
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

August 2015

Performance Optimization and Statistical Analysis
of Basic Immune Simulator (BIS) Using the
FLAME GPU Environment
Shailesh Tamrakar
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Tamrakar, Shailesh, "Performance Optimization and Statistical Analysis of Basic Immune Simulator (BIS) Using the FLAME GPU
Environment" (2015). Theses and Dissertations. 963.
https://dc.uwm.edu/etd/963

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Wisconsin-Milwaukee

https://core.ac.uk/display/217187699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=dc.uwm.edu%2Fetd%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/963?utm_source=dc.uwm.edu%2Fetd%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

Performance optimization and statistical
analysis of Basic Immune Simulator (BIS) using

the FLAME GPU environment

by

Shailesh Tamrakar

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Engineering

at

The University of Wisconsin–Milwaukee

May 2015

Abstract

Performance optimization and statistical analysis of
Basic Immune Simulator (BIS) using the FLAME GPU

environment

by

Shailesh Tamrakar

The University of Wisconsin–Milwaukee, 2015
Under the Supervision of Professor Roshan M D’souza

Agent-based models (ABMs) are increasingly being used to study population dynam-

ics in complex systems such as the human immune system. Previously, Folcik et al.

developed a Basic Immune Simulator (BIS) and implemented it using the RePast

ABM simulation framework. However, frameworks such as RePast are designed to

execute serially on CPUs and therefore cannot efficiently handle large simulations.

In this thesis, we developed a parallel implementation of immune simulator using

FLAME GPU, a parallel ABM simulation framework designed to execute of Graphics

Processing Units(GPUs). The parallel implementation was tested against the origi-

nal RePast implementation for accuracy by running a simulation of immune response

to a viral infection of generic tissue cells. Finally, a performance benchmark done

against the original RePast implementation demonstrated a significant performance

gain (13×) for the parallel FLAME GPU implementation.

ii

Table of Contents

1 Introduction 1

2 Complex systems and Agent Based Models 4
2.1 Complex systems . 4
2.2 Agent Based Models (ABMs) . 6
2.3 History of ABMs . 7
2.4 Applications of ABM . 8
2.5 Frameworks for ABMs . 10
2.6 Agent Based Models (ABMs) vs Equation Based Models (EBMs) . . 12
2.7 Modeling cycle . 13

2.7.1 Set a clear goal . 14
2.7.2 Address hypotheses for processes and structures 14
2.7.3 Choose entities, state variables and parameters 15
2.7.4 Implement the model . 16
2.7.5 Analyze, test and revise the model 16

2.8 Design of ABMs . 16
2.8.1 Purpose . 17
2.8.2 Entities, state variables and scales 17
2.8.3 Process overview and scheduling 19
2.8.4 Design concepts . 20
2.8.5 Initialization . 24
2.8.6 Input data and sub-models . 24

3 Flexible Large-scale Agent Modeling Environment (FLAME) GPU 25
3.1 Overview of GPU architecture . 27
3.2 Compute Unified Device Architecure (CUDA) 28
3.3 CUDA memory types . 29

3.3.1 Global memory . 29
3.3.2 Shared memory . 30
3.3.3 Registers . 30
3.3.4 Local Memory . 30
3.3.5 Constant and Texture memory 30

3.4 Process flow in CUDA . 31
3.5 High level overview of FLAME GPU 33
3.6 Agent model specification in FLAME GPU 35

3.6.1 Agent memory . 35
3.6.2 Agent functions . 36
3.6.3 Agent states . 41
3.6.4 Agent messages . 41
3.6.5 Function layers . 44

iii

3.6.6 Initial XML agent data . 46
3.6.7 Agent function scripting in FLAME GPU 46
3.6.8 FLAME GPU simulation templates 50

4 Immune System 52
4.1 Innate immune system . 53

4.1.1 Anatomical barrier . 54
4.1.2 Complement system . 54
4.1.3 Innate immune cells . 54

4.2 Adaptive immune system . 59
4.2.1 T Lymphocytes (T cell) . 60
4.2.2 B Lymphocytes (B cell) . 62

5 Implementation of Immune Simulator in FLAME GPU 64
5.1 Definition of immune cells in FLAME GPU 64
5.2 Simulation domain . 67
5.3 Agent types . 68

5.3.1 Parenchymal cell agents . 69
5.3.2 Dendritic cell agents . 70
5.3.3 Macrophage agents . 73
5.3.4 Natural Killer agents . 74
5.3.5 Granulocyte cell agents . 75
5.3.6 T cell agents . 76
5.3.7 CTL agents . 77
5.3.8 B cell agents . 79

6 Results 82
6.1 Qualitative and statistical analysis 82
6.2 Benchmark . 86

7 Conclusions and Future Work 88

Bibliography 90

iv

List of Figures

2.1 Definition of an agent . 6
2.2 Modeling cycle for Agent Based Models 14
2.3 Simplification phase cycle . 15

3.1 Memory bandwidth comparison CPU vs GPU 26
3.2 CUDA capable GPU architecture . 27
3.3 Basic units of CUDA . 28
3.4 Memory types in CUDA . 29
3.5 Process flow in CUDA . 32
3.6 An example of kernel function . 33
3.7 FLAME GPU process flow . 34
3.8 Skeletal layout of agent definition in XMML model file. 35
3.9 An example of definition for agent memory variables 36
3.10 An example of agent function definition 37
3.11 An example of agent function inputs and outputs 38
3.12 An example of agent function inputs and outputs 39
3.13 An example of global function condition 39
3.14 An example of function condition with recursive condition element . 40
3.15 An example of listing of agent states 41
3.16 A skeletal framework for agent messages 42
3.17 An example of definition of discrete message partitioning 43
3.18 A schematic representation of 2D spatial partition technique 44
3.19 An example of definition of spatial message partitioning 45
3.20 An example of definition of spatial message partitioning 45
3.21 Initialization of agent variables for a single agent 46
3.22 Agent function script using non partitioned messaging to find average

position of agents . 47

4.1 Components of innate immune system 53
4.2 Phagocytosis by a Macrophage . 55
4.3 Components of adaptive immune system 59
4.4 The process involving T cell activation 60
4.5 The process involving B cell activation 63

5.1 XMML model file definition for Parenchymal cells 65
5.2 a) Figure on the top shows initial value of variables for one Parenchymal

cell b) Figure on the bottom is an example of agent function definition
(state_pcells) . 66

5.3 Virtual representation of three different zone in FLAME GPU: a) Zone
1: Site for infection of parenchymal cells by a virus b) Zone 2: Repre-
sentation of lymph node or spleen c) Zone 3: Representation of blood
circulation system . 68

v

6.1 Innate immune cells count in Zone 1. a) count of Natural killers b)
count of macrophages . 84

6.2 Count of different immune cells in Zone 2. a) count of T cells b) count
of B cells c) count of CTLs d) count of dendritic cells 85

6.3 Benchmark: plot for speed-up obtained with FLAME GPU against
agent count . 87

vi

List of Tables

2.1 Summary of application of ABMs in different fields 9
2.2 Available frameworks to simulate Agent Based Models (ABMs) 10

6.1 Initial values for immune win condition 83
6.2 Initial count of DCs for different agent population and simulation

speed-up with FLAME GPU . 86

vii

List of abbreviations

ABM Agent Based Model
BIS Basic Immune Simulator
CTLs Cyto-Toxic Lymphocytes
CUDA Compute Unified Device Architecture
DCs Dendritic Cells
FLAME Flexible Large-scale Agent Modeling Environment
FSM Finite State Machine
GPU Graphics Processing Unit
IBM Individual Based Model
LSD Laboratory for Simulation Development
MΦ Macrophages
MASON Multi-Agent Simulator Of Neighborhoods
MATSim Multi-Agent Transport Simulation
NKs Natural Killers
ODE Ordinary Differential Equation
PCs Parenchymal Cells
PDE Partial Differential Equation
SIMT Single Instruction Multiple Threads
SMs Streaming Multiprocessors
SPs Streaming Processors
XMML X-Machine Markup Language
XSLT Extensible Stylesheet Language Transformations

viii

Acknowledgements

I would like to express my deepest gratitude to my advisor Dr. Roshan M D’souza

for providing me valuable guidance and support during my enrollment as a student

at University of Wisconsin-Milwaukee. I truly appreciate his exemplary mentorship

and insight that motivated me to work on this project.

I would also like to thank Dr. Paul Richmond from The University of Sheffield,

UK for providing valuable technical support for FLAME GPU. Without his technical

expertise, it would have been really difficult to complete this project.

Finally, I would like to thank my family for being by my side in every step, in

good as well as bad times.

ix

1

Chapter 1

Introduction

Humans live in an environment surrounded by pathogens such as viruses, bacteria,

and fungi. Frequently, these pathogens enter the body and infect vital tissues and

organs resulting in various diseases. The human body is equipped with a biological

defense system called the immune system whose primary purpose is to fight invading

pathogens and keep functional cells healthy. The Immune system can be sub-divided

into two classes: Innate and Adaptive immune system. The innate immune system

cells form the first line of defense which react to distressed signals released by cells

infected by pathogens (1) and kills them upon contact. These are non-antigen-specific

cells which respond to pathogens irrespective of their type (2). On the other hand,

adaptive immune system cells which follow the innate immune system response are

antigen-specific and proliferate exponentially to handle specific infections. Further-

more, unlike innate immune system cells, adaptive immune system cells being antigen

specific, develop an immunological memory so that host response is much faster when

same pathogen infects the functional cells of the body at a later date (3).

The immune system can modeled by two methods: equation based models (EBMs)

and agent based models (ABMs). EBMs simply use set of ordinary differential equa-

tions (ODEs) and partial differential equations (PDEs) to track the temporal and/or

spatial dynamics of quantities of interest such as average velocity of individual agents

in a region, population size, and chemical concentrations.This technique works well in

cases where the continuum assumption holds. It ignores the discrete nature of many

dynamics system and is incapable of capturing interactions between autonomous in-

dividuals (agents) in such dynamic systems.

2

Agent based modeling, on the other hand, is a bottom-up approach (4; 5). It cap-

tures complex interactions between autonomous agents using a set of ’rules’. Agents

themselves are interacting finite state machines with specific behaviors defined for

each of the states. Rules also determine state transition. The collective behavior of

these agents determines the macro-scale behavior of the system. The Basic Immune

Simulator (6; 7) employs an ABM to study the interaction between innate and adap-

tive immunity. In this particular model, immune cells are modeled as agents which

produce chemical signals based on what they detect from their proximal location and

interact with other cells in a computer simulated environment.

The previous version of Basic Immune Simulator was implemented using an open

source software library called Recursive Porous Agent Simulation Toolkit (RePast)

(8; 9). The RePast toolkit is designed to execute serially on Central Processing Units

(CPUs). Therefore, it is limited in its capability to handle large model sizes that are

required to simulated realistic agent-based model simulations.

In this thesis we report on the parallel implementation of the Basic Immune Simu-

lator (BIS) using the Flexible Large-scale Agent Modeling Environment on Graphics

Processing Units (FLAME-GPU)(10). FLAME-GPU, as the name suggested, is a

parallel computing framework designed to leverage the computing power of GPUs.

To test the accuracy of our implementation, we ran several simulations of the BIS with

same initial conditions on both the FLAME-GPU implementation as well as the orig-

inal RePast implementation. Our results show that we can replicate results from the

RePast implementation within statistical limits. Next, we conducted a performance

benchmark of the FLAME-GPU implementation against the RePast implementation

for varying model sizes. Our results show upto 13× speedup for models that have

20,000 agents.

In chapter 2, we provide a brief overview of the agent-based modeling technique.

In chapter 3, we describe GPU-based parallel computing and the FLAME-GPU agent

3

modeling framework. In chapter 4, we provide a brief overview of the human immune

system. In chapter 5, we describe our implementation of the Basic Immune System

agent-based model in the FLAME-GPU framework. In chapter 6, we provide the

results of our accuracy and performance tests. Finally, in chapter 7. we provide

conclusions and directions for future work.

4

Chapter 2

Complex systems and Agent Based Models

2.1 Complex systems

The world we live in is abundant with numerous Complex Adaptive Systems (CAS)

that exhibit intricate behaviors. A complex dynamic system is composed of discrete

autonomous individuals that interact with each other locally. These local interac-

tions can be non-linear and stochastic. The collective/global behavior of the system

emerges from the local interactions of individuals. An ant-colony is an example of

a real world system that shows complex adaptive behavior. According to the study

conducted by Deborah Gordon on ant colonies (11; 12), ants are classified based on

specific task assigned to each group of ants in the colony: foraging, patrolling and

nest maintenance. A group of ants who search and collect food to feed their offspring

are termed foragers. They follow the trails of pheromones left by other forager ants

to find their way to the food (11; 13). Pheromones, in this case, act as a medium for

communication between ants. This communication between ants through pheromones

leads to a formation of a highway of ants with two lanes (14). One lane comprise

of group of ants bringing food to the nest, while the other lane has a queue of ants,

sensing the trail of pheromones, to make their way to food source. Patrollers are the

group of ants responsible for nest surveillance. They protect their nest from damage

and invasion from other insects. Nest maintenance workers have the role of keeping

trails free of obstructions such as sand particles that makes sensing of pheromones

by foragers difficult. It has been found that the process of allocating task to group

task is a continually changing process (11; 15; 16). The allocation of tasks depends

5

upon the existing situation of an ant colony. For example, if a colony experiences

a shortage of food, then there will be increased recruitment of foragers from other

group of ants until the problem of shortage of food is resolved. However, the process

of task allocation in an ant colony is not influenced by instructions passed from queen

ant, but from local interactions between the ants itself through chemical or tactile

communication (11). The overall behavior of the ant colony thus emerges from local

interactions between ants, rather than from a central controller (11; 16).

There are other groups of animals such as flock of birds and schools of fish that

show emergent behaviors (11; 17; 18) . For example, the direction of movement of

an individual fish in a school of fish is influenced by direction of movement of its

neighboring individuals (19; 20). The same is the case with the flight behavior of

individual birds in a flock of birds (21; 11). Such coordinated behavior is not just

limited to group of animals but also exhibited by phenomena that take place on daily

basis such as traffic jams.

Traditional methods of modeling using ordinary differential equations (ODEs) and

partial differential equations (PDEs) cannot be applied to such systems. The contin-

uum assumption that forms the basis of ODEs and PDEs is not applicable because

of the discrete and autonomous nature of individuals in the systems, and associated

stochastic interactions. In the recent past Agent-based Modeling (ABMs) has been

used successfully used to build computational models of CAS. The availability of

commodity high performance computing processors such as graphics processing units

(GPUs) has enabled the simulation of realistically sized models with the finest level

of granularity.

6

2.2 Agent Based Models (ABMs)

Agent Based Models (ABMs) are computational models which are used to simulate

repetitive interactions between autonomous agents to observe their overall effect to the

system in which they reside. It is sometimes referred to as Individual Based Modeling

(IBM) (22) because it primarily focuses on modeling individual agent variables that

represent its characteristics rather than variables that describes the global state of

the system. It adopts a bottom up approach where local, micro-scale interactions of

agents gives rise to macro-scaled behavior of the system.

Figure 2.1: Definition of an agent

The definition for the term ’agent’ (Figure 2.1) (23) in ABM is vague and there is

no plausible compliance among the authors. Bonabeau stated that any independent

component within a system can be considered called an agent (24; 23). Casti defined

agents as individuals which must contain ’base-level rules’ which governs the behavior

of agents in response to its environment and ’rules to change the rules’ to demonstrate

adaptive behavior (25; 23). Jennings described agents as autonomous individuals

having an ability to make independent decisions (26; 23).

Each agent is unique, autonomous and interacts with its local environment (27).

The agents are called ’unique’ because each agent within a system is different from

each other in terms of characteristic variables such as its location, state and type

7

(27). Additionally, each agent is ’autonomous’ because it is independent of other

agents and executes its own sequence of rules (27). The behavior of agents is an

outcome of its interactions with local environment which is limited to its neighboring

agents and environment within certain radius of influence. This implies that agents

interact locally and they are dependent upon state of neighboring agents rather than

overall state of the system. One of the primary features of agents in Agent Based

Models (ABMs) is the ability of agents to adjust its behavior based on its interaction

with other agents or its response to what it senses from its environment. This kind

of behavior is referred to adaptive behavior (27) which introduces randomness and

stochasticity in ABMs.

2.3 History of ABMs

Agent Based Model (ABM) came into existence in 1940s but it was not extensively

used until 1990s because of limitation of computational capability of early comput-

ers and unavailability of ABM modeling frameworks. The first Agent Based Model

(ABM) called Cellular Automata (28) was developed by John Von Neumann in late

1940s. It consists of set of cells or grids in predefined states (29). The state of each

cell is dependent upon the states of adjacent neighboring cells. Later in 1970s, John

Conway, a British mathematician, used Cellular Automata to develop a model called

Conway’s Game of Life (30). Other notable examples of ABMs developed in between

1970s and 1980s include the study of housing segregation pattern development by

Thomas Schelling (29) and Robert Axelrod’s ’Prisoner’s dilemma strategies’ (31; 29).

In late 1980s, Craig Reynolds developed the Boids model (32) to predict flocking

behavior observed in birds. It was a first biological agent based model that incor-

porated social characteristics in agents. In between 1990s and 2000s, the modeling

of complex system was simplified with introduction of frameworks such as Swarm,

8

Netlogo and RePast. These frameworks were designed to simulate the Agent Based

Models (ABMs) on a large scale. One notable example that simulated ABM on a

large scale was Sugarscape model developed by Joshua M. Epstein and Robert Ax-

tell which simulated the social phenomena such as transmission of disease, seasonal

migration, pollution and sexual reproduction (33).

2.4 Applications of ABM

There are a wide range of applications of Agent Based Models (ABMs) in the field of

social science, economics, archeology, biology and technology. Table 2.1 below shows

the summary of applications of ABMs in different fields (23). ABMs that represent

social scenarios define agents as people or group of people interacting with each other

to maintain social relationships (23). ABMs in social sciences allow a modeler to

model the people and their behavior to certain level of abstraction. The necessity of

abstraction simplifies the model by including traits which produces desired behavioral

outcome. The agents are assumed to be heterogeneous with each agent possessing

distinct characteristics.

