20 research outputs found

    Optimize Power Allocation Scheme to Maximize Sum Rate in CoMP with Limited Channel State Information

    Get PDF
    Extensive use of mobile applications throws many challenges in cellular systems like cell edge throughput, inter cell interference and spectral e�ciency. Many of these challenges have been resolved using Coordinated Multi-Point (CoMP), developed in the Third Generation Partnership Project for LTE-Advanced) to a great extent. CoMP cooperatively process signals from base sta- tions that are connected to various multiple terminals (user equipment (UEs)) at transmission and reception. This CoMP improves throughput, reduces or even removes inter-cell interference and increases spectral e�ciency in the downlink of multi-antenna coordinated multipoint systems. Many researchers addressed these issues assuming that BSs have the knowledge of the common control channels dedicated to all UEs and also about the full or partial channel state information (CSI) of all the links. From the CSI available at the BSs, multiuser interference can be managed at the BSs. To make this feasible, UEs are responsible for collecting downlink CSI. But, CSI measurement (instantaneous and/or statistical) is imperfect in nature because of the randomly varying nature of the channels at random times. These incorrect CSI values available at the BSs may, in turn, create multi-user interference. There are many techniques to suppress the multi-user interference, among which the feedback scheme is the one which is gaining a lot of attention. In feedback schemes, CSI information needs to be fed back to the base station from UEs in the uplink. It is obvious, the question arises on the type and amount of feedback need to be used. Research has been progressing in this front and some feedback techniques have been proposed. Three basic CoMP Feedback schemes are available. Explicit or statistical channel information feedback scheme in which channel information like channels's covariance matrix of the channel are shared between the transmitter and receiver. Next, implicit or statistical channel information feedback which contains information such as Channel quality indication or Precoding matrix indicator or Rank indicator. 1st applied to TDD LTE type structure and 2nd of feedback scheme can be applied in the FDD system. Finally, we have UE which tranmit the sounding reference signal (CSI). This type of feedback scheme is applied to exploit channel reciprocity and to reduce channel intercell interference and this can be applied in the TDD system. We have analyzed the scenario of LTE TDD based system. After this, optimization of power is also required because users at the cell edge required more attention than the user locating at the center of the cell. In my work, it shows estimated power gives exponential divercity for high SNR as low SNR too. In this method, a compression feedback method is analyzed to provide multi-cell spatial channel information. It improves the feedback e�ciency and throughput. The rows and columns of the channel matrix are compressed using Eigenmode of the user and codebook based scheme speci�ed in LTE speci�cation. The main drawback of this scheme is that spectral e�ciency is achieved with the cost of increased overheads for feedback and evolved NodeB (eNB). Other factor is complexity of eNodeB which is to be addressed in future work

    Iterative analog-digital multi-user equalizer for wideband millimeter wave massive MIMO systems

    Get PDF
    Most of the previous work on hybrid transmit and receive beamforming focused on narrowband channels. Because the millimeter wave channels are expected to be wideband, it is crucial to propose efficient solutions for frequency-selective channels. In this regard, this paper proposes an iterative analog-digital multi-user equalizer scheme for the uplink of wideband millimeter-wave massive multiple-input-multiple-output (MIMO) systems. By iterative equalizer we mean that both analog and digital parts are updated using as input the estimates obtained at the previous iteration. The proposed iterative analog-digital multi-user equalizer is designed by minimizing the sum of the mean square error of the data estimates over the subcarriers. We assume that the analog part is fixed for all subcarriers while the digital part is computed on a per subcarrier basis. Due to the complexity of the resulting optimization problem, a sequential approach is proposed to compute the analog phase shifters values for each radio frequency (RF) chain. We also derive an accurate, semi-analytical approach for obtaining the bit error rate (BER) of the proposed hybrid system. The proposed solution is compared with other hybrid equalizer schemes, recently designed for wideband millimeter-wave (mmWave) massive MIMO systems. The simulation results show that the performance of the developed analog-digital multi-user equalizer is close to full-digital counterpart and outperforms the previous hybrid approach.publishe

