of P system, which because of its different
nature required new definitions. However, there are other variants that can be
similarly conceived.

The first variant is a P system where we allow rules to use objects with
negative multiplicities; that is, we allow rules like u�1 ! bc�1. We do not,
however, allow the application of any rules when the left-hand objects are not
present (like we do in first-type systems). We conjecture that since their rules
cannot be applied without the required left-hand objects, their power is not
weakened by the use of hybrid sets. The main problem with systems introduced
in this paper is that we can use rules at any time, and that makes us lose control
over when to stop using a rule.

The second variant is a combination of the other two: in these systems, rules
can deal with objects with negative multiplicities and can also be applied at
any time. To limit the use of a certain rule, catalysts need to be introduced (or
alternatively, one may think of a different way to prevent the computation from
never ending). It is unclear how powerful this device would be, and we leave all
possible paths open.
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Abstract. We consider (extended) spiking neural P systems with states,
where the applicability of rules in a neuron not only depends on the
presence of sufficiently many spikes (yet in contrast to the standard def-
inition, no regular checking sets are used), but also on the current state
of the neuron. Moreover, a spiking rule not only sends spikes, but also
state information to the connected neurons. We prove that this variant
of the original model of extended spiking neural P systems can simulate
register machines with only two states, even in the basic non-extended
variant.

1 Introduction

In the area of P systems, the model of spiking neural P systems was introduced
in [6]. Whereas the basic model of membrane systems, see [10], reflects hierarchi-
cal membrane structures, in spiking neural P systems the cells are arranged in
a tissue-like manner, with the contents of a cell (neuron) consisting of a number
of so-called spikes, i.e., of a multiset over a single object. The rules assigned
to a neuron allow us to send information to other neurons in the form of elec-
trical impulses (also called spikes) which are summed up at the target neuron;
the application of the rules depends on the contents of the neuron and in the
general case is described by regular sets. As inspired from biology, the neuron
sending out spikes may be “closed” for a specific time period corresponding to
the refraction period of a neuron; during this refraction period, the neuron is
closed for new input and cannot get excited (“fire”) for spiking again.

The length of the axon may also cause a time delay before a spike arrives at
the target. Moreover, the spikes coming along different axons may cause effects
of different magnitude. All these biologically motivated features were included
in the model of extended spiking neural P systems considered in [3], the most
important theoretical feature being that neurons can send spikes along the axons
with different magnitudes at different moments of time.
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In this paper, we consider a variant of the model of extended spiking neural
P systems which not only uses spikes to be sent to other neurons when some
neuron spikes, but also allows for sending some additional information called
“state” along the axons. All these state informations arriving in a neuron then
determine the next state of the neuron. On the other hand, we do not use the
regular checking sets for the current number of spikes in the neuron any more,
which decreases the amount of information a spiking rule may use. Hence, the
spiking rules now depend on the current states of the neurons and the availability
of sufficiently many spikes.

This variant of extended spiking neural P systems with states has been in-
spired by the variant of spiking neural P systems with polarizations, see [14],
where the states are called polarizations, and the underlying model of extended
spiking neural P systems was the basic one with a fixed connection structure,
only extended by allowing more than one spike to be sent along the axons. There
it was shown that computational completeness (i.e., simulation of register ma-
chines) can be obtained with only three polarizations. In this paper we now show
that computational completeness can already be obtained with only two states,
i.e., with two polarizations, even for the basic non-extended variant as consid-
ered in [14], which solves an open problem raised at the Brainstorming Week on
Membrane Computing in Sevilla at the beginning of February 2016.

The rest of the paper is organized as follows: In the next section, we recall
some preliminary notions and definitions from formal language theory, especially
the definition and some well-known results for register machines. In Section 3,
based on the model of extended spiking neural P systems as considered in [3] we
define the model of spiking neural P systems with states we use in this paper. In
Section 4, we prove our main result and show that spiking neural P systems with
only two states (0 and 1) can simulate register machines; the complexity of the
construction depends on the features we require the spiking neural P systems
to have, but the result even holds true for the basic non-extended variant of
spiking neural P systems with states, where the connection structure between
the neurons is fixed and does not depend on the spiking rules applied in the
neurons, which makes our result comparable we that one obtained in [14] where
three states (there called polarizations) were needed. Moreover, we only use a
very simple global state composition function computing the new state of a
neuron from the state information having arrived from the input neurons in the
simplest way by going to the “activated state 1” if and only if at least one such
activating signal 1 has come in the previous step. In Section 5, we show how
small universal spiking neural P systems with states can be constructed based
on the results obtained in this paper. A short summary of the results we obtained
concludes the paper.

2 Preliminaries

In this section we recall the basic elements of formal language theory and es-
pecially the definitions and some well-known results for register machines; we
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also refer to the corresponding section from [3] and [2]. For the basic elements
of formal language theory needed in the following, we refer to any monograph
in this area, in particular, to [12]. We just list a few notions and notations:

V ∗ is the free monoid generated by the alphabet V under the operation
of concatenation and the empty string, denoted by λ, as unit element; for any
w ∈ V ∗, |w| denotes the number of symbols in w (the length of w). N+ denotes the
set of positive integers (natural numbers), N is the set of non-negative integers,
i.e., N = N+ ∪ {0}.