ABMs also have been widely used as a computational tool in economics to per-

form analysis. The agents, termed as economic agents, are homogeneous having same

characteristics and behavioral rules (23). They possess a trait to pursue their objec-

tives and adjust their behavior depending upon the economic situation. For example,

people with limited economic resources would exhibit the trait of being thrifty.

Archeologists have been using ABMs to study the growth and decline of ancient

civilizations due to social and environmental factors. The study on extinction of the

Anasazi in the southwestern United States (34; 23) is an example of ABMs used in

the field of archeology.

9

Industry Biology
Urban

planning
Structure Economics

Society

and

culture

Supply

chain man-

agement

Population

dynamics

Pedestrian

crowd

model

Traffic

congestion

model

Trade

networks

Ancient

civiliza-

tions

Production

operations

Cellular

systems

and

processes

Emergency

evacuation

model

Electric

power

markets

Artificial

financial

markets

Regulative

networks

Consumer

market

Ecological

networks

Table 2.1: Summary of application of ABMs in different fields

Since ABMs capture micro-scale behavior in terms of rules, it is extensively used

in the field of biology. This technique is particularly useful in situations where micro-

scale behaviors can be experimentally studied and codified using rules. The system

as a whole can be then be modeled as an ABM. Models of human immune system

(23), tissue formation and morphogenesis (35; 36), spread of epidemics, population

dynamics (37) and plant ecology (38) are few examples of ABMs in biology.

The use of ABMs has been in rise since 1990s to solve the problems in business

and technology sector. The study of impact of publications in journals as opposed

to conferences by researchers in the field of computer science (39) is one of the no-

table examples of contribution of ABMs in business and technology. Other examples

include modeling of supply chain management and logistics, consumer behavior and

organizational behavior (40).

10

2.5 Frameworks for ABMs

There are many frameworks to simulate Agent Based Models (ABMs) for wide range

of applications. The details for available frameworks to simulate ABMs are described

in a Table 2.2 (41) below.

Table 2.2: Available frameworks to simulate Agent Based Models (ABMs)

S.N. Framework Description Programming

language

1. Ecolab (42) It is designed, especially, for simu-

lation of evolutionary dynamics. It

possesses various tools to plot graphs

and histograms.

C++

2. FLAME GPU (10) It is generic Agent Based Model-

ing system used to simulate com-

plex system with large agent popu-

lation in Graphics Processing Units

(GPUs). It can model both discrete

and continuous agents. It also has

inbuilt 3D visualization tool to view

simulations in real time.

C based script

with optimized

CUDA code

3. LSD (Laboratory for

Simulation Develop-

ment) (43)

It is a programming language to de-

velop simulation models for social

sciences. It is also used in imple-

mentation of discrete-time simula-

tion models.

C++ based

LSD

11

S.N. Framework Description Programming

language

4. MASON (44) It is multi-agent simulation library

to model discrete agents to perform

simulations of generic ABMs. It

has an optional visualization tool for

both 2D and 3D models.

Java

5. MATSim (Multi

Agent Transport

Simulation) [5]

It is a framework to simulate large-

scale agent-based transport system.

Java

6. NetLogo (45) It is designed for simulating social

and natural processes. It is an open-

source library especially designed for

people having limited programming

experience.

NetLogo (ex-

tension of Logo

programming

language)

7. Pandora: Agent

Based Modelling

Network for HPC

(46)

It is a library developed to simulate

large scale ABMs in High Perfor-

mance Computing (HPC) environ-

ments. It is mostly used for social

simulation research.

C++

8. Swarm (41) It is also used to simulate general

ABMs. Its architecture allows a user

to define agents different from each

other.

Java, C

12

S.N. Framework Description Programming

language

9. RePast (8) It is an open-source library that can

be employed for wide range of ABMs

applications such as social sciences

and biology. Its visualization tool is

user interactive where user can opti-

mize initial parameters for the sim-

ulation.

Java (RePastS,

RePastJ),

C++, C#,

Python

(RePastPy)

10. StarLogo (47) It is also a generic ABM framework

to simulate real life processes such

ant colonies, flocking of birds and

traffic jams. It is an extension of

Logo programming language where

it allows a user to simulate large

population of agents, termed as ’tur-

tles’, in parallel.

StarLogo (ex-

tension of Logo

programming

Language)

2.6 Agent Based Models (ABMs) vs Equation Based

Models (EBMs)

ABM and EBM both share two common entities within a system: individuals and

observables (5). Individuals are physical entities, such as atoms, present in a system

that interact with each other by the influence of measurable variables called observ-

ables. The observables either represent characteristics of separate individuals such as

velocity of particles inside the box or an entire system influenced by group of indi-

viduals (5). The pressure exerted by group of particles inside the box is an example

13

of observables associated with a system.

The first difference between ABM and EBM is the way these models establish rela-

tionship between observables. Equation Based Models (EBMs) or Mathematical Mod-

els use a set of mathematical equations such as Partial Differential Equations (PDEs)

and Ordinary Differential Equations (ODEs) to create a relationship between observ-

ables. Unlike EBMs which relates observables by mathematical equations, ABMs

relate observables through specific behaviors imposed on separate individuals (5).

The granularity of observables also differentiates Agent Based Models (ABMs)

from Equation Based Models (EBMs). There are two levels of granularity for ob-

servables: system level and individual level (5). System level observables, such as

the pressure of gas, represent overall characteristics of a system. It is widely used

in EBMs since it is easier to formulate such observables with a set of mathematical

equations. Individual level observables, common in ABMs, focus on characteristics of

each individual represented by agent behaviors.

2.7 Modeling cycle

The agents in Agents Based Models (ABMs) are designed to perform series of tasks

during their life cycle. The tasks, they are assigned to execute must correlate with

their behaviors in real life. It is not feasible to capture all the intricate details of real

life behavior in the model. Therefore, it is necessary to simplify these behaviors to a

certain level of abstraction so that the quality of outcome is preserved. The process

of simplification must follow a modeling cycle to verify the results from the scientific

model. The modeling cycle is comprised of five steps as shown in Figure 2.2 (27) and

they are described below:

14

Figure 2.2: Modeling cycle for Agent Based Models

2.7.1 Set a clear goal

This step is the first step in the modeling cycle in which a modeler sets up certain

goals that a model is designed to achieve. For example, a modeler is designing a

system in which agents hunt for specific species of mushroom in a forest (27). The

primary goal for this particular model is to identify edible mushrooms from poisonous

ones. For this case, search for other plant species is not considered to be a primary

goal of the model, thus, it can be filtered. Hence, setting up necessary goals even

before the implementation of the model filters out the trivial details such as search

for other plant species in a forest. However, this process has to be done on a recurring

basis as it may require re-formulating the set goal due to intricate nature of complex

systems. Thus, it requires maintaining a clear focus to achieve a desired goal (27).

2.7.2 Address hypotheses for processes and structures

The primary purpose of this step is to simplify the simulation model as much as

possible. It is sometimes termed as brainstorming phase or simplification phase. In

this step, many hypotheses are made for processes and structures that address the

purpose or objective of the model. Hypotheses are formulated by a brainstorming

technique by determining the factors that strongly influence the processes of the com-

plex system with the help of influence diagrams and flow charts (27). It is important

15

to make a simulation model simple because the preliminary understanding of the sys-

tem alone cannot determine whether the factors contributing to specific processes and

structures are important or not. The process of simplification is an iterative process

which keeps on evolving as the factors affecting the system are added to model until

a predefined goal is achieved. The simplification phase follows the cycle as illustrated

in Figure 2.3 (27).

Figure 2.3: Simplification phase cycle

2.7.3 Choose entities, state variables and parameters

In this step, after the formulation of assumptions and hypotheses that simplify the

model, the physical entities, state variables and parameters that constitute a model

are determined (27). The physical entities represent the agents that reside in a sim-

ulated environment and execute specific rules of behavior. For example, mushroom

hunters in a Mushroom Hunt Model are the physical entities that seek for specific

species of mushroom in a forest. The state variables represent the characteristics of

agents which directly address the behaviors of the agents based on its current state.

In an example of Mushroom Hunt Model, if the count of mushrooms that hunter

collected within some search radius reaches a maximum threshold value which is the

maximum number of mushrooms each hunter can carry, then the hunter moves to

a new location to search mushrooms (27). The count of mushroom gathered within

a predefined search radius and the maximum threshold value are state variable and

parameter that influences the behavior of agents.

16

2.7.4 Implement the model

In this step, theoretical description of model prepared in the previous steps is imple-

mented by writing computer codes (Java, C++, and Python) or using available ABM

frameworks such as RePast (8), FLAME GPU (10) and NetLogo (45). The primary

objective of this step is to check if the initial model is useful by verifying the outcome

of simplified assumptions and hypotheses.

2.7.5 Analyze, test and revise the model

This is the most demanding and time consuming step in a modeling cycle as a modeler

has to run several tests to analyze the model. The analysis of model is done to test and

improve the algorithms that represent the characteristics or behaviors of agents. The

model is then revised to derive an optimal performance from the model. For example,

the testing and analysis of different algorithms and parameters that increases the rate

of finding mushrooms in a Mushroom Hunt model (27).

2.8 Design of ABMs

The informal descriptions such as ideas, assumptions and hypotheses, on processes

and structures of a model need a formal and detailed description in order to formulate

ABMs. Formulation of ABMs is the illustration of formal descriptions of the model in

terms of algorithms, diagrams and equations that can be easily interpreted by others

(27). This ensures that all important parts that constitute a model are included in a

formal description of ABMs. Besides, it is also a basis for implementation of model

in the form of computer programs that simulate them.

Equation Based Models (EBMs) use set of differential equations and parameters

to formulate the model. Unlike EBMs, ABMs, which are complex and unpredictable,

cannot be formulated by conventional differential equations. Apart of being complex

17

and unpredictable, ABM formulations are vaguely descriptive with lengthy justifica-

tions and explanations. Thus, a standard procedure called ODD (Overview, Design

concepts and Details) protocol is used to standardize the ABMs (27). This protocol

allows a modeler to follow standard steps to include all the important characteristics

of ABMs (agent types and its behavior) in a clear and concise way by organizing

the information in consistent order. The first element of the protocol, ’Overview’,

provides the general description of model with respect to design and purpose of the

model. The second element, ’Design concept’, provides the necessary information on

characteristics of ABMs. The last element, ’Details’, depicts about the parts that

make model formulation complete. The detailed description of each element of ODD

protocol is explained below:

2.8.1 Purpose

The purpose of the model is to describe the problem statement that a specific model

intends to solve. It makes decision process easier as it helps to select, prioritize, and

validate the processes and structure of the model. Thus, a well-defined purpose or a

problem statement gives a better understanding of a model.

2.8.2 Entities, state variables and scales

This element of ODD protocol creates a framework of the model by defining entities,

state variables and scales. Entities refer to agents of different types which interact

with each other within a fixed domain. The fixed domain is the environment where

agents perform its actions. The environment can either be local or global: local

environment affects a small group of agents at specific locations whereas global en-

vironment influences the characteristics of entire of agent population. An example

of global environment is weather variables such as temperature and humidity that

change with time (27). The environment represents a heterogeneous space and can

18

be further classified into continuous and discrete space. The space is considered as

continuous if each point in space has different environment variables. On the other

hand, discrete spacing divides the environment into square grids or patches which

prevents the inclusion of unnecessary variables thereby optimizes the computational

performance of the model (27).

The variables that are governed by the properties and behaviors of agents are

called state variables. Examples of state variable defined by the properties of agents

are age, sex, type and memory. Similarly, searching behavior and learning algorithm

of agents are examples of state variables defined with respect to behavior of agents.

The state variable can be either static or dynamic in nature depending upon the type

agent it represents. The variable that remains static i.e. it doesn’t change with time

during the course of simulation are called static variables. For example, location of a

building within a city is an example of static state variable as it doesn’t change with

time. Dynamic variable, on the other hand, is constantly changing with time. The

position coordinates of flock of birds is an example of dynamic variable. A variable

such as distance between two agents which is calculated based on their location cannot

be considered as a state variable. In other words, state variable is independent of state

variables of other agents.

The scales for time and space of the model are defined within this protocol and

they are termed as temporal and spatial scales respectively. Temporal scale is a repre-

sentation of time in a model whereas spatial scale represents variation of environment

in space. Temporal scale can be further classified into: temporal resolution and tem-

poral extent. Temporal resolution represents discrete time steps in the form of a day,

week or year. It helps to aggregate up all the events that occur before predefined time

step. Temporal extent, on the flip side, represents the length of a simulation which

is determined based on outcome expected from the model. Temporal extent is based

on system level occurrences whereas temporal resolution is solely based on individual

19

level phenomena (27). If a set of square grids or patches are used to represent the

spatial scale of model, it is essential to define the size of each grids. The spatial

effects between the grids are considered while spatial effect within each grid cell is

ignored. For example, in urban dynamics each square grid represents a household.

The activity inside each household is not taken under considered because it has no

effect on urban patterns (27).

2.8.3 Process overview and scheduling

There are many processes that occur within a model and are collectively responsible

for providing dynamics to the system. Therefore, processes occurring within a specific

model refers to behavior or dynamics of agents that change their state variables. They

are devised from an abstraction of real world processes to predict and analyze the

complex systems. The processes that drive the model are explicitly defined by know-

ing the list and the order of behaviors that agents execute as simulation progresses

and the changes it make to the environment (27). The order at which processes

are executed is called scheduling. Like processes, order of execution of processes i.e.

scheduling is also explicitly defined in the model. A clearly defined order provides a

concise outline to the model, and hence, better qualitative results (27).

Apart from formulating processes, it is also necessary to track, observe and record

the model’s entities and their behaviors. This type of process is termed as ’observer

process’ which shows the model’s status with the help of graphical displays and plots

for tracking and recording the data such as agent count at specific time in simulation

(27). This process helps a modeler to analyze the data extracted from the simulation

to identify the shortcomings and, hence, optimize the model.

20

2.8.4 Design concepts

The design of Agent Based Models (ABMs) is based on an idea of ’conceptual frame-

work’ (27). It introduces basic concepts in standardized way that are essential for

design of Agent Based Models (ABMs). Unlike the conceptual framework for Equa-

tion Based Modeling which characterizes the model’s entities based on set of dif-

ferential equations such as ODEs and PDES, the conceptual framework for ABMs

characterizes the model by capturing important characteristics of ABMs. However,

models designed from conceptual framework of ABMs can produce varying outcomes

as opposed to EBM conceptual framework which always produces only one outcome

by solving set of differential equations. The basic concepts that describe the charac-

teristics of ABMs are briefly described below:

a. Emergence

This is one of the fundamental concepts that make Agent Based Models (ABMs)

unique. It is obvious that, ABMs being complex systems, unpredictable and complex

behaviors are expected when agents interact with each other or with their environ-

ment. Therefore, the concept of emergence helps to analyze the characteristics of

agents that lead to emergent behavior. Besides, it also helps to distinguish emergent

behavior from imposed behavior. For the model to be emergent, it has to fulfill fol-

lowing qualitative criteria: the emergent outcome must be independent and different

from individual level properties (27).

b. Observation

Agent Based Model (ABM), being a dynamic system, produces different types of out-

comes as a result of interaction between agents and their environment. The concept

of observation is important when developing any kind of ABMs because it helps to

analyze, interpret and validate the results obtained from the simulation, qualitatively

21

as well as quantitatively (27). It allows a modeler to record, track and observe the

state variables of each agents and verify if the agents are executing behavioral rules

in correct order (27). Thus, it helps to make corrections to the behavioral rules of

agents if they are not behaving as intended. Graphical displays and plots are the

tools that are used in most of the ABMs to track, record, observe and analyze the

results obtained from the simulation.

c. Sensing

The behavior of an agent is dependent upon the information it senses from other

agents and its environment. The information, that an agent possesses, refers to the

assumptions that modelers make to represent the characteristics of agents such as

its state that determines if an agent is alive or dead. For example, in the Game of

Life, this piece of information determines the current state of an agent. The agent

with less than two live neighbors dies as a result of under population whereas an

agent with two or more live neighbors continues to be alive (30). Therefore, it is

essential to develop a technique to represent the way to sense information from other

model’s entities. First, it is necessary to determine the variables of other agents that

contain information to be sensed by an agent of interest for its state change. Next, a

mechanism, such as neighbor search algorithm, by which an agent of interest accesses

information from its neighbors.

d. Adaptive behavior and objectives

Adaptive Behavior refers to the decisions that an agent make for its state transition

in response to changes in the environment or within themselves to pursue some objec-

tives. Agent decisions are governed by the set of rules or traits imposed on an agent

which when executed lead to specific behavior. Therefore, it is essential to formulate

the alternatives for decision making process and select one best alternative that ful-

22

fills the objective of the model. The alternatives (agent decisions) are examined by

two basic concepts: adaptation and objectives (27). The adaptation concept helps

in determining the decisions that agents execute to adapt to a constantly changing

environment (27). The concept of objectives checks if the adaptive decisions made

by agents meet their goal.

e. Prediction

The concept of prediction is essential to model adaptive behavior of agents as it allows

a modeler to predict different outcomes as agents execute their adaptive traits in the

model. Prediction models are sub-models, not a part of Agent Based Models itself,

that simplifies the decision making process by testing different agent behaviors and

finding the best one that produces a desired outcome that meets the objective of

the model. There are two types of prediction for modeling agents’ adaptive behavior:

tacit and explicit prediction (27). Tacit predictions are implied and refer to the hidden

assumptions in the model. Explicit prediction, on the other hand, predicts the future

outcomes from previous experiences. Therefore, prediction models are essential in

modeling adaptive behavior of agents and, hence, well designed ABMs.

f. Interaction

Interaction refers to the way agents communicate with each other or with its envi-

ronment with the motive of exchanging information, sharing, using and competing

for resources. The interaction between agents is affected by the state of an agent and

takes place in either local or global scale (27). The local level interaction takes place

between group of few agents at a specific location in the model whereas global inter-

action takes place at system level and affects all the agents present in the model. The

interaction can be of two types: direct and mediated interaction. Direct interaction

refers to the method of communication between agents as a result of physical contact

23

between them. Mediated interaction, on the other hand, takes place when agents

interact with each other through some mediator, such as pheromones trails that an

ant senses in an ant colony.

g. Scheduling

ABMs have numerous processes that represent the behavior of agents. So, there is a

necessity to maintain a right order at which these processes are executed to obtain

outcomes that relates to real world systems. In a real world, these complex processes

occurs simultaneously and continuously. The concept of scheduling models time and

helps to simplify the model by representing these complex processes as discrete events

that occur in a particular order, thereby, reducing the complexity of models and their

outcomes (27).

h. Stochasticity

The concept of stochasticity represents the random processes, such as random motion

of agents, in a simulation model. These random processes produce different outcomes

every time the simulation model is executed because the random numbers generated

in each simulation is different from the previous one. The use of random number

generators, such as pseudo-random number generator (PRNG) (48), fulfills the need

of randomness in any simulation models.

i. Collectives

Collectives are the group of specific agents that organize themselves in the model that

affect individual agents as well the system (27). A tissue or an organ that perform a

specific function in a body of an organism is an example of collective formed by group

of specific cells. There are two ways to model collectives in ABMs. The first technique

is to model behaviors of agents that allow them to organize with other agents to form

24

collectives. The next approach is to consider collectives as an independent agent by

defining its own state variables and behavioral rules explicitly. The state variables

are defined based on state variables of individual agents that constitute a collective

and behavioral rules for collectives are determined based on the way the individual

agents are added and removed from a collective (27).