    Power allocation and linear precoding for wireless communications with finite-alphabet inputs

    Get PDF
    This dissertation proposes a new approach to maximizing data rate/throughput of practical communication system/networks through linear precoding and power allocation. First, the mutual information or capacity region is derived for finite-alphabet inputs such as phase-shift keying (PSK), pulse-amplitude modulation (PAM), and quadrature amplitude modulation (QAM) signals. This approach, without the commonly used Gaussian input assumptions, complicates the mutual information analysis and precoder design but improves performance when the designed precoders are applied to practical systems and networks. Second, several numerical optimization methods are developed for multiple-input multiple-output (MIMO) multiple access channels, dual-hop relay networks, and point-to-point MIMO systems. In MIMO multiple access channels, an iterative weighted sum rate maximization algorithm is proposed which utilizes an alternating optimization strategy and gradient descent update. In dual-hop relay networks, the structure of the optimal precoder is exploited to develop a two-step iterative algorithm based on convex optimization and optimization on the Stiefel manifold. The proposed algorithm is insensitive to initial point selection and able to achieve a near global optimal precoder solution. The gradient descent method is also used to obtain the optimal power allocation scheme which maximizes the mutual information between the source node and destination node in dual-hop relay networks. For point-to-point MIMO systems, a low complexity precoding design method is proposed, which maximizes the lower bound of the mutual information with discretized power allocation vector in a non-iterative fashion, thus reducing complexity. Finally, performances of the proposed power allocation and linear precoding schemes are evaluated in terms of both mutual information and bit error rate (BER). Numerical results show that at the same target mutual information or sum rate, the proposed approaches achieve 3-10dB gains compared to the existing methods in the medium signal-to-noise ratio region. Such significant gains are also indicated in the coded BER systems --Abstract, page iv-v

    Design of terahertz transceiver schemes for ultrahigh-speed wireless communications