2.1 Register Machines

The proofs of the results establishing computational completeness in the area of
P systems are often based on the simulation of register machines; we refer to [8]
for original definitions, and to [5] for the definitions we use in this paper:

An n-register machine is a tuple M = (n,B, l0, lh, P ), where n is the number
of registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ n.
Increases the value of register r by one, followed by a non-deterministic jump
to instruction q or s. This instruction is usually called increment.
• p : (SUB (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ n.

If the value of register r is zero then jump to instruction s; otherwise, the
value of register r is decreased by one, followed by a jump to instruction q.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

– lh : halt (HALT instruction)
Stop the machine. The final label lh is only assigned to this instruction.

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate or accept exactly
the sets of vectors of non-negative integers which can be generated by Turing
machines, and they can even compute any partial recursive relation on vectors
of non-negative integers.

For example, a (non-deterministic) register machine M is said to generate
a vector (s1, · · · , sβ) of non-negative integers if, starting with the instruction
with label l0 and all registers containing the number 0, the machine stops (it
reaches the instruction lh : halt) with the first β registers containing the numbers
s1, · · · , sβ (and all other registers being empty).

3 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane com-
puting, e.g., from [9] and [11]; comprehensive information can be found on the
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P systems web page [13]. Moreover, for the motivation and the biological back-
ground of spiking neural P systems we refer the reader to [6] as well as to the
corresponding Chapter 13 in the Handbook of Membrane Computing [11]. For
the definition of an extended spiking neural P system we refer to [3].

Based on the model of extended spiking neural P systems, we now define the
new model of extended spiking neural P systems with states, i.e., the neurons can
be in different states, and depending on the current state of a neuron, different
spiking rules may be applicable.

Definition 1. An extended spiking neural P system with states (of degree
m ≥ 1) (an ESNPS system for short) is a construct Π = (N,S, I,R, f) where

– N is the set of cells (or neurons); the neurons may be uniquely identified by
a number between 1 and m or by an alphabet of m symbols;

– S is the set of states;
– I describes the initial configuration by assigning an initial value (of spikes)

and an initial state to each neuron;
– R is a finite set of rules of the form i :

(
si, a

k
)
→ P such that i ∈ N

(specifying that this rule is assigned to neuron i), si ∈ S is the current state
of neuron i, k ∈ N is the “number of spikes” (the energy) consumed by this
rule, and P is a (possibly empty) set of productions of the form (l, w, s)
where l ∈ N (thus specifying the target neuron), w ∈ {a}∗ is the weight of
the energy sent along the axon from neuron i to neuron l, and s ∈ S is the
state signal sent along the axon from neuron i to neuron l;

– f is the state composition function, which for each neuron allows for com-
puting the new state of a neuron from its current state and the state signals
having arrived in the neuron in the previous step.

Definition 2. A configuration of the ESNPS system is described by specifying,
for each neuron, the actual number of spikes in the neuron as well as its current
state. A transition from one configuration to another one now works as follows:

– for each neuron i, we first choose (if possible) one rule i :
(
si, a

k
)
→ P which

is applicable (this means neuron i must be in state si and contain at least
k spikes); by applying this rule, we reduce the number of spikes in neuron i
by k; moreover, for each production (l, w, s) ∈ P , |w| spikes and the state
signal s are sent to neuron l;

– for each neuron l, we now consider all “packages” (l, w, s) having been sent
on axons leading to neuron l; we then sum up all weights w in such packages
and add this sum of spikes to the corresponding number of spikes in neuron l;

– for each neuron l, moreover, we use the current state and all the state sig-
nals s (if any) having arrived in the neuron for computing the next state of
the neuron by the state composition function f .

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence
of configurations starting with the initial configuration given by I. A computation
is called successful if it halts, i.e., if no neuron contains an applicable rule and
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no neuron would be able to change its state in the next step (thus making other
spiking rules applicable). Observe that even if no rule has been applicable, a
neuron still might be able to change its state as the state composition function f
also uses the current state of the neuron to compute its new state and does not
necessarily rely on additional state signals having arrived from other neurons.

With respect to the original model introduced in [6] as well as to the model
with polarizations as considered in [14], our model as defined above is more
general: the most important extension is that different rules for neuron i may
affect different axons leaving from it whereas in these other model the structure
of the axons (called synapses there) is fixed. Moreover, reflexive axons, i.e.,
leading from neuron i to neuron i, are not allowed there, i.e., for (l, w, s) being a
production in a rule i :

(
si, a

k
)
→ P for neuron i, l 6= i is required. On the other

hand, our definitions have been chosen in such a way that the model introduced
in [14] is a restricted variant of our more general model.

Finally, we mention that as in [4], the notion of extended spiking neural P
systems often is used only taking into account that more than one spike can be
sent along all axons with one spiking rule.

Depending on the purpose the ESNPS system is to be used, i.e., as a gen-
erative, an accepting, or a computing device, some more features have to be
specified: for generating k-dimensional vectors of non-negative integers, we have
to designate k neurons as output neurons, and the other neurons then will also
be called actor neurons; for the computing case and the accepting case, some
neurons have to be designated as input neurons. As in [3], also in this paper, we
take the number of spikes at the beginning/end of a successful computation in
the input/output neurons as the input/output values.