2.8.5 Initialization

It is often difficult to test viability of the model without assigning initial values to the

state variables and global variables. State variables such as state of an agent which

determines if it is alive or dead can be initialized by assigning value "1" if it is alive

and value "0" if it is dead. In some ABMs, values of global variables affect the state

of agents. In Mushroom Hunt Model, maximum number of mushrooms each agent

can carry is an example of global variable. Additionally, the number of agents that

take part in the simulation is also an example of initial condition.

2.8.6 Input data and sub-models

The input data is different from initialized values of variables and it is often used to

input the values of environment variables such as temperature or market price that

change with time. The input data are read from a input file into a simulation model.

Each process within a system can be deemed as a sub-model. The sub-models are

independent of each other and can be designed and tested separately. They are listed

in scheduling and are arranged based on the order of the processes (27).

25

Chapter 3

Flexible Large-scale Agent Modeling Environment

(FLAME) GPU

The conventional Agent Based Model (ABM) frameworks such as RePast (8), Swarm

(41) and NetLogo (45) are designed for single core CPU architectures. They are

based on the concept of serial programming which means that agents execute their

behavioral rules in serial manner i.e. one after another. While the computing power

of CPUs has grown exponentially in the recent past, integrated circuit manufacturing

techniques are scheduled to hit the physical limits of fabrication. Therefore, the

growth in computing power is expected to plateau out. Consequently, simulating

large scale ABMs (models with hundreds of millions of agents) with traditional ABM

frameworks, running on serial computing platforms, is not expected to address issues

of intractability.

An alternative way to address computational complexity is to use parallel com-

puting architectures. However, parallel architectures require new algorithms. In the

last decade, Graphics Processing Units (GPUs) have essentially democratized high

performance computing. GPUs achieve high throughput by using several ’simple’

cores with a simplified memory architecture. As long as algorithms adhere to the

data-parallel computing model, GPUs deliver an order of magnitude advantage both

in computing power and memory bandwidth as shown in Figure 3.1 (49)).

In a sense, parallel computing is a natural way to compute ABMs since the real

life systems that they are used to represent are essentially parallel. Typically, the

executions of each agents’ processes are handled in parallel by different cores. Com-

26

Figure 3.1: Memory bandwidth comparison CPU vs GPU

munication between agents is handled through shared memory that can be accessed

by all cores. In this way, entire population of agents execute their behavioral pro-

cesses at once which produces better computational performance than the processes

that are executed serially.

An Agent Based Model framework called FLAME GPU, was developed at Uni-

versity of Sheffield by Dr. Paul Richmond to simulate large-scale ABMs in parallel

for modeling a wide range of complex adaptive systems such as cellular systems and

pedestrian crowds. FLAME GPU, is an extension to FLAME, a formal ABM spec-

ification schema, utilizes the parallel computing capability of Graphics Processing

Units (GPUs). It maps formal agent specifications to C based optimized CUDA code.

CUDA is the native programming language of GPUs by NVIDIA. It incorporates a

feature to define multiple agent types, communication between agents via message

boards and handles birth/death of agents. The advantages of using FLAME GPU

framework are: First, it allows a modeler to implement agent behavioral rules and

27

simulate ABMs without explicit understanding of parallel computing or the CUDA

programming language. Second, it can simulate massive agent population with better

computational performance as opposed to CPU alternatives. Third, visualization is

easy to achieve since agent state variables are located in GPU memory and therefore,

they can be rendered directly without any computational overhead.

3.1 Overview of GPU architecture

Figure 3.2: CUDA capable GPU architecture

Figure 3.2 (50) shows the hardware architecture of CUDA capable GPUs. At

the lowest level, execution of a single thread is handled by a streaming processor

(SP). Several processors are grouped into a Streaming Multiprocessor (SM). All SPs

in a SM execute the same instruction in lockstep and share a instruction dispatch

hardware. All threads executing on a SM can communicate directly through on chip

user-controlled cache. Furthermore, threads across SMs can communicate through

global memory which is equivalent to random access memory on CPUs. In addition,

there are registers allocated to each thread that are used for storing local variables.

28

The memory control architecture is simplified compared to CPUs by restricting the

ability to do recursive calls and code branching. On the flip side this allows a much

higher level of memory bandwidth. For example, the G80 model of NVIDIA GPU

has memory bandwidth of 86.4 GB/S.

3.2 Compute Unified Device Architecure (CUDA)

Figure 3.3: Basic units of CUDA

Programming in the GPUs made by NVIDIA is accomplished through a language

specification called Compute Unified Device Architecture (CUDA). CUDA adapts

the concept of SIMT: Single Instruction, Multiple Threads (50). The basic execution

construct in CUDA is a kernel. Each thread executes the same kernel in parallel. At

the software level, threads are organized into thread blocks. Each thread block (TB)

is executed by a single SM with various threads in the thread block being handled by

different SPs in the SM. Threads in a TB can be indexed either in 1-D, 2-D, or 3-D

depending on the type of data being processed. Typically, the number of threads in

a TB is much larger than the number of SMs. Threads in a TB are automatically

29

scheduled for execution in blocks of thread warps. Similarly, the number of TBs is

much larger than the number of SMs and the GPU automatically schedules the exe-

cution of TB on different SMs. At the highest level of execution, TBs are arranged

in a grid layout. This layout can be 1-D,2-D, or 3-D to match the nature of the data

being processed (51). Figure 3.3 illustrates this hierarchy.

3.3 CUDA memory types

There are five different type of memory in CUDA and they are briefly described below

and illustrated in Figure 3.4 (51):

Figure 3.4: Memory types in CUDA

3.3.1 Global memory

It is a read and write memory which allows communication between threads located

executing on SP located on different SMs. This memory is slowest on the GPU and

30

typically requires coalesced read or write to achieve full bandwidth. In recent genera-

tion of GPUs, global memory is associated with L1 cache and therefore, performance

of truely random access has increased substantially.

3.3.2 Shared memory

Shared memory is the user-controlled on chip-cache. All SPs in the SM have ac-

cess to the same shared memory and therefore threads in a TB can communicate

through share memory. However, threads in two TBs scheduled to execute on the

same SM cannot communicate through shared memory becaused the share memory

is not persistant between the scheduled execution of different TBs.

3.3.3 Registers

Registers are the fastest memory available in the GPU. The threads in Streaming Mul-

tiprocessors (SMs) are assigned a set of registers and they use registers to store data

that is local to the thread such as counters that will need to be accessed frequently.

The contents of registers cannot be shared directly by threads in TB.

3.3.4 Local Memory

Local memory stores the data overflow from registers. When a given thread has too

many local variables, some of the variables are physcially stored in global memory

through the local memory construct. Use of local memory can significantly affect

performance.

3.3.5 Constant and Texture memory

Constant and texture memory are designed for read only operations. They are

equipped with cache to speed up the data access for reading purpose. They are

31

physcially located in global memory. Constant memory is used for storing variables

that do not change in value over the execution life of a kernel. Texture memory data

layout in a grid which can be 1-D, 2-D, or 3-D. Data in texture memory is parame-

terized and can be accessed even at locations inbetween grid points through suitable

interpolation functions.

3.4 Process flow in CUDA

CUDA is a heterogeneous architecture which supports execution of both serial and

parallel programs. The serial program generally executes the C code in the host

(CPU) (51) whereas parallel programs called the kernel functions are executed in the

device (GPU) (51). The execution of kernel function is done by threads present in

the thread blocks. However, kernel function can only be invoked in a serial C code.

The number of threads and thread blocks executing a kernel function is explicitly

defined in serial C code when kernel function is called. The process flow in CUDA is

illustrated by Figure 3.5 (52) and briefly described below:

Step 1: Transfer of data to device

Even before the data is copied from host (CPU) to device (GPU), it is essential to

allocate memory for variables in both CPU and GPU. The memory is allocated in

host using dynamic memory allocation function (malloc()) which is defined within

C standard library. The memory allocation in GPU is done using CUDA API func-

tions (49) (cudaMalloc()). After the allocation of memory is done in both CPU

and GPU, the variables are transferred from host to device using CUDA API func-

tion, cudaMemCpy(), for parallel execution as shown by ’1’ in Figure 3.5. However,

cudaMemcpyHostToDevice has to be specified within cudaMemcpy function which

implies that data is being copied from host to device.

32

Figure 3.5: Process flow in CUDA

Step 2: Instruct the processing

In this step, a call to the kernel function is done from the host (CPU) for its parallel

execution on the device (GPU). An execution configuration has to be specified in order

to execute the kernel function. The execution configuration specifies the dimensions

and layout of the TB grid, and the the dimensions and layout of the threads in the

TB. Furthermore, function variables including pointers to data in global memory can

be passed.

Step 3: Execute parallel processing

After the kernel function is invoked in step 2, it assigns a group of threads in a thread

blocks with individual data variables to execute them in parallel. The kernel function

has _global_ specifier before its name and has a void return type. The index for each

thread is assigned within a kernel function by a inbuilt variable called "threadIdx"

based on size of a thread block. An example of kernel function for a simple vector

33

addition is shown in Figure 3.6 (49).

Figure 3.6: An example of kernel function

Step 4: Transfer of results to host

At the end of the execution of the kernel, data may be transfered back to the host

for further analysis of results. Typically, this step (and also step 1) is executed only

when absolutely necessary, for example, for archiving the results on a hardrive for

check pointing. CUDA API function, cudaMemcpy(), copies the data from device

(GPU) to host (CPU). However, cudaMemcpyDeviceToHost must be defined within

cudaMemcpy function.

3.5 High level overview of FLAME GPU

FLAME GPU is a template based framework which maps the formal definition of

agents to the simulation code (10). It is governed by X-machine Mark-up Language

(XMML) with a set of XML schemas to verify the syntax of XMML model files. A

typical XMMLmodel file consists of definition of agents including transition functions,

message types and layers which handle the order in which the simulation model is

executed. Agents are defined based on the concept of X-Machine (53; 54), which is an

extension of Finite State Machines (FSM) with internal memory. X-Machine agents

are capable of communicating with other agents by iterating through message list from

a message board. Transition functions, specified within agent definition, handles the

state change of agents based on state transition rules. After the transition functions

34

causes the state change of agents, they update their internal memory which can be

either used as an input to iterate through the message list, or as an output which is

passed as a message for other agents to read.

Figure 3.7: FLAME GPU process flow

Figure 3.7 (55) shows the process flow for the generation of compilable FLAME

GPU simulation code. As shown in Figure 3.7, XMML model file along with Ex-

tensible Stylesheet Language Transformation (XSLT) templates is processed through

XSLT processor to generate a compilable simulation code along with agent data

structures, agent and message API functions (56). Two XMML schemas are used to

validate the syntax of XMML model file: XMML Base Schema verifies the syntax of

base XMML model file whereas GPU XMML Schema includes any additional GPU

specific model parameters (56). The simulation model can be run in either visualiza-

tion or console mode. The visualization mode allows a user to view the simulation

in real time while the console mode allows a user to generate XML output files for

predefined number of iterations.

35

3.6 Agent model specification in FLAME GPU

A skeletal layout of agent definition in XMML model file is shown in Figure 3.8

(55). X-machine agents are defined within single element of xagents. A gpu:xagent

element contains name of an agent, its optional description, internal memory variables

of agents, set of agent transition functions, set of states, type and the buffer size as

shown in Figure 3.8.

<xagents>
<gpu:xagent>

<name>AgentName</name>
<de s c r i p t i o n>opt i ona l d e s c r i p t i o n o f the agent</

d e s c r i p t i o n>
<memory> . . .</memory>
<func t i on s> . . .</ func t i on s>
<s t a t e s> . . .</ s t a t e s>
<gpu:type>cont inuous</ gpu:type>
<gpu : bu f f e r S i z e>1024</ gpu : bu f f e r S i z e>

</gpu:xagent>
<gpu:xagent> . . .</ gpu:xagent>

</xagents>

Figure 3.8: Skeletal layout of agent definition in XMML model file.

The type refers to the way the agents are represented in spatial domain of the

simulation model and are of two types: continuous and discrete. Discrete agents are

represented as grids and can only move from one grid to the another as in Cellular

Automata. Continuous agents, on the other hand, are allowed to move freely in con-

tinuous space. As the memory has be predefined in the GPUs, bufferSize determines

the maximum number of specific agent types that take part in the simulation.

3.6.1 Agent memory

An agent memory consists of state variables of each agent which helps to store the

information carried by it such as its position coordinates in x, y and z direction.

Each agent variable consist of type (int, float or double) along with a unique

36

name of agents. The available versions of FLAME GPU is capable of storing single

memory variables only and the default values of these variables are always ’0’ unless

any specific values are assigned to it in initial XML input file. Figure 3.9 (55) shows

an example of agent memory defined for its position coordinates.

<memory>
<gpu :va r i ab l e>

<type>in t</ type>
<name>id</name>

</ gpu :va r i ab l e>
<gpu :va r i ab l e>

<type>f l o a t</ type>
<name>x</name>

</ gpu :va r i ab l e>
<gpu :va r i ab l e>

<type>f l o a t</ type>
<name>y</name>

</ gpu :va r i ab l e>
<gpu :va r i ab l e>

<type>f l o a t</ type>
<name>z</name>

</ gpu :va r i ab l e>
</memory>

Figure 3.9: An example of definition for agent memory variables

3.6.2 Agent functions

Agent functions contain the definition of all the transition functions which handle

the state change of agents. They are defined within functions element and it must

include at least one agent transition function. An example of agent function definition

is shown in Figure 3.10 (55).

As shown in the Figure 3.10, it consists of non optional and unique function name,

an optional description of transition function, current state of agents, next state that

agents attain, an optional single message inputs, an optional single message outputs,

an optional agent outputs, an optional global conditions, an optional condition, a

37

<func t i on s>
<gpu : func t i on>

<name>func_name</name>
<de s c r i p t i o n>func t i on d e s c r i p t i o n</ de s c r i p t i o n>
<cur r en tS ta t e>a l i v e</ cur r en tS ta t e>
<nextState>dead</ nextState>
<inputs> . . .</ inputs>
<outputs> . . .</ outputs>
<xagentOutputs></xagentOutputs>
<gpu :g loba lCond i t i on> . . .</ gpu :g loba lCond i t i on>
<cond i t i on> . . .</ cond i t i on>
<gpu : r e a l l o c a t e>true</ gpu : r e a l l o c a t e>
<gpu:RNG>true</gpu:RNG>

</ gpu : func t i on>
</ func t i on s>

Figure 3.10: An example of agent function definition

boolean (true or false) for reallocation and random number generation (55).The cur-

rent state of agents defined within currentState acts as a filter and applies agent

transition function to agents possessing the current state. The next state defined in

nextState element is the state that an agent will after its state transition. The list

of states that an agent attains is defined in states element. The gpu:reallocate

element decides whether to keep or remove the agents from the simulation in the case

of death of agents. The gpu:reallocate element can be either true or false: if it

is defined as true, then the dead agents are removed from the simulation whereas

if defined false, agents continue to be in a simulation model even if they are dead.

The element gpu:RNG when initialized as true passes an array to agent transition

function to generate random numbers in a simulation model.

1. Agent function message inputs and outputs

The element inputs in an agent function indicates that an agent function will iterate

through message list located in global memory of the GPUs. It consists of non optional

message name defined within messageName element and message name must be same

38

as the name defined within messages element in XMML model file.

<inputs>
<gpu: input>

<messageName>message_name</messageName>
</ gpu: input>

</ inputs>

<outputs>
<gpu:output>

<messageName>message_name</messageName>
<gpu:type>single_message</ gpu:type>

</gpu:output>
</outputs>

Figure 3.11: An example of agent function inputs and outputs

The element outputs in an agent function is responsible for writing of messages

from agents to a message board for reading by other agents. It consists of element

messageName and type. The name in messageName must be exact to name of mes-

sage defined in messages element. The type element can be either single_message

or optional_message: single_message indicates that the agents executing agent

transition function output only one message at a time whereas optional_message

either outputs a single message or no message. If agent fails to output a message,

the value of message variable is set to ’0’ by default. An example of agent function

message inputs and outputs is show in Figure 3.11 (55).

2. Agent function X-agent outputs

The element xagentOutputs handles the birth of an agent. It consists of sub-element

gpu:xagentOutput within which xagentName and state are defined. The name of an

agent which is to be reproduced or added is specified within xagentName and its state

is defined in state element which corresponds to the state of newly added agents.

An example of agent function for xagent outputs in shown Figure 3.12.

39

<xagentOutputs>
<gpu:xagentOutput>

<xagentName>agent_name</xagentName>
<s t a t e>a l i v e</ s t a t e>

</gpu:xagentOutput>
</xagentOutputs>

Figure 3.12: An example of agent function inputs and outputs

3. Global function conditions

<gpu:g loba lCond i t i on>
<lh s>

<agentVar iab le>movement</ agentVar iab le>
</ lh s>
<operator>&l t ;</ operator>
<rhs>

<value>0.25</ value>
</ rhs>
<gpu :maxI t t e ra t i ons>200</ gpu :maxI t t e ra t i ons>
<gpu:mustEvaluateTo>true</gpu:mustEvaluateTo>

</ gpu :g loba lCond i t i on>

Figure 3.13: An example of global function condition

A global function condition, defined within gpu:globalCondition element, acts

as a switch to identify whether the agent transition function is applied to all or

none of the agents. It consists of logical statements which are formulated using

sub-elements: lhs, operator and rhs. The agent variable that need to tested are

kept in lhs element. The rhs contains reference values or variables against which

agent variables are tested. The operator element acts as a medium to compare lhs

and rhs element. It also consists of maxItterations and mustEvaluateTo element.

The element maxItterations allows to define maximum number of iterations to

execute agent functions without being affected by global function condition. The

mustEvaluateTo element drives the global function condition and its value is set to

either true or false. If the value is set to true, global function condition is applied

40

to all the agents whereas false value will not apply global function condition to any

of the agents. An example of global function condition is shown in Figure 3.13 (55).

4. Function conditions

<cond i t i on>
<lh s>

<agentVar iab le>variable_name</ agentVar iab le>
</ lh s>
<operator>&l t ;</ operator>
<rhs>

<cond i t i on>
<lh s>

<agentVar iab le>variable_name2</ agentVar iab le>
</ lh s>
<operator>+</ operator>
<rhs>

<value>1</value>
</ rhs>

</ cond i t i on>
</ rhs>

</ cond i t i on>

Figure 3.14: An example of function condition with recursive condition element

The function condition is similar to global function condition but only difference

between them is function condition is applied to agents that satisfy conditions applied

to it. Like global function condition, it also consists of logical statements which

are formulated by three sub-elements: left hand side state (lhs), right hand side

statement (rhs) and an operator. The agent variables, constant values and recursive

conditions are defined by agentVariable, value and condition element inside lhs

or rhs element. Agent variables must be derived from the list of variables defined in

memory element. An example of function condition with recursive condition element

defined inside rhs element is shown in Figure 3.14 (55).

41

3.6.3 Agent states

Agent state lists all the state transitions that an agent makes during the course of the

simulation. It is defined within states element in XMML model file with a unique

and non optional name. Besides, initial state of an agent also needs to be defined

which corresponds to its state during the start of the simulation. It is defined within

initialState of states element. Figure 3.15 (55) is an example of listing of agent

states (dead or alive).

<s t a t e s>
<gpu : s t a t e>

<name>a l i v e</name>
</ gpu : s t a t e>
<gpu : s t a t e>

<name>dead</name>
</ gpu : s t a t e>
<i n i t i a l S t a t e>a l i v e</ i n i t i a l S t a t e>

</ s t a t e s>

Figure 3.15: An example of listing of agent states

3.6.4 Agent messages

Messages act as a bridge of communication between agents which allows agents to

interact with each other. The agent variables which influence agents for its state

change are passed as messages variables and are stored in memory board located in

global memory of GPU which are accessible by all the agents. A skeletal framework

for defining agent messages is shown in Figure 3.16 (55).

As shown in the Figure 3.16, it consists of unique and non optional name along with

optional description of the message, a list of message variables (variables), parti-

tioning type (partitioningType) and buffer size (bufferSize). The partitioning of

message variables are of three types: non partitioned (partitioningNone), discretely

partitioned (partitioningDiscrete) and spatially partitioned (partitioningSpatial)

42

<messages>
<gpu:message>

<name>message_name</name>
<de s c r i p t i o n>opt i ona l_de s c r i p t i on</ d e s c r i p t i o n>
<va r i a b l e s> . . .</ v a r i a b l e s>
. . .<par t i t i on ingType /> . . . // r ep l a c e with a

p a r t i t i o n i n g type
<gpu : bu f f e r S i z e>1024</ gpu : bu f f e r S i z e>

</gpu:message>
<gpu:message> . . .</gpu:message>

</messages>

Figure 3.16: A skeletal framework for agent messages

(55). These partitioning techniques ensure that message variables are made available

to agents accessing message variables in an optimal way. The bufferSize element

determines the maximum number of messages that exist in a simulation model.

1. Message variables

Message variables contain vital information to allow communication between agents.

The agent variables that influence the state change of other agents are defined as

message variables. They are defined in variables inside messages element and are

specified in a similar way as agent variables as shown in Figure 3.9.The only difference

between agent and message variable is the need of certain variable name and type

for specific message partitioning technique. For instance, discrete partitioning type

requires position coordinates in x and y direction of type int. While, spatial parti-

tioning needs three variables of type float in x, y and z direction. Non partitioned

technique, on the other hand, has no limitation on type of message variables.

2. Non partitioned messages

Non partitioned messages require brute force search algorithm (57) which allows an

agent to iterate through all the message lists. It has an order of O(n2) and it is com-

putationally expensive when the message list is very large. However, this technique is

43

efficient compared to spatial partitioned technique for small number of messages since

it requires less overhead or setup (55) . It is defined as <gpu:partitioningNone\>

inside gpu:message element in XMML model file.

3. Discrete partitioned messages

It is specifically used for non mobile discrete agents (Cellular Automata) as a medium

of communication between other discrete agents (55). An example to define discrete

partitioned messaging is shown in Figure 3.17 (55).

<gpu : p a r t i t i o n i n gD i s c r e t e>
<gpu : rad iu s>1</ gpu : rad iu s>

</ gpu : p a r t i t i o n i n gD i s c r e t e>

Figure 3.17: An example of definition of discrete message partitioning

The gpu:radius element consists of constant value for the range of message iter-

ation. When value of radius is defined as ’0’, the message iteration function returns

a single message. However, when radius value is greater than ’0’, message iteration

function seeks for messages in discrete neighboring grids in both x and y direction

which are at a distance equal to radius. For example, if the value of radius is ’1’,

the message iteration function will iterate through 9 messages (55) in 2-D space. Fur-

thermore, message iteration function for discrete partitioning demands two message

variables (x, y) of type int as input arguments.

4. Spatially partitioned messages

The spatially partitioned messaging technique is especially designed to gather mes-

sages from continuously spaced agents in a simulation model. This method is based

on the concept of particle systems (58) which divides the simulation into uniformly

sized grids. It is particularly efficient compared to non partitioned messages when

number of messages is very large because this method iterates through the messages

44

located in nearest neighboring grids rather than iterating through entire message list.

It bins the agents messages belonging to same grid based on the grid index and sorts

the messages by fast radix sort algorithm. A scatter kernel is used to find first and

last index of agent messages (Figure 3.18) in sorted list to iterate through 9 messages

(2D) or 27 messages (3D). An agent message within predefined radius of influence is

considered for communication.

Figure 3.18: A schematic representation of 2D spatial partition technique

It consists of two sub-elements: a radius which determines the range of message

iterations and a set of minimum and maximum bounds which represents the size of

simulation domain within which agent messages exist. If agent messages lie outside

the environment bounds, then they are bounded to nearest possible location in sim-

ulation domain (55). The message iteration function for this method required three

agent variables (x, y, z) of type float. An example for defining 3D spatial partitioned

messaging technique is shown in Figure 3.19 (55).

3.6.5 Function layers

Function layer handles the order in which the agent functions are executed in the

simulation. The agent functions defined within function layers are executed for each

iteration when the simulation is run for predefined number of iterations. An example

45

<gpu : p a r t i t i o n i n gSpa t i a l>
<gpu : rad iu s>1</ gpu : rad iu s>
<gpu:xmin>0</gpu:xmin>
<gpu:xmax>10</gpu:xmax>
<gpu:ymin>0</gpu:ymin>
<gpu:ymax>10</gpu:ymax>
<gpu:zmin>0</gpu:zmin>
<gpu:zmax>10</gpu:zmax>

</ gpu : p a r t i t i o n i n gSpa t i a l>

Figure 3.19: An example of definition of spatial message partitioning

for definition of function layers is shown in Figure 3.20(55).

<lay e r s>
<lay e r>

<gpu: layerFunct ion>
<name>funct i on1</name>

</ gpu: layerFunct ion>
<gpu: layerFunct ion>

<name>funct i on2</name>
</ gpu: layerFunct ion>

</ l ay e r>
<lay e r>

<gpu: layerFunct ion>
<name>funct i on3</name>

</ gpu: layerFunct ion>
</ l ay e r>

</ l a y e r s>

Figure 3.20: An example of definition of spatial message partitioning

As shown in the figure 3.20, it consists of layers element within which multiple

layer sub-element may be defined. The layer can include multiple gpu:layerFunction

element within which agent function name is defined. The agent functions which are

independent of each other must to defined within a same layer whereas agent func-

tions which share messages with each other are defined in a different layer. In the

example shown above, function1 and function2 are defined within a same layer

which shows that they are independent of each other.

46

3.6.6 Initial XML agent data

It consists of numerical values of agent variables that are passed as input before that

start of the simulation. Agents’ information are initialized within states element

along with an iteration number (itno) set to ’0’ which is updated at every time step.

<s t a t e s>
<i tno>0</ i tno>
<xagent>

<name>AgentName</name>
<id>1</ id>
<x>21.088</x>
<y>12.834</y>
<z>5.367</z>

</xagent>
<xagent> . . .</xagent>

</ s t a t e s>

Figure 3.21: Initialization of agent variables for a single agent

The xagent element inside states element contains name and initial values for

agent variables. The name of an agent and type of value assigned to it must be

exactly same as defined in XMML model file. Figure 3.21 (55) shows an example of

values assigned to each agent variables for a single agent.

3.6.7 Agent function scripting in FLAME GPU

Agent function script in FLAME GPU uses C based syntax to translate theoretical

behavioral rules of agents into a computer code. In FLAME GPU, the change in

behaviors of agents are governed by change in internal memory of agents when it

iterates through messages of neighboring agents in a message iteration function. The

creation of new messages as well as new agents also influence behavior of agents. The

agent behavioral rule is defined for an individual agent in a specific state and it is

assigned to all the agents in same state to run in parallel.

The data structures associated with agents and messages are dynamically created

47

__FLAME_GPU_FUNC__ in t pos it ion_update
(xmachine_memory_myAgent∗ xmemory ,
xmachine_message_location_list ∗ locat ion_messages)

{
i n t count ;
f l o a t avg_x , avg_y , avg_z ,

/∗ Get the f i r s t l o c a t i o n messages ∗/

xmachine_message_location∗ message ;
message = get_f i r s t_locat ion_message (locat ion_messages) ;

/∗ Loop through the messages ∗/
whi l e (message)
{

i f ((message−>id != xmemory−>id))
{

avg_x += message−>x ;
avg_y += message−>y ;
avg_z += message−>z ;

count++;
}

/∗ Move onto next l o c a t i o n message ∗/

message = get_next_location_message (message ,
locat ion_messages) ;

}

i f (count)
{

avg_x /= count ;
avg_y /= count ;
avg_z /= count ;

}

xmemory−>x += avg_x ;
xmemory−>y += avg_y ;
xmemory−>z += avg_z ;

re turn 0 ;
}

Figure 3.22: Agent function script using non partitioned messaging to find average
position of agents

48

and are defined in header file "header.h". The agents variables are defined in a

structure named xmachine_memory_agent_name where agent_name refers to name

of an agent defined in XMML model definition (55). Likewise, message variables

are included within xmachine_message_message_name structure. The header file

"header.h" also contains structure of arrays that store agent and message list. Agent

lists are created under the name of xmachine_memory_agent_name_list and message

list are created with xmachine_message_message_name_list structure (55). These

data structures are passed as arguments to agent functions and simulation API func-

tions. The simulation API function could be message iteration function, message or

agent addition function.

All the agent function declarations have a prefix __FLAME_GPU_FUNC__ followed by

agent function name and a set of function arguments defined within a parenthesis. The

function name must be exactly same as defined in XMML model file. Additionally, the

function arguments may consist of pointers which provide an access to agents, agents

list or messaging list data structures and depends upon agent function definition

in XMML model file. The function argument may also contain RNG pointer which

generate random numbers in the simulation if gpu:RNG element is defined as true in

XMML model file.

The body of an agent function consists of C based script that describes the rules

of behavior for agents. Since the behavior of an agent is influenced by its neigh-

boring agents, it also has a simulation API function for message iteration which

allows an agent to access message variables of neighbors. The process for access-

ing message variables has three basic steps: First, a pointer is defined within agent

function which provides an access to data structure containing message variables.

Second, array containing first group of messages are loaded into shared memory

by get_first_message_name_message (arguments,...) API function. Finally, a

simulation API function get_next_message_name_message (arguments,...), which

49

reads messages in shared memory sequentially, is called inside a while loop until first

group of messages present in shared memory is exhausted. After the first group

of message list is exhausted, get_next_message_name_message function loads next

group of messages into shared memory.

An example of agent function script using non partitioned messaging to find the av-

erage position of the agents is shown in Figure 3.22 (55). As shown in the figure above,

the agent function name is position_update with two function arguments: a xmemory

pointer which has an access agent data variables within xmachine_memory_myAgent

structure and location_messages pointer which accesses message list present in

xmachine_message_location_list structure. In the example illustrated above, the

body of an agent function contains a C based script to calculate the average lo-

cation of an agent based on position coordinates of its neighboring agents. It has

a pointer messages which accesses to message variables i.e. position coordinates

of neighboring agents. This pointer is then assigned to simulation API function,

get_first_location_message(location_messages), which takes a pointer to a

message list as a function argument. This API function loads the first group of loca-

tion messages into shared memory and these messages are read sequentially inside a

while loop by get_next_location_messages(message, location_messages) as-

signed to message pointer, with two function arguments. Three variables avg_x,

avg_y and avg_z of type float is defined in the beginning of agent function script to

store the average value of position coordinates in x, y and z direction. The average

values for position coordinates are calculated by summing the message variables hav-

ing position coordinates inside a while loop which is then divided by total count of

neighboring agents. Finally, calculated average values are assigned to agent variables

which updates the internal memory of agents.

50

3.6.8 FLAME GPU simulation templates

FLAME GPU consists of number of simulation templates that generate dynamic

simulation code. These templates are defined based on Extensible Stylesheet Trans-

formations (XSLT) (55) and are of following types:

1. header.xslt

This template generates a header file "header.h" which contains agent and message

data structures as well as agent and simulation function prototypes.

2. main.xslt

It generates a source file named "main.cu" which contains an entry point for execution

of simulation. It also handles command line arguments, such as input XML file name

and number of iterations.

3. io.xslt

It generates a source file, "io.cu", which handles the reading of agent data variables

from input XML file as well as write updated agent data variables into an output

XML file.

4. simulation.xslt

It creates a source file "simulation.cu" for host (CPU) that is responsible for trans-

ferring agent data to and from device (GPU). It also includes calls to CUDA kernel

functions that execute agent functions.

5. FLAMEGPU_kernels.xslt

It creates a CUDA header file "FLAMEGPU_kernels.cu" that contains CUDA kernel

functions such as partitioning function which allocates each agent to its respective

51

grid.

6. visualization.xslt

It creates an OPEN GL source file "visualization.cu" accompanied by header file

"visualization.h" which allows the basic of representation of agents by spheres

in 3D space. The header file contains parameters, such as size of spheres, which

are passed to OPEN GL source file ("visualization.cu") and they are defined

manually.

52

Chapter 4

Immune System

Immune system is a biological defense system in living organism that protects them

from invasion of external pathogens such as bacteria, viruses, and fungi and keeps

functional tissues healthy. All forms of living organisms are equipped with immune

system and they could be primitive (immune system of single celled bacteria) or

complex (immune system of human beings). It must possess an ability to evolve and

adapt since the pathogens are increasingly evolving to avoid detection by the immune

system.

The immune system protects the living organisms from infection using a layered

defense mechanism. The first layer of this defense mechanism is a physical or external

barriers ,such as skin, which prevents the entry of bacteria and viruses into the body. If

it fails to prevent the entry of pathogens, the first line defense mechanism called innate

immune system (59) acts upon these external pathogens in response to distressed

signals from infected cells (1) and kills them (the cells) upon contact. It is non-specific

and acts upon pathogens in a generic way (60). If the innate immune system fails to

eliminate the pathogens completely, the second line of defense called adaptive immune

system (60) is activated by innate immune system. The adaptive immune system is

antigen specific and act upon pathogens that matches its specificity. Moreover, it

evolves as it eliminates the pathogens and develops an immunological memory so

that the immune response is faster and stronger when immune system is invaded by

same pathogen (3) once again. The detail description of innate and adaptive immune

system is described in the section below.

53

4.1 Innate immune system

The innate immune system is the first line defense (59) of the immune system against

invasion by foreign entities. They are non- specific and act upon different invaders in

a generic way. Besides, it is incapable of providing long lasting protection to the host

as they lack immunological memory (60). The essential functions of innate immune

system are: activate adaptive immune system by presenting antigens to adaptive

immune cells, create a barrier (physical and chemical) to harmful pathogens, identify

and remove pathogens from tissues, organs and blood by white blood cells, promote

complement system (61) for removal of dead cells and respond to distressed signals

from infected cells by recruiting innate immune cells. The components of innate

immune system (Figure 4.1 (62)) is categorized based on its functionality and they

are:

Figure 4.1: Components of innate immune system

54

4.1.1 Anatomical barrier

Epithelial tissues of skin, respiratory tract and gastrointestinal tract are the examples

of anatomical barriers which prevents the penetration of foreign microbes by forming

physical or chemical barriers. Integrity of cells in epithelial tissue form a physical

barrier which serves as first line of defense to prevent the entry of pathogens (60).

They also secrete anti-microbial chemicals that suppress the growth of microbes (62).