    Get PDF
    Future ultra-high-speed wireless communication systems face difficult challenges due to the fundamental limitations of current technologies operating at microwave frequencies. Supporting high transmission rates will require the use of more spectral resources that are only available at higher frequencies. Within this context, terahertz (THz) communications have been attracting more and more attention, being considered by the research community as one of the most promising research fields on the topic due to the availability of extensive unused bandwidth segments. However, its widespread use is not yet possible due to some obstacles, such as the high propagation losses that occur in this band and the difficulty in designing devices that can effectively perform both transmission and detection tasks. The purpose of this dissertation is to contribute for the solution of both of the aforementioned problems and to propose novel THz transceiver schemes for ultra-high-speed wireless communications. Three main research areas were addressed: device modelling for the THz; index modulation (IM) based schemes for Beyond 5G (B5G) networks and hybrid precoding designs for THz ultra massive (UM) – multiple input multiple output (MIMO) systems. The main contributions of this work include the creation of a new design for a reconfigurable THz filter; the proposal of a precoded generalized spatial modulation scheme for downlink MIMO transmissions in B5G networks; the creation of a low-complexity hybrid design algorithm with a near fully-digital performance for multiuser (MU) mmWave/THz ultra massive MIMO systems that can incorporate different analog architectures; and the system-level assessment of cloud radio access network (C-RAN) deployments based on low-complexity hybrid precoding designs for massive MIMO downlink transmissions in B5G networks. The first contribution is especially suited for the implementation of reconfigurable THz filters and optical modulators, since it is based on a simple design, which transits from situations in which it presents a full transparency to situations where it achieves full opacity. Moreover, this approach can also be used for the implementation of simultaneously transmitting and reflecting (STAR) reconfigurable intelligent surfaces (RIS) which are important for enabling flexible system designs in RIS-assisted networks. The second contribution showed that the implementation of precoding schemes based on generalised spatial modulations is a solution with a considerable potential for future B5G systems, since it can provide larger throughputs when compared to conventional MU-MIMO schemes with identical spectral efficiencies.The last two contributions showed that through the proposed hybrid design algorithm it becomes possible to replace a fully digital precoder/combiner by a fully-connected or even by a partially-connected architecture (array of subarrays and dynamic array of subarrays), while achieving good tradeoffs between spectral efficiency, power consumption and implementation complexity. These proposals are particularly relevant for the support of UM-MIMO in severely hardware constrained THz systems. Moreover, the capability of achieving significant improvements in terms of throughput performance and coverage over typical cellular networks, when considering hybrid precoding‐based C-RAN deployments in two indoor office scenarios at the THz band, was demonstrated.Os futuros sistemas de comunicação sem fios de velocidade ultra-elevada enfrentam desafios difíceis devido às limitações fundamentais das tecnologias atuais que funcionam a frequências de microondas. O suporte de taxas de transmissão altas exigirá a utilização de mais recursos espectrais que só estão disponíveis em frequências mais elevadas. A banda Terahertz (THz) é uma das soluções mais promissoras devido às suas enormes larguras de banda disponíveis no espectro eletromagnético. No entanto, a sua utilização generalizada ainda não é possível devido a alguns obstáculos, tais como as elevadas perdas de propagação que se verificam nesta banda e a dificuldade em conceber dispositivos que possam desempenhar eficazmente as tarefas de transmissão e deteção. O objetivo desta tese de doutoramento, é contribuir para ambos os problemas mencionados anteriormente e propor novos esquemas de transcetores THz para comunicações sem fios de velocidade ultra-elevada. Três grandes áreas de investigação foram endereçadas, contribuindo individualmente para um todo: a modelação do dispositivo para o THz; esquemas baseados em modulações de índice (IM) para redes pós-5G (B5G) e desenhos de pré-codificadores híbridos para sistemas THz MIMO ultra-massivos. As principais contribuições deste trabalho incluem a criação de um novo design para um filtro THz reconfigurável; a proposta de uma nova tipologia de modulação espacial generalizada pré-codificada para transmissões MIMO de ligação descendente para redes B5G; a criação de um algoritmo de design híbrido de baixa complexidade com desempenho quase totalmente digital para sistemas MIMO multi-utilizador (MU) mmWave/THz ultra massivos que podem incorporar diferentes arquiteturas analógicas e a avaliação das implementações da rede de acesso de rádio na nuvem (C-RAN) com base em designs de pré-codificação híbridos de baixa complexidade para transmissões MIMO de ligação descendente massivas em redes B5G. A primeira contribuição é especialmente adequada para a implementação de filtros THz reconfiguráveis e moduladores óticos, uma vez que se baseia numa concepção mais simples, que transita de situações em que apresenta uma transparência total para situações em que atinge uma opacidade total. Para além disso, esta abordagem também pode ser utilizada para a implementação de superfícies inteligentes reconfiguráveis (RIS) de transmissão e reflexão simultânea (STAR). A segunda contribuição mostrou que a implementação de esquemas de pré-codificação baseados em modulações espaciais generalizadas é uma solução com um potencial considerável para futuros sistemas B5G, uma vez que permite alcançar maiores ganhos em termos de débito binário quando comparado com esquemas convencionais MU-MIMO com eficiências espectrais idênticas. As duas últimas contribuições mostraram que através do algoritmo proposto torna-se possível substituir a utilização de uma arquitectura totalmente digital por uma arquitetura totalmente conectada ou mesmo por uma arquitetura parcialmente conectada (arrays de subarrays e arrays dinâmicos de subarrays), conseguindo-se bons tradeoffs entre eficiência espectral, consumo de energia e complexidade de implementação. Estas propostas são particularmente relevantes para dar suporte a sistemas THz UM-MIMO com restrições severas ao nível de hardware. Demonstrou-se também a capacidade de se alcançar melhorias significativas em termos de débito binário e cobertura em relação a redes celulares típicas, considerando dois cenários na banda THz