Remark 1. In the following, for a spiking rule i :
(
si, a

k
)
→ P , the set P will not

be written as a set, but just by concatenating its elements of the form (l, w, s),
where l is the target neuron, w describes the number of spikes sent to l and s is
the state signal sent to l.

The following example illustrates the computational power of ESNPS systems
with two states by showing how sets of exponentially growing numbers can be
generated.

Example 1. We construct the ESNPS system

Π4n = ({σ1, σ′1, σ2, σ′2}, {0, 1}, I, R, f)

generating the multiset language {a4n | n > 1} in the output neuron σ1. Initially,
σ1 and σ′1 are in state 1 and contain one and two spikes, respectively. On the
other hand, neurons σ2 and σ′2 initially are in state 0 and are empty.

The state composition function f , for every neuron, is given as follows: If any
state signal 1 has arrived in the previous step, the state of the neuron is 1, and
0 otherwise.
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To illustrate the rules in the ESNPS system, we use the following graphical
notation: Each rule is represented by an arrow with a single tail but with multiple
heads; the branching point is highlighted by a black bullet. The left-hand side
of the rule is written on the segment preceding the bullet and each right-hand
side on the corresponding arrow head. When writing the right-hand sides, we
omit the names of the target neurons (because they are pointed at by the arrow
heads).

Π4n works in a two-phase cycle. In the first phase, all the spikes from σ1
are transferred in two copies into σ2; this phase is controlled by σ′1. The second
phase is symmetric: the spikes from σ2 are doubled and moved into σ1, under
the control of σ′2.

The first phase is governed by the following rules in neurons σ1 and σ′1:

σ1 : (1, a)→ (σ2, a
2, 0)(σ′1, a, 1),

σ′1 : (1, a)→ (σ1, λ, 1),
σ′1 : (0, a)→ (σ2, λ, 1)(σ′2, a

2, 1).

The graphical representation of these rules is given in Figure 1.

σ1

σ′
1

σ2

σ′
2

(1, a)
(a

2 , 0)

(a, 1)
(1, a)

(λ, 1)

(0, a)

(λ, 1)

(a 2
, 1)

Fig. 1. Multiplication by 2 in ESNPS with two states.

The loop between σ1 and σ′1 ensures that, while there are still spikes in σ1,
both neurons stay in state 1. When there are no more spikes in σ1, σ′1 must pass
into state 0 and will have to use its last spike (of the two it normally contains)
to apply the rule (0, a) → (σ2, λ, 1)(σ′2, a

2, 1). This rule puts two spikes into
the control neuron σ′2 and switches both neurons σ2 and σ′2 to state 1, thereby
starting the second phase of the cycle. The second phase is totally symmetric
and is governed by the following rules in neurons σ2 and σ′2:

σ2 : (1, a)→ (σ1, a
2, 0)(σ′2, a, 1),

σ′2 : (1, a)→ (σ2, λ, 1),
σ′2 : (0, a)→ (σ1, λ, 1)(σ′1, a

2, 1).
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Finally, to ensure that the system halts after the second phase of the cycle, we
add the following rule to the control neuron σ′2:

σ′2 : (0, a)→ (σ1, λ, 0).

Thus, σ′2 may choose between restarting the loop by switching the state of σ1
and σ′1, or just forgetting the last control spike, thus effectively bringing the
system to a halt, with 4n copies of a in σ1, where n is the number of times the
cycle has run.

4 Simulating Register Machines with Extended Spiking
Neural P Systems with only Two States

We now consider an arbitrary n-register machine M = (n,B, l0, lh, P ) and show
how to simulate the computations of such a register machine by a spiking neural
P system Π = (N,S, I,R, f) with only two states, i.e., S = {0, 1}.

In the initial configuration, except for neuron l0, all neurons are in state 0
and contain no spike (in the accepting or the computing case, the input neurons
contain the input values), and only neuron l0 contains one spike.

For all neurons, we use one global state composition function, i.e., if any
state signal 1 has arrived in the previous step, the state of the neuron is 1, and
0 otherwise.

In the following, we will provide several variants of spiking neural P sys-
tems with only two states simulating the computations of a register machine by
showing how ADD- and SUB-instructions can be simulated.

A first simple proof. We start with a very simple proof using the possibilities
offered by our rather general definition.

For each register r, 1 ≤ r ≤ n, we use a corresponding neuron r. For each
instruction of the register machine with label p ∈ B we use a neuron p and some
additional neurons to simulate this instruction.

An ADD-instruction p : (ADD(r), q, s) is simulated by neuron p with the rules

p : (0, a)→ (q, a, 0)(r, a, 0) and
p : (0, a)→ (s, a, 0)(r, a, 0),

meaning that neuron p (always staying in state 0) consumes one spike and sends
one spike and state 0 to neuron q or neuron s and to neuron r (the neuron
representing register r).

For SUB-instructions on register r, let

SUB(r) = {p ∈ B | p : (SUB(r), q, s) ∈ P}.

Then the rule in neuron r representing register r allowing for simulating SUB-
instructions is

r : (1, a)→∏
l∈SUB(r)(l

′′, λ, 1).
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In case the register is non-empty, in the activated state 1 one spike is elimi-
nated and state 1 is sent to every neuron l′′ for every label l of a SUB-instruction,
yet no spike a is sent.

Then a SUB-instruction p : (SUB(r), q, s) is simulated by the neurons p, p′,
and p′′ with the rules

p : (0, a)→ (p′, a, 1)(r, λ, 1),
p′ : (1, a)→ (p′′, a, 0), as well as
p′′ : (0, a)→ (s, a, 0) and
p′′ : (1, a)→ (q, a, 0).

The simple construction described above obeys to the following features,
interesting from a complexity point of view:

– as desired, we only need two states;
– we do not use self-loops;
– we send the same state to all neurons in each rule;
– exactly one spike is consumed by each rule;
– yet, on the other hand, we allow to also send zero spikes to a neuron.

The connection structure only depends on the state in case of deterministic
register machines! Yet by using a more complicated construction for the simu-
lation of non-deterministic ADD-instructions we can even obtain that feature in
general:

A refined proof where the connection structure between the neurons
only depends on the state. An ADD-instruction p : (ADD(r), q, s) is simulated
by the neurons p, p′, and p′′ with the rules

p : (0, a)→ (p′, a, 0)(r, a, 0),
p′ : (0, a)→ (p′′, a, 0), and
p′ : (0, a)→ (p′′, a, 1), as well as
p′′ : (0, a)→ (q, a, 0) and
p′′ : (1, a)→ (s, a, 0).

A proof with a static connection structure between the neurons. For
comparison with the model considered in [14] (where states are called polariza-
tions) we have to ask the following question: Can we have a completely static
connection structure even not depending on the state of the neuron?

We first show that a non-deterministic ADD-instruction can be simulated
within a fixed connection structure, now using the initial neuron p in the ac-
tivated state 1:

An ADD-instruction p : (ADD(r), q, s) is simulated by the neurons p and p′ with
the rules

p : (1, a)→ (p′, a, 0)(r, a, 0),
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p′ : (0, a)→ (0′′q , a, 0)(1′′s , a, 0), and

p′ : (0, a)→ (0′′q , a, 1)(1′′s , a, 1),

together with the following rules in the neurons 0′′l and 1′′l , for every label l ∈ B:

0′′l : (0, a)→ (l, a, 1) and

0′′l : (1, a)→ λ as well as

1′′l : (1, a)→ (l, a, 1) and

1′′l : (0, a)→ λ.

The rules of the form p : (s, a)→ λ with s ∈ {0, 1} (and p = (1−s)′′l ) are rules
usually called forgetting rules as they only consume spikes in the neuron p with-
out sending spikes to the connected neuron l; yet with respect to emphasizing a
fixed connection structure, they rather could also be written as

p : (s, a)→ (l, λ, 0)
i.e., although zero spikes are sent to neuron l, still the state signal 0 is sent
along the axon to l. A careful inspection of our proofs shows that in both inter-
pretations – whether sending the state signal 0 or not –, the simulations work
correctly.

Instead of showing how SUB-instructions can also be simulated within a fixed
connection structure, we finally attack the last remaining non-standard feature
at the same time, i.e.: Can we avoid sending zero spikes?

The final proof for the non-extended model. With using the simulation(s)
of ADD-instructions as given in the previous proof variant, we obtain a simulation
for a model comparable with that one as considered in [14], yet improving the
result from three states (polarizations) to only two.

For each register r, 1 ≤ r ≤ n, we now use two neurons r and r′.
In the initial configuration, except for neuron l0, all neurons are in state 0

and contain no spikes (in the accepting or the computing case, the input neurons
contain the input values), and only neuron l0 is in state 1 and contains one spike.

As we now are dealing with a fixed connection structure between the neurons
in N , which usually (e.g., see [14]) is represented by a relation syn ⊆ N ×N , a
rule in a neuron i of the form

i :
(
si, a

k
)
→ {(l, am, s) | (i, l) ∈ syn}

now will be written as

i :
(
si, a

k
)
→ (am, s) | {j | (i, j) ∈ syn} .

This notation specifies the connection structure syn in an implicit way, but
allows for an easy non-graphical representation of the ESNPS system.
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We first use this new notation to repeat how a non-deterministic ADD-
instruction p : (ADD(r), q, s) is simulated by the neurons p and p′ with the rules

p : (1, a)→ (a, 0) | {p′, r},
p′ : (0, a)→ (a, 0) |

{
0′′q , 1

′′
s

}
and

p′ : (0, a)→ (a, 1) |
{

0′′q , 1
′′
s

}
,

together with the following rules in the neurons 0′′l and 1′′l , for every label l ∈ B:

0′′l : (0, a)→ (a, 1) | {l} and

0′′l : (1, a)→ (λ, 0) | {l} as well as

1′′l : (1, a)→ (a, 1) | {l} and

1′′l : (0, a)→ (λ, 0) | {l}.

A SUB-instruction p : (SUB(r), q, s) is simulated by the neurons p, p̃, p̃′, p̂,
p̂′, p̂′′, p̄, and p̄′ with the rules

p : (1, a)→ (a, 1) | {p̃, p̂, r},
p̃ : (1, a)→ (a, 0) | {p̃′},
p̃′ : (1, a2)→ (a, 1) | {q} ∪ {l̂′′ | l ∈ SUB(r) \ {p}},
p̃′ : (0, a)→ (λ, 0) | {q} ∪ {l̂′′ | l ∈ SUB(r) \ {p}} as well as

p̂ : (1, a)→ (a, 1) | {p̂′},
p̂′ : (1, a)→ (a, 0) | {p̂′′},
p̂′′ : (0, a)→ (a, 1) | {r, p̄},
p̂′′ : (1, a2)→ (λ, 0) | {r, p̄},
p̄ : (1, a)→ (a, 1) | {p̄′}, and

p̄′ : (1, a)→ (a, 1) | {s} ∪ {l̂′′ | l ∈ SUB(r)}
together with the following rules for the register neuron r and for the additional
neuron r′:

r : (1, a2)→ (a, 1) | {r′} ∪ {l̃′ | l ∈ SUB(r)} and

r′ : (1, a)→ (a, 1) | {l̂′′ | l ∈ SUB(r)}.

The main idea of this construction is to start both decrement and zero-
check case in parallel and then, depending on the signal from r and r′ take the
necessary action, including to reset register r to 0 if the additional spike sent
there did not lead to a spiking action of neuron r in case the value stored in the
register was zero. Moreover, all actor neurons affected by signals from neuron r
not belonging to the current label p have to be reset without allowing them to
act in a non-desired way:

For the neurons p̃′ this happens automatically as with only one spike a they
cannot spike in state 1, yet after one step the state goes back to 0 and then
allows the spike to be forgotten.
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For the neurons p̂′′ this happens if the state signal 1 and the spike from neuron
r′ are accompanied by a second spike which allows for resetting the neuron by
using the forgetting rule (1, a2)→ (λ, 0).

5 Universal (Extended) Spiking Neural P Systems with
Two States

We simulate the strongly universal register machine U22 of Korec, see [7]. Rather
than performing a direct simulation which would yield 9×1+8×1+13×4 = 69
rules, we notice that simulation of ADD-instructions does not require separate
rules, because it can be done as a part of the simulation of SUB-instructions. More
exactly, increments are built into the transitions to q and s of p : (SUB(r), q, s).
This has been formalized as generalized register machine (GRM for short), see [1].
The rules of U22 in the GRM form are given below.

q1 : (SUB(1), ADD(7)q1, ADD(6)q4),
q4 : (SUB(5), ADD(6)q4, q7),
q7 : (SUB(6), ADD(5)q10, q4),
q10 : (SUB(7), ADD(1)q7, q13),
q13 : (SUB(6), ADD(6)q14, q1),
q14 : (SUB(4), q1, q16)
q16 : (SUB(5), q18, q23),
q18 : (SUB(5), q20, q27),
q20 : (SUB(5), ADD(4)q16, ADD(2)ADD(3)q32),
q23 : (SUB(2), q32, q25),
q25 : (SUB(0), q1, q32),
q27 : (SUB(3), q32, ADD(0)q1),
q32 : (SUB(4), q1, qh).

We note that also the first step of the simulation of a generalized SUB-instruction
can be embedded into the last step of the preceding simulation. Moreover, note
that in this case we may start with one spike in neuron q′′13. It is easy to see that
it suffices to have 3 rules per each of the 13 generalized conditional decrement
instructions and 1 rule per each of the 8 registers, yielding a total of only 47
rules, associated to register neurons, primed instruction neurons and double-
primed instruction neurons.

Register neurons

0 : (1, a)→ (q′′25, λ, 1),
1 : (1, a)→ (q′′1 , λ, 1),
2 : (1, a)→ (q′′23, λ, 1),
3 : (1, a)→ (q′′27, λ, 1),
4 : (1, a)→ (q′′14, λ, 1)(q′′32, λ, 1),
5 : (1, a)→ (q′′4 , λ, 1)(q′′16, λ, 1)(q′′18, λ, 1)(q′′20, λ, 1),
6 : (1, a)→ (q′′7 , λ, 1)(q′′13, λ, 1),
7 : (1, a)→ (q′′10, λ, 1).
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The primed instruction neurons have the rules

q′i : (1, a)→ (q′′i , a, 0) for i ∈ {1, 4, 7, 10, 13, 14, 16, 18, 20, 23, 25, 27, 32}.

We give the rules of double-primed instruction neurons in the table below,
the row representing the neuron, the column representing the left side of a rule,
and their intersection containing the right side of that rule.

(0, a) (1, a)
q′′1 (q′4, a, 1)(5, λ, 1)(6, a, 0) (q′1, a, 1)(1, λ, 1)(7, a, 0),
q′′4 (q′7, a, 1)(6, λ, 1) (q′4, a, 1)(5, λ, 1)(6, a, 0),
q′′7 (q′4, a, 1)(5, λ, 1) (q′10, a, 1)(7, λ, 1)(5, a, 0),
q′′10 (q′13, a, 1)(6, λ, 1) (q′7, a, 1)(6, λ, 1)(1, a, 0),
q′′13 (q′1, a, 1)(1, λ, 1) (q′14, a, 1)(4, λ, 1)(6, a, 0),
q′′14 (q′16, a, 1)(5, λ, 1) (q′1, a, 1)(1, λ, 1),
q′′16 (q′23, a, 1)(2, λ, 1) (q′18, a, 1)(5, λ, 1),
q′′18 (q′27, a, 1)(3, λ, 1) (q′20, a, 1)(5, λ, 1),
q′′20 (q′32, a, 1)(4, λ, 1)(2, a, 0)(3, a, 0) (q′16, a, 1)(5, λ, 1)(4, a, 0),
q′′23 (q′25, a, 1)(0, λ, 1) (q′32, a, 1)(4, λ, 1),
q′′25 (q′32, a, 1)(4, λ, 1) (q′1, a, 1)(1, λ, 1),
q′′27 (q′1, a, 1)(1, λ, 1)(0, a, 0) (q′32, a, 1)(4, λ, 1),
q′′32 (qh, a, 0) (q′1, a, 1)(1, λ, 1).

This construction uses a total of 8 + 2 × 13 + 1 = 35 neurons. The halting
neuron qh can be avoided, for example, by changing the right side of the rule
with q′′32 : (0, a) to (4, λ, 1). Indeed, the register machine halts with register 4
being empty, so the P system will halt after neuron 4 has reset its state to 0. We
also remark that this construction does not respect the requirement of all states
on the right side being equal. This requirement can be fulfilled by replacing
(r, a, 0) by (r′, a, 1) for r ∈ {0, 1, 4, 5, 6, 7} and (2, a, 0)(3, a, 0) by (〈2, 3〉′, a, 1) in
the right sides of the rules above, and adding 7 additional neurons, each having
one rule: r′ : (1, a) → (r, a, 0) for r ∈ {0, 1, 4, 5, 6, 7} and the neuron 〈2, 3〉 with
the rule 〈2, 3〉′ : (1, a)→ (2, a, 0)(3, a, 0), yielding a total of 54 rules.

If we consider the most restricted variant of spiking neural P systems with
states elaborated at the end of Section 4, which is comparable with the model
considered in [14] using the notion of polarizations instead of the notion states,
when again embedding the first step of the simulation of a generalized SUB-
instruction into the last step of the preceding simulation, a straightforward cal-
culation yields two neurons and two rules per register as well as 7 neurons and 9
rules per generalized conditional decrement instruction, which yields a total of
16 + 7× 13 = 107 neurons as well as 16 + 9× 13 = 133 rules.

6 Conclusion

We have shown that only two states (or polarizations as they are called in [14])
are needed for obtaining computational completeness with (extended) spiking
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neural P systems with states, thus solving an open problem raised at the Brain-
storming Week on Membrane Computing in Sevilla at the beginning of Febru-
ary 2016.

As interesting variants for future research we suggest to investigate the in-
fluence of how to choose the state composition function, e.g., what changes if we
use other global functions; moreover, it may also be interesting to have different
local functions instead of one global function, especially functions also taking
into account the current state of the neuron.
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Selection Criteria for Statistical Model Checking
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Abstract. Statistical model checking (SMC) has been used to verify
both biological and P systems, but different SMC tools employ different
modelling and property specification languages, making it hard to decide
which tool is best for which problem. We survey the capabilities of SMC
tools and provide experimental results showing their ability to verify
patterns against biological models. Our eventual goal is the automation
of the SMC selection process.

1 Introduction

Simulation and model checking have been applied to various computational mod-
els, including P systems. Although simulation is relatively fast and computa-
tionally inexpensive, there is no guarantee that all computational paths will be
examined. In contrast, model checking considers all possible paths in order to
guarantees the correctness of model properties, but this can be prohibitively
expensive computationally. Statistical model checking (SMC) integrates the two
techniques by generating and verifying a number of simulation paths to de-
termine an “approximate correctness” measure using statistical methods. This
enables faster verification of large models, within specified confidence bounds.

2 Comparison of Statistical Model Checking Tools

Current SMCs use different modelling and specification languages, and support
the specification of different property types, so practitioners need to know in
advance which SMC is best suited to their problem. Here we review the mod-
elling and specification languages of the most widely used SMC tools: PRISM,1

PLASMA-Lab,2 Ymer,3 MRMC4 and MC25 (see Table 1). While PRISM and
MRMC allow both numerical and statistical checking, the others support only
SMC. PLASMA-Lab and Ymer both have reasonable support for the PRISM
language, but MRMC and MC2 require users to learn external tools as well,
because they do not employ a high-level modelling language.

? The authors would like to thank the referees for their many helpful suggestions.
1 http://www.prismmodelchecker.org/
2 https://project.inria.fr/plasma-lab/
3 http://www.tempastic.org/ymer/
4 http://www.mrmc-tool.org/
5 http://www.brunel.ac.uk/research/research-areas/research-groups/cssb/

software-systems-and-databases/mc2
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Table 1. Modelling languages and external dependency of SMC tools.

SMCs Methods Modelling Language
Needs an
External Tool?

External Tool
Modelling Language

PRISM
Numerical and
Statistical model checking

Probabilistic Reactive Modules,
a.k.a, PRISM language

NO N/A

PLASMA-Lab Statistical model checking

Reactive Modules Language (RML)
of PRISM,
Adaptive RML (extension of RML
for adaptive systems),
RML with importance sampling,
Biological Language

NO N/A

Ymer Statistical model checking PRISM language NO N/A

MRMC
Numerical and
Statistical model checking

Transition matrix
YES,
e.g., PRISM

PRISM language

MC2 Statistical model checking N/A
YES,
e.g., Gillespie2

SBML

Key. Not Applicable (N/A), Systems Biology Markup Language (SBML).

Model checkers use temporal logics as property specification languages, so
to ease the specification process for non-logicians various recurring properties
(patterns) have been categorized by previous studies [1, 3]. Table 2 lists various
popular patterns with their temporal logic formulations. The table compares the
expressibility of these specification languages, showing whether properties can
be defined using just one temporal logic operator (“directly supported”), require
a more complicated combination of such operators (“indirectly supported”), or
are not supported at all.

Table 2. Expressibility of property patterns

Patterns Description
Temporal
Logic

PRISM
PLASMA
-Lab

Ymer MRMC MC2

Existence
φ1 will eventually hold,
within the ./ p bounds.

P./p[F φ1] or
P./p[true U φ1]

DS DS DS DS DS

Until
φ1 will hold continuously
until φ2 eventually hold,
within the ./ p bounds.

P./p[φ1 U φ2] DS DS DS DS DS

Response
If φ1 holds,
then φ2 must hold
within the ./ p bounds.

P≥1[G (φ1 →
(P./p[F φ2]))]

NS IS NS IS IS

Steady-State
(Long-run)

In the long-run φ1

must hold, within the
./ p bounds.

S./p[φ1] or
P./p[FG (φ1)]

NS IS NS DS IS

Universality
φ1 continuously holds,
within the ./ p bounds.

P./p[G φ1] or
P./(1−p)[(F (¬φ1)]

DS DS IS DS DS

Key. φ1, and φ2 are state formulas; ./∈ {<,>,≤,≥}; p ∈ [0, 1] is a probability with rational bounds;

and ./ is negation of ./. P./p is the qualitative operator which enables users to query qualitative

features, to query quantitative properties, P=? (quantitative operator) can be used. DS = Directly

Supported, IS = Indirectly Supported, NS = Not Supported.

The Existence, Until and Universality patterns are directly supported by all 5
tools, with the exception that Ymer requires Universality to be given indirectly.
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Table 3. SMC capabilities: the number of model/pattern verifications completed by
each SMC tool within an hour.

SMCs Existence Until Response Steady-State Universality

PRISM 337 435 N/A N/A 370

PLASMA-Lab 465 465 465 465 465

Ymer 439 439 N/A N/A 439

MRMC (with PRISM) 75 72 75 57 77

MC2 (with Gillespie2) 458 458 458 458 458

Notes. Model selected from the BioModels database [2] (as modified by the authors of [4]),

their sizes ranges from 2 species and 1 reaction to 2631 species and 2824 reactions. The models were

verified against five patterns: Existence, Until, Response, Steady-State and Universality. The experiments

are conducted on Intel i7-2600 CPU @ 3.40GHz 8 cores, with 16GB RAM running on Ubuntu 14.04.

The Response pattern is not supported by PRISM or Ymer, and is only indirectly
supported by PLASMA-Lab, MRMC and MC2. The Steady-State pattern can be
either represented by one operator, S, or two operators, F and G. Only MRMC
allows Steady-State to be specified with one operator (S), while PLASMA-Lab
and MC2 allow it to be expressed indirectly.

To determine the relative capabilities of each SMC tool, we verified 465 bio-
logical models against five patterns [3]. Table 3 shows the number of models that
each SMC tool was able to verify within an hour (integrated, where necessary,
with external supporting tools).

PLASMA-Lab was the only tool that verified all models 465 models in time.
MC2 (with Gillespie2) was able to verify 458 models, and Ymer could verify 439
model against all supported patterns, but timed-out for the others. PRISM was
able to verify 337, 435 and 370 models against Existence, Until and Universality,
respectively. PRISM failed to verify the remained models since higher path depth
required. MRMC was able to verify only a small number of models, because it
relies on PRISM which crashed for large models before matrix exportation .

Our experiments confirm that the capabilities of SMC tools differ not just
intrinsically, but that variations depend on the properties being queried. Further
investigation is, therefore, under way to determine how best to automate the
SMC selection process.
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Abstract. This position paper discusses the challenges and opportu-
nities of simulating kernel P systems (kP systems) using two power-
ful agent-based modelling frameworks on parallel architectures: FLAME
(Flexible Large Scale Agent Modelling Environment) and FLAME GPU,
its extension for High Performance Computing (HPC) platforms based
on general purpose graphic processing units. These template-based simu-
lation environments have been successfully used in several computation-
ally demanding applications, ranging from macroeconomics to biological
systems, thus efforts were put in translating P system models into Com-
municating Stream X-Machines (CSXM), the core theoretical computa-
tional devices of FLAME and FLAME GPU. Following this, translation
into FLAME agents for kernel P systems having only rewriting and com-
munication rules was proved always possible and a translation tool in-
tegrated in kPWorkbench, the software simulator for kernel P systems,
was implemented. However, there are other useful features of kP systems,
such as the presence of structure changing rules, like membrane division
or dissolution, link creation or destruction rules, that could be taken into
account, in order to exploit the full expressiveness and dynamic power
of these models.
Keywords: Membrane computing; kernel P systems; communicating
stream X-machines; agent-based simulation.

1 Motivation

Kernel P systems (or kP systems) are a novel variant of membrane systems aim-
ing to bring together relevant features from several P systems flavours into a
unified kernel model which allows solving complex problems using a straightfor-
ward code programming approach [3]. Since P systems in general, and kP systems
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in particular, have not been implemented neither “in vivo” nor “in vitro” nor
“in silico” yet, a simulation software suite named kPWorkbench [4] has been
developed to enable specification, parsing and simulation of kP systems models
defined in the kernel P–Lingua (kP–Lingua) programming language. On the the-
oretical side, several relevant results involving kP systems have been obtained.
Remarkably, it has been also shown that any computation of a kP system in-
volving only rewriting and communication rules can be simulated by a family
of Communicating Stream X-Machines (CSXM ), the core of FLAME [6] agent
based simulation framework.

Following this, kPWorkbench enables translating kP systems specified in the
kP–Lingua language to FLAME models, which allows specification of CSXM
to be simulated in a serial or parallel (MPI based) way, by using the FLAME
simulation framework [8]. In relation to the FLAME software, a new research
project was initiated to develop the FLAME GPU framework [9], aiming to
enable the efficient simulation of CSXM on CUDA enabled GPGPU devices.

In this work, we take a step forward regarding the aforementioned results
tackling new challenges. Firstly, we address an extension of the kPWorkbench
framework to generate FLAME models from kP–Lingua specifications including
structural rules such as division and dissolution rules. Secondly, we address the
translation of FLAME specifications into the FLAME GPU language.

2 Related Work

FLAME and FLAME GPU have been used in several experiments required to be
performed on HPC devices due to the scale of the associated models, e.g. mod-
elling oxygen-responsive transcription factors in Escherichia coli [1] or complex
cellular tissue simulation [7].

An important theoretical result proving the possibility of simulating kP sys-
tems with communication and rewriting rules with CSXM is given in [6]. This
was followed by some initial experiments, such as simulating in FLAME a kP
system corresponding to a synthetic biology pulse generator [2] and, finally,
adding a translator from kP systems with communication and rewriting rules to
FLAME specification language into kPWorkbench [4].

One recent work presents a first approach of implementing the pulse genera-
tor model in FLAME GPU [5] and conducting a performance comparison with
FLAME. However, the model used in [5] was manually translated, since there is
no public available tool to automate the conversion to FLAME GPU.

3 Challenges

Two are the goals we pursue in this work. The first one, to tackle the automatic
translation of kP systems with structural rules into FLAME modelling language.
The second one, to address the translation of FLAME models to FLAME GPU
specification language. Accomplishing these goals involves several challenges, as
we outline in what follows.
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Regarding kP systems vs. FLAME, we extended the FLAME conceptual
model to incorporate structural changing rules, the most challenging being the
implementation of division rules. Among other technical issues, additional agent
types were required in order to manage the newly created agents, allocate unique
identifiers for them, etc. Subsequently, kPWorkbench translation tool has been
extended to incorporate the automatic generation of FLAME models from kP
systems with division rules. Finally, we conducted experiments to check our work
by performing a comparative study of the simulation results in kPWorkbench
of a set of kP systems test models and their translated FLAME counterparts,
respectively. With respect to FLAME, besides the serial simulation of the models,
which was addressed in previous works like [2], also the parallel MPI based
simulation provided by FLAME was considered. Since FLAME does not support
MPI simulation in Windows environments, the Sevilla HPC Server [10] mulhacen
was configured with FLAME and Open MPI [11] to conduct the experiments.

Regarding FLAME vs. FLAME GPU, we have to address the fact that,
although FLAME GPU is an extension of FLAME, the models designed for
FLAME are not supported by FLAME GPU. Firstly, in FLAME GPU memory
is pre-allocated. Consequently, agents memory supports neither dynamic arrays
nor even fixed arrays with complex types. As such, the envisioned workaround
is serialization of dynamic arrays into static arrays of basic types, recommended
to have fixed length equal to a power of 2 according to FLAME GPU specifi-
cations. Secondly, while in FLAME it is possible to add several new agents in
one step, e.g. when a membrane is divided into 3 new compartments, in FLAME
GPU only one agent is possible to be added per function. Consequently, the
workaround here implies adding additional functions in the CSXM structure to
handle addition of the remaining membranes to be created. Finally, as mentioned
in [5], in FLAME GPU each agent can only create a single message, but in case
of communication rules, multiple compartments should receive different objects.
The workaround here is to expand the memory space for each message, allowing
it to contain data for multiple targets.

4 Conclusions and Future Work

In this paper we have presented recent efforts towards translation and simulation
of kP systems models using FLAME and FLAME GPU. We have addressed
the automatic generation of FLAME specifications from kP–Lingua models by
kPWorkbench, as well as the challenges of translating FLAME specifications to
FLAME GPU due to constraints of the latter programming model. An extended
version of this paper is under preparation, tackling the translation to FLAME
GPU and comparisons with FLAME, based on the theoretical study conducted
here.
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