Furthermore, respiratory and gastrointestinal tract also create a physical barrier by

trapping pathogens in mucus produced by them (63). The elimination of microbes by

stomach acids and digestive enzymes in a stomach is an example of chemical barrier

created by gastrointestinal tract (62).

4.1.2 Complement system

Complement system, a part of innate immune system, is composed of more than

twenty sets of protein molecules in the blood stream in an inactive state (61). They

are activated when they encounter a site of infection where they attack the surface

of pathogen. This leads to series of events that eliminate microbes, and therefore,

infection. Upon activation, complement proteins may bind to antibodies that ad-

here to surface of microbes and form a biochemical cascade (64) to activate other

complement proteins. The cascade produces peptides that attract immune cells to

kill microbes (65). Besides, the proteins may also be bound to carbohydrates on the

surface where it forms a layer of complements which disrupt the plasma membrane

of microbes, thereby, killing it (66).

4.1.3 Innate immune cells

Innate immune cells are White Blood Cells (WBCs) that form a second line defense of

innate immune system (60). They are independent, not the part of any specific tissues

55

or organs, which function as single cell organisms capable of moving freely, identifying

and eliminating foreign particles and harmful micro-organisms. They are product of

stem cells present in bone marrow (60). They eliminate pathogens by direct contact

or by engulfing them (61). Innate immune cells also act as a mediator to activate

adaptive immune system (67). They can be classified based on their functionality

and they are:

1. Phagocytes

Phagocytes are one of the group of innate immune cells that remove foreign particles,

bacteria, dead or dying cells that are at the end of their life cycle (68). There are

about six million phagocytes in one liter of human blood (69). The name phagocyte is

derived from the Greek word, phagein and cyte which means "eater cells" (70). They

simply ingest the microbes and neutralize them by a process called "Phagocytosis"

(Figure 4.2) (71; 72).

Figure 4.2: Phagocytosis by a Macrophage

In the process of phagocyotsis, the phagocytes extend the portion of their plasma

membrane to engulf the microbes until they are completely enclose inside their mem-

56

brane (61). They produce digestive enzymes to kill microbes followed by respiratory

burst with a release of free radicals (73; 74). Phagocytes are either "professional"

or "non-professional" based on effectiveness of phagocytosis they perform (71). The

professional phagocytes have receptors on their surface that is capable of identifying

micro-organisms that are not the part of the body (71). Besides, they also possess a

capability to follow distressed signals produced by infected cells by a process called

chemotaxis. After the completion of phagocytosis, the cells such as macrophages and

dendritic cells extract the antigen from microbes and present it to adaptive immune

cells. On the other hand, non-professional phagocytes are responsible for scavenging

dead cells and create suitable conditions for regeneration of healthy cells (75). The

different type of phagocytes are described below:

a. Macrophages

The name Macrophage (MΦ) comes from the Greek word makros and phagein which

means big eaters (70). A typical size of a macrophage found in human body is 21 µm

(76) with an average life span ranging from 4 to 15 days (71).

They are usually found residing in the tissues where they are activated when they

sense the presence of foreign particles (77). They ingest and neutralize foreign parti-

cles, bacteria and cancer cells by phagocytosis. There are two types of macrophages:

M1s that promote inflammation which is result of response to infection or injury

and M2s that reduce inflammation (anti-inflammatory) and promote the repair of

damaged tissues by scavenging the dead or dying cells (78).

Apart from inflammatory and anti-inflammatory response, they play an important

role in activation of adaptive immune cells. After the microbe is neutralized by

digestive enzymes in phagocytosis, they extract an antigen from it and attach it

to a MHC (Major Histocompatibilty Complex) class II molecule (61), located on

its surface, so that other white blood cells can distinguish them from pathogens.

57

They present an antigen to helper T cell for killing of pathogens with same antigen

specificity (61).

b. Neutrophils

Neutrophils are the type of White Blood Cells (WBCs) that constitutes majority of

innate immune cells (50% to 60% of WBCs) (79). The number of neutrophils present

in one liter of human blood is approximately five billion (69). It has an average size

of 10µm in diameter (80) with average life span of 5 days (81). The neutrophils

circulating in the blood stream are activated by danger signals and enter the site of

infection from blood stream where they kill microbes and infected cells coated with

antigen and complement proteins, thereby, causing inflammation (81). After the kill,

neutrophils die and are released as pus (81).

c. Dendritic Cells

Unlike the macrophages which kills and scavenge infected cells and microbes, dendritic

cells plays an important role in tissue surveillance to monitor the well being of cells

in tissues. They are usually present in tissues that are in contact with external

environment such as skin as well as in the stomach, lungs and inner portion of nose

(69).

Dendritic cells are equipped with a special protrusion called dendrites (82) to

engulf microbes and perform antigen presentation for activation of T cells and B cells

(83; 81). After they gather antigen from pathogens, they are activated and travel to

lymphoid tissues to initiate adaptive immune response by presenting antigen to T and

B cells (84). The presentation of antigen activates T cells which later differentiate to

helper T cells and killer T cells to kill pathogens that matches its antigen specificity

(85). The helper T cells prepare B cells to produce antibodies specific to antigen

presented.

58

2. Mast cells

Mast cells are another group of White Blood Cells (WBCs) derived from myeloid

stem cell that trigger an immune response (inflammatory) leading to allergies (86)

(79). They are similar to basophils in terms of outlook and their functions and differ

from basophils by their location of residence. Mast cells usually are found in tissues

(eg: mucosal tissues) whereas basophils are present in blood stream (87).

3. Basophils and Eosinophils

Basophils and Eosinophils, often termed as Basophil granulocytes and Eosinophil

granulocytes, are innate immune cells that kill parasites by releasing poisonous toxins.

Basophils are activated when they confront pathogens and release a chemical called

histamine (61) to eliminate them. The killing of parasites by such chemical lead to

hypersensitivity and allergic reactions such as asthma (79). Like basophils, eosinophils

also release toxins and free radicals upon activation by parasites and bacteria, thereby,

killing them instantly. However, these toxins also causes the destruction of healthy

cells causing tissue damage which ultimately leads to allergic reactions (79).

4. Natural Killers

Natural killers (NKs) are the group of innate immune cells that kill the cells infected

by viruses in response to danger signals emitted by infected cells. They mature and

proliferate in bone marrow, spleen, lymph nodes and thymus and enter the blood

stream for circulation (88). Unlike the other immune cells which require detection

of antigen attached to the surface of infected cells, natural killers possess an ability

to identify infected cells without the presence of antibodies and antigens (61). This

feature of NKs produces faster immune response as they can detect harmful cells

without an antigen on its surface which cannot be identified by other immune cells(89).

59

4.2 Adaptive immune system

Adaptive immune system consists of highly specialized antigen specific cells that

eliminate pathogens matching their antigen specificity and develop an immunolog-

ical memory to provide an effective protection to the body for long period of time

when infested by the same group of pathogens. For example, a patient who has re-

covered from measles will be immune to it in the future. It is also referred to as

acquired immunity since it is developed during the life time due to the production of

antibodies when exposed to an antigen (90).

Figure 4.3: Components of adaptive immune system

The adaptive immune system consists of group of White Blood Cells (WBCs)

called lymphocytes (B cells and T cells) and is driven by two kinds of responses:

antibody and cell mediated response. The antibody response is triggered by acti-

vation of B cells producing antibodies. Antibodies are made up of proteins called

immunoglobulins that bind to an antigen, thereby, inactivating it to prevent infection

60

of host cells (60). Cell mediated response, on the other hand, is driven by activation

of T cells which seeks for antigen bound cells and pathogens and kill them upon con-

tact. The components of adaptive immune system is shown in Figure 4.3 (62) and

are described in the section below:

4.2.1 T Lymphocytes (T cell)

Figure 4.4: The process involving T cell activation

T cells are the group of lymphocytes that drive cell mediated response of adaptive

immune system to kill stressed cells or parasites matching its antigen specificity (91)

as well as help B cells for their activation (91). They are produced in thymus where

they mature and then enter the blood stream for circulation (60). They are equipped

with T Cell Receptor (TCR) on their surface to detect antigen present on MHC class

II molecule of dendritic cells and B cells (92).

T cells are in naive state during the start of their life cycle. They circulate in the

blood stream after they leave the thymus. When they detect and make contact with

61

MHC class II molecules containing an antigen on the surface of B cells or dendritic

cells, they get activated and start releasing chemicals called cytokines (93). After its

activation, they may transition into helper, killer or memory cells as shown in Figure

4.4(93).

a. Helper T Cell

The primary function of helper T cell is to manage activities of other immune cells

(marcophages and Bcells) by releasing cytokines rather than performing phagocytic

or cyto-toxic activities by it self (91). It has a T Cell Receptor (TCR) that detects and

recognizes MHC class II molecules present on the surface of Antigen Presenting Cell

(APC). The recognition of MHC class II molecules activates naive helper T cell and

activation of helper T cell results in release of cytokines which attract macrophages

to the site of infection (94). It also activates Antigen Presenting Cells (APCs) that

present an antigen to helper T cell.

Helper T cells are of two types, Th1 and Th2, and are classified based on the

contact they make with particular type of Antigen Presenting Cells (APCs) (91).

Helper T cell of type Th1 drives cell mediated immunity by influencing macrophages

to kill stressed cells (91). On the other hand, helper T cell of type Th2 activates B

cells to produce non-cytolytic antibodies (91). Th1 helper T cells are effective against

intracellular microbes such as viruses which reside inside the host cells where as Th2

helper T cells are more powerful against extracellular parasites such as bacteria and

toxins (91).

b. Cytotoxic and Memory T Cell

Cytotoxic T cell or Killer T Cell is one of the forms of T cell that causes the death of

infected or damaged cells by releasing cytotoxins (91). The naive T cells transition

to Cytotoxic T cells when T Cell Receptor (TCR) detect peptide bound MHC class

62

I molecules which activates killer T cells (91). Upon activation, killer T cells prolif-

erate exponentially and seek out other peptide bound MHC class I molecules. The

cytotoxins released by Cytotoxic T Cell perforates the plasma membrane of infected

cells through which water and ions enter into the cytoplasm. This causes an infected

cell to explode (91). The killer T cells die after the infection is cleared, however, few

of them transition to memory T cells which develop an immunological memory to a

specific antigen (94). If the same group of pathogens invade the system in the future,

these memory cells transition back to killer cells, hence, resulting in faster immune

response.

4.2.2 B Lymphocytes (B cell)

B cells are Antigen Presenting Cells (APCs) that drives the humoral response of the

immune system by producing antibodies when they encounter antigens that matches

their specificity. They are produced in bone marrow of mammals (60) and begin as

immature B cells that enter into the blood stream where they transition into plasma

cells that produce antibodies when they sense antigens and cytokines released by T

cells (91). They have a receptor similar to T cells called B Cell Receptor (BCR) which

binds a specific antigen. The difference between receptor of B and T cell is that BCR

recognizes an antigen in unprocessed form whereas TCR can only detect processed

antigens bounded with peptide (91).

The immature B cells circulating in the lymphatic system remain inactive and

cannot produce antibodies until they encounter antigens of specific type in the blood

stream. When they detect an antigen in its native form, the BCR present on their

surface binds the unprocessed antigen. The unprocessed antigen bound on BCR is

engulfed within plasma membrane of B cell where it is processed (93). The processed

antigen is bound to its MHC molecule in the BCR receptor to present it to other

immune cells such T cells. B cells activate and proliferate when they make contact

63

with T cells in presence of cytokines released by T cells and transition to either short-

lived plasma cells or memory B cells. The process of activation of B cells is shown in

Figure4.5 (93).

Figure 4.5: The process involving B cell activation

Each Plasma B cell is responsible for producing hundreds and thousands of an-

tibodies (92) whose primary function is to activate complement proteins and help

in elimination of antigens by binding and presenting them to phagocytes or killer

immune cells (91). Plasma cells undergo apoptosis once the body recovers from in-

fection. However, few plasma cells (about 10%) transition to memory B cells that

develop an immunological memory against infection (91).

64

Chapter 5

Implementation of Immune Simulator in FLAME

GPU

Unlike the traditional framework for ABMs such as Repast which is based on algo-

rithms that are executed serially on CPUs, FLAME GPU utilizes the parallel compu-

tational feature of GPUs, thereby significantly increasing computational performance.

This results in efficient simulation of even large models that cannot be handled with

frameworks such as Repast. Additionally, visualization is relatively inexpensive to

achieve since agent data is located in GPU memory where it can be rendered directly

without any additional computational overhead.

5.1 Definition of immune cells in FLAME GPU

As discussed in chapter 2, different immune cells in the immune simulator can be rep-

resented as agents executing their own set of behavioral rules. The agent and message

variables associated with immune cells, agent transition function definition handling

their state changes and layers which schedule the execution of agent functions are

defined within XMML model file definition. An example of specification for one of

the cell type (parenchymal cell) is shown in Figure 5.1. As shown in the Figure 5.1,

memory element in XMML model file consists of definition of agent variables and their

type (int, float, double) associated with a parenchymal cell that store its position

coordinates, state, and amount of chemical signals emitted when infected by a virus.

The initial value of variables (Figure 5.2a) are defined in a file with xml extension

and these values are supplied as input into simulation.

65

<xagents>
<gpu:xagent>
<name>Parenchymal_cell</name>
<memory>
<gpu :va r i ab l e><type>in t</ type><name>id</name>
</ gpu :va r i ab l e>
<gpu :va r i ab l e><type>f l o a t</ type><name>x</name>
</ gpu :va r i ab l e>
<gpu :va r i ab l e><type>f l o a t</ type><name>y</name>
</ gpu :va r i ab l e>
<gpu :va r i ab l e><type>f l o a t</ type><name>z</name>
</ gpu :va r i ab l e>
<gpu :va r i ab l e><type>in t</ type><name>s t a t e</name>
</ gpu :va r i ab l e>
<gpu :va r i ab l e><type>in t</ type><name>bearAb</name>
</ gpu :va r i ab l e>
<gpu :va r i ab l e><type>f l o a t</ type><name>s_PK1</name>
</ gpu :va r i ab l e>
<gpu :va r i ab l e><type>f l o a t</ type><name>s_virus</name>
</ gpu :va r i ab l e>
<gpu :va r i ab l e><type>f l o a t</ type><name>s_apoptic</name>
</ gpu :va r i ab l e>
<gpu :va r i ab l e><type>f l o a t</ type><name>s_necrot i c</name>
</ gpu :va r i ab l e>
<gpu :va r i ab l e><type>in t</ type><name>stressedTime</name>
</ gpu :va r i ab l e>
<gpu :va r i ab l e><type>in t</ type><name>k i l lD e l a y</name>
</ gpu :va r i ab l e>

<func t i on s> . . .</ func t i on s>
<s t a t e s>

<gpu : s t a t e>
<name>de f au l t_pc e l l s</name>
</ gpu : s t a t e>

<i n i t i a l S t a t e>de f au l t_pc e l l s</ i n i t i a l S t a t e>
</ s t a t e s>
<gpu:type>cont inuous</ gpu:type>
<gpu : bu f f e r S i z e>5457</ gpu : bu f f e r S i z e>

</gpu:xagent>
</xagents>

Figure 5.1: XMML model file definition for Parenchymal cells

66

<xagent>
<name>Parenchymal_cell</name>
<id>0</ id>
<x>−1</x>
<y>−1</y>
<z>0</z>
<s t a t e>4</ s t a t e>
<bearAb>0</bearAb>
<s_PK1>0</s_PK1>
<s_virus>0</ s_virus>
<s_apoptic>0</ s_apoptic>
<s_necrot i c>0</ s_necrot i c>
<stressedTime>0</ stressedTime>

</xagent>

<xagents>
<gpu:xagent>

<name>Parenchymal_cell</name>
<memory> . . .</memory>
<func t i on s>

<gpu : func t i on>
<name>s t a t e_pc e l l s</name>
<cur r en tS ta t e>de f au l t_pc e l l s</ cur r en tS ta t e>
<nextState>de f au l t_pc e l l s</ nextState>
<inputs>

<gpu: input>
<messageName>agent_bce l l s</messageName>

</ gpu: input>
</ inputs>
<outputs>

<gpu:output>
<messageName>agent_pce l l s</messageName>
<gpu:type>single_message</ gpu:type>

</gpu:output>
</outputs>
<gpu : r e a l l o c a t e>f a l s e</ gpu : r e a l l o c a t e>
<gpu:RNG>f a l s e</gpu:RNG>

</ gpu : func t i on>
</ func t i on s>

</gpu:xagent>
</xagents>

Figure 5.2: a) Figure on the top shows initial value of variables for one Parenchy-
mal cell b) Figure on the bottom is an example of agent function definition
(state_pcells)

67

Additionally, function element includes the definition of all the agent transition

functions associated with the parenchymal cell that handle its state change, and

input/output of messages. An example that illustrates the definition of one of the

agent functions of parenchymal cell i.e. state_pcells is shown in Figure 5.2b. The

message names i.e. agent_bcells and agent_pcells defined within inputs and

outputs element inside state_pcells function, create a template for message API

functions to read and write messages from message board. Besides, the function

state_pcells also includes C based script that determines whether parenchymal

cells are healthy or infected by a virus.

5.2 Simulation domain

The simulation domain implemented in FLAME GPU is adapted from previous ver-

sion of Basic Immune Simulator (BIS) developed in RePast to preserve qualitative

nature of the simulation. The simulation domain is divided into three zones namely:

Zone 1, Zone 2 and Zone 3 (6; 7). Figure 5.3 shows the virtual representation of

three different zones of the immune simulator implemented in FLAME GPU which is

similar to its RePast implementation. Zone 1 is a representation of site for viral infec-

tion of generic parenchymal cells. The healthy parenchymal cells are represented by

yellow spheres and the infected parenchymal cells are represented by green spheres as

shown in Figure 5.3a. Zone 1 is also a residence for tissue surveilling innate immune

cells called Dendritic cells (DCs). Zone 2 (Figure 5.3b) is a residence for adaptive

immune cells (B cell agents, T cell agents and Cytotoxic T Lymphocyte agents) and

represents lymph nodes or spleen. Zone 3 (Figure 5.3c) is a representation of blood

circulation system which acts as a media to supply adaptive immune cells to site of

viral infection i.e. Zone 1.

Adaptive immune cells move randomly in Zone 3 for some period of time before

68

Figure 5.3: Virtual representation of three different zone in FLAME GPU: a) Zone 1:
Site for infection of parenchymal cells by a virus b) Zone 2: Representation of lymph
node or spleen c) Zone 3: Representation of blood circulation system

they move to Zone 1. Zone 3 also contains granulocyte agents which are the type

of white blood cells for fighting the infection. Each zone contains portal agents

which represent lymphatic and blood vessels. These portal agents are responsible for

transferring immune cells from one zone to the other.

5.3 Agent types

The agents that take part in immune system simulation are generic functional tis-

sue cells (Parenchymal cells), innate immune cells (Macrophages, Natural Killers,

Dendritic cells and Granulocytes) and adaptive immune cells (B cells, T cells and

CTLs). Innate immune cells originate in bone marrow (95). These immune cells are

the first ones to respond to distressed signals (1) produced by infected parenchymal

cells. They enter Zone 1 via portals present in this zone.

Natural Killers kill infected parenchymal cells. Macrophages are responsible for

killing infected parenchymal cells as well as scavenging of dead parenchymal cells.

The process of scavenging of dead parenchymal cells sets up a necessary condition

for regeneration of healthy parenchymal cells. Dendritic cells gather antigens from

69

infected parenchymal cells and travel to Zone 2 i.e. the lymph nodes, through portals

and present antigens to adaptive immune cells that matches its specificity. Activation,

proliferation, as well as transition of adaptive immune cells (B cells, T cells, CTLs)

to memory cells take place in Zone 2 when they come in contact with dendritic cells

or with each other. The activated adaptive immune cells first move to Zone 3 where

they randomly move for some time and finally travel to Zone 1.

T cells represent helper T cells which manage activities of macrophages and B

cells by releasing cytokines (91). CTLs are killer cells responsible for killing infected

parenchymal cells that match their antigen specificity. B cells, on the other hand,

produce antibodies against the antigens making them primary targets for killer im-

mune cells. Agent motion is influenced by chemical signals detected in the proximal

environment. Immune cells would tend to move randomly if there isn’t any chem-

ical signal around them. If they detect any chemical signal in their vicinity, they

will follow the signal with highest concentration (96).The rules for the state change

of different type of cells participating in simulation is described in the sub-section

below:

5.3.1 Parenchymal cell agents

Parenchymal cells are the generic functional tissue cells that remain stationary through-

out the course of simulation. These agents are initialized in a HEALTHY state dur-

ing the start of the simulation. The viral infection starts at the center of Zone 1

which gradually spreads out infecting all neighboring parenchymal cells. The in-

fected parenchymal cells release a distressed signal, parenchymal-kine 1 (PK1) in the

form of heat shock proteins (97), uric acid (98) or chemerin (99).

The infected PCs then make a state transition to one of three states: STRESSED,

CHALLENGED or TARGETED. The challenged PCs are target for natural killers,

pro-inflammatory T cells or CTLs and are killed upon contact. They may undergo ly-

70

sis in presence of complement products(C’) and antibody Ab1 (100). The challenged

PCs make a transition to state TARGETED when they are bounded by antibody pro-

duced by B cells making them susceptible for killing by pro-inflammatory macrophage

agents (101). This causes neighboring parenchymal cells to become stressed as a re-

sult of reactive oxygen species released by pro-inflammatory macrophages (102). The

granulocytes also act upon the stressed PCs and kill them by a release of lethal de-

granulation product 1 (G1) (102; 103). The dead parenchymal cells are scavenged by

macrophages facilitating necessary conditions for regeneration of healthy PCs (104).

Algorithm 1 State change : Parenchymal Cells
1: procedure state_parenchymal_cells()
2: if (state==HEALTHY & virus>Ab1+Ab2) then
3: state=CHALLENGED
4: end if
5: if (state==CHALLENGED) then
6: PK1=outputSignal
7: if (Ab1+Ab2>virus & (bearAb==FALSE) & (Ab2≥0) then
8: state=TARGETED
9: end if

10: if (NK‖Ts‖MΦs) then
11: state=APOPTIC
12: end if
13: end if
14: if (C’>0) & ((Ab1-(virus+Ab2)>Ab_Lysis) then
15: state=NECROTIC
16: end if
17: if (state==STRESSTED) then
18: PK1=outputSignal
19: if (life>stressedTime+DURATION_STRESSED) then
20: state=HEALTHY
21: end if
22: end if

5.3.2 Dendritic cell agents

The DCs begin in an INACTIVE state in zone 1 and are of two types: pro-inflammatory

(DC1) and anti-inflammatory (DC2). The DCs in INACTIVE state can transition

71

to two possible states: ACTIVATED or AG-PRIMED (antigen primed) depending

upon the type of signal it detects.

Algorithm 2 State change : Dendritic Cells - Zone 1
1: procedure state_dendritic_cells_zone1()
2: if (life < LIFE_DC_ZONE1) then
3: if (state==INACTIVE) then
4: if (PK1>0) then
5: state=ACTIVATED
6: if (MK1�MK2 & type==DC1) then
7: type=DC2
8: end if
9: end if

10: if (virus>200) then
11: state = AG-PRIMED
12: if (Ab1>200 & Ab2>200 & type==DC1) then
13: type=DC2
14: end if
15: if (CK1>200) & type==DC2 then
16: type=DC1
17: end if
18: end if
19: end if
20: if (state==ACTIVATED) then
21: if (virus ‖ CHALLENGED PC contact) then
22: state=AG-PRIMED
23: end if
24: end if
25: end if
26: if (life>LIFE_DC_ZONE1) then
27: state=APOPTIC
28: end if

The dendritic cells of type DC1 or DC2 move randomly until it detects shock

signal (PK1) produced by infected parenchymal cells. The detection of PK1 in its

immediate environment causes DCs to change to ACTIVATED state (105). The

activated DCs produce a chemical signal MK1 (Mono-kine 1) or MK2 (Mono-kine

2) depending on its type. For example, INACTIVE DC1 changes to ACTIVATED

DC1 and INACTIVE DC2 changes to ACTIVATED DC2 upon detection of PK1.

72

However, if signal MK2 (Mono-kine 2) is greater than signal MK1 (Mono-kine 1), it

converts to ACTIVATED DC2 (106).

Algorithm 3 State change : Dendritic Cells - Zone 2
1: procedure state_dendritic_cells_zone2()
2: if (life < LIFE_DC_ZONE1 & zone==2) then
3: if (state==AG-PRIMED) then
4: if (type==DC1 ‖ type==DC2) then
5: if (timerMK<DURATION_MK_ZONE2) then
6: MK1 or MK2 = outputSignal
7: timerMK1 or timerMK2 += 1
8: end if
9: if (Ag-matched B1 or B2) then

10: life=0
11: end if
12: if (Ag-matched T1 or T2) then
13: MK1 or MK2 = 0
14: NumTsContact += 1
15: end if
16: end if
17: end if
18: end if
19: if (numTsContact≥12) then
20: state=APOPTIC
21: end if
22: if (life>LIFE_DC_ZONE1) then
23: state=APOPTIC
24: end if

The DCs attain antigen-primed (AG-PRIMED) state under three conditions.

First, the detection of virus signal in the proximal location of DC1 or DC2 causes

them to convert to AG-PRIMED DC1 or AG-PRIMED DC2 (107). Second, the pres-

ence of virus along with antibody changes INACTIVE DC1 to AG-PRIMED DC2

(108). INACTIVE DC2 is transitioned to AG-PRIMED DC1 in presence of virus

and signal CK1 (cyto-kine 1) (109). Third, the DCs in ACTIVATED state when

make contact with virus infected PCs change to AG-PRIMED state respective of its

type (110). The AG-PRIMED DCs move to Zone 2 via portals present in Zone 1 to

present the antigen to adaptive immune cells (B cells, T cells and CTLs) (110).The

73

DCs undergo apoptosis if they fail to detect any infected PCs or stress signal within

their lifetime (111).

After the DCs move to Zone 2, they move randomly for some time and become

stationary. They continue to produce MK1 or MK2 in Zone 2 as well. At this moment,

DCs wait for antigen matched adaptive immune cells (B cells, T cells and CTLs) to

make contact with them. The contact with DCs affects the state of adaptive immune

cells as well as their own state. For example, contact with antigen matched B cells

extends the life of DCs (112) and contact with antigen matched T cells resets the

production of MK1 or MK2. The DCs undergo apoptosis if they reach the allocated

life time in Zone 2 or exceed threshold for T cells contact (113; 114).

5.3.3 Macrophage agents

The macrophages (MΦs) enter Zone 1 in naive state (MΦ0) when portals present in

Zone 1 sense PK1 emitted by infected PCs. The state change of MΦs is determined

by type of signals it senses from its local environment.

The presence of PK1, CK1, C’ (complement products) and necrotic debris (100)

cause MΦs to transition to ACTIVATED MΦ1s (pro-inflammatory) whereas sensing

of apoptic signal and antigen-antibody (Ag-Ab) complexes (101) cause MΦs to change

to ACTIVATED MΦ2s (anti-inflammatory). Both MΦ1 and MΦ2 in activated state

have the ability to scavenge dead PCs which provides necessary condition for regen-

eration of healthy PCs. MΦ1 also has the ability to kill infected PCs. MΦ1 and MΦ2

in activated state produce signals MK1 and MK2 respectively. The killing of infected

PCs and scavenging of dead PCs cause MΦs to attain antigen-primed (AG-PRIMED)

state respective of their type. The MΦs in AG-PRIMED state posses ability from

previous state to scavenge dead PCs as well as kill PCs bound by a antibody. If MΦs

in this state make contact with antigen-matched T cells, it extends the life of MΦs.

The MΦs in activated and antigen primed state undergo apoptosis when their life

74

time is exhausted.

Algorithm 4 State change : Macrophages
1: procedure state_macrophages()
2: if (life < LIFE_MΦ_ZONE1) then
3: if (state==MΦ0) then
4: if (PK1>0 ‖ CK1>0 ‖ C’>0 ‖ Nec. debris>0) then
5: state=ACTIVATED MΦ1
6: end if
7: if Apop.Signal>0 ‖ Ab-Ag complexes then
8: state=ACTIVATED MΦ2
9: end if

10: end if
11: if (state==ACTIV. MΦ1 ‖ ACTIV. MΦ2) then
12: if (kill PCs ‖ scavenge PCs) then
13: state = AG-PRIMED MΦ1 or MΦ2
14: end if
15: end if
16: end if
17: if (life>LIFE_MΦ_ZONE1) then
18: state=APOPTIC
19: end if

5.3.4 Natural Killer agents

Natural Killers (NKs) are introduced to Zone 1 when portals in Zone 1 sense PK1

from PCs. They move randomly for some time. When they detect PK1 that is being

emitted from infected PCs, they follow PK1 with the highest concentration eventually

seeking infected PCs. If the signal PK1 is greater than CK1 around the Natural Killer

of interest, killing of infected PCs takes place upon contact. At this time, release of

chemical signal CK1 by NKs also takes place (115). After the killing of infected PCs

and CK1 production, NKs return to the state where they continue to move randomly.

They have a limited number of kills and lifetime, after which they undergo apoptosis.

75

Algorithm 5 State change : Natural Killers
1: procedure state_natural_killers()
2: if (life < LIFE_NK_ZONE1) then
3: if (PK1>0) then
4: followPK1=TRUE
5: end if
6: if (PK1>CK2 & followPK1==TRUE) then
7: killPC = TRUE
8: end if
9: if (killPC==TRUE) then

10: killCount+=1 ; CK1Timer=DURATION_NK_CK1
11: end if
12: if (CK1Timer>0) then
13: CK1=outputSignal ; CK1Timer -= 1
14: end if
15: if (CK1Timer==0) then
16: followPK1 = FALSE ; randomMotion = TRUE
17: end if
18: if (killCount ≥ NK_KILL_LIMIT) then
19: state=APOPTIC
20: end if
21: end if
22: if (life > LIFE_NK_ZONE1) then
23: state=APOPTIC
24: end if

5.3.5 Granulocyte cell agents

Granulocytes begin in Zone 3 where they are moving randomly. They travel to

Zone 1 when portals present in Zone 3 sense presence of complement products (100)

or MK1. After enter Zone 1, they move randomly until they detect complement

products around them and eventually follows signal of highest concentration. They

release degranulation product which is capable of killing any stressed PCs (103). They

undergo apoptosis after their time is up.

76

Algorithm 6 State change : Granulocytes - Zone 1
1: procedure state_granulocytes_zone1()
2: if (life < LIFE_GRAN_ZONE1) then
3: G1=outputSignal
4: end if
5: if (life > LIFE_GRAN_ZONE1) then
6: state=APOPTIC
7: end if

5.3.6 T cell agents

T cells begin in Zone 2 i.e. lymph nodes in an INACTIVE state where they move

randomly until it finds a DC matching its antigen specificity. The contact with DC1

or DC2 results in activation and proliferation of T1 or T2 respectively (116; 110; 113;

117) and release of signal CK1 or CK2.

Algorithm 7 State change : T cells - Zone2
1: procedure state_tcells_zone2()
2: if (state==INACTIVE T0) then
3: if (Ag-matched DC1 or DC2) then
4: state=ACTIVATED T1 or T2
5: end if
6: end if
7: if (state==ACTIVATED T1 or T2) then
8: if timerCK < DURATION_CK_ZONE2 then
9: CK1 or CK2 = outputSignal

10: timerCK1 or timerCK2 += 1
11: end if
12: if (Ag-matched DC1 or DC2) then
13: life += ADD_LIFE
14: Birth_Ts = ADD_Ts
15: end if
16: if MK1==0 ‖ CK1 == 0 then
17: state = MEMORY T1 or T2
18: end if
19: end if
20: if (state==ACTIVATED & life > LIFE_Ts_ZONE2) then
21: state=APOPTIC
22: end if

Additionally, contact with antigen matched B cells as well as series of contacts

77

with DCs extend the life of Ts. ACTIVATED Ts make a transition to MEMORY

Ts if there is an absence of CK1 or CK2 in the environment. However, contact with

antigen matched DC makes MEMORY Ts to be ACTIVATED again. Ts move to Zone

3 where they randomly for some time before traveling to Zone 1. If ACTIVATED Ts

fail to make contact with DC within certain period of time, they undergo apoptosis.

Algorithm 8 State change : T cells - Zone1
1: procedure state_tcells_zone1()
2: if (life < LIFE_Ts_ZONE1) then
3: if (state==ACTIVE_Ts‖state==MEMORY_Ts) then
4: if (Ag-matched MΦ contact) then
5: CK1 or CK2 = outputSignal
6: end if
7: if (CHALLENGED PC) then
8: killPC = TRUE ; killCount += 1
9: end if

10: if (killCount≥MAX_T_KILLS) then
11: state=APOPTIC
12: end if
13: end if
14: end if
15: if (life>LIFE_Ts_ZONE1 then
16: state=APOPTIC
17: end if

T cells (Ts) enter Zone 1 in response to detection of PK1 signal by portals present

in Zone 1. T cells of type T1 seek infected PCs by following PK1 with strongest

concentration and kill them upon contact. If T1 or T2 makes contact with antigen-

matched macrophage (MΦ), they start to produce CK1 or CK2 depending upon type

of macrophage (MΦ) (118). T cells of type T1 undergo apoptosis if they reach beyond

the threshold for number of kills (119) or exceed allocated lifetime in Zone 1.

5.3.7 CTL agents

Like other adaptive immune cells, CTLs begin in an INACTIVE state in zone 2,

moving randomly waiting to make contact with an antigen-matched DC1. The contact

78

with DC1 makes them ACTIVATED.

Algorithm 9 State change : CTLs - Zone2
1: procedure state_ctl_zone2()
2: if (Ag-matched DC1) then
3: if (state==INACTIVE) then
4: state = ACTIVATED
5: end if
6: if (state==ACTIVATED & CK1==0) then
7: state = MEMORY_CTLs
8: end if
9: if (state==MEMORY_CTLs & CK1>0) then

10: state = ACTIVATED
11: end if
12: end if
13: if (life < LIFE_CTLs_ZONE2) then
14: if (state==ACTIVATED) then
15: CK1 = outputSignal
16: BIRTH_CTLs = ADD_CTLs
17: end if
18: end if
19: if (life > LIFE_CTLs_ZONE2) then
20: state=APOPTIC
21: end if

In an ACTIVATED state they proliferate and release CK1 signal. ACTIVATED

CTLs transition to MEMORY CTLs if they make contact with a DC1 in absence of

CK1 signal (120). The presence of CK1 signal and contact with DC1 extends the

life of CTLs. ACTIVATED CTLs then migrate to Zone 3 and eventually to Zone 1

where they kill infected PCs. CTLs enter Zone 1 in an activated state and continue

to produce CK1 signal for a finite period of time.

Like T cells (Ts), they seek virus infected PCs by following PK1 emitted by

such PCs and kill them upon contact. The contact with infected PCs also extend

the duration of emission of CK1 signal by CTLs. ACTIVATED CTLs transition to

MEMORY CTLs in absence of PK1 or CK1 in their immediate environment. The

contact with infected PCs cause MEMORY CTLs to be ACTIVATED again. CTLs

undergo apoptosis after their life is over.

79

Algorithm 10 State change : CTLs - Zone1
1: procedure state_ctl_zone1()
2: if (CHALLENGED or TARGETED PC contact) then
3: if (state==ACTIVATED) then
4: killPC = TRUE
5: end if
6: if (state==MEMORY_CTLs) then
7: state = ACTIVATED
8: end if
9: end if

10: if (life<LIFE_CTL_ZONE1 & state==ACTIV.) then
11: if (No CK1 or PK1) then
12: state = MEMORY_CTLs
13: end if
14: if (ticker<DURATION_CK1_ZONE1) then
15: CK1 = outputSignal ; ticker += 1 end if
16: end if
17: if (life > LIFE_CTL_ZONE1) then
18: state=APOPTIC
19: end if

5.3.8 B cell agents

B cells (Bs) reside in Zone 2 in an INACTIVE state waiting for antigen matched

DCs to make contact with them (121). If they make contact with DC1, B cells of

type B1 are produced and type B2 is the result of contact with DCs of type DC2. B

cells of type (B1 or B2) gets ACTIVATED when they make contact with activated,

antigen-matched T1 or T2. Bs in ACTIVATED state may transition into either of

two states: GERMINAL or PLASMA.

Germinal cells in activated state produce anti-bodies and remain in Zone 2 where

as Plasma B cells, on the other hand, travel to Zone 1 and produce anti-bodies there.

Contact with Ts also leads to birth of B cells. ACTIVATED Bs make a transition

to MEMORY Bs when they make series of contacts with antigen matched DC1 or

DC2, thus, extending life of B cells. Memory Bs are again activated when they make

contact with antigen matched Ts in presence of cytokines (MK1, CK1 or MK2, CK2).

80

Algorithm 11 State change : B cells - Zone2
1: procedure state_bcells_zone2()
2: if (Ag-matched DC1 or DC2) then
3: if (type==B1 or B2 & state==ACTIV.) then
4: DCcontacts + =1 ; life += ADD_LIFE
5: end if
6: if (type==B1 or B2 & state==MEM_Bs) then
7: DCcontacts + =1
8: end if
9: if (type==B0) then ; type = B1 or B2

10: end if
11: end if
12: if (Ag-matched T1 or T2) then
13: if (state==INACTIVE) then
14: if (type==B0) then
15: type = B1 or B2
16: end if
17: if (type==B1 or B2) then
18: state=ACTIVATED ; flag=rand() ; Birth_Bs = ADD_Bs
19: mode=(flag>0.5) ? GERMINAL:PLASMA
20: end if
21: end if
22: if (state==MEMORY_Bs) then
23: state=ACTIVATED ; mode=PLASMA ; BIRTH_Bs=ADD_Bs
24: end if
25: end if
26: if (state==ACTIVATED & DCcontacts≥1 then
27: if (mode==GERMINAL) then
28: state = MEMORY_Bs ; life += ADD_LIFE
29: end if
30: end if
31: if (state==MEMORY_Bs & DCcontacts≥1) then
32: life += ADD_LIFE
33: end if
34: if (state==ACTIVATED & type==B1 or B2) then
35: if (AbTimer≤DURATION_AB_ZONE2) then
36: Ab1 or Ab2=outputSignal ; AbTimer += 1
37: end if
38: end if
39: if (life > LIFE_B_ZONE1) then
40: state=APOPTIC
41: end if

81

ACTIVATED Bs undergo apoptosis after their life surpasses allocated lifetime.

Plasma B cells travel to Zone 1 from Zone 3 via portals present in Zone 1. They

move randomly in Zone 1 where they produce antibodies in the presence of CK1 or

CK2 for predefined period of time. If they don’t detect CK1 or CK1 in its proximal

location, they stop producing antibodies. They undergo apoptosis after their life is

over.

Algorithm 12 State change : B cells - Zone1
1: procedure state_bcells_zone1()
2: if (life < LIFE_Bs_ZONE1) then
3: if (type==B1 or B2 & CK1 or CK2>0) then
4: if (AbTicker < DURATION_AB_ZONE1) then
5: Ab1 or Ab2 = outputSignal
6: AbTicker += 1
7: end if
8: end if
9: end if

10: if (life > LIFE_Bs_ZONE1) then
11: state=APOPTIC
12: end if

82

Chapter 6

Results

In this chapter, the results obtained from immune simulator implemented in FLAME

GPU are compared with its RePast implementation to verify that immune cells ex-

ecuting in parallel demonstrate same behaviors, as in their RePast implementation,

without loss in statistical accuracy. The test of statistical accuracy is important be-

cause there is possibility that results obtained from immune simulator implemented

in FLAME GPU may deviate from its RePast version due to the difference in the way

the random motion of immune cells are implemented. Furthermore, discrepancies in

the order at which the state change of immune cells are executed could also lead

to difference in results. For this reason, statistical comparison is required to ensure

that results from immune simulator in FLAME GPU lie within statistical limits of

results obtained from its RePast implementation. The measure of statistical accu-

racy was done by utilizing the statistical measures such as mean value and standard

deviation. Apart from testing of statistical accuracy of immune simulator in FLAME

GPU, a benchmark is carried out to demonstrate the performance advantage of using

FLAME GPU when large population of immune cells execute their behavioral rules

in the simulation.

6.1 Qualitative and statistical analysis

The qualitative analysis and validation of statistical accuracy for immune cells count

at Zone 1 and Zone 2 were carried for immune win condition. Immune win is a

situation in which infection is completely eradicated as result of elimination of chal-

83

lenged/stressed parenchymal cells by immune cells and sets up favorable conditions

for regeneration of healthy parenchymal cells. The initial condition for immune win

condition for immune simulator implemented in FLAME GPU was set, similar to as

initial condition for immune simulator implemented in RePast, as shown in Table 6.1

(7).

Parameter Value Parameter Value

Number of PCs 5457 Duration_Ab_Zone1 150

Viral_Infection_Threshold 50 NumTs_ToSend 2

Ab_Lysis_Threshold 100 Life_T_Zone1 20

Duration_Stressed 25 Life_T_Zone2 13

Number of DCs(Zone 1) 50 Life_T_Zone3 50

NumDC_ToSend 3 Duration_CK_Zone1/Zone2 25

Life_DC_Zone1 50 T_Max_Kills 10

Life_DC_Zone2 100 NumMΦ _ToSend 5

Duration_MK_Zone1/Zone2 25 Life_MΦ _Zone1 50

NumBs_ToSend 1 NumNK_ToSend 4

Life_B_Zone1 25 NK_Kill_Limit 15

Life_B_Zone2 10 NumCTL_ToSend 4

Life_B_Zone3 25 Life_CTL_Zone1/Zone2 25

Table 6.1: Initial values for immune win condition

The simulation was carried out to observe the behavior of immune cells in re-

sponse to infection of parenchymal cells by a virus. The number of parenchymal

cells that took part in the simulation was 5457. Out of 5457 PCs, 192 cells were

initialized as cells infected by a virus and were placed in the space around the cen-

ter region of Zone 1. As the simulation progresses, infection spreads out which

84

causes healthy parenchymal cells, located near infected ones, to be stressed/chal-

lenged when virus signal in their local environment is greater than the threshold

value (Virus_Infection_Threshold). The innate immune cells are the first group of

immune cells to respond to the infection and enter Zone 1 when the portals present

in Zone 1 sense PK1 signal emitted by infected cells. The average count of innate

immune cells (Macrophages and Natural killers) in Zone 1, for both FLAME GPU

and RePast implementation of immune simulator, is shown in Figure 6.3 which is

obtained by running 50 trials of simulation for both FLAME GPU and RePast. Sim-

ilarly, the average count of dendritic cells and adaptive immune cells (T cells, B cells

and CTLs) in Zone 2 (Figure 6.2) was obtained in a same way as for innate immune

cells count in Zone 1.

Figure 6.1: Innate immune cells count in Zone 1. a) count of Natural killers b) count
of macrophages

The blue bars in Figure 6.3 represent the average count of innate immune cells

(natural killers and macrophages) that are present in Zone 1 at different period of

time (from infection to recovery). Similarly, the blue bars in Figure 6.2 shows the

count of adaptive immune cells (T cells, B cells and CTLs) and dendritic cells in Zone

2. It is observed that the count of immune cells (both innate and adaptive) gradually

increase as the number of parenchymal cells infected by a virus rises and eventually

reaches a peak value when majority of parenchymal cells are infected. As the infected

85

PCs are cleared by immune cells, the count of immune cells also gradually decreases

which indicate the process of recovery of parenchymal cells as dead PCs are replaced

by healthy ones.

Figure 6.2: Count of different immune cells in Zone 2. a) count of T cells b) count of
B cells c) count of CTLs d) count of dendritic cells

Furthermore, for statistical analysis the count of immune cells present in Zone

1 and Zone 2 of immune system implemented in FLAME GPU is compared with

its RePast implementation. The red bars in Figures 6.3 and 6.2 shows the count

of immune cells present in Zone 1 and Zone at different time steps. The standard

deviation bars at each time step verify that count of immune cells in Zone 1 and Zone

2 of immune simulator developed with FLAME GPU lie within statistical limits of

its RePast implementation. This outcome verifies its statistical accuracy i.e. paral-

lelization of immune cell agents does not effect the quality of outcomes from immune

simulator.

86

6.2 Benchmark

The benchmark demonstrates the performance advantage when the immune simulator

developed with FLAME GPU simulates large population of immune cell agents in

parallel. The benchmark was carried out by varying the initial immune cells count

from 8,000 to 20,000. Since the number of parenchymal cells that take part in the

simulation is fixed, the initial immune cells count was achieved by varying initial

count of dendritic cells (DCs) from 500 to 3,500 as shown in Table 6.2 and keeping

the count of other immune cells (B cell, T cell, NKs, MΦ and CTLs) unchanged.

Initial Agent count Initial DC count Speed Up

8,000 500 3.43

10,000 1,000 4.03

12,000 1,500 4.55

14,000 2,000 5.04

16,000 2,500 6.35

18,000 3,000 8.1

20,000 3,500 13.002

Table 6.2: Initial count of DCs for different agent population and simulation speed-up
with FLAME GPU

The simulation was run in Intel core i7 2.67 GHz CPU with 6.00 GB RAM

equipped with NVIDIA Tesla C2050 GPU on Windows 7 OS. The result of the bench-

mark was obtained by running 15 trials as the count of agent vary significantly in

each trial due to stochastic nature of simulation. Figure 7 illustrates plot for speed-up

obtained with FLAME GPU against agent population. It is observed that computa-

tional performance increased by 13 times when simulation was run for initial agent

count was set to 20,000 agents.

87

Figure 6.3: Benchmark: plot for speed-up obtained with FLAME GPU against agent
count

However, performance analysis wasn’t carried out for agent population greater

than 20,000 as immune simulator implemented in RePast as it would slow down the

simulation making it infeasible to operate. Hence, it can be noted that there is a

significant improvement in computational performance.

88

Chapter 7

Conclusions and Future Work

The implementation of the basic immune simulator using FLAME GPU framework

was successfully completed. The major contribution of this thesis was the translation

of agent-state diagrams and various agent communications into the FLAME GPU

framework. The use of FLAME GPU for the implementation of the basic immune

simulator utilized the computational power of the GPUs via optimized CUDA code to

achieve significant improvement in computational performance compared to a previ-

ous serial implementation using the RePast agent modeling toolkit. Statistical com-

parison between the parallel FLAME GPU implementation and the original repast

implementation was done for immune win condition to validate statistical accuracy

of the implementation. The results show that the parallel implementation using the

FLAME GPU framework matched the results of the original RePast implementation

within statistical limits. Therefore, it was shown that parallelization does not effect

model accuracy.

In the current implementation of immune simulator, the diffusion of chemical

signals was carried using 2D convolution stencil as described in the paper by Folcik

et al. However, it is recommended to solve actual diffusion, reaction and advection

equation with PDEs in conjunction with Agent Based Models (ABMs). Furthermore,

for more accurate representation of the immune agent interaction, the ad-hoc rules,

currently present in the finite state models, can be replaced with rules based on actual

chemical kinetics.

The current implementation could be further developed to represent the immune

system at a much higher level of detail. The framework could then be modularized

89

to enable simulation of various immune system related conditions. The goal of this

exercise would be to enable easy simulation by mixing and matching various modules

with virtually no coding to simulate a plethora of disease conditions. This would

enable basic science researchers who have typically limited training in programming,

let alone parallel programming to quickly test out various hypothesis with computer

models with a sufficient level of granularity.

90

Bibliography

[1] P. Matzinger, “The danger model: a renewed sense of self.,” Science (New York,

N.Y.), vol. 296, pp. 301–305, 2002.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular

Biology of the Cell. 2002.

[3] Z. Pancer and M. D. Cooper, “The evolution of adaptive immunity.,” Annual

review of immunology, vol. 24, pp. 497–518, 2006.

[4] D. Noble, “The rise of computational biology.,” Nature reviews. Molecular cell

biology, vol. 3, pp. 459–463, 2002.

[5] H. Van Dyke Parunak, R. Savit, and R. L. Riolo, “Agent-based modeling vs.

equation-based modeling: A case study and users’ guide,” in Multi-Agent Sys-

tems and Agent-Based Simulation, pp. 10–25, 1998.

[6] “The basic immune simulator.” http://digitalunion.osu.edu/r2/

summer06/sass/. Online; accessed 12/23/2014.

[7] V. A. Folcik, G. C. An, and C. G. Orosz, “The basic immune simulator: an

agent-based model to study the interactions between innate and adaptive im-

munity.,” Theoretical biology & medical modelling, vol. 4, p. 39, 2007.

[8] “The repast suite.” http://repast.sourceforge.net/. Online; accessed

12/23/2014.

[9] M. J. North, N. T. Collier, and J. R. Vos, “Experiences creating three imple-

mentations of the repast agent modeling toolkit,” 2006.

http://digitalunion.osu.edu/r2/summer06/sass/
http://digitalunion.osu.edu/r2/summer06/sass/
http://repast.sourceforge.net/

91

[10] “Flexible large-scale agent modelling environment.” http://www.flamegpu.

com/index.php. Online; accessed 12/23/2014.

[11] N. Boccara, Modeling Complex Systems. Springer Science & Business Media,

2010.

[12] D. M. Gordon, Ants at Work: How an Insect Society is Organized. W. W.

Norton, 2000.

[13] A. Kay, “Applying optimal foraging theory to assess nutrient availability ratios

for ants,” Ecology, vol. 83, pp. 1935–1944, 2002.

[14] M. A. Jansen, “Introduction to agent based modeling.”

[15] D. M. Gordon, “Dynamics of task switching in harvester ants,” 1989.

[16] D. M. Gordon, “The organization of work in social insect colonies,” 1996.

[17] S. Boinski and P. A. Garber, On the Move: How and Why Animals Travel in

Groups. University of Chicago Press, 2000.

[18] J. K. Parrish and W. M. Hamner, Animal Groups in Three Dimensions: How

Species Aggregate. Cambridge University Press, 1997.

[19] J. Toner and Y. Tu, “Long-range order in a two-dimensional dynamical xy

model: How birds fly together.,” Physical review letters, vol. 75, pp. 4326–4329,

12 1995.

[20] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of

phase transition in a system of self-driven particles.,” Physical review letters,

vol. 75, pp. 1226–1229, 8 1995.

http://www.flamegpu.com/index.php
http://www.flamegpu.com/index.php

92

[21] D. B. BAHR and M. BEKOFF, “Predicting flock vigilance from simple passerine

interactions: modelling with cellular automata,” Animal Behaviour, vol. 58,

pp. 831–839, 10 1999.

[22] V. Grimm and S. F. Railsback, Individual-based Modeling and Ecology. Prince-

ton University Press, 2005.

[23] C. M. Macal and M. J. North, “Agent-based modeling and simulation,” in Pro-

ceedings of the 2009 Winter Simulation Conference (WSC), pp. 86–98, IEEE,

12 2009.

[24] E. Bonabeau, “Agent-based modeling: methods and techniques for simulating

human systems.,” Proceedings of the National Academy of Sciences of the United

States of America, vol. 99 Suppl 3, pp. 7280–7, 5 2002.

[25] J. Casti, Would-Be Worlds: How Simulation is Changing the Frontiers of Sci-

ence. Wiley, 1997.

[26] N. R. Jennings, “On agent-based software engineering,” Artificial Intelligence,

vol. 117, pp. 277–296, 3 2000.

[27] S. F. Railsback and V. Grimm, Agent-Based and Individual-Based Modeling: A

Practical Introduction, vol. 6. Princeton University Press, 2011.

[28] S. Wolfram, “Statistical mechanics of cellular automata,” Reviews of Modern

Physics, vol. 55, pp. 601–644, 7 1983.

[29] P.-O. Siebers and U. Aickelin, Encyclopedia of Decision Making and Decision

Support Technologies. IGI Global, 2008.

[30] M. Gardner, “Mathematical games: The fantastic combinations of john conway’s

new solitaire game "life",” Scientific American, vol. 223, pp. 120–123, 1970.

93

[31] R. M. Axelrod, The Evolution of Cooperation. Basic Books, 2006.

[32] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,”

1987.

[33] J. M. Epstein and R. Axtell, Growing Artificial Societies: Social Science from

the Bottom Up. Brookings Institution Press, 1996.

[34] T. A. Kohler, G. J. Gumerman, and R. G. Reynolds, “Simulating ancient soci-

eties.,” Scientific American, vol. 293, pp. 76–82, 7 2005.

[35] J. Tang, K. F. Ley, and C. A. Hunt, “Dynamics of in silico leukocyte rolling,

activation, and adhesion.,” BMC systems biology, vol. 1, p. 14, 1 2007.

[36] J. Tang and C. A. Hunt, “Identifying the rules of engagement enabling leuko-

cyte rolling, activation, and adhesion,” PLoS Computational Biology, vol. 6,

p. e1000681, 2 2010.

[37] P. Caplat, M. Anand, and C. Bauch, “Symmetric competition causes popula-

tion oscillations in an individual-based model of forest dynamics,” Ecological

Modelling, vol. 211, pp. 491–500, 3 2008.

[38] Nature-Inspired Informatics for Intelligent Applications and Knowledge Dis-

covery: Implications in Business, Science, and Engineering: Implications in

Business, Science, and Engineering. IGI Global, 2009.

[39] M. Niazi, A. Hussain, A. R. Baig, and S. Bhatti, “Simulation of the research

process,” in 2008 Winter Simulation Conference, pp. 1326–1334, IEEE, 12 2008.

[40] H. P. N. Hughes, C. W. Clegg, M. A. Robinson, and R. M. Crowder, “Agent-

based modelling and simulation: The potential contribution to organizational

psychology,” Journal of Occupational and Organizational Psychology, vol. 85,

pp. 487–502, 9 2012.

94

[41] “Modeling platforms.” https://www.openabm.org/page/modeling-

platforms. Online; accessed 04/05/2015.

[42] “Ecolab.” http://ecolab.sourceforge.net/. Online; accessed 04/05/2015.

[43] “Laboratory for simulation development.” http://www.labsimdev.org/

Joomla_1-3/. Online; accessed 04/05/2015.

[44] “Mason.” http://cs.gmu.edu/~eclab/projects/mason/. Online; accessed

04/05/2015.

[45] “Netlogo.” http://ccl.northwestern.edu/netlogo/docs/. Online; accessed

04/05/2015.

[46] “Pandora: An hpc agent based modelling framework.” http://www.bsc.

es/computer-applications/pandora-hpc-agent-based-modelling-

framework. Online; accessed 04/05/2015.

[47] “Starlogo on the web.” http://education.mit.edu/starlogo/. Online; ac-

cessed 04/05/2015.

[48] E. B. Barker, W. C. Barker, W. E. Burr, W. T. Polk, and M. E. Smid, “Rec-

ommendation for key management,” 3 2007.

[49] “Cuda c programming guide.” https://http://docs.nvidia.com/cuda/

cuda-c-programming-guide/. Online; accessed 04/05/2015.

[50] S. Orts-Escolano, J. Garcia-Rodriguez, V. Morell, M. Cazorla, J. Azorin, and

J. Garcia-Chamizo, “Parallel computational intelligence-based multi-camera

surveillance system,” Journal of Sensor and Actuator Networks, vol. 3, pp. 95–

112, 4 2014.

[51] J. Ghorpade, “Gpgpu processing in cuda architecture,” Advanced Computing:

An International Journal, vol. 3, pp. 105–120, 1 2012.

https://www.openabm.org/page/modeling-platforms
https://www.openabm.org/page/modeling-platforms
http://ecolab.sourceforge.net/
http://www.labsimdev.org/Joomla_1-3/
http://www.labsimdev.org/Joomla_1-3/
http://cs.gmu.edu/~eclab/projects/mason/
http://ccl.northwestern.edu/netlogo/docs/
http://www.bsc.es/computer-applications/pandora-hpc-agent-based-modelling-framework
http://www.bsc.es/computer-applications/pandora-hpc-agent-based-modelling-framework
http://www.bsc.es/computer-applications/pandora-hpc-agent-based-modelling-framework
http://education.mit.edu/starlogo/
https://http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://http://docs.nvidia.com/cuda/cuda-c-programming-guide/

95

[52] T. Williams, “Parallel processing platform opens bridge to high performance

embedded systems,” 2014.

[53] S. Eilenberg, “Automata, languages, and machines,” 3 1974.

[54] M. Holcombe, “X-machines as a basis for dynamic system specification,” Soft-

ware Engineering Journal, vol. 3, p. 69, 3 1988.

[55] P. Richmond, “Flame gpu technical report and user guide,” tech. rep.

[56] P. Richmond, D. Walker, S. Coakley, and D. Romano, “High performance cel-

lular level agent-based simulation with flame for the gpu.,” Briefings in bioin-

formatics, vol. 11, pp. 334–47, 5 2010.

[57] A. Levitin, Introduction to the Design and Analysis of Algorithms. Addison

Wesley, second ed., 2007.

[58] S. Green, “Cuda particles,” NVIDIA SDK Whitepaper, 2007.

[59] P. Grasso, S. Gangolli, and I. Gaunt, Essentials of Pathology for Toxicologists.

CRC Press, 2002.

[60] B. Alberts, A. Johnson, and J. Lewis, “The adaptive immune system,” in Molec-

ular Biology of the Cell, ch. 24, Garland Science, 4th ed., 2002.

[61] C. J. Janeway, P. Travers, and M. Walport, “The complement system and in-

nate immunity,” in Immunobiology:The Immune System in Health and Disease,

Garland Science, 2001.

[62] P. Fisher, “The innate and adaptive immune systems.”

[63] R. J. Boyton and P. J. Openshaw, “Pulmonary defences to acute respiratory

infection,” 2002.

[64] B. Gomperts, I. Kramer, and P. Tatham, Signal Transduction, vol. 18. 2002.

96

[65] M. K. Liszewski, T. C. Farries, D. M. Lublin, I. A. Rooney, and J. P. Atkinson,

“Control of the complement system.,” Advances in immunology, vol. 61, pp. 201–

283, 1996.

[66] H. Rus, C. Cudrici, and F. Niculescu, “The role of the complement system in

innate immunity.,” Immunologic research, vol. 33, pp. 103–112, 2005.

[67] G. Mayer, “Innate (non specific) immunity,” in Microbiology and Immunology

On-line Textbook, ch. 1, 2006.

[68] C. B. Thompson, “Apoptosis in the pathogenesis and treatment of disease,”

Science, vol. 267, pp. 1456–1462, 1995.

[69] A. Hoffbrand, J. Pettit, and P. Moss, Essential Haematologu. Blackwell Science,

fourth ed., 2005.

[70] C. Little, H. Fowler, and J. Coulson, The Shorter Oxford English Dictionary.

Oxford University Press (Guild Publishing), 1983.

[71] J. Ernst and O. Stendahl, Phagocytosis of Bacteria and Bacterial Pathogenicity.

Cambridge University Press, 2006.

[72] K. Todar, “The phagocytic response of the host.”

[73] J. A. Langermans, W. L. Hazenbos, and R. van Furth, “Antimicrobial func-

tions of mononuclear phagocytes.,” Journal of immunological methods, vol. 174,

pp. 185–194, 1994.

[74] A. Ryter, “Relationship between ultrastructure and specific functions of

macrophages.,” Comparative immunology, microbiology and infectious diseases,

vol. 8, pp. 119–133, 1985.

[75] R. B. Birge and D. S. Ucker, “Innate apoptotic immunity: the calming touch of

death.,” Cell death and differentiation, vol. 15, pp. 1096–1102, 2008.

97

[76] F. Krombach, S. Münzing, A. M. Allmeling, J. T. Gerlach, J. Behr, and

M. Dörger, “Cell size of alveolar macrophages: an interspecies comparison.,”

Environmental health perspectives, vol. 105 Suppl, pp. 1261–1263, 1997.

[77] D. A. Ovchinnikov, “Macrophages in the embryo and beyond: Much more than

just giant phagocytes,” 2008.

[78] C. D. Mills, “M1 and m2 macrophages: Oracles of health and disease.,” Critical

reviews in immunology, vol. 32, pp. 463–88, 2012.

[79] V. Stvrtinova, J. Jakubovsky, and I. Hulin, “Neutrophils, central cells in acute

inflammation,” in Inflammation and Fever from Pathophysiology:Principles of

Disease, Slovak Academey of Sciences:Academic Electronic Press, 1995.

[80] P. Delves, S. Martin, D. Burton, and I. Roit, Roitt’s Essential Immunology.

Blackwell Publishing, 2006.

[81] L. Sompayrac, How the Immune System Works. Blackwell Publishing, third ed.,

2008.

[82] R. M. Steinman and Z. A. Cohn, “Identification of a novel cell type in peripheral

lymphoid organs of mice. i. morphology, quantitation, tissue distribution.,” J

Exp Med, vol. 137, pp. 1142–62, 1973.

[83] P. Guermonprez, J. Valladeau, L. Zitvogel, C. Théry, and S. Amigorena, “Anti-

gen presentation and t cell stimulation by dendritic cells.,” Annual review of

immunology, vol. 20, pp. 621–667, 2002.

[84] F. Sallusto and A. Lanzavecchia, “The instructive role of dendritic cells on t-cell

responses.,” Arthritis research, vol. 4 Suppl 3, pp. S127–S132, 2002.

[85] R. Steinman, “Dendritic cells,” 2014.

98

[86] G. Krishnaswamy, O. Ajitawi, and D. S. Chi, “The human mast cell: an

overview.,” Methods in molecular biology (Clifton, N.J.), vol. 315, pp. 13–34,

2006.

[87] D. Price, “What is immunology?.”

[88] A. Iannello, O. Debbeche, S. Samarani, and A. Ahmad, “Antiviral nk cell re-

sponses in hiv infection: I. nk cell receptor genes as determinants of hiv resis-

tance and progression to aids.,” Journal of leukocyte biology, vol. 84, pp. 1–26,

2008.

[89] E. Vivier, D. H. Raulet, A. Moretta, M. A. Caligiuri, L. Zitvogel, L. L. Lanier,

W. M. Yokoyama, and S. Ugolini, “Innate or adaptive immunity? the example

of natural killer cells.,” Science (New York, N.Y.), vol. 331, pp. 44–49, 2011.

[90] Acquired Immunity. The American Heritage Medical Dictionary, 2007.

[91] C. Janeway, P. Travers, M. Walport, and M. Shlomchik, Immunobiology. Gar-

land Science, fifth ed., 2001.

[92] T. J. Kindt, R. A. Goldsby, and B. A. Osborne, Kuby Immunology, vol. 6. 2007.

[93] “Understanding the immune system,” tech. rep.

[94] C. Janeway, P. Travers, M. Walport, and M. Shlomchik, Immunobiology. Gar-

land Science, sixth ed., 2005.

[95] K. Shortman and S. H. Naik, “Steady-state and inflammatory dendritic-cell

development.,” Nature reviews. Immunology, vol. 7, pp. 19–30, 2007.

[96] A. Beilhack and S. G. Rockson, “Immune traffic: a functional overview.,” Lym-

phatic research and biology, vol. 1, pp. 219–234, 2003.

99

[97] P. Srivastava, “Roles of heat-shock proteins in innate and adaptive immunity.,”

Nature reviews. Immunology, vol. 2, pp. 185–194, 2002.

[98] Y. Shi, J. E. Evans, and K. L. Rock, “Molecular identification of a danger signal

that alerts the immune system to dying cells.,” Nature, vol. 425, pp. 516–521,

2003.

[99] V. Wittamer, J.-D. Franssen, M. Vulcano, J.-F. Mirjolet, E. Le Poul, I. Mi-

geotte, S. Brézillon, R. Tyldesley, C. Blanpain, M. Detheux, A. Mantovani,

S. Sozzani, G. Vassart, M. Parmentier, and D. Communi, “Specific recruitment

of antigen-presenting cells by chemerin, a novel processed ligand from human

inflammatory fluids.,” The Journal of experimental medicine, vol. 198, pp. 977–

985, 2003.

[100] R.-F. Guo and P. A. Ward, “Role of c5a in inflammatory responses.,” Annual

review of immunology, vol. 23, pp. 821–852, 2005.

[101] A. Casadevall and L.-a. Pirofski, “Antibody-mediated regulation of cellular

immunity and the inflammatory response.,” Trends in immunology, vol. 24,

pp. 474–8, 9 2003.

[102] G. Ricevuti, “Host tissue damage by phagocytes.,” Annals of the New York

Academy of Sciences, vol. 832, pp. 426–48, 12 1997.

[103] A. W. Segal, “How neutrophils kill microbes.,” Annual review of immunology,

vol. 23, pp. 197–223, 1 2005.

[104] M.-L. N. Huynh, V. A. Fadok, and P. M. Henson, “Phosphatidylserine-

dependent ingestion of apoptotic cells promotes tgf-beta1 secretion and the

resolution of inflammation.,” The Journal of clinical investigation, vol. 109,

pp. 41–50, 1 2002.

100

[105] S. Gallucci, M. Lolkema, and P. Matzinger, “Natural adjuvants: endogenous

activators of dendritic cells.,” Nature medicine, vol. 5, pp. 1249–55, 11 1999.

[106] F. Koch, U. Stanzl, P. Jennewein, K. Janke, C. Heufler, E. Kämpgen, N. Ro-

mani, and G. Schuler, “High level il-12 production by murine dendritic cells:

upregulation via mhc class ii and cd40 molecules and downregulation by il-4

and il-10.,” The Journal of experimental medicine, vol. 184, pp. 741–746, 1996.

[107] E. I. Zuniga, D. B. McGavern, J. L. Pruneda-Paz, C. Teng, and M. B. A. Old-

stone, “Bone marrow plasmacytoid dendritic cells can differentiate into myeloid

dendritic cells upon virus infection.,” Nature immunology, vol. 5, pp. 1227–1234,

2004.

[108] C. F. Anderson, M. Lucas, L. Gutiérrez-Kobeh, A. E. Field, and D. M. Mosser,

“T cell biasing by activated dendritic cells.,” Journal of immunology (Baltimore,

Md. : 1950), vol. 173, pp. 955–961, 2004.

[109] P. L. Vieira, E. C. de Jong, E. A. Wierenga, M. L. Kapsenberg, and

P. KaliÅĎski, “Development of th1-inducing capacity in myeloid dendritic cells

requires environmental instruction.,” Journal of immunology (Baltimore, Md. :

1950), vol. 164, pp. 4507–4512, 2000.

[110] D. N. Hart, “Dendritic cells: unique leukocyte populations which control the

primary immune response.,” Blood, vol. 90, pp. 3245–3287, 1997.

[111] W.-S. Hou and L. Van Parijs, “A bcl-2-dependent molecular timer regulates

the lifespan and immunogenicity of dendritic cells.,” Nature immunology, vol. 5,

pp. 583–589, 2004.

[112] A. J. Miga, S. R. Masters, B. G. Durell, M. Gonzalez, M. K. Jenkins, C. Mal-

iszewski, H. Kikutani, W. F. Wade, and R. J. Noelle, “Dendritic cell longevity

101

and t cell persistence is controlled by cd154-cd40 interactions,” European Jour-

nal of Immunology, vol. 31, pp. 959–965, 2001.

[113] E. Ingulli, A. Mondino, A. Khoruts, and M. K. Jenkins, “In vivo detection of

dendritic cell antigen presentation to cd4(+) t cells.,” The Journal of experi-

mental medicine, vol. 185, pp. 2133–2141, 1997.

[114] E. Kriehuber, W. Bauer, A. S. Charbonnier, D. Winter, S. Amatschek,

D. Tamandl, N. Schweifer, G. Stingl, and D. Maurer, “Balance between nf-??b

and jnk/ap-1 activity controls dendritic cell life and death,” Blood, vol. 106,

pp. 175–183, 2005.

[115] D. B. Stetson, M. Mohrs, R. L. Reinhardt, J. L. Baron, Z.-E. Wang, L. Gapin,

M. Kronenberg, and R. M. Locksley, “Constitutive cytokine mrnas mark natural

killer (nk) and nk t cells poised for rapid effector function.,” The Journal of

experimental medicine, vol. 198, pp. 1069–1076, 2003.

[116] D. Amsen, J. M. Blander, G. R. Lee, K. Tanigaki, T. Honjo, and R. A. Flavell,

“Instruction of distinct cd4 t helper cell fates by different notch ligands on

antigen-presenting cells,” Cell, vol. 117, pp. 515–526, 2004.

[117] H. Tanaka, C. E. Demeure, M. Rubio, G. Delespesse, and M. Sarfati, “Human

monocyte-derived dendritic cells induce naive t cell differentiation into t helper

cell type 2 (th2) or th1/th2 effectors. role of stimulator/responder ratio.,” The

Journal of experimental medicine, vol. 192, pp. 405–412, 2000.

[118] C. F. Anderson and D. M. Mosser, “Cutting edge: biasing immune responses by

directing antigen to macrophage fc gamma receptors.,” Journal of immunology

(Baltimore, Md. : 1950), vol. 168, pp. 3697–3701, 2002.

[119] D. R. Green, N. Droin, and M. Pinkoski, “Activation-induced cell death in t

cells.,” Immunological reviews, vol. 193, pp. 70–81, 2003.

102

[120] V. P. Badovinac, K. A. N. Messingham, A. Jabbari, J. S. Haring, and

J. T. Harty, “Accelerated cd8+ t-cell memory and prime-boost response after

dendritic-cell vaccination.,” Nature medicine, vol. 11, pp. 748–756, 2005.

[121] B. Dubois, B. Vanbervliet, J. Fayette, C. Massacrier, C. Van Kooten, F. Briere,

J. Banchereau, and C. Caux, “Dendritic cells enhance growth and differentiation

of cd40-activated b lymphocytes,” J Exp Med, vol. 185, pp. 941–951, 1997.

	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2015

	Performance Optimization and Statistical Analysis of Basic Immune Simulator (BIS) Using the FLAME GPU Environment
	Shailesh Tamrakar
	Recommended Citation

	Introduction
	Complex systems and Agent Based Models
	Complex systems
	Agent Based Models (ABMs)
	History of ABMs
	Applications of ABM
	Frameworks for ABMs
	Agent Based Models (ABMs) vs Equation Based Models (EBMs)
	Modeling cycle
	Set a clear goal
	Address hypotheses for processes and structures
	Choose entities, state variables and parameters
	Implement the model
	Analyze, test and revise the model

	Design of ABMs
	Purpose
	Entities, state variables and scales
	Process overview and scheduling
	Design concepts
	Initialization
	Input data and sub-models

	Flexible Large-scale Agent Modeling Environment (FLAME) GPU
	Overview of GPU architecture
	Compute Unified Device Architecure (CUDA)
	CUDA memory types
	Global memory
	Shared memory
	Registers
	Local Memory
	Constant and Texture memory

	Process flow in CUDA
	High level overview of FLAME GPU
	Agent model specification in FLAME GPU
	Agent memory
	Agent functions
	Agent states
	Agent messages
	Function layers
	Initial XML agent data
	Agent function scripting in FLAME GPU
	FLAME GPU simulation templates

	Immune System
	Innate immune system
	Anatomical barrier
	Complement system
	Innate immune cells

	Adaptive immune system
	T Lymphocytes (T cell)
	B Lymphocytes (B cell)

	Implementation of Immune Simulator in FLAME GPU
	Definition of immune cells in FLAME GPU
	Simulation domain
	Agent types
	Parenchymal cell agents
	Dendritic cell agents
	Macrophage agents
	Natural Killer agents
	Granulocyte cell agents
	T cell agents
	CTL agents
	B cell agents

	Results
	Qualitative and statistical analysis
	Benchmark

	Conclusions and Future Work
	 Bibliography