    Multiuser MIMO techniques with feedback

    Get PDF
    Kooperative Antennenanlagen haben vor kurzem einen heißen Forschungsthema geworden, da Sie deutlich höhere spektrale Effizienz als herkömmliche zelluläre Systeme versprechen. Der Gewinn wird durch die Eliminierung von Inter-Zelle Störungen (ICI) durch Koordinierung der-Antenne Übertragungen erworben. Vor kurzem, verteilte Organisation Methoden vorgeschlagen. Eine der größten Herausforderungen für das Dezentrale kooperative Antennensystem ist Kanalschätzung für den Downlink Kanal besonders wenn FDD verwendet wird. Alle zugehörigen Basisstationen im genossenschaftlichen Bereich müssen die vollständige Kanal Informationen zu Wissen, die entsprechenden precoding Gewicht Matrix zu berechnen. Diese Information ist von mobilen Stationen übertragen werden Stationen mit Uplink Ressourcen zu stützen. Wird als mehrere Basisstationen und mehreren mobilen Stationen in kooperativen Antennensysteme und jede Basisstation und Mobilstation beteiligt sind, können mit mehreren Antennen ausgestattet sein, die Anzahl der Kanal Parameter wieder gefüttert werden erwartet, groß zu sein. In dieser Arbeit wird ein effizientes Feedback Techniken der downlink Kanal Informationen sind für die Multi-user Multiple Input Multiple Output Fall vorgeschlagen, der insbesondere auf verteilte kooperative Antennensysteme zielt. Zuerst wird ein Unterraum-basiertes Kanalquantisierungsverfahren vorgeschlagen, das ein vorbestimmtes Codebuch verwendet. Ein iterativer Codebuchentwurfsalgorithmus wird vorgeschlagen, der zu einem lokalen optimalen Codebuch konvergiert. Darüber hinaus werden Feedback-Overhead-Reduktionsverfahren entwickelt, die die zeitliche Korrelation des Kanals ausnutzen. Es wird gezeigt, dass das vorgeschlagene adaptive Codebuchverfahren in Verbindung mit einem Datenkomprimierungsschema eine Leistung nahe an dem perfekten Kanalfall erzielt, was viel weniger Rückkopplungsoverhead im Vergleich zu anderen Techniken erfordert. Das auf dem Unterraum basierende Kanalquantisierungsverfahren wird erweitert, indem mehrere Antennen auf der Senderseite und/oder auf der Empfängerseite eingeführt werden, und die Leistung eines Vorcodierungs- (/Decodierungs-) Schemas mit regulierter Blockdiagonalisierung (RBD) wurde untersucht. Es wird ein kosteneffizientes Decodierungsmatrixquantisierungsverfahren vorgeschlagen, dass eine komplexe Berechnung an der Mobilstation vermeiden kann, während es nur eine leichte Verschlechterung zeigt. Die Arbeit wird abgeschlossen, indem die vorgeschlagenen Feedback-Methoden hinsichtlich ihrer Leistung, ihres erforderlichen Feedback-Overheads und ihrer Rechenkomplexität verglichen werden.Cooperative antenna systems have recently become a hot research topic, as they promise significantly higher spectral efficiency than conventional cellular systems. The gain is acquired by eliminating inter-cell interference (ICI) through coordination of the base antenna transmissions. Recently, distributed organization methods have been suggested. One of the main challenges of the distributed cooperative antenna system is channel estimation for the downlink channel especially when FDD is used. All of the associated base stations in the cooperative area need to know the full channel state information to calculate the corresponding precoding weight matrix. This information has to be transferred from mobile stations to base stations by using uplink resources. As several base stations and several mobile stations are involved in cooperative antenna systems and each base station and mobile station may be equipped with multiple antennas, the number of channel state parameters to be fed back is expected to be big. In this thesis, efficient feedback techniques of the downlink channel state information are proposed for the multi-user multiple-input multiple-output case, targeting distributed cooperative antenna systems in particular. First, a subspace based channel quantization method is proposed which employs a predefined codebook. An iterative codebook design algorithm is proposed which converges to a local optimum codebook. Furthermore, feedback overhead reduction methods are devised exploiting temporal correlation of the channel. It is shown that the proposed adaptive codebook method in conjunction with a data compression scheme achieves a performance close to the perfect channel case, requiring much less feedback overhead compared with other techniques. The subspace based channel quantization method is extended by introducing multiple antennas at the transmitter side and/or at the receiver side and the performance of a regularized block diagonalization (RBD) precoding(/decoding) scheme has been investigated as well as a zero-forcing (ZF) precoding scheme. A cost-efficient decoding matrix quantization method is proposed which can avoid a complex computation at the mobile station while showing only a slight degradation. The thesis is concluded by comparing the proposed feedback methods in terms of their performance, their required feedback overhead, and their computational complexity. The techniques that are developed in this thesis can be useful and applicable for 5G, which is envisioned to support the high granularity/resolution codebook and its efficient deployment schemes. Keywords: MU-MIMO, COOPA, limited feedback, CSI, CQ, feedback overhead reduction, Givens rotatio

