132 research outputs found

    Fronthaul evolution: From CPRI to Ethernet

    Get PDF
    It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Introducing mobile edge computing capabilities through distributed 5G Cloud Enabled Small Cells

    Get PDF
    Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.Peer ReviewedPostprint (author's final draft

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    Joint Optimization of Edge Computing Architectures and Radio Access Networks

    Get PDF
    Virtualized radio access network (vRAN) architectures and multiple-access edge computing (MEC) systems constitute two key solutions for the emerging Tactile Internet applications and the increasing mobile data traffic. Their efficient deployment, however, requires a careful design tailored to the available network resources and user demand. In this paper, we propose a novel modeling approach and a rigorous analytical framework, MEC-vRAN joint design problem (MvRAN), that minimizes vRAN costs and maximizes MEC performance. Our framework selects jointly the base-station function splits, the fronthaul routing paths, and the placement of MEC functions. We follow a data-driven evaluation method, using topologies of three operational networks and experiments with a typical face-recognition MEC service. Our results reveal that MvRAN achieves significant cost savings (up to 2.5 times) compared to non-optimized centralized RAN or decentralized RAN systems, and MEC pushes the vRAN functions to radio units and hence can increase substantially the network cost.Work supported by the EC under Grant No 761536 (5GTransformer) and by SFI under Grant No 17/CDA/4760

    In-silico Research Platform in the Cloud - Performance and Scalability Analysis

    Get PDF
    The paper describes experiences from building and cloudification of the in-silico research platform SilicoFCM, an innovative in-silico clinical trials' solution for the design and functional optimization of whole heart performance and monitoring effectiveness of pharmacological treatment, with the aim to reduce the animal studies and the human clinical trials. The primary aim of cloudification was to prove portability, improve scalability and reduce long-term infrastructure costs. The most computationally expensive part of the platform, the scientific workflow manager, was successfully ported to Amazon Web Services. We benchmarked the performance on three distinct research workflows, each of them having different resource requirements and execution time. The first benchmark was pure performance of running workflow sequentially. The aim of the second test was to stress-test the underlying infrastructure by submitting multiple workflows simultaneously. The benchmark results are promising, painting the infrastructure launching overhead almost negligible in this kind of heavy computational use-case.Author's versio

    Design and analysis of fully virtualized cellular networks based on open-source frameworks

    Get PDF
    Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraObjectius de Desenvolupament Sostenible::17 - Aliança per a Aconseguir els Objetiu

    Evolution of 5G Network: A Precursor towards the Realtime Implementation of VANET for Safety Applications in Nigeria

    Get PDF
      A crucial requirement for the successful real-time design and deployment of Vehicular Adhoc Networks (VANET) is to ensure high speed data rates, low latency, information security, and a wide coverage area without sacrificing the required Quality of Service (QoS) in VANET. These requirements must be met for flawless communication on the VANET. This study examines the generational patterns in mobile wireless communication and looks into the possibilities of adopting fifth generation (5G) network technology for real-time communication of road abnormalities in VANET. The current paper addresses the second phase of a project that is now underway to develop real-time road anomaly detection, characterization, and communication systems for VANET. The major goal is to reduce the amount of traffic accidents on Nigerian roadways. It will also serve as a platform for the real-time deployment and testing of various road anomaly detection algorithms, as well as schemes for communicating such detected anomalies in the VANET.   &nbsp
    corecore