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    MIMO designs for filter bank multicarrier and multiantenna systems based on OQAM

    Get PDF
    From the perspective of increasingly data rate requirements in mobile communications, it is deemed necessary to do further research so that the future goals can be reached. To that end, the radio-based communications are resorting to multicarrier modulations and spatial diversity. Until today, the orthogonal frequency division multiplexing (OFDM) modulation is regarded as the dominant technology. On one hand, the OFDM modulation is able to accommodate multiantenna configurations in a very straightforward manner. On the other hand, the poor stopband attenuation exhibited by the OFDM modulation, highlights that a definitely tight synchronization is required. In addition, the cyclic prefix (CP) has to be sufficiently long to avoid inter-block interference, which may substantially reduce the spectral efficiency. In order to overcome the OFDM drawbacks, the filter bank multicarrier modulation based on OQAM (FBMC/OQAM) is introduced. This modulation does not need any CP and benefits from pulse shaping techniques. This aspect becomes crucial in cognitive radio networks and communication systems where nodes are unlikely to be synchronized. In principle, the poor frequency confinement exhibited by OFDM should tip the balance towards FBMC/OQAM. However, the perfect reconstruction property of FBMC/OQAM systems does not hold in presence of multipath fading. This means that the FBMC/OQAM modulation is affected by inter-symbol and inter-carrier interference, unless the channel is equalized to some extent. This observation highlights that the FBMC/OQAM extension to MIMO architectures becomes a big challenge due to the need to cope with both modulation- and multiantenna-induced interference. The goal of this thesis is to study how the FBMC/OQAM modulation scheme can benefit from the degrees of freedom provided by the spatial dimension. In this regard, the first attempt to put the research on track is based on designing signal processing techniques at reception. In this case the emphasis is on single-input-multiple-output (SIMO) architectures. Next, the possibility of pre-equalizing the channel at transmission is investigated. It is considered that multiple antennas are placed at the transmit side giving rise to a multiple-input-single-output (MISO) configuration. In this scenario, the research is not only focused on counteracting the channel but also on distributing the power among subcarriers. Finally, the joint transmitter and receiver design in multiple-input-multiple-output (MIMO) communication systems is covered. From the theory developed in this thesis, it is possible to conclude that the techniques originally devised in the OFDM context can be easily adapted to FBMC/OQAM systems if the channel frequency response is flat within the subchannels. However, metrics such as the peak to average power ratio or the sensitivity to the carrier frequency offset constraint the number of subcarriers, so that the frequency selectivity may be appreciable at the subcarrier level. Then, the flat fading assumption is not satisfied and the specificities of FBMC/OQAM systems have to be considered. In this situation, the proposed techniques allow FBMC/OQAM to remain competitive with OFDM. In addition, for some multiantenna configurations and propagation conditions FBMC/OQAM turns out to be the best choice. The simulation-based results together with the theoretical analysis conducted in this thesis contribute to make progress towards the application of FBMC/OQAM to MIMO channels. The signal processing techniques that are described in this dissertation allow designers to exploit the potentials of FBMC/OQAM and MIMO to improve the link reliability as well as the spectral efficiency

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore