

MASTER THESIS

TITLE: Design and analysis of fully virtualized cellular networks based on
open-source frameworks

MASTER DEGREE: Master's degree in Applied Telecommunications and
Engineering Management (MASTEAM)

AUTHOR: Javier Palomares Torrecilla

ADVISORS: Coronado Calero, Estefanía
 Siddiqui Muhammad, Shuaib

DATE: September, 8th 2021

Title: Design and analysis of fully virtualized cellular networks based on open-
source frameworks

Author: Javier Palomares Torrecilla

Advisors: Coronado Calero, Estefanía
 Siddiqui Muhammad, Shuaib

Date: September 8, 2021

Abstract

Virtualization of cellular networks is one of the key areas of research where
technologies, infrastructure and challenges are rapidly changing as 5G system
architecture demands a paradigm shift. Adding these necessities to the
appearance of new technologies such as Software Defined Networks (SDN)
and Network Function Virtualization (NFV), encourage the seeking for the
implementation of a more flexible and adaptive architecture, for mobile cellular
networks.

In this Master Thesis, a comprehensive view is provided upon various
scenarios to enable the deployment of a fully distributed and open-source
cellular network, as well as to provide an analysis on the impact that both Radio
Access Network (RAN) and Core Network have on the resource utilization
(radio and virtualized infrastructure) as the network conditions vary. The
prototype proposed has been performed using a 4G setup given the currently
limited availability of 5G setup and its high cost and compare with a state-of-
the-art deployment using a different virtualization tool. Nevertheless, the results
presented in this document could be extended to the 5G scenarios. The reason
for this is that this Master Thesis aims to study the viability and the performance
of virtualized infrastructure to host the aforementioned network segments, and
the frameworks used implement both the 4G and the 5G stacks, and even
share the same software modules to implement the network functions
regardless of the cellular network.

The analysis of the gathered data expose that fully virtualized cellular network
deployments present better performance in case of the flexibility, low setting
time and ease to deploy, while keeping the same level of resources usage as
the non-virtualized deployments. Furthermore, some future works and
directions for research to and develop more flexible and more adaptive
deployments are proposed, as well as to expand the analysis with higher
network capacities available in 5G.

Acknowledgements

First of all, I would like to thank the i2CAT Foundation, where this Master Thesis
has been carried out. I would like to particularly mention the Software Networks
Research Area for creating a professional and close working atmosphere, while
providing all the necessary help to solve the technical problems that I have faced.
They gave me the opportunity to participate in such a current and cutting-edge
research project, sharing their efforts and knowledge with me. I want to make a
special mention to Dr. Estefanía Coronado Calero, because she has been a great
tutor directing this project.

Finally, my deepest thanks to my family and friends for their love and for all the
support received during these difficult months for everyone, which have required
an additional effort, due to the atypical situation caused by COVID-19.

TABLE OF CONTENTS

INTRODUCTION .. 1

CHAPTER 1. BACKGROUND TECHNOLOGY ... 3

1.1. Cellular networks ... 3
1.1.1. 4G ... 3
1.1.2. 5G ... 5
1.1.3. Comparison between 4G and 5G ... 9

1.2. Network Virtualization ... 10
1.2.1. Software Defined Network .. 10
1.2.2. Network Function Virtualization .. 11
1.2.3. NFV and SDN comparison ... 13

CHAPTER 2. STATE OF THE ART OF VIRTUALIZED CELLULAR
NETWORKS .. 14

2.1. Cloud native architecture ... 14

2.2. Virtualization Frameworks .. 15
2.2.1. Docker .. 15
2.2.2. Kubernetes ... 16

2.3. Open-source 5G Frameworks .. 19
2.3.1. Radio Access Network ... 19
2.3.2. Core Network .. 21

2.4. Related work on virtualization tools for building distributed cellular networks 24

CHAPTER 3. RESEARCH WORK ... 27

3.1. Introduction .. 27

3.2. Baremetal Deployment .. 27
3.2.1. Installing software and dependencies .. 28
3.2.2. Setup and configuration .. 28
3.2.3. Get the deployment running ... 30
3.2.4. Problems found .. 31

3.3. Kubernetes-based Deployment .. 32
3.3.1. Installing software and dependencies .. 33
3.3.2. Kubernetes cluster setup .. 33
3.3.3. Design and creation of the Docker images .. 33
3.3.4. Design the descriptor file .. 34
3.3.5. Get the deployment running ... 37
3.3.6. Problems found .. 39

3.4. Docker-based Deployment ... 40
3.4.1. Installing software and dependencies .. 41
3.4.2. Setup and configuration .. 41
3.4.3. Get the deployment running ... 42

CHAPTER 4. PERFORMANCE EVALUATION AND ACHIEVED RESULTS . 43

4.1. Methodology .. 43

4.2. Results discussion .. 45
4.2.1. Measuring throughput ... 46
4.2.2. Measuring resource consumption .. 48
4.2.3. Measuring forced reconnecting time .. 53

CONCLUSIONS AND FUTURE WORKS .. 55

5.1. Conclusions of the work ... 55

5.2. Future lines of development and research ... 56

5.3. Sustainability considerations ... 57

5.4. Ethical and security considerations .. 57

ACRONYMS .. 58

ANNEX I: INSTALLING SRSLTE AND OPEN5GS ... 60

ANNEX II: NODES PREPARATION TO DEPLOY THE K8S CLUSTER 61

ANNEX III: DEPLOYMENT OF THE K8S CLUSTER 63

ANNEX IV: DOCKER IMAGES .. 65

srsLTE .. 65
Dockerfile: .. 65
dns_replace.sh: ... 66
config.sh: ... 67
launcher.sh: ... 67
conf/enb.conf: .. 68

Open5GS .. 69
Dockerfile: .. 69
config.sh: ... 70
conf/mme.yaml: ... 70
launcher.sh: ... 71

ANNEX V: KUBERNETES DESCRIPTOR FILE ... 72

K8s_deployment.yaml .. 72

ANNEX VI: CODE TO CLEAN AND PLOT THE RESULTS 74

Throughput average .. 74
extract_average.py: ... 74
clean_average.py: ... 75
plot_avera ge.py: ... 77

Tempor al ... 79

extract_temporal.py: .. 79
clean_temporal.py: .. 80
plot_temporal.py: ... 82

Resources .. 83
extract_resources.py: .. 83
plot_resources.py: ... 85

Forced disconnection ... 89
extract_disc.py: .. 89
clean_disc.py: .. 90
plot_disc.py: ... 91

REFERENCES ... 92

LIST OF FIGURES

Figure 1.1: Architecture of the 4G network. Image based from [7]. 3

Figure 1.2: 5G Service Pillars. Image taken from [10]. 6

Figure 1.3: Point-to-point 5GC architecture. Image based from [12]. 6

Figure 1.4: SBA 5GC Architecture. Image based from [12]. 7

Figure 1.5: SA and NSA deployment modes. Image based from [13]. 8

Figure 1.6: Simplified SDN architecture. Image taken from [17]. 11

Figure 1.7: ETSI NFV ref. architectural framework. Image taken from [23]. 12

Figure 2.1: Compatibility issues matrix in a traditional deployment. 14

Figure 2.2: Overview of running Docker and some containers. 15

Figure 2.3: Kubernetes cluster diagram. Image taken from [28]. 16

Figure 2.4: CNI connection overview. Image based from [32]. 18

Figure 2.5: OAI 5G RAN project phases. Image taken from [38]. 19

Figure 2.6: 5G-EmPOWER system architecture. Image taken from [44]. 21

Figure 2.7: OAI 5G CN developments in the 5GC. Image taken from [47]. 21

Figure 2.8: Open5GS 4G/5G function representation. Image taken from [49]. . 22

Figure 2.9: Cloudification design of mobile network. Image taken from [52]. ... 24

Figure 3.1: Baremetal deployment setup. ... 27

Figure 3.2: Subscriber registered in the Web-UI. ... 30

Figure 3.3: Baremetal connectivity achieved. ... 31

Figure 3.4: Failure on connectivity due to wrong APN. 32

Figure 3.5: Two and three nodes deployments. ... 32

Figure 3.6: Output of the launched descriptor. ... 37

Figure 3.7: Open5GS MME console output. ... 38

Figure 3.8: Open5GS SGW-U console output. ... 38

Figure 3.9: Open5GS SGW-C console output. ... 39

Figure 3.10: srsLTE eNB console output. ... 39

Figure 3.11: Calico pod running error. .. 40

Figure 3.12: Docker deployment setup. .. 40

Figure 3.13: Intermittent connectivity achieved with Docker. 42

Figure 4.1: Results comparison between two and three nodes in K8s. 45

Figure 4.2: Comparison between the temporal response of Docker and K8s. . 45

Figure 4.3: Baremetal throughput comparison at diff. distnces with each PRB. 46

Figure 4.4: K8s throughput comparison at different distances with each PRB. 46

Figure 4.5: Docker throughput comparison at diff. distances with each PRB. .. 46

Figure 4.6: Comparison between deployments and PRBs at diff. distances. ... 47

Figure 4.7: Comparison of baremetal CPU resources at different bandwidths. 48

Figure 4.8: Comparison of K8s CPU resources at different bandwidths. 49

Figure 4.9: Comparison of Docker CPU resources at different bandwidths. 49

Figure 4.10: Comparison of baremetal MEM resources at diff. bandwidths. 50

Figure 4.11: Comparison of K8s MEM resources at different bandwidths. 51

Figure 4.12: Comparison of Docker MEM resources at different bandwidths. .. 51

Figure 4.13: Comparison of K8s MEM resources at different distances. 52

Figure 4.14: Comparison of K8s CPU resources at different distances. 52

Figure 4.15: K8s forced reconnection time. .. 53

Figure 4.16: Baremetal forced reconnection time. .. 54

Figure 4.17: Docker forced reconnection time. ... 54

LIST OF TABLES

Table 1.1: SA and NSA architectures comparison. .. 9

Table 1.2: Comparison between 4G and 5G technologies. 9

Table 4.1: List of the experiments with their parameters. 43

Table Annex.1: K8s cluster nodes information. .. 64

Table Annex.2: Calico pods information. .. 64

file:///C:/Javi/Master/TFM/Versiones/Design%20and%20analysis%20of%20fully%20virtualized%20cellular%20networks%20based%20on%20open-source%20frameworks.docx%23_Toc82081190
file:///C:/Javi/Master/TFM/Versiones/Design%20and%20analysis%20of%20fully%20virtualized%20cellular%20networks%20based%20on%20open-source%20frameworks.docx%23_Toc82081191
file:///C:/Javi/Master/TFM/Versiones/Design%20and%20analysis%20of%20fully%20virtualized%20cellular%20networks%20based%20on%20open-source%20frameworks.docx%23_Toc82081192
file:///C:/Javi/Master/TFM/Versiones/Design%20and%20analysis%20of%20fully%20virtualized%20cellular%20networks%20based%20on%20open-source%20frameworks.docx%23_Toc82081195

Introduction 1

INTRODUCTION

In recent years, mobile networks have experienced great developments and
wireless communications have become an essential part in our daily lives. Due
to this need, consecutive generations of enhanced communication networks have
been deployed globally. The new network’s main requirements are scalability,
and ease of deployment, especially in a new fully distributed network paradigm
where network functions are deployed in different locations and even provided by
several software frameworks. Adding these necessities is possible thanks to the
appearance of new technologies such as Software Defined Networks (SDN) and
Network Function Virtualization (NFV), as well as of recent virtualized
infrastructure managers, which encourage seeking for the implementation of a
more flexible architecture for mobile cellular networks and analyzing their impact
in the underlying physical components.

In this context, the main objective of this Master Thesis is to enable the
deployment of a fully distributed and open-source cellular network based on
virtualization tools and virtualized infrastructure managers, as well as to analyze
the impact that both Radio Access Network (RAN) and Core Network (CN) have
on the resource utilization (radio and virtualized infrastructure) as the network
conditions vary. This central objective can be divided in several ones:

The first objective focuses on studying the state of the art, in order to identify the
contributions that other authors have provided in the literature. The second target
seeks to explore several open-source frameworks for cellular networks, making
a differentiation between frameworks that implement the RAN and the CN
functions. Similarly, the third objective completes the analysis of the technical
background by getting familiar and understanding some container virtualization
environments and their orchestration tools, such as Kubernetes.

The fourth objective represents one of the core parts of this Master Thesis,
introducing the prototype proposed based on virtualization tools to deploy a
distributed cellular network. The prototype proposed has been performed using
a 4G setup given the limited availability of 5G setup and its high cost at the
moment. The process to fulfill this goal started with a first phase that consisted
on achieving connectivity in a baremetal deployment, to verify that the basic
deployment of the open-source modules behaves as expected. The second stage
consisted in the deployment of the network using Kubernetes to automate the
deployment and the management of the containers. This deployment has been
performed separating the CN and the RAN logic into two different worker nodes.

The fifth objective includes a thorough analysis on the impact of deploying such
virtualization tools and how different network conditions could determine the
resource capacity used. This analysis takes as baseline a baremetal deployed
and is compared with a state-of-the-art deployment using Docker containers,
without a container orchestration platform. Nevertheless, the process followed to
virtualize, interconnect, and orchestrate the functions does not vary regarding the
type of cellular network, and the results presented could be extended to the 5G

2 Design and analysis of fully virtualized cellular networks based on open-source frameworks

modes, especially because the frameworks used and analyzed, as srsLTE and
open5GS, implement both the 4G and the 5G functionalities, and even share the
same software modules to implement the network functions regardless of the
cellular network. It is worthy to highlight that this Master Thesis does not aim to
study the performance of the network at radio or throughput level, but by contrast,
to analyze the behavior of the virtualization resources in the distributed scenarios
introduced before.

Finally, the last objective verses on the study of future research lines of work
taking as a basis the contributions and conclusions reached in this Master Thesis,
as well as to identify possible ethical or social impacts.

This Master Thesis is organized in five chapters and several annexes. The first
chapter presents the background technology, where a review of the background
on cellular networks is explained in detail. Also, the concept of network
virtualization is introduced, explaining and comparing the technologies that
enable it. Chapter 2 focuses on the state of the art of virtualized 5G networks.
The concepts of cloud native architecture, virtualization frameworks and open-
source 5G Frameworks are defined, giving examples in each of them. The last
section of Chapter 2 is dedicated to related work in the literature on virtualization
tools for building distributed cellular networks. Chapter 3 contains the research
work of this project, explaining the configuration and launching of the three
deployments (Baremetal, Kubernetes-based deployment and the state-of-the-art
Docker-based deployment). The fourth chapter presents the performance
evaluation and achieved results of the deployments mentioned before,
highlighting the methodology used and the results discussion. Furthermore,
Chapter 5 presents the conclusions and future lines of works of this Master
Thesis, including some sustainability and ethical considerations. Finally, the
content of the annexes includes: (i) the installation and setup processes of the
different deployments; (ii) the complete content of the files used for the proper
deployment of the fully distributed and open-source cellular network; and (iii) the
code used to get the data clean for future analysis.

Background technology 3

1. CHAPTER 1. BACKGROUND TECHNOLOGY

In this chapter, the background technology context in which the Master Thesis is
based, is presented. The first part covers an overall description on different
cellular network generations such as 4G and 5G. Then, the second part
discusses different Network Virtualization technologies such as Software Defined
Network (SDN) and Network Function Virtualization (NFV).

1.1. Cellular networks

Over the last years, mobile networks have experienced great developments and
wireless communications have become an essential part in our lives. Due to this
need, consecutive generations of communication networks have been deployed
globally. Nowadays, 4G and 5G networks coexist in commercial deployments.
The next subsections detail the evolution of cellular technologies and the network
architectures behind them.

1.1.1. 4G

The need to increase the capacity and speed while reducing the latency of the
mobile networks caused the creation of the fourth-generation networks, under the
name Long Term Evolution (LTE). 4G technology started to be standardized from
Release 8 [1] of the 3rd Generation Partnership Project (3GPP). It is an evolution
of the LTE standard (LTE-A standard from Release 10 [2] of 3GPP). It has
practically the same characteristics as LTE [3], except it supports a mobility
reaching of 350 km/h and it has a higher data rate flow (300 Mbps in the uplink
and 1 Gbps in the downlink). The LTE-A system employs a SCFDMA [4] scheme
for the uplink and a OFDMA [5] scheme for the downlink. It also uses a 4x4
antenna or an 8x8 antenna MIMO technique.

In [6] and, the authors list the main characteristics, as well as the main
advantages and disadvantages of 4G. This network generation aims to guarantee
a minimum Quality of Service (QoS) level and an improvement of the services
provided, even when the user is moving at high speeds. The architecture of 4G
is displayed on Figure 1.1.

Figure 1.1: Architecture of the 4G network. Image based from [7].

4 Design and analysis of fully virtualized cellular networks based on open-source frameworks

As shown in the previous figure, the 4G architecture is composed of two main
blocks:

 Evolved UMTS Terrestrial Radio Access Network (E-UTRAN): it is the
Radio Network Subsystem and forms the access network. It is composed
of the eNodeB’s (eNB), which are responsible for communicating with the
User Equipment (UE) over the air. Also the eNB manages some radio
resources management functions.

 Evolved Packet Core (EPC): it is the core of the network, which
optimizes traffic delivery. It is composed of a set of functions:

- Packet Data Network Gateway (PGW): it is the EPC gateway to the
Internet or other external Packet Data Networks (PDNs). A PDN is a
generic description for a network that provides data services. In packet
switching the message is broken into smaller pieces (packets) that are
sent independently over an optimal route for each one. Those packets
are reassembled when they reach the destination. In order to provide
internet connectivity, each UE is assigned a default PGW when it is
first connected to the EPC. Furthermore, the PGW is responsible for
assigning IP addresses to the UE.

- Serving Gateway (SGW): it is responsible for only managing tunnels
to interconnect the eNB and the PGW. The creation and modification
of those tunnels is controlled by the Mobile Management Entity (MME).
A SGW is assigned to each UE after authentication.

- Mobile Management Entity (MME): it controls the high-level operation
of the UE by being responsible for the signaling between eNB’s and
the EPC. As mentioned before, it is tasked to create the tunnels that
interconnect the eNB and the PGW. Moreover, MME modules are
responsible for tasks such as: authentication, handover support, NAS
mobility management, interworking with other radio networks and SMS
and voice support. MME modules are grouped in pools and can serve
several eNB’s simultaneously. Each UE is assigned a single MME,
known as serving MME.

- Home Subscriber Server (HSS): it is responsible for storing
subscriber’s information. The most important user parameters are:

 The user’s International Mobile Subscriber Identity (IMSI): a
unique identifier of each subscriber also stored in the Subscriber
Identity Module (SIM) card of the user. It includes the Mobile
Country Code (MCC) and the Mobile Network Code (MNC).

 Authentication information to authenticate the subscribe and
generate keys during session establishment.

 The Mobile Subscriber Integrated Services Digital Network
(MSISDN): the telephone number, used generally for circuit-
switched services.

 The Access Point Names (APN) the subscriber can use.

Background technology 5

1.1.2. 5G

5G technology represents a complete change on the foundations of wireless
communications. Unlike the previous upgrades, 5G defines a new network
architecture, aiming to provide service delivery on a global scale, not only
worrying about bandwidth and speed. 5G networks started to be standardized
from Release 14 [8] and Release 15 [9] of 3GPP around three main service
pillars:

 Enhanced Mobile Broadband (eMBB): This requires a big capacity
enhancement, in order to be able to manage multimedia contents,
augmented reality, virtual reality, video 360, etc.

 Massive Machine Type Communication (mMTC): A massive
connectivity between devices is necessary to be able to manage sensors
and actuators that compose the Internet of Things (IoT).

 Ultra Reliable Low Latency (URLLC): To be able to manage industrial
IoT, vehicle-to-vehicle connections, vehicle-to-infrastructure connectivity
and real-time applications, an Ultra-high reliability and a Low Latency is
required.

This service differentiation allows applications with distinct QoS and performance
requirements, such as: cloud virtual and augmented reality, connected
automotive, smart manufacturing, connected energy or wireless e-health, to
coexist with each other while meeting the user and services expectations.

The core of the 5G networks described in Release 15 [9] of 3GPP have been
defined to meet the following characteristics:

 Support a service-based architecture for modularized network services.

 Consistent user experience between 3GPP and non-3GPP access
networks.

 Harmonization of identity, authentication, QoS, policy and charging
paradigms.

 Adaption to cloud native and web scale technologies.

 Edge Computing and nomadic/fixed access. Bringing computing closer to
the point would reduce latency.

 M2M communication services that could bring low latency connectivity to
devices, such as self-driving cars.

Also, in [6], the authors list the main characteristics, as well as the main
advantages and challenges of 5G systems. These three service pillars can be
observed in Figure 1.2.

6 Design and analysis of fully virtualized cellular networks based on open-source frameworks

Figure 1.2: 5G Service Pillars. Image taken from [10].

The 5G network is composed of three different functional blocks: The UE, the 5G
Core (5GC) and the 5G Access Network (5G-AN). Moreover, the network also
has different deployment modes that will be explained later in this work.

1.1.2.1. 5G Core Functions

From Release 14 [11] of 3GPP, the 5GC architecture has two different
approaches: the Point-to-Point architecture and the Service Based Architecture
(SBA). Figure 1.3 shows the 5GC Point-to-Point architecture, which displays the
traditional structure of interconnecting the Core functions. On the other hand, in
the SBA approach, each Network Function (NF) offers one or more services to
the other NF in the network. Moreover, the NF are self-contained, independent
and reusable. Also, they are exposed via a South-Bound Interface (SBI) through
an API as shown in Figure 1.4.

Figure 1.3: Point-to-point 5GC architecture. Image based from [12].

NG14

NG9

Background technology 7

Figure 1.4: SBA 5GC Architecture. Image based from [12].

The main difference between both architectures is the introduction of the SBI,
where all the 5GC modules get connected, giving the 5GC more flexibility.

The UE is connected to the 5GC and to the Internet or other Data Networks (DN),
over the 5G New Radio Access Network (RAN). As shown in the previous figures,
the 5GC architecture is composed of many modules, which can be considered
an evolution of the 4G functions:

 Access and Mobility Management Function (AMF): Handles the
connection between the UE and the access to the network core. The AMF
supports encrypted signaling connections. This allows the UE to register,
authenticate and move between different radio cells.

 User Plane Function (UPF): Manages the forwarding data traffic of the
UE. It connects with external networks and acts as a stable IP reference
for them. It is also responsible for the QoS, the buffer handling, the packet
classification and the packet inspection.

 Policy Control Function (PCF): Provides a unified policy of rules and
the framework to enforce them and govern the network behavior.

 Session Management Control Function (SMF): Is responsible for the
establishment, the modification and the release of UE sessions, as well
as the assignment of the IP addresses for each session. It also manages
the UPF and interacts with the PCF to support charges.

 Authentication Server Function (AUSF): Performs authentication
processes with the UE towards the network.

 Unified Data Management (UDM): Stores the long term security
credentials used in authentication as well as the subscription information.
The UDM also keeps track of the AMF and SMF serving each UE (in case
there is more than one in the network).

8 Design and analysis of fully virtualized cellular networks based on open-source frameworks

 Application Function (AF): Requests dynamic policies and/or charging
control.

1.1.2.2. 5G Deployment modes

For the 5G network architecture, 3GPP describes an LTE access support.

Additionally, there are two different combinations of LTE and the 5G New Radio

(NR) access: Non Stand Alone (NSA) and Stand Alone (SA) architectures.

The SA setup contains only one Radio Access Technology (RAT), either LTE

radio or 5G Next Generation NodeB (gNB). Both control and user planes go

through the same RAN element. As shown in Figure 1.5, there are three different

deployment options:

 Option 1: EPC and 4G eNB.

 Option 2: 5GC and 5G gNB.

 Option 5: 5GC and 4G ng-eNB.

The NSA setup combines multiple RATs. The control plane goes through a

master node whereas the data plane is split across the master node and a

secondary node. As shown in Figure 1.5 there are three different deployment

options:

 Option 3: EPC and 4G eNB master node plus 5G gNB secondary node.

 Option 4: 5GC and 5G gNB master node plus 4G ng-eNB secondary

node.

 Option 7: 5GC and 4G ng-eNB master node plus 5G gNB secondary

node.

Figure 1.5: SA and NSA deployment modes. Image based from [13].

Background technology 9

The NSA architecture was designed to maximize the reuse of the 4G architecture
to make the transition to 5G progressively. Table 1.1 summarizes the different
options, remarking the 3GPP term and release of each case.

Table 1.1: SA and NSA architectures comparison.

Core

Network

Principal

RAT

Secondary

RAT

3GPP

term
3GPP release

Option 1 EPC eNB - LTE Rel. 8

Option 3 EPC eNB gNB EN-DC Rel. 15 Dec 2017

Option 2 5GC gNB - NR Rel. 15 June 2018

Option 4 5GC gNB ng-eNB NE-DC Rel. 15 March 2019

Option 5 5GC ng-eNB - eLTE Rel. 15 June 2018

Option 7 5GC ng-eNB gNB
NGEN-

DC
Rel. 15 March 2019

1.1.3. Comparison between 4G and 5G

Taking into consideration what has been explained and the comparison of both
technologies in [6], the following conclusions have been achieved:

 In contrast with 4G, 5G is designed to support a diversity of applications
such as augmented reality, IoT, self-driving cars and immersive gaming.
It offers the faculty to handle loads of many different types of traffic and a
massive number of devices connected.

 Compared to 4G networks, 5G decreases the latency in less than five
milliseconds. Also, the mobility speed range of 5G against 4G increases
and it is more energy efficient.

 5G technology expands its frequency domain to a wider range than 4G.

Table 1.2 shows a more detailed comparison between features of the 4G and 5G
technologies.

Table 1.2: Comparison between 4G and 5G technologies.

Features 4G 5G

Start From 2010 2016

Ultra low latency 10 ms to 100 ms 1 ms to 4 ms

Ultra high data rate 1.2 Gbps 10 - 100 Gbps

Massive connectivity 2,000 devices/km2 1,000,000 devices/km2

Ultra high mobility 350 km/h 500 km/h

Ultra low energy
consumption

90% more than 5G
Up to 10 year battery life for

low power MTC

Frequency domain 2 – 8 GHz 3 – 300 GHz

Handover Horizontal and Vertical Horizontal and Vertical

Core network All IP networks
Flatter IP network, 5G

network interfacing

Multiple Access OFDMA OFDMA, BDMA

10 Design and analysis of fully virtualized cellular networks based on open-source frameworks

To sum up, due to the big differences with regards to throughput, architecture
and latency, the integration of 4G and 5G is almost impossible. So, there must
be a progressive transition from the current 4G to 5G.

Most of the services that emerge with 5G networks demand very low latency that
arise the need and demand of Edge and Multi-access Edge Computing (MEC).
Authors of [14] and [15] show why MEC is a key solution to enable operators to
open their networks to new services and IT ecosystems. Operators would take
advantage of the edge-cloud benefits in their networks and systems. When MEC
is located in proximity from the end user, it provides extremely low latency and
high bandwidth.

1.2. Network Virtualization

Due to the recent exponential growth in the number of users and their demands
and requirements, cellular network technologies have evolved greatly following
these needs, trying to meet these necessities. 5G technology will have to confront
many challenges related to being able to enable multiple use cases and multi-
vendor integration. Another goal of 5G networks is the ability to adapt in real time
to dynamic changes in traffic and complexity of the network. This will translate
into a more flexible network regarding service demands. To do so, many enablers
have been proposed. One of them is network slicing, which allows the creation of
different and separate logical networks over the same physical infrastructure.
Furthermore, SDN and NFV represent an essential part. These last two are
explained with more detail as background of this work.

1.2.1. Software Defined Network

Commonly, mobile networks are composed of two main planes, the control plane
and the data (also called forwarding or user) plane, since the introduction of the
Control User Plane Separation (CUPS) concept in Release 14 [11] of 3GPP.

The control plane manages the necessary operations to assure connectivity in
the network. Some of those operations could: be the identification of the overall
network topology, the discovery of the shortest path between two nodes and to
make decisions about the allocation of the traffic, to name a few. The data plane
contains the messages generated by the users of the network, which should be
transferred according to a defined policy.

When traditional networks scale up, this approach of operation becomes very
complex to manage. SDN technology was developed to grant the control plane
the flexibility needed to support the traffic forwarding requirements of the data
plane [9]. SDN is a dynamic architecture that guarantees an automation of the
network. To do so, SDN is conceived around four aspects:

 To separate the network control plane from the forwarding plane. This
concept is also taken in 4G and 5G networks through the Control User
Plane Separation concept described in 3GPP Release 14 [11]. This
allows separating the Core Network (CN) functionalities into a control

Background technology 11

plane and a user plane, which can be placed closer to the users and will
be an essential enabler for MEC computing. Moreover, it allows the
distribution and deployment of network functions on different nodes on
demand.

 To be able to set up new connections in a fast and agile procedure.

 To provide the ability to respond rapidly to changes in the network
conditions.

 To make the connectivity services programmable using standardized
Southbound APIs [16].

Figure 1.6: Simplified SDN architecture. Image taken from [17].

By creating a physical separation between the network control plane and the
forwarding plane, the network intelligence is removed from the hardware
(forwarding equipment) and it is implemented into a logical instance called SDN
controller. This translates into less complex elements in the forwarding plane.
SDN controllers are now directly programmed through applications. The
centralization of the intelligence into the control plane, provides a global view of
the entire network. Also, this makes the management of the network highly agile
and adaptable. Figure 1.6 shows a simplified representation of what has been
explained. These concepts have been extended from the wired to the wireless
domain and the same vision can be found in Wi-Fi and cellular networks by
means of the deployment of Software-Defined RAN (SD-RAN) controllers such
as 5G-EmPOWER [18], Odin [19], FlexRAN [20] or even one step beyond,
through the vision promoted by the O-RAN Alliance, discussed in [21].

1.2.2. Network Function Virtualization

As for SDN, the need to deliver network services faster and to replace the
physical network devices performing such services, to one or more software
programs executing network functions, while running on generic hardware has
caused the appearance of the NFV. NFV implements a new way to abstract the

12 Design and analysis of fully virtualized cellular networks based on open-source frameworks

network functions. As the authors discussed in [22] and [23], NFV enables
network functions to be created, managed, distributed and controlled by software
in an agile way.

Figure 1.7: ETSI NFV ref. architectural framework. Image taken from [23].

Figure 1.7 displays, the main components of the NFV architecture according to
the ETSI NFV MANO reference architecture [23], which include:

 Virtual Network Functions (VNFs): elements that provide part (or all) of
the network services. It can be composed of many components known as
VNF Components (VNFCs). Also, a VNF can be used in one or multiple
virtual machines.

 NFV Infrastructure (NFVI): aggregation of physical, virtual and software
necessary resources, to build the scenario where the VNFs are deployed.
Resources such as computing, storage or networking components are
virtualized employing a hypervisor or a container system.

 NFV Management and Orchestration (MANO): it is the module that
performs the management and orchestration of both the infrastructure
and all the VNFs that are deployed. It consists of (i) the Virtualized
Infrastructure Manager (VIM), which allocates and handles the resources
dedicated to each VNF; (ii) the VNF Manager (VNFM), which manages
the lifecycle, the configuration, the performance and the security of the
VNFs and (iii) the NFV Orchestrator (NFVO), which coordinates all the
VNFMs and VIMs, as there can be more than one of each coexisting in
the same system at the same time, to ensure proper operation.

Background technology 13

1.2.3. NFV and SDN comparison

Both NFV and SDN technologies are software-oriented solutions that are
complementary but can be implemented separately. The NFV target is to facilitate
flexible and scalable deployments of network functions in any data center. In
contrast with that, the SDN target is the control of the packet transmission. It
provides functionalities handling enormous quantities of traffic. Additionally, SDN
separates the forwarding and the control plane, while NFV decouples functions
from hardware. Besides that, a SDN controller can be executed as a VNF. Also,
SDN makes the communication between VNFs more flexible and can
concatenate VNFs in an automated way. On the other hand, NFV simplifies the
management of SDN (due to the generalization of the network).

In conclusion, both technologies are key enablers for the flexible deployment of
5G networks as well as for the recent MEC-enabled systems, especially as
communication networks continue becoming more agile and highly distributed
systems in the road to cloud native networks.

14 Design and analysis of fully virtualized cellular networks based on open-source frameworks

2. CHAPTER 2. STATE OF THE ART OF VIRTUALIZED
CELLULAR NETWORKS

2.1. Cloud native architecture

The cloud native architecture is a structure based on a series of patterns [24] that
are constituted for applications and services, and specifically built for running in
the cloud. Micro services are the core of this kind of architecture. Each one of
them is created to execute a particular function (implementing, communicating,
or running processes). Micro services are often packaged into containers.
A container is a runnable instance of an image, that is a lightweight, standalone
and executable package of software. This package includes everything needed
to run an application: code, settings, system tools, system libraries, etc.

An end-to-end application stack usually includes different technologies such
as a web server (e.g., using node.js), a database (e.g., MongoDB), a
messaging system (e.g., Kafka) and an orchestration tool (e.g., Jenkins). All
these components must have compatibility not only with the underlying OS
but also with the libraries and dependencies of the OS. Some incompatibility
problems might occur when one service requires one version of a dependent
library whereas another service requires another one. Also, each time an
application changes, there might be a need to do a modification (i.e., upgrade)
on the libraries or the dependencies and the precautions mentioned
previously, must be taken into consideration. These compatibility issues can be
observed in Figure 2.1.

Figure 2.1: Compatibility issues matrix in a traditional deployment.

Every time a developer tries to set up the environment, a very long and
tedious procedure has to be followed. They have to follow a large set of
instructions and make sure they are using the right Operating System (OS)
and the right versions of each of these components. This makes the launch

https://www.sdxcentral.com/containers/definitions/what-are-containers-like-docker-linux-containers/

State of the art of virtualized cellular networks 15

of the environment very difficult for new developers. In this context, containers
allow the modification of these components without affecting the other ones
and even the modification of the underlying operating system as required.
Furthermore, in a distributed scenario where one or more of the modules have
any kind of problem, such as failing, the rest of the modules would keep
working properly. Once those failing modules start working properly, the
connection will resume.

To be able to manage these container images, a cloud project infrastructure
is needed. There are many options, such as: LXD [25], Windows Containers
[26], Docker [27], etc. This particular project leverages Docker as a
containerization tool. Moreover, besides the design and crafting of the
applications, cloud native requires orchestration tools that enable the
deployment of applications and containers. Despite the existence of several
frameworks for this task (e.g., Docker swarm), this project studies the use of
Kubernetes (K8s) that will be explained in the following sections.

2.2. Virtualization Frameworks

2.2.1. Docker

Docker is an open-source project that automates the deployment of
applications within software containers. A container is a standard unit of
software that packages up code and all its dependencies so the application
runs quickly and reliably decoupled from the underlying host infrastructure.
By design, a container is immutable: the code cannot be modified after being
run. Making changes in a containerized application, requires building a new
container image that includes the changes. Once the modification is done,
then the container has to be started from the updated image. A container
image is a lightweight, standalone, executable package of software that
includes everything needed to run an application.

Figure 2.2: Overview of running Docker and some containers.

16 Design and analysis of fully virtualized cellular networks based on open-source frameworks

This containerization provides an additional layer of abstraction and an
application virtualization automation across multiple operating systems.
Figure 2.2 exhibits the overview of Docker and some containers running on
top of the OS. Notice that the tools exposed in the figure are mere examples
and other ones with similar capabilities could perform the same operations.

2.2.2. Kubernetes

Kubernetes (K8s) [28] is a portable, extensible and open-source container
orchestrator. It is a platform that manages containerized workloads and services
that facilitate the configuration and the automation. This lets the user run
distributed systems in a resilient way, with scalability and failover for all the
applications.

2.2.2.1. Kubernetes Cluster

Kubernetes is deployed in the form of a cluster, which consists of a set of worker
machines, called nodes, that run containerized applications and are connected
to work as a single unit. A K8s cluster is formed out of two types of resources: (i)
the Master node, which manages and coordinates the activity in the cluster and
(ii) the worker nodes, where the applications run. To be considered a cluster,
there must be at least a master and a worker node connected. The worker nodes
can be Virtual Machines (VM) or physical devices that are used as worker
machines in the cluster.

The different node(s) host the Pods that contain the application workload. By the
official Kubernetes definition, a Pod is “the smallest deployable unit of computing
that you can create and manage in Kubernetes”. Additionally, a Pod is a group of
one or more containers, with shared storage and network resources.

Figure 2.3 shows the diagram of a Kubernetes cluster with all the components.

Figure 2.3: Kubernetes cluster diagram. Image taken from [28].

State of the art of virtualized cellular networks 17

It is important to point out that the control plane manages all the worker nodes in
the cluster and all the pods inside them. Usually, the control plane runs across
multiple computers and the cluster runs multiple nodes, providing fault-tolerance
and high availability.

2.2.2.2. Cluster Networking

Networking is a central and powerful part of Kubernetes, but usually there are
four different networking problems that arise when the cluster is created:

 The Container-to-Container communication, that is solved by
Pods and localhost communications.

 The Pod-to-Pod communications, that is solved by networks and
services.

 The Pod-to-Service communications, that is covered by services.

 The External-to-Service communications, that is covered by services.

A service is a way to expose an application running on a set of Pods as a network
service. Kubernetes gives each service and Pod their own IP address and can
load-balance across them. The difference in the address assignment is that Pods
IP’s are dynamic and each time a Pod, for any reason, restarts, a new address is
assigned. On the other hand, even if the Pod fails and restarts, the service that
exposes the application keeps the same IP.

Kubernetes requires that two applications do not try to use the same ports or a
conflict will arise. Coordinating ports across multiple machines and developers is
a very difficult task, even more so when the cluster scales up. Instead of
dynamically create port allocation, Kubernetes imposes the following
fundamental requirements:

 Pods on a node can communicate with all the Pods on all nodes in the
cluster without the need of a Network Address Translation (NAT).

 Agents on a node (e.g. system daemons, kubelet) can communicate with
all Pods on that node.

This means that it is not required to create links between Pods and that the effort
in mapping container ports to the host ports is minimal. From the perspective of
load balancing, naming, configuration and port allocation, this helps the user to
treat each Pod as a physical host.

2.2.2.3. Container Network Interface

The Container Network Interface (CNI) is a container networking specification
[29] proposed by CoreOS and adopted by container runtimes such as Apache

https://kubernetes.io/docs/concepts/workloads/pods/

18 Design and analysis of fully virtualized cellular networks based on open-source frameworks

Mesos [30], Cloud Foundry [31] and Kubernetes. The CNI is a set of standards
that define how programs should be developed to solve networking challenges in
a container runtime environment. The programs are going to be referred to as
plugins. CNI was created to be a simple interconnection between the container
runtime and the network plugins as shown in Figure 2.4. It defines how the plugin
should be developed and how the container runtime should invoke them. Also, it
defines a set of responsibilities for container runtimes and plugins:

 For container runtimes, the CNI specifies that they are responsible for: (i)
creating a network namespace for each container; (ii) identifying the
network the container must attach to; (iii) invoking the plugin when a
container is created and also when it is deleted; and (iv) defining how to
configure a network plugin in the container runtime environment using a
JSON file.

 For plugins, the CNI specifies that they must: (i) support command line
arguments such as ADD/DEL/CHECK; (ii) accept parameters such as
container id, network namespace, etc. (iii) take care of assigning IP
addresses to the PODs and any associated routes required for the
containers to reach other containers in the network; and (iv) return results
in a specific format.

Figure 2.4: CNI connection overview. Image based from [32].

CNI comes with a set of supported plugins, such as the ones in Figure 2.4. All
the container runtimes mentioned before implement CNI standards so any of
them can work with any of these supported plugins. There are also plugins
created by third parties organizations such as Contiv Networking [33], Project
Calico [34] and Weave [35]. In this Master Thesis Calico is going to be used
because of its very detailed and useful documentation and due to, it is trusted by
companies all over the world such as: L3Harris, Discover or AT&T.

Docker does not implement CNI, it has its own set of standards known as
Container Network Model (CNM). But, CNI can be used with Docker by creating
a Docker container without any network configuration and then manually invoking

State of the art of virtualized cellular networks 19

the bridge plugin yourself. By contrast, when K8s creates Docker containers, it
creates them in a none network and then invokes the configuration CNI plugins
who will take care of the rest of the configuration.

2.3. Open-source 5G Frameworks

Open-source frameworks are software for which the original source code has
been made freely available and may be redistributed, modified or enhanced
according to the user requirements. In this section, some open-source projects
providing RAN and CN implementations are discussed.

2.3.1. Radio Access Network

The RAN is an essential part of a mobile telecommunication system.
Conceptually, it is located between a remotely controlled machine and its CN to
provide connectivity. Four main open-source RAN initiatives widely used in the
research community are described below.

2.3.1.1. Open Air Interface 5G Radio Access Network

The scope of the Open Air Interface (OAI) 5G RAN project [36] is to build the 5G
protocol stack for both the gNB and UE, allowing an end-to-end deployment of a
5G network. The OAI RAN source code can be found at [37]

Their first target is to develop a 5G Non-Stand Alone RAN software and enable
connection and traffic flow through an NSA-capable 5G commercial UE. The OAI
5G stack supports: (i) NSA gNB software stack; (ii) SA gNB software stack; (iii)
5G UE software stack; (iv) RAN Intelligent Controller (RIC) interfaces; and (v) a
Continuous Integration/Continuous Deployment (CI/CD) framework allowing for
testing and data-center deployment of the 5G split architecture.

The OAI 5G RAN project consists of three different phases attending to the
availability of NSA and SA connectivity over the course of two years, starting the
summer of 2020. Figure 2.5 displays a high-level view of those phases.

Figure 2.5: OAI 5G RAN project phases. Image taken from [38].

https://en.wikipedia.org/wiki/Telecommunication

20 Design and analysis of fully virtualized cellular networks based on open-source frameworks

2.3.1.2. srsLTE

The srsLTE project has evolved and has been renamed Software Radio Systems
RAN (srsRAN) [39]. srsRAN is a free and open-source 4G and 5G NSA software
radio suite that features both the UE and eNB/gNB applications. It can be used
with a third-party CN to build a complete end-to-end mobile wireless network. The
srsRAN source code can be found at [40].

Currently, srsRAN includes: (i) srsUE, which is a full-stack 4G and 5G NSA UE
application with a 5G SA version still under development; (ii) srsENB, which is a
full-stack 4G eNB application with a 5G NSA and 5G SA version still under
development. This solution is portable with x86, ARM and PowerPC platforms;
and (iii) srsEPC, which is a light-weight 4G EPC implementation with MME, HSS
and S/P-GW.

The srsGNB is a full-stack software radio gNB solution for 5G NR Standalone,
which is still under development and will be commercially available in Q2 2022.
All srsRAN software runs in Linux with off-the-shelf compute and radio hardware.

2.3.1.3. free5GRAN

free5GRAN [41] is an open-source 5G RAN stack. It works in SA mode and the
current version includes a receiver which decodes Master Information Block
(MIB) and System Information Block#1 (SIB1) data. Moreover, free5GRAN acts
as a cell scanner and it includes a library which can be reused for further
developments. The free5GRAN source code can be found at [42].

As 5G NSA uses 4G cell for attachment, SIB are transmitted on a 4G cell and
this receiver cannot decode SIB1 data from 5G NSA mode. However, this
receiver should be able to detect 5G NSA cells and decode MIB data.

2.3.1.4. 5G-EmPOWER

5G-EmPOWER [43] is an open-source framework that implements a SDN
Platform for 5G RAN. Its flexible architecture provides an open ecosystem where
new 5G services can be tested in realistic conditions. Figure 2.6 displays the 5G-
EmPOWER system architecture that is composed by the following components.

 The empower-core, which is the core library used to develop the 5G-
EmPOWER controller.

 The empower-runtime, which is the Python-based 5G-EmPOWER
Controller. This allows network apps to control Wi-Fi APs and LTE eNB’s
using either a representational state transfer (REST) API or a Python API.

 The empower-enb-agent, which is the 5G-EmPOWER LTE agent library.
This agent allows controlling the LTE eNB’s using the empower-runtime.

State of the art of virtualized cellular networks 21

Figure 2.6: 5G-EmPOWER system architecture. Image taken from [44].

2.3.2. Core Network

The CN is an essential part of any IT infrastructure. It is the central element of a
network, which provides services and a path to exchange of information to
customers who are connected by the access network.

2.3.2.1. Open Air Interface 5G Core Network

The scope of OAI 5G Core Network [45] project is to deliver a 3GPP compliant
5G CN under the OAI Public License. In Figure 2.7 and marked in orange, are
the developments in the sphere of the OAI 5G CN project, that covers all parts of
the 5G core. The OAI 5G CN source code can be found at [46].

Figure 2.7: OAI 5G CN developments in the 5GC. Image taken from [47].

22 Design and analysis of fully virtualized cellular networks based on open-source frameworks

As the OAI 5G RAN project, the OAI 5G CN project consists of three different
phases over the course of two years, starting the summer of 2020:

 Phase I: Consists on the basic deployment of AMF, SMF and UPF in
Docker containers based on the Ubuntu bionic.

 Phase II: Consists on continuous implementation of features and updates
for the existing network components (AMF, SMF and UPF) and the
addition of extra network components like UDM and AUSF.

 Phase III: Consist on a full SA 5GC implementation and the deployment
of a framework for a microservices-based architecture. This phase is still
under development.

2.3.2.2. Open5GS

Open5GS [48] is a free and open-source initiative that contains a series of
software components and network functions that implement the 4G/5G NSA and
5G SA core functions.

The Open5GS 4G/5G NSA core contains the following components: (i) MME; (ii)
HSS; (iii) Policy and Charging Rules Function (PCRF); (iv) Serving Gateway
Control Plane (SGWC); (v) Serving Gateway User Plane (SGWU); (vi) Packet
Gateway Control Plane (PGWC) that is contained in Open5GS SMF; and (vii)
Packet Gateway User Plane (PGWU) that is contained in Open5GS UPF.

Figure 2.8: Open5GS 4G/5G function representation. Image taken from [49].

State of the art of virtualized cellular networks 23

The core network has two main planes: the control plane and the user plane.
These are physically separated in Open5GS as CUPS is implemented. Figure
2.8 shows the interconnection of the components already mentioned and the
separation between the main planes.

In the control plane of this deployment, the MME is the main hub of the core. It
primarily manages sessions, mobility, paging and bearers. It links to the HSS,
which generates SIM authentication vectors and holds the subscriber profile.
Additionally, it links to the SGWC and PGWC, which are the control planes of the
gateway servers. Also, all the eNB’s are connected to the MME. The last element
of the control plane is the PCRF, which sits in-between the PGWC and the HSS,
and handles enforcing subscriber policies.

On the other hand, the user plane carries user data packets between the
eNB/NSA gNB and the external WAN. There are two core user plane components
that are the SGWU and the PGWU. The eNB’s/NSA gNB’s connect to the SGWU,
which connects to the PGWU, which connects to the WAN. The separation of the
control and the user planes physically, allows the deployment of multiple user
plane servers, while keeping the control functionality centralized. This enables
support for MEC use cases.

The 5G SA core contains the following functions: (i) AMF; (ii) SMF; (iii) UPF; (iv)
AUSF; (v) NF Repository Function (NRF); (vi) UDM; (vii) Unified Data Repository
(UDR); (viii) PCF; Network Slice Selection Function (NSSF); and (ix) Binding
Support Function (BSF).

The 5G SA core uses a SBA and SBI to interconnect its modules. As shown in
Figure 2.8, in this scenario the control plane functions are configured to register
with the NRF, and then, the NRF helps them discover the other core functions.
Besides that, the AMF handles connection and mobility management. The UDM,
AUSF and UDR carry out similar operations as the 4G HSS, generating SIM
authentication vectors and holding the subscriber profile. The session
management is managed by the SMF. Also, the NSSF provides a way to select
the network slice. Finally, the PCF is used for enforcing subscriber policies.

In this case, the 5G SA core user plane only contains one function, the UPF,
which carries user data packets between the gNB and the external WAN. It
connects back to the SMF too.

All of the previous components have config files to help the users deploy their
own setup. Each config file (with the exception of the SMF and the UPF) contains
the component’s IP bind addresses/local interface names and the IP
addresses/DNS names of the other components it needs to connect to.

2.3.2.3. free5GC

free5GC [50] is an open-source project for 5G mobile core networks. The main
goal of this project is to implement the 5GC defined in 3GPP from Release 15 [9].
They have divided this task into three main stages. In the first one they migrated

24 Design and analysis of fully virtualized cellular networks based on open-source frameworks

from the 4G Evolved Packet Core to the 5GC Service-Based Architecture that
supported NSA 5G. Then, in the second stage, they implemented the SA 5GC
functions and features. And finally, in the last stage, which is still under
development, their aim is to develop a fully operational 5GC. The free5GC source
code can be found at [51].

2.4. Related work on virtualization tools for building
distributed cellular networks

This section describes some papers and projects found in the literature, which
covers topics that are very similar or follow a common interest, as the one
discussed in this Master Thesis.

The virtualization and cloudification of the mobile network have been a hot
research topic in the recent times, especially when it comes to highly distributed
networking systems. In this respect, containerization has played a key role in this
objective. The authors of [52] define this key step especially in what regards
agility as: “The containerization seems to be the adequate approach to overcome
the bottleneck caused by the Serving Gateway (SGW), as it could enable rapid
deployment by scaling SGW instances based on workload”. Based on this idea,
Figure 2.9 displays the cloudification of mobile network functions the authors
defend, using Docker and twelve factors for enabling it. They also build a proof
of concept of the scalability of SGW, comparing the performances of Kubernetes
and Mesos-Marathon. The proof of concepts showed that a container-based
approach is a viable option for achieving elasticity of future mobile networks.

Figure 2.9: Cloudification design of mobile network. Image taken from [52].

State of the art of virtualized cellular networks 25

Furthermore, in [53] and [54] a review of the current NFV management solutions
and a definition of the cloud native toolbox in the context of NFV is presented. It
is exposed that NFV technology is a promising attempt to solve the increase in
the demand of the vital requirements for bandwidth, latency, and quality of
service. Then, authors of [53] introduce an implementation of an open source
Cloud Native VNF API design over the top layer, 5GaaS. As an application of the
proposed design, the authors define the principles and describe from a standard
perspective the feasibility of the prototype. They mentioned that, as part of their
future work, it should address the application of Kubernetes orchestration at the
VIM layer and to update the CN-VNF framework with better support for the RAN
API. In addition to that, in [54], a container-based design of a virtual evolved
packet core, based on the OAI software package, is presented. They successfully
containerized (and virtualized) the EPC component functions into two separate
Docker containers: (i) the control plane container, for virtual home subscriber
server and virtual mobility management entity; and (ii) the data plane container,
for virtual serving and packet data network gateway. This paper also proposes
an algorithm called Specifically Assigned Cores (SAC) to achieve a better
utilization of CPU cores. Their preliminary results show that SAC outperforms the
default scheme, Randomly Assigned Cores (RAC), in terms of lower CPU load
and less packet loss. The authors point out the superiority of SAC over RAC is
amplified with the traffic level.

Moreover, two different sets of testbeds for cloud based 5G networks are
analyzed in [55] and [56] to shape 5G technology as a flexible, scalable, and
demand-oriented network. Paper [55] introduces a novel testbed called 5GIIK,
which provides implementation, management, and orchestration across all
network domains and different access technologies. 5GIIK is one of the most
comprehensive testbeds because it provides additional features and capabilities
such as slice provision dynamicity, real-time monitoring. On the other hand,
authors of [56] display a 5G mobile network testbed with a virtualized and
orchestrated structure using containers. It is focused on integration to artificial
intelligence applications. The presented testbed uses open-source technologies
to deploy and orchestrate the VNFs to flexibly create various mobile network
scenarios.

Furthermore, taking into consideration the virtualization of the RAN, two very
interesting papers have been found in the literature. The first one [57], aims to
ease the integration of satellite components in forthcoming 5G systems
(SatCloudRAN). Authors give special attention to the design, by considering the
split and placement of virtualized and non-virtualized functions, while taking into
account the characteristics of the transport links between both kinds of functions.
They assess how virtualization and softwarization technologies, such as NFV and
SDN can deliver part of the satellite gateway functionalities as virtual network
functions and can achieve a flexible and programmable control and management
of the satellite infrastructure. The authors of the second paper [58] focus their
attention to the reduction of the handover in virtualized cloud RAN. They
explained that in order to meet the challenging 5G capacity requirements,
operators are densifying their cellular networks by deploying additional small cells
to cover hot spots, and such an increase in the number and density of cells may
result in excessive numbers of handovers. To avoid that, a handover reduction

26 Design and analysis of fully virtualized cellular networks based on open-source frameworks

mechanism is implemented in a Cloud Radio Access Network (CRAN). There,
the digital unit of a conventional BS is separated from the radio unit and moved
to the cloud for better mobility management and cost saving.

Due to the importance of virtualized infrastructures on the achievement of the
requirements of 5G networks and beyond, many research groups and projects in
the literature focus their efforts, not only in the advancement of the containerized
paradigm, but also to analyze the security and robustness of the available
frameworks. In [59], the importance of a secure framework for virtualized
networks is pointed out. They indicate the open research issues and future
research directions of 5G security and trust in the context of virtualized
networking and SDN. A framework of security and trust focusing on solving 5G
network security issues is proposed.

Finally, the Open-VERSO [60] project aims to achieve a generic hardware based
platform, which will allow advanced networks to get deployed on demand. The
platform is a computing environment designed to allow the hardware to operate
on real time while being orchestrated from the cloud. It was created to
demonstrate and evaluate the viability of an infrastructure based on the “Open
RAN” concept and its integration in the cloud. Furthermore, it was conceived to
demonstrate the viability and performance of key technologies for the evolution
of networks beyond 5G. It has demonstrated the viability and performance of key
technologies for the evolution of networks beyond 5G.

State of the art of virtualized cellular networks 27

3. CHAPTER 3. RESEARCH WORK

3.1. Introduction

For the development of this Master Thesis the srsLTE and Open5GS solutions
have been chosen to deploy the RAN and the core of our network respectively.
Those open-source initiatives have been selected due to the features they have
available and offer, that cover all the essentials of this deployment. Also, both
solutions have a very active community behind them and a very updated, clear
and detailed documentation, so in order to solve any kind of problem, there is
plenty of information online.

The final aim of this project is to set up a fully virtualized, containerized and
distributed open-source-based network that can be deployed on different nodes,
separating RAN and core network functions, or even the modules of the core
network itself if required on a cellular network. Based on this deployment, this
work aims to analyze the performance of the network and the virtualized
infrastructure when varying different network parameters. The road to fulfill this
goal has been started with a first phase consisting on achieving connectivity in a
baremetal deployment, using only one computer, with the aim of verifying that the
basic deployment of the open-source modules behaves as expected. The second
stage consisted in the deployment of the network using Kubernetes to automate
the deployment and the management of the containers. This deployment has
been performed in two different manners: (i) a single worker node cluster
containing the RAN and the core network; and (ii) the separation of the core and
RAN logic into two different worker nodes. Finally, this setup has been compared
with existing projects following the same deployment using Docker containers,
without a container orchestration platform [61].

3.2. Baremetal Deployment

This deployment has the most basic setup and it is composed of the next
hardware components: (i) two computers with Ubuntu 20.04; (ii) an USRP B210
[62] with USB 3.0 connected to the computer running srsLTE; (iii) a sysmoUSIM
[63] and (iv) a HUAWEI LTE USB Stick [64]. Figure 3.1 exhibits the setup
connected.

Figure 3.1: Baremetal deployment setup.

Research work

28 Design and analysis of fully virtualized cellular networks based on open-source frameworks

3.2.1. Installing software and dependencies

This section includes the installation of: (i) the Ettus driver to manage the USRP;
(ii) the srsLTE software and dependencies for the RAN; and (iii) the Open5GS
and Open5GS Web-UI software and dependencies, which will form the CN and
the UE registration interface respectively.

First of all, it is important to check if the computer recognizes the USRP. To do
so, in the command terminal run:

uhd_usrp_probe

If the console output shows an error or no devices connected, a new command
is needed to download Ettus driver, otherwise the connection was successful:

./usr/lib/uhd/utils/uhd_images_downloader.py

Then, the installation process of srsLTE and Open5Gs with all their dependencies
can be followed in ANNEX I.

Open5GS is composed of several modules besides the core functions, such as
the Open5GS Web-UI and a MongoDB database. The database will be created
with the Open5GS installation command. The Web-UI allows users to register
and store the details of the SIM cards. In this Master Thesis, programmable
sysmoISIM-SJA2 SIM cards, which has been properly programmed and
configure beforehand using the pysim software package [65] with the card data
supplied by the vendor. More information about this process can be found in [66].
The srsLTE source code can be found at [67] and the Open5GS source code at
[49]

3.2.2. Setup and configuration

Once everything is properly connected, the order of setting srsLTE and Open5GS
up is not vital, and it can be interchangeable. In this work, the configuration files
of srsLTE are set up in the first place, as follows:

~/.config/srsran/enb.conf

To get access to that file, and edit the configuration file, the following commands
must be executed:

sudo -i
nano ~/.config/srsran/enb.conf

[enb]
enb_id = 0x19B
mcc = 001 ----> Put your MCC information
mnc = 03 ----> Put your MNC information
mme_addr = 127.0.1.100
gtp_bind_addr = 127.0.1.1
s1c_bind_addr = 127.0.1.1
n_prb = 50 ---> Number of Physical Resource Blocks (PRB) assigned

State of the art of virtualized cellular networks 29

The MCC and MNC codes are part of the IMSI of the SIM card. The IP addresses
shown belong to the local domain, due to the deployment being done in one
computer. The number of Physical Resource Blocks (PRB) used can be also
configured. This value will change in the performance evaluation shown in the
next Chapter.

To configure Open5GS, some modifications have to be done in two different files.
The first one is the file “mme.yaml”, that is stored in:

/etc/open5gs/mme.yaml

The changes to be done are: (i) set the S1AP IP address; (ii) set the Public Land
Mobile Network ID (PLMN), which are the MCC and the MNC; and (iii) set the
Tracking Area Code (TAC). Once it has been properly setup, the file should look
like the following:

mme:
 s1ap:
 - addr: 127.0.1.100 #mme_addr of the enb.conf file of the srsLTE
 gtpc:
 - addr: 127.0.0.2
 gummei:
 plmn_id:
 mcc: 001 ----> Put your MCC information
 mnc: 03 ----> Put your MNC information
 mme_gid: 2
 mme_code: 1
 tai:
 plmn_id:
 mcc: 001 ----> Put your SIM information
 mnc: 03 ----> Put your SIM information
 tac: 7 ----> Put your Tracking Area Code

The second file that has to be modified is the “sgwu.yaml” to set the GTP-U IP
address. It is stored in:

/etc/open5gs/sgwu.yaml

It should look like the following:

sgwu:
 pfcp:
 - addr: 127.0.0.6
 gtpu:
 - addr: 127.0.1.100 #mme_addr of the enb.conf file of the srsLTE

After making those modifications in the previous config files, the Open5gs
daemons must be restarted by running to make the changes effective:

sudo systemctl restart open5gs-mmed
sudo systemctl restart open5gs-sgwud

Once both system services are restarted, the subscriber information (the SIM)
has to be registered. To do so, the Web-UI can be access at
“http://localhost:3000” with the following credentials:

Username: admin

Password: 1423

Research work

30 Design and analysis of fully virtualized cellular networks based on open-source frameworks

To add a subscriber, some data is required: (i) the IMSI; (ii) the authentication
key (K) and (iii) the derived operator code (OPc). To finish the registration, an
APN has to be configured (name and type). Figure 3.2 displays a successful
registration.

Figure 3.2: Subscriber registered in the Web-UI.

In order of the UE to have WAN connectivity, a route has to be added by
enabling forwarding and adding a NAT rule:

Enable IPv4/IPv6 Forwarding

sudo sysctl -w net.ipv4.ip_forward=1
sudo sysctl -w net.ipv6.conf.all.forwarding=1

Add NAT Rule

sudo iptables -t nat -A POSTROUTING -s 10.45.0.0/16 ! -o ogstun -
j MASQUERADE

sudo ip6tables -t nat -A POSTROUTING -s 2001:230:cafe::/48 ! -o
ogstun -j MASQUERADE

It is very important to point out that these commands are not persistent, so
they have to be reintroduced each time the computer is restarted.

3.2.3. Get the deployment running

As soon as all the configurations are finished, it is time to launch srsLTE (only
srsLTE because the system services of Open5GS are already running, since they
have been restarted in the setup section). To run srsENB, this statement must be
typed in the command console:

sudo srsenb

To achieve connectivity in the UE, the SIM card can be introduced in a regular
off-the-shelf phone or via a USB dongle. Then, a new APN has to be added by
introducing the name and the apn (same as name), that corresponds to the one

State of the art of virtualized cellular networks 31

registered in the Web-UI. Leave the remaining fields by default. At that moment,
enable the APN and the UE gets connected, as shown in Figure 3.3.

Figure 3.3: Baremetal connectivity achieved.

Figure 3.3 depicts that the setup has been properly configured and that User 0x46
has been registered correctly and it can connect to the internet without any
problems. Notice that srsRAN uses the Radio Network Temporary Identifier
(RNTI) as user identifier, which may change every time the user is disconnected.

If for any reason there is a need to remove either Open5GS or the Web-UI
packages, is possible to do it by running the following commands:

sudo apt-get purge open5gs
sudo apt-get autoremove
sudo rm -Rf /var/log/open5gs
curl -fsSL https://open5gs.org/open5gs/assets/webui/uninstall |

sudo -E bash –

3.2.4. Problems found

Three main problems have been faced during this deployment, which are not
completely documented in the project websites:

 The incorrect selection of the mme_s1ap, sgwu_gtpu and
enb_mme_addr IP addresses, due to using different local IP’s. This
caused that the modules of each software could not find each other. This
problem was solved by selecting the same IP address in all of the three.

 Not taking into account that and the addition of the NAT rule and the port
forwarding configuration were not persistent, so one day the deployment
was working and the next one was not, without any modifications.

Research work

32 Design and analysis of fully virtualized cellular networks based on open-source frameworks

 The incorrect creation of the APN (not using the exact same name as the
one in adding the subscriber), so as shown in Figure 3.4, the UE was not
able to get connected.

Figure 3.4: Failure on connectivity due to wrong APN.

3.3. Kubernetes-based Deployment

As mentioned in the introduction section, two different K8s setups have been
deployed: a two nodes (master and a worker) setup and a three nodes (master
and two workers) setup. Most of the steps taken to deploy and configure the K8s
cluster are very similar, but there are a few differences between both
deployments that are going to be explained. This deployment is composed of the
following hardware components: (i) three/four computers with Ubuntu 20.04; (ii)
an USRP B210 [63] with USB 3.0 connected to the computer; (iii) a HUAWEI LTE
USB Stick [64]; (iv) a D-Link DGS 108 Switch [68] and (v) a sysmoUSIM [63].
Figure 3.5 shows both setups connected. In the two nodes deployment (blue)
both srsLTE and Open5GS run in the worker node 1. On the other hand, in the
three nodes setup (red), even if the Open5GS software still runs in the worker
node 1, srsLTE is executed in the worker node 2. Take into consideration that the
USRP must be connected to the node that deploys the RAN. The third node
contains the master K8s node.

Figure 3.5: Two and three nodes deployments.

State of the art of virtualized cellular networks 33

3.3.1. Installing software and dependencies

Before starting to set the K8s cluster, some modifications have to be made in all
the nodes: (i) setting the computer hostnames; (ii) installing Docker; (iii) disabling
swap and enabling IP forwarding; and (iv) installing kubectl, kubelet and
kubeadm. This process can be followed in the ANNEX II.

3.3.2. Kubernetes cluster setup

For both cases, the setup and the configuration of the cluster is very similar. The
only difference is that, instead of adding only one worker node, two worker nodes
are added.

Kubernetes uses the CNI to interact with networking providers like Calico. In this
case, the Tigera operator is going to be used to install Calico. The operator
provides lifecycle management for Calico exposed via the Kubernetes API. The
process of setting up the K8s cluster can be followed in ANNEX III.

3.3.3. Design and creation of the Docker images

In order to deploy either the RAN or the CN in the K8s cluster, a Docker image
containing the logic of each software is needed. Due to the existing images found
in Docker Hub [69] (public repository for Docker images) were too specific, just
defined for their own UE, new Docker images were needed.

3.3.3.1. srsLTE Docker image

After researching many Docker images to see how they faced different problems
of networking I was having, it was decided to base the Docker image on an
existing open-source project [70], that was solving most of them. In order to make
the deployment work correctly for our scenario, some modifications and
improvements were made:

 Create a new config file to make the deployment configurable for any UE.
Without this file, each time a new UE was required, (i) a new Docker
image had to be built; or (ii) the corresponding pod had to be accessed to
edit the UE configuration and restart the service, making any change less
agile and flexible.

 Update the “launcher.sh” and the “conf/enb.conf” files to include the
configurable feature that the config file allows. This lets the user make the
deployment for any particular UE.

 Changed the Dockerfile, adding some commands to install all the
dependencies needed that were not included before and to load all the
files that the modifications mentioned previously required.

This Docker image can be found at [71]. The content of all the files forming the
srsLTE Docker image can be found in ANNEX IV: srsLTE.

Research work

34 Design and analysis of fully virtualized cellular networks based on open-source frameworks

3.3.3.2. Open5GS Docker image

As in the previews case, after researching many Docker images to see how other
initiatives proposed their solutions, the same repository as the one for srsRAN
was used as reference for building the Open5GS image [72], because of the
quality of his documentation and that the previous srsRAN Docker image was
based in his other container. The modifications done are:

 Create a new config file to make the deployment configurable for any UE,
as in the srsLTE Docker image.

 This deployment does not support IPv6 yet, so every line in all the
modules that included this feature were commented. This is not
mandatory for the image to work, but removes all the errors that used to
appear on the console.

 While deploying the original container, a problem of shared libraries
arose. This problem was caused when more than one module of the 5GC
tried to access the same resources at the same time. It was solved by
adding the following command in the Dockerfile:

RUN sh -c "echo /open5gs/install/lib/x86_64-linux-gnu >

/etc/ld.so.conf.d/open5gs.conf

This Docker image can be found at [73]. The content of all the files forming the
Open5GS Docker image can be found in ANNEX IV: Open5GS.

3.3.4. Design the descriptor file

The descriptor file is in charge of deploying the different pods, services and
containers needed for the proper functioning of the project. The file is divided
below into manageable parts to be able to explain it in detail.

kind: Pod
metadata:
 name: epc #Name of the Pod
 labels:
 app: epc
spec:
 containers:
 - name: open5gs #Container Nº 1
 image: javipalomares/open5gs:latest
 env: #Environmental variables
 - name: mcc
 value: "001"
 - name: mnc
 value: "03"
 - name: tac
 value: "7"
 securityContext:
 privileged: true
 - name: open5gs-webui #Container Nº 2
 image: snslab/open5gs-webui:latest
 - name: mongodb #Container Nº 3
 image: mongo

State of the art of virtualized cellular networks 35

 - name: mongo-express #Container Nº 4
 image: mongo-express
 env:
 - name: ME_CONFIG_MONGODB_SERVER
 value: "localhost"
 nodeSelector:
 IDname: kworker1 #Node label

This part defines a pod labeled and called epc. This pod contains a total of four
containers:

 The first one is called open5gs. It is based on the last version of the
Open5GS Docker image created and explained in the previous section
(javipalomares/open5gs:latest). After that, the environmental variables to
configure it (mcc, mnc and tac) must be instantiated. Then, to give the
container root privileges, the securityContext is set to true. This gives the
container access to all the ports and resources of the system.

 The second container is called open5gs-webui. It is based on the last
version of the Docker image taken as reference (snslab/open5gs-
webui:latest). This container holds the logic of the Open5GS Web-UI,
where the subscribers are registered. No more declarations have to be
introduced in this container.

 The third and fourth containers are called mongodb and mongo-express
respectively. They are based on the last versions of the Docker images of
mongo and mongo-express. They are used to store the subscribers list
and also, mongo-express lets the host view a graphical interface of the
content of the mongo database. In the last one, a parameter has to be
introduced to configure where the host can access the already mentioned
interface, that is set to localhost.

The last parameter that has to be introduced is the node in which this Pod has to
be deployed. As mentioned at the beginning of this section, the CN logic is
deployed at the worker-node1. To be able to make the assignment, the
kubernetes-workers have to be labeled. This procedure will be explained in the
next section. The kubernetes-worker1 is labeled kworker1 and through the
nodeSelector the assignment is achieved. nodeSelector is a field that specifies
the node in which the pod is chosen to run.

The motive to define the four previous containers in the same Pod is to avoid
networking problems between them.

The next part defines another pod labeled and named srsenb. Inside of it, only
one container, also called srsenb, is defined. It is based on the last version of
the srsLTE Docker image created and explained in the previous section
(javipalomares/srslte:latest). After that, the environmental variables to configure
the container (enb_mcc, enb_mnc, enb_prb, empower_pod_addr) are
instantiated. Then, as in the previous case, to give the container root privileges,
the securityContext is set to true. As mentioned at the beginning of this section,
the RAN logic is going to be deployed in the worker-node2. So, once the node is
labeled kworker2, the pod is assigned to it.

Research work

36 Design and analysis of fully virtualized cellular networks based on open-source frameworks

kind: Pod
metadata:
 name: srsenb
 labels:
 app: srsenb
spec:
 containers:
 - name: srsenb #Container Nº1
 image: javipalomares/srslte:latest
 env: #Environmental variables
 - name: enb_mcc
 value: "001"
 - name: enb_mnc
 value: "03"
 - name: enb_id
 value: "0x19B"
 - name: enb_prb
 value: "75"
 - name: empower_pod_addr
 value: "127.0.0.1"
 securityContext:
 privileged: true
 nodeSelector:
 IDname: kworker2 #Node label

In the scenario of having only one worker node, the only thing that needs to be
changed is to assign the core and the RAN containers to the label of your node
and everything will be deployed in that node.

The following part defines a service named epc-mongo-express-service that is
connected to the pod called epc. As explained in Section 2.2.2, a service is an
abstract way to expose an application running on a set of pods. The type of
service is defined, in this case is NodePort, that is used to expose the service on
each Node's IP at a static port. The port command exposes the K8s service on
the specified port within the cluster. The targetPort indicates the port on which
the service will send requests to. The port that is exposed is called web-ui, it is
accessible in port 8081 and exposed externally in port 30000. The connecting
protocol is TCP. This port gives access to the mongo express interface with the
list of subscribers.

kind: Service
metadata:
 name: epc-mongo-express-service
spec:
 selector:
 app: epc #Connect to this pod
 type: NodePort #Type of the service
 ports:
 - name: web-ui
 protocol: TCP #Connecting protocol
 port: 8081
 targetPort: 8081 #Exposed port
 nodePort: 30000 #NodePort assigned static port

Finally, the last part defines a service named epc-open5gs-webui-service that
is connected to the pod called epc. The port exposed is called web-ui, it is

State of the art of virtualized cellular networks 37

accessible in port 3000 and it is exposed externally in port 30001. The connecting
protocol is TCP. This port gives access to the Open5GS Web-UI, where the
subscribers have to be registered.

kind: Service
metadata:
 name: epc-open5gs-webui-service
spec:
 selector:
 app: epc #Connect to this pod
 type: NodePort #Type of the service
 ports:
 - name: web-ui
 protocol: TCP #Connecting protocol
 port: 3000
 targetPort: 3000 #Exposed port
 nodePort: 30001 #NodePort assigned static port

The complete descriptor file can be found in ANNEX V: Descriptor file.

3.3.5. Get the deployment running

Once the setup is properly physically connected and set up as explained in
Section 3.3.1 and Section 3.3.2, it is time to label each worker node in orderto
assign the pods described in the descriptor file. To do so, the following commands
must be run in the master console:

kubectl label nodes kubernetes-worker1 IDname=kworker1
kubectl label nodes kubernetes-worker2 IDname=kworker2

After that, the descriptor file to deploy the containers and services can be
launched by introducing the following command:

kubectl apply –f K8s_deployment.yaml

Figure 3.6: Output of the launched descriptor.

Figure 3.6 shows the pods and the services have been properly created. Then, it
can be accessing from the master web browser by typing type <IP>:3000. The
value of IP can be got by running any of the next commands:

kubectl get pods -o wide or kubectl get service

When using the first command, the IP address of a pod called epc has to be
retrieved. On the other hand, when using the second command, the IP of the
service named epc-open5gs-webui-service must be checked. Both IP
addresses redirect the user to the Open5GS Web-UI web page. The usage of the
second option is recommended due to its persistence against pod failure.

Research work

38 Design and analysis of fully virtualized cellular networks based on open-source frameworks

To register the UE in the Open5GS Web-UI, the same steps as in Section 3.2.2
have to be followed, but using the <IP>:3000 instead of localhost:3000. Once the
subscriber is added, the APN can be activated and the UE connected. To check
that everything has been connected properly the following commands can be
used:

 To get the logs of the Open5GS software, the following steps can be taken
as a reference:

kubectl log epc open5gs

Figure 3.7 shows that the MME service has been initiated and connected through
the port 36412 of the S1-MME. Furthermore, it displays that the eNB-S1
connection is accepted and added. Also, the UE is detected and connected, and
the number of MME-sessions is increased to 1.

Figure 3.7: Open5GS MME console output.

Figure 3.8 displays that the SGW-U service has been initiated and connected
through the port 2152 of the S1-U. Furthermore, PFCP is associated, and the
number of SGWU-sessions is increased to 1.

Figure 3.8: Open5GS SGW-U console output.

Figure 3.9 depicts that the SGW-C service has been initiated and connected
through the port 2123. Also, PFCP is associated, and the number of SGWC-
sessions is increased to 1.

State of the art of virtualized cellular networks 39

Figure 3.9: Open5GS SGW-C console output.

 To get the logs of the srsLTE software:

kubectl log srsenb

Figure 3.10 displays that the eNB has been properly configured and that the User
0x46 has been registered correctly and it can connect to the internet without any
problems.

Figure 3.10: srsLTE eNB console output.

The ports shown in, Figure 3.8 and Figure 3.9 are the same ports used to
interconnect the Open5GS 5G NSA architecture shown in Figure 2.8. Adding that
to the connectivity achievement, it can be stated that the setup has been
deployed correctly.

3.3.6. Problems found

Four main problems have been faced during this deployment:

 While deploying the Open5GS CN container, an error of shared libraries
arose and it was solved as explained in Section 3.3.3.2.

 The assignation of IPs done by the switch to the nodes is not permanent
so, in various occasions, the cluster stopped working because the
addresses had changed and the cluster had to be deployed all over again.

Research work

40 Design and analysis of fully virtualized cellular networks based on open-source frameworks

It only happened once, so the solution was to deploy the cluster again
with the new addresses by adding them to the “etc/hosts” file as explained
in Section 3.3.1.

 Due to the fact that the nodes that compose the cluster are physically
connected to the switch, sometimes they got disconnected from it and the
deployment stopped functioning even if the pods seem to be in a
“Running” status. This behavior can be observed in Figure 3.11. If the
disconnection was brief, the Calico services and pods that controlled the
networking between nodes could get restarted automatically. If the
disconnection occurred overnight, the only solution that was found was to
remove and recreate the previous processes manually.

 Networking problems such as no connection between the containers on
different pods (srsLTE and Open5GS) appeared. The creation of K8s
services was necessary to expose the necessary ports for the pods to see
connect correctly.

Figure 3.11: Calico pod running error.

3.4. Docker-based Deployment

In order to compare the behavior of Docker containers and analyze the
performance of other existing open-source projects, a Docker-based project is
selected for deployment and analysis [61]. This section deploys a single node
setup using an existing Docker project and the following hardware components:
(i) two computers with Ubuntu 20.04; (ii) an USRP B210 [62] with USB 3.0
connected to the computer that deploys the RAN; (iii) a sysmoUSIM [63]; and (iv)
a HUAWEI LTE USB Stick [64]. displays the setup connected.

Figure 3.12: Docker deployment setup.

State of the art of virtualized cellular networks 41

3.4.1. Installing software and dependencies

In this setup, there are two mandatory software requirements: (i) docker-ce and
(ii) docker-compose. To install them, the following commands are required:

sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io
sudo apt-get install docker-compose

After that, the repository can be cloned to build the base Docker image of
Open5GS:

git clone https://github.com/herlesupreeth/docker_open5gs
cd docker_open5gs/base
docker build -t docker_open5gs .

cd ../ims_base
docker build -t docker_kamailio .

3.4.2. Setup and configuration

To properly configure the network, the following parameters in the “.env” file for
the particular scenario must be edited:

MCC --> First three digits of the IMSI of the SIM card.
MNC --> Next two digits after the MCC of your IMSI.
DOCKER_HOST_IP --> IP address of the host running the Docker

setup.
SGWU_ADVERTISE_IP --> Change this value to the DOCKER_HOST_IP only

if the eNB is not running in the same host.
UPF_ADVERTISE_IP --> Like the SGWU_ADVERTISE_IP, change this value

to the DOCKER_HOST_IP only if the eNB is not running in the same host.

Furthermore, the TAC parameter in the “srslte/rr.conf” file must be edited to match
the corresponding Tracing Area Code (TAC). Also, If the eNB is not running in
the same host as the CN, the additional steps are required:

Under the “mme” section in the nsa-deploy.yaml file, uncomment the
following part:

 # ports:
 # - "36412:36412/sctp"

Under the “amf” section in the nsa-deploy.yaml file, uncomment the

following part:

 # ports:
 # - "38412:38412/sctp"

Under the “sgwu” section in the nsa-deploy.yaml file, uncomment

the following part:

 # ports:
 # - "2152:2152/udp"

These ports have to be exposed in order to assure there is connectivity between
the modules of the Open5GS core, as shown in Figure 2.8.

Research work

42 Design and analysis of fully virtualized cellular networks based on open-source frameworks

On the other hand, If the eNB is not running in the same host as the CN, make
sure that the host running the eNB has the static route to the SGWU container or
the UE will not find the core. It can be added by running:

ip r add <SGWU_CONTAINER_IP> via <SGWU_ADVERTISE_IP>

3.4.3. Get the deployment running

Once the previous modifications have been made, the following commands are
of guide to deploy the network. Notice that it is needed to run the core and the
RAN commands in separate terminals:

cd ..
set -a
source .env

#Build and run the Open5GS NSA network in terminal 1
sudo docker-compose build
sudo docker-compose -f nsa-deploy.yaml up

Build and run srsRAN eNB in terminal 2
sudo docker-compose -f srsenb.yaml build
sudo docker-compose -f srsenb.yaml up -d && sudo docker attach

srsenb

This creates a Docker container for each of the modules that are part of the
Open5GS CN (amf, ausf, hss, mme, sgwu, sgwc, etc.) and one for the srsenb.
This can be checked by running:

sudo docker ps

To register the UE in the Open5GS Web-UI, the same steps as in Section 3.2.2
have to be followed, but using the <DOCKER_HOST_IP>:3000 instead of
localhost:3000. Once the subscriber is added, the UE can be connected and the
APN activated. Figure 3.13 shows the output of the srsenb running command.
Even though the UE achieves constant internet connectivity, it connects and
disconnects continuously from the network. For now, it is a valid solution, but this
will represent a problem in the network evaluation of the next chapter. This issue
has been reported to the maintainers of the project.

Figure 3.13: Intermittent connectivity achieved with Docker.

State of the art of virtualized cellular networks 43

4. CHAPTER 4. PERFORMANCE EVALUATION AND
ACHIEVED RESULTS

4.1. Methodology

This chapter will be focusing on an analysis of the resources performance of the
three deployments, taking special attention to the results achieved in the fully
virtualized open-source-based network. The setup utilized for the baremetal,
Kubernetes and Docker deployments are represented in Figure 3.1, Figure 3.5
and Figure 3.12, respectively. The specifications of the computers used in all the
scenarios are: an Intel Core i7-6500 2,5GHz processor with 16 GB of RAM. Table
4.1 summarizes a set of experiments that are going to be carried out for each
deployment. It also specifies the aimed measurement and the parameters that
will be changed for each case.

Table 4.1: List of the experiments with their parameters.

Experiment # PRBs Distances (m) BW (Mbps) Measurement

1 25 [1, ..., 20] [1, ..., 150] Throughput

2 50 [1, ..., 20] [1, ..., 150] Throughput

3 75 [1, ..., 20] [1, ..., 150] Throughput

4 25, 50, 75 1 [1, ..., 150] Throughput

5 25, 50, 75 3 [1, ..., 150] Throughput

6 25, 50, 75 6 [1, ..., 150] Throughput

7 25, 50, 75 10 [1, ..., 150] Throughput

8 25, 50, 75 15 [1, ..., 150] Throughput

9 25, 50, 75 20 [1, ..., 150] Throughput

10 25, 50, 75 1, 3 1 Resources

11 25, 50, 75 1, 6 25 Resources

12 25, 50, 75 1 50 Resources

13 25, 50, 75 1 75 Resources

14 25, 50, 75 1 100 Resources

15 25, 50, 75 1 150 Resources

16 50 1 100 Time to restart

17 75 3 75 Time to restart

The tests have been carried out using the IPERF3 [74] software, which is a tool
that allows generating data streams for both Transport Control Protocol (TCP)
and User Datagram Protocol (UDP), to measure network performance. For the
evaluation of the deployments, only UDP streams are going to be used, to be
able to change the transmission speed parameter.

In the deployed networks, the IPERF3 software has to be installed on both
terminals: the UE and the node that deploys the eNB. A phone is being used as
UE and acts as an IPERF3 client and the eNB acts as the server. In order to do
so, run the following commands:

#Server:

iperf3 -s -B 192.168.11.194 -p 5000 -i 0.25 > n_15mPRB50.txt

Performance evaluation and achieved results

44 Design and analysis of fully virtualized cellular networks based on open-source frameworks

#Client:

-u –c 192.168.11.194 –t 60 –i 0.25 -4 –p 5000 –O 1 –b 25M

The meaning of the flags of the server command are: (i) the “s” indicates that
IPERF3 is going to be used as a server; (ii) the “B” is followed by the IP address
of the server; (iii) the “p” represents the port that the server is going to be exposed;
and (iv) the “i” represents the granularity of the measurements (the unit is the
second). The last parameter indicates the name of the file where the data is going
to be stored. For the sake of this work and to make it easier for the future
managing and analysis of the data, the next structure has been followed:

“n_distancePRBNumberofPRB.txt” ---> n_15mPRB50.txt

The meaning of the flags of the client command are: (i) the “u” indicates UDP
data streams are going to be used; (ii) the “c” shows that IPERF3 is going to be
used as a client and it is followed by the IP address of the server; (iii) the “t”
represents the number of measurements of the transmission; (iv) the “i”
represents the granularity of the measurements (the unit is the second); (v) the
“4” indicates that iPv4 addresses are going to be used; (vi) the “p” represents the
port that the client is going to be accessing; (vii) the “O” indicates the number of
initial seconds that are going to be omitted, to avoid inaccuracies related to the
setting up of the connection (is a real connection and it can’t change the state
instantly); and (viii) the “b” represents the speed of the transmitted data.

To acquire the computational resources utilized by each module of Open5GS and
srsLTE, a different command had to be run in each of the deployments:

 For the Baremetal deployment, the following command saves in the “top-
5iterations.txt” file, five iterations of the system resources:

top -b -n 5 > top-5iterations.txt

 For the Docker and K8s deployments, the following command saves each
second the system resources in the “resources.txt” file:

sudo docker stats > resources.txt

The measurements have been executed five times, to provide better accuracy to
the evaluation and to show the confidence interval at 95%, in each of the following
scenarios:

 Different deployments: Baremetal, Docker, two nodes Kubernetes and
three nodes Kubernetes.

 Number of PRBs on the eNB: 25, 50 and 75.

 Distances of the UE form the RAN: 1m, 3m, 6m, 10m, 15m and 20m.

 Transmission speed of the packet streams: 1Mbps, 25Mbps, 50Mbps,
75Mbps, 100Mbps and 150Mbps.

𝑁𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = 5 ∗ 4 ∗ 3 ∗ 6 ∗ 6 = 2160 𝑁𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎 = 2160 ∗ 60 = 129600

Furthermore, in addition to the previous number, other measurements have been
made to test the resource usage and the relaunch time of the system, when

State of the art of virtualized cellular networks 45

(a) Results with 25PRB and 1m. (b) Results with 50PRB and 6m.

(a) 1Mbps Docker temporal response. (b) 1Mbps K8s temporal response.

forcing failure in a part of the deployment. Over 2300 measurements and 130000
lines of data have been obtained in total. In order to extract evaluations and
comparisons of the raw data, some cleaning scripts have been necessary. This
code is shown in the ANNEX VI. Also the scripts used to plot the results can be
found in that annex.

4.2. Results discussion

Before discussing the obtained results, it is necessary to indicate a few things.
The first one is that, due to the similarity of the data gathered from the two-node
K8s and the three-node K8s deployments, only the three nodes setup results will
be shown due to space constraints in this document. These similarities can be
appreciated as an example in Figure 4.1, where it is shown the throughput
comparison of both setups, for two different set of conditions (distance an number
of PRB).

Figure 4.1: Results comparison between two and three nodes in K8s.

Figure 4.2: Comparison between the temporal response of Docker and K8s.

The second point to take into account is that, as mentioned in Section 3.4.3, the
Docker deployment used to compare with the Kubernetes setup designed in this
Master Thesis, has an error, which makes the UE get connected and

Performance evaluation and achieved results

46 Design and analysis of fully virtualized cellular networks based on open-source frameworks

(a) Baremetal 25PRB. (b) Baremetal 50PRB. (c) Baremetal 75PRB.

(a) Local 25PRB. (a) Local 50PRB. (a) Local 75PRB.

(a) K8s 25PRB. (b) K8s 50PRB. (c) K8s 75PRB.

(a) Docker 25PRB. (b) Docker 50PRB. (c) Docker 75PRB.

Figure 4.5: Docker throughput comparison at diff. distances with each PRB.

disconnected continuously. This makes the average throughput of the Docker
setup decrease in comparison with the baseline case. This behavior can be
clearly seen in Figure 4.2, that compares the temporal response of the Docker
and the Kubernetes deployment while injecting a bandwidth of 1 Mbps.

4.2.1. Measuring throughput

In experiments 1 to 9 the average throughput has been measured using the
values that IPERF3 provides at the end of each test. It automatically averages
the throughput of the whole connection. Experiments 1, 2, and 3 compare the
effects of distance and number of PRB in the output, on each deployment, as
shown in Figure 4.3, Figure 4.4 and Figure 4.5, respectively.

Figure 4.3: Baremetal throughput comparison at diff. distances with each PRB.

Figure 4.4: K8s throughput comparison at different distances with each PRB.

State of the art of virtualized cellular networks 47

(a) 1m throughput comparison. (b) 3m throughput comparison.

(c) 6m throughput comparison. (d) 10m throughput comparison.

(e) 15m throughput comparison. (f) 20m throughput comparison.

Figure 4.6: Comparison between deployments and PRBs at diff. distances.

By analyzing the results, it is readily observed in Figure 4.4, the impact that the
parameters distance and number of PRB have in the throughput of the
Kubernetes deployment. As it could be deduced, the more resources are
allocated (higher number of PRB), the better throughput is obtained. On the other
hand, it is noticed that the longer the distance between the UE and the RAN, the
lower the throughput. Furthermore, in longer distances, the confidence interval at
95% gets increased. This means that the value of the throughput fluctuates more
with regard of the average. These behaviors are due to interferences and free
space losses. As displayed in Figure 4.3 and, the other deployments follow the
same tendencies as the ones commented in the K8s deployment.

Moreover, in experiments 4 to 9 the average throughput of the three deployments
is tested using distance as the comparing factor.

Performance evaluation and achieved results

48 Design and analysis of fully virtualized cellular networks based on open-source frameworks

(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth.

(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth.

Figure 4.7: Comparison of baremetal CPU resources at different bandwidths.

Figure 4.6 displays six subfigures that represent a summary of the average
throughput in all the deployments, while changing the value of the parameter
number of PRB, at different distances. Furthermore, the tendencies obtained in
experiments 1 to 3 are observed as well, such as the impact of: (i) the number of
PRB; and (ii) the distance between UE and RAN. This method of representing
the information provides more trends in the results. By evaluating the gathered
data from the K8s deployment against the rest of the setups, the first tendency
that can be clearly appreciated in any of the subfigures, is different levels of
achieved throughput. Comparing it to the baremetal setup, there is no actual
improvement on the throughput. Their tendencies and values are very similar. In
contrast with that, the achieved throughput compared with the Docker
deployment, is much higher. This is due to the previously mentioned connectivity
error. The difference becomes more obvious as the value of the number of PRB
and distance increases. On the other hand, the Docker deployment has higher
throughput at sorter areas, in the range of 0 to 25 Mbps of injected bandwidth.
Lastly, as in the previous experiments, Figure 4.6 (f) shows how the fluctuation
of the throughput with regard of the average, increases at larger distances (values
of the 95% confidence interval are larger).

4.2.2. Measuring resource consumption

In experiments 10 to 15 the computational resources utilized by each module of
Open5GS and srsLTE has been measured. Mainly, these experiments aim to
compare the impact of the injected bandwidth and the number of PRB in the
resources utilized on each deployment. Finally, some of the measurements have
been repeated at different distances, to check their impact on the resources.

State of the art of virtualized cellular networks 49

(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth.

(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth.

(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth.

(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth.

Figure 4.8: Comparison of K8s CPU resources at different bandwidths.

Figure 4.9: Comparison of Docker CPU resources at different bandwidths.

Performance evaluation and achieved results

50 Design and analysis of fully virtualized cellular networks based on open-source frameworks

(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth.

(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth.

Figure 4.10: Comparison of baremetal MEM resources at diff. bandwidths.

Figure 4.7, Figure 4.8 and Figure 4.9 show the usage of CPU resources of the
baremetal, the Kubernetes and the Docker deployments respectively, at four
different injected bandwidths. After evaluating the results, the following
conclusions have been achieved in the K8s deployment:

 The “srsenb” module requires much more resources than all the other
modules combined, reaching almost the 60% of the CPU capacity at high
injected bandwidths. This tendency is replicated in the rest of the setups.

 The number of PRB has a slight impact on the resources of the “srsenb”
module and almost no repercussion in the rest of the elements. This
behavior is repeated in the baremetal deployment, but not in the Docker
setup. Figure 4.9 shows that, at higher injected bandwidths the impact of
the number of PRB on the core modules is noticeable.

 The parameter that has the biggest impact in the used resources of all the
modules, is the injected bandwidth. The higher it gets, the more resources
are needed. This tendency is also replicated in the rest of the setups.

 The “epc” pod contains all the core functions and as it was expected, it
consumes as much as all the baremetal and Docker contributions of the
CN functions added together. Globally, under the same conditions, the
same percentage of CPU is used in the three deployments.

The usage of the memory resources of the baremetal, the Kubernetes and the
Docker deployments, at four different injected bandwidths, has been measured
and are shown in Figure 4.10, Figure 4.11 and Figure 4.12 respectively.

State of the art of virtualized cellular networks 51

(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth.

(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth.

(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth.

(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth.

Figure 4.11: Comparison of K8s MEM resources at different bandwidths.

Figure 4.12: Comparison of Docker MEM resources at different bandwidths.

Performance evaluation and achieved results

52 Design and analysis of fully virtualized cellular networks based on open-source frameworks

(a) 1Mbps of injected
bandwidth at 1m.

(b) 1Mbps of injected
bandwidth at 3m.

(a) 25Mbps of injected
bandwidth at 1m.

(b) 25Mbps of injected
bandwidth at 6m.

In contrast with the results achieved in the CPU resources experiments,
the memory usage is more related to the number of PRB than to the injected
bandwidth. Furthermore, the magnitude of the “srsenb” module is no longer
dominant in terms of memory usage, even though it still has the biggest
contribution. Finally, the K8s deployments is the most memory consuming of the
three deployments by 4% in average, due to the memory cost of the deployment
of the Kubernetes cluster. This extra 4% can be considered negligible when
comparing it to the flexibility and ease to deploy that the K8s setup provides.
Moreover, this effect is visible because there is no memory allocation on demand
and all the modules are always working. A future line of work is to implement it
and test the energy efficiency of the deployment.

To prove that the distance between the RAN and the UE does not affect either
the CPU or the memory recourses, the same experiment has been executed at
different distances locking the rest of the parameters in the K8s deployment.
Figure 4.13 and Figure 4.14 show that the distance between the UE and the RAN
does not alter the usage of the system resources.

Figure 4.13: Comparison of K8s MEM resources at different distances.

Figure 4.14: Comparison of K8s CPU resources at different distances.

State of the art of virtualized cellular networks 53

4.2.3. Measuring forced reconnecting time

The aim of experiments 16 and 17 is to observe how the system responds to a
failure in any of its modules and if it is capable of solving that error and keep
functioning. This is especially relevant in distributed environments where a virtual
network function can suffer some temporary unavailability. These experiments
aim to measure the time to reestablish the connection in those cases where the
modules are able to reconnect after a failure. To do so, some of the CN modules
have been forced to failed.

Figure 4.15 presents the reconnecting attempts of the Kubernetes deployment. If
any of the modules that are related to the registration and storage of the UE fails,
the system cannot regain connectivity. This behavior can be observed in the
attempts 2 and 5 of Figure 4.15. This is due to the K8s descriptor file did not
include volumes to storage the sensible information of the UE and once one of
these modules fails, the information gets lost. Kubernetes restarts the container
with a clean state. A volume is a directory on disk or in another container that
storages information. A future line of work consists on implementing these
volumes in the deployment file, to prevent this from happening again. Otherwise,
two different times of reconnection can be observed: t and t+10. This is due to
the working mode of the “srsenb” module. If the connection is lost, this module
tries to reconnect every ten seconds, and repeats a reconnection attempt in case
of failure.

Figure 4.15: K8s forced reconnection time.

Figure 4.16 displays the attempts of making the baremetal system fail. All of them
were solved and the reconnection was achieved. Two different times of
reconnection can be observed in Figure 4.16: t’ and t’+10. This is due to the
already mentioned behavior of the “srsenb” module. The reconnection is always
achieved due to all the modules that form the baremetal deployment are daemons
that relaunch each time they fail. Otherwise, these modules and the entire
network would have stayed down.

t ≈ 6.5 sec

t + 10

Performance evaluation and achieved results

54 Design and analysis of fully virtualized cellular networks based on open-source frameworks

Figure 4.16: Baremetal forced reconnection time.

The response of the Docker deployment is very similar to the previous one. In
this occasion, instead of been daemons, each module forming the CN and the
RAN are Docker containers, which restart every time they fail. The same structure
of time reconnecting can be observed in Figure 4.17.

Figure 4.17: Docker forced reconnection time.

By comparing the reconnection time t, t’ and t’’ of Figure 4.15, Figure 4.16 and
Figure 4.17 respectively, some differences on the waiting time until reconnection
can be observed. Ordering the deployments from slowest to fastest: baremetal
(8 seconds), Docker (7 seconds) and Kubernetes (6.5 seconds). This result can
be explained due the last two are containerized and virtualized deployments.
Moreover, K8s is the fastest ought to the Calico networking controller.

Lastly, the reconnection time has been measured at different distances, number
of PRB and injected bandwidth, but any of those parameters affect the
reconnection time.

t' ≈ 8 sec

t' + 10

t'’ ≈ 7 sec

t’’ + 10

State of the art of virtualized cellular networks 55

CONCLUSIONS AND FUTURE WORKS

5.1. Conclusions of the work

As explained in the objectives section, the aim of this project has been to set up
a fully virtualized, containerized and distributed open-source-based network that
can be deployed on different nodes, separating RAN and core network functions
on different nodes. This work has analyzed the performance of the network and
the virtualized infrastructure while varying different network parameters and
perform a comparison with a state-of-the-art deployment based on Docker tools.
To this purpose, this Master thesis was divided in different phases. Firstly, to
achieve connectivity in a baremetal deployment, to verify the behavior of the
open-source modules in a basic deployment. The second stage consisted on the
design of the descriptors and containers required for the deployment of the
network using Kubernetes in order to automate the deployment and the
management of the aforementioned containers. Lastly, the K8s setup has been
compared with existing state-of-the-art projects following the same deployment
using Docker containers, without a container orchestration platform.

As is natural, some problems have been faced in the understanding and
deploying of some of the software and hardware equipment, but after consulting
related works and documentation, all the problems were resolved satisfactorily.
Due to this project aims to explain the operation of each of the already mentioned
deployments, a section dedicated to these problems has been added to every
setup.

From the representation of the data in the section results discussion, some
conclusions have been achieved:

 The module “srsenb” of the RAN consumes the most memory and CPU
resources on every deployment.

 The number of PRB has a direct impact on the system throughput. The
more PRB are allocated, the higher the throughput. Moreover, the usage
of memory resources is more related to the number of PRB, but the usage
of CPU resources is more related to injected bandwidth.

 On average, the same percentage of CPU is used in the three
deployments. But the K8s deployment has a 4% more usage of system
memory resources than the rest. That can be considered negligible when
comparing it to the flexibility, low setting time and ease to deploy that the
K8s setup provides.

 Kubernetes orchestration platform facilitates the configuration and
deployment of the virtualized network, having the scenario ready in a few
seconds. Also, has the fastest reconnecting time in case of an internal
failure, due to the cluster networking.

Conclusions and future works

56 Design and analysis of fully virtualized cellular networks based on open-source frameworks

While performing the tests, a connectivity problem was found in the docker-based
project that was being used to compare with the K8s deployment. That error was
reducing the capabilities of the setup due to the reconnection errors. This issue
has been reported to the maintainers of the project.

The principal contributions of this Master Thesis are: (i) the creation of two Docker
images that can set up a K8s fully virtualized, containerized and distributed open-
source-based network, as well as the Kubernetes descriptors required for the
automated deployment of the network on a fully configurable manner (i.e., the
network can be deployed on different nodes, separating RAN and CN functions
in seconds); (ii) the introduction of a programmable feature in the deployment, to
let the end user register its own UE; and (iii) the analysis of the resource
performance of the three deployments, giving more emphasis to the K8s
scenario.

A forthcoming paper entitled “Design and evaluation of a kubernetes-based
system for distributed open-source cellular networks” including the main results
of this work is being prepared for submission to the IEEE Wireless
Communications and Networking Conference to be held in Austin, USA (April 10-
13, 2022).

5.2. Future lines of development and research

Taking as a reference the contributions, the conclusions of the analysis and the
issues identified in this Master Thesis, it is possible to establish several future
lines of development and research.

As it was mentioned in Section 4.2.3, the first improvement that this project has
to execute is to add volumes to the Kubernetes deployment. This will solve the
issue of disconnection in case of failure of any module related with the storage or
registration of the UE since they will persistently storage the UE information and
once the failed module is restarted, it will retrieve the necessary information from
the volume and regain connectivity. Moreover, as mentioned in Section 4.2.3, to
get an energy and resources advantage on the network virtualization, an
implementation of an smart resource allocation function has to be investigated.
This would assign each module the necessary resources on demand, instead of
been running all the time.

One more future line of work would be related to an extension of the analysis
performed. On the one hand, it is worthy studying the impact of an increasing
number of UEs, together with the already covered amount of traffic in the user
plane. On the other hand, in addition to the resource usage of the virtualization
infrastructure, it would be interesting to test the energy consumption of the
deployment before and after the virtualization.

Another future line of work in this regard would be to test the deployment for 5G
NSA and 5G SA equipment’s, to verify that the same performance holds. In
addition to that, a much broader repertoire (beyond 5) of repetitions of each

State of the art of virtualized cellular networks 57

experiment must be done. Moreover, to allow full assurance of the results, the
use of statistical methods would be a tool to explore.

Furthermore, in this project a containerized separation of the CN and the RAN
has been executed, but if needed, a separation of each core function into a
container, or in the form of microservices, can be implemented. This would have
the advantage of an easy deployment on demand of the functions. Moreover,
after researching the state of the art of virtualized networks, some solutions such
as [48], defend that the separation the logic of the SGW and PGW of the 4G CN
can solve the bottleneck caused by those modules. Extrapolating this idea to the
5GC, creates a great future line of work, which is to test the performance of
separating the UPF module form the CN and deploy it with the MEC platform to
handle the traffic.

Lastly, to test how the deployment behaves when extrapolated to serverless
scenarios on top of K8s, would be interesting.

5.3. Sustainability considerations

This project presents a fully virtualized open-source-based network. In terms of
economic impact, the ability to launch the network modules on demand, will
translate into a reduction of the resources, that will have an impact in the energy
consumption. This will reduce the cost of actual RAN and CN. Moreover, in terms
of social impact, the containerization of the software will facilitate the deployment
for new users and save them time and effort when trying to integrate or update
modules or when deploying the setup. Finally, as shown in [75], in terms
environmental impact, the reduction of energy consumption will translate not only
in economic impact, but also in a greener world.

5.4. Ethical and security considerations

As it has been mentioned before, this project presents a fully virtualized open-
source-based deployment. Ethically, this means that this Master Thesis is part of
a worldwide community that works together to accomplish a common goal.
Moreover, this software cannot be licensed by any company and anyone can use.
Furthermore, this deployment can be run in a generic hardware, avoiding the bad
implications of depending on the prices of a few big companies. Taking into
account ethical considerations, this technology has no negative contributions.
Moreover, in terms of security, a global concern has arisen from the technological
community due to the vulnerabilities that a fully virtualized deployment may
encounter that were not possible in non-virtualized setups. By researching the
state of the art, some papers have been found around this topic. The work in [76]
analyzes the impact that an attack to a system component under the
responsibility of a given stakeholder may yield to a completely different player in
a complex and virtualized system such as the 5G infrastructure. Finally, to solve
these threats, authors in [77] propose a secure and trustworthy framework for
virtualized networks and software-defined networking.

Conclusions and future works

58 Design and analysis of fully virtualized cellular networks based on open-source frameworks

ACRONYMS

 3GPP 3rd Generation Partnership Project

5G-AN 5G Access Network

5GC 5G Core

AF Application Function

AMF Access and Mobility Management Function

APN Access Point Name

AUSF Authentication Server Function

BSF Binding Support Function

CI/CD Continuous Integration/Continuous Deployment

CN Core Network

CNI Container Network Interface

CNM Container Network Model

CUPS Control User Plane Separation

eMBB enhanced Mobile Broadband

eNB eNodeB

EPC Evolved Packet Core

E-UTRAN Evolved UMTS Terrestrial Radio Access Network

gNB Next Generation NodeB

HSS Home Subscriber Server

IMSI International Mobile Subscriber Identity

IoT Internet of Things

K8s Kubernetes

LTE Long Term Evolution

MANO NFV Management and Orchestration

MCC Mobile Country Code

MEC Multi-access Edge Computing

MIB Master Information Block

MIMO Multiple Input, Multiple Output

MME Mobile Management Entity

mMTC massive Machine Type Communication

MNC Mobile Network Code

MSISDN Mobile Subscriber Integrated Services Digital Network

NAT Network Address Translation

NF Network Function

NFV Network Function Virtualization

NFVI NFV Infrastructure

NR New Radio

NRF NF Repository Function

NSA Non Stand Alone

NSSF Network Slice Selection Function

OAI Open Air Interface

State of the art of virtualized cellular networks 59

OFDMA Orthogonal Frequency Division Multiple Access

OP Operator Code

OS Operating System

PCF Policy Control Function

PCRF Policy and Charging Rules Function

PDN Packet Data Network

PGW Packet Data Network Gateway

PGWC Packet Gateway Control Plane

PGWU Packet Gateway User Plane

PLMN Public Land Mobile Network

PRB Physical Resource Block

QoS Quality of Service

RAN Radio Access Network

RAT Radio Access Technology

RIC RAN Intelligent Controller

SA Stand Alone

SBA Service Based Architecture

SBI South-Bound Interface

SCFDMA Single Carrier Frequency Division Multiple Access

SDN Software Defined Network

SD-RAN Software-Defined RAN

SGW Serving Gateway

SGWC Serving Gateway Control Plane

SGWU Serving Gateway User Plane

SIB System Information Block

SIM Subscriber Identity Module

SMF Session Management Control Function

srsRAN Software Radio Systems RAN

TAC Tracking Area Code

TCP Transport Control Protocol

UDM Unified Data Management

UDP User Datagram Protocol

UDR Unified Data Repository

UE User Equipment

UPF User Plane Function

URLLC Ultra Reliable Low Latency

VIM Virtualized Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Functions

VNFM VNF Manager

VNFO NFV Orchestrator

Acronyms

60 Design and analysis of fully virtualized cellular networks based on open-source frameworks

ANNEX I: INSTALLING SRSLTE AND OPEN5GS

This section explains the installation process of srsLTE and Open5GS with all the
necessary dependencies in Ubuntu 20.04. To do so, the following commands in
the console terminal must be run:

Installing srsLTE

sudo add-apt-repository ppa:softwareradiosystems/srsran

sudo apt-get update

sudo apt-get install srsran –y

Once the srsLTE process is completed, MongoDB has to be installed for
Open5GS and Open5GS Web-UI to work. The next commands are used to install
all the software’s with the necessary dependencies:

Installing MongoDB

sudo apt-get update

sudo apt-get install mongodb

Installing Open5GS

sudo apt-get install software-properties-common

sudo add-apt-repository ppa:open5gs/latest

sudo apt-get update

sudo apt-get install open5gs

Installing the Open5GS Web-UI

curl -fsSL https://deb.nodesource.com/setup_14.x | sudo -E bash -

sudo apt install nodejs

curl -fsSL https://open5gs.org/open5gs/assets/webui/install |
sudo -E bash -

State of the art of virtualized cellular networks 61

ANNEX II: NODES PREPARATION TO DEPLOY THE K8S
CLUSTER

This section will be focused on the installation of the necessary software and
dependencies required to deploy the K8s cluster. Before starting to set the K8s
cluster, some modifications have to be made in all the nodes:

 Set hostnames: ensure that all of the nodes have a unique hostname. In
this scenario, the hostnames are kubernetes-master, kubernetes-worker1
and kubernetes-worker2. The following command can be used in each
node to set the host names:

sudo hostnamectl set-hostname <chosen_name>

The changes will not be noticeable in the terminal until it is restarted.
Then, some entries have to be added into the “/etc/hosts” file. Those
entries are:

<IP address master> chosen_name_master
<IP address worker1> chosen_name_worker1
<IP address worker2> chosen_name_worker2

In this project are:

10.43.79.43 kubernetes-master
10.43.79.1 kubernetes-worker1
10.43.79.7 kubernetes-worker2

 Install ssh (optional): ssh is a tunneling tool to manage all the nodes from

the master console terminal and facilitates the management of the cluster
from a single node. To get it install, the following commands are required:

sudo apt-get install shh
sudo systemctl enable –-now ssh

Once, it is installed in all the nodes, the following command can be used
to get access and control over the other nodes:

 shh <user_name>@<chosen_name_workerX>

 For this project: shh javi@kubernetes-worker1

 Installing Docker: Connect (or do it manually) to each node and run the

following commands:

sudo apt-get update
sudo apt-get install docker.io

Now the Docker service can be enabled and its status can be verified:

sudo systemclt enable docker.service --now
sudo systemctl status docker

Annex II: Nodes preparation to deploy the K8s cluster

62 Design and analysis of fully virtualized cellular networks based on open-source frameworks

If everything has been done correctly, it should be active and running.

 Disable swap and enable IP forwarding: Kubernetes will refuse to work if

the system used is using swap memory. Before proceeding any further, it
has to be ensured that the master and worker nodes have swap memory
disabled with this command:

 sudo swapoff -a

This will disable swap memory until the system reboots. To make this
change persistent it is needed to edit the “/etc/fstab” file and comment the
“/swap” line.

To enable IP forwarding permanently, the file “/etc/sysctl.conf” must be
edited to uncomment the “net.ipv4.ip_forward=1” line. To make sure it
worked, the following command must be run:

 sudo sysctl –p

 Console output: net.ipv4.ip_forward = 1

 Install kubectl, kubelet and kubeadm: to finish the installation process, the
following commands must be introduced in each node:

sudo apt-get install -y apt-transport-https curl

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg |
sudo apt-key add

sudo apt-add-repository "deb http://apt.kubernetes.io/
kubernetes-xenial main"

sudo apt update

sudo apt install -y kubelet kubeadm kubectl

State of the art of virtualized cellular networks 63

ANNEX III: DEPLOYMENT OF THE K8S CLUSTER

This annex explains the procedure to deploy the Kubernetes cluster in detailed.

All the following commands are run in the master node:

 Initialize the K8s cluster, assigning the pod network an IP range:

sudo kubeadm init

The console returns a set of commands and an identification token for the worker
nodes to join the cluster. Those commands are required to configure kubectl and
to get the token. This token is a private key that the master node can share with
other worker nodes to authenticate them and attach them to the K8s cluster. The
console output must be similar to:

Commands:

mkdir -p $HOME/.kube`

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config`

sudo chown $(id -u):$(id -g) $HOME/.kube/config`

Token:

kubeadm join 10.43.79.43:6443 --token b4sfnc.53ifyuncy017cnqq --
discovery-token-ca-cert-hash
sha256:5078c5b151bf776c7d2395cdae08080faa6f82973b989d29caaa4d58c28d0e4

 The Tigera Calico operator can be installed by running:

kubectl create -f https://docs.projectcalico.org/manifests/

tigera-operator.yaml`

 After that, Calico itself can be installed by creating the necessary custom
resource:
kubectl create -f https://docs.projectcalico.org/manifests/

custom-resources.yaml

 Once this is done, the previous noted token must be introduced in all
worker nodes to include them into the cluster:

sudo kubeadm join 10.43.79.43:6443 --token

b4sfnc.53ifyuncy017cnqq --discovery-token-ca-cert-hash
sha256:5078c5b151bf776c7d2395cdae08080faa6f82973b989d29caaa4d58c28d0e4

To check that the deployment of the cluster has been done correctly and that the
worker nodes have been well added to the cluster, the next two commands must
be run, analyzing the obtained output:

kubectl get nodes -o wide

Annex III: Deployment of the K8s cluster

64 Design and analysis of fully virtualized cellular networks based on open-source frameworks

Table Annex.1: K8s cluster nodes information.

NAME STATUS ROLES AGE VERSION INTERNAL-IP

kubernetes-
master

Ready
control-

plane,master
4m v1.21.2 10.43.79.43

kubernetes-
worker1

Ready <none> 46s v1.21.2 10.43.79.1

kubernetes-
worker2

Ready <none> 59s v1.21.2 10.43.79.7

kubectl get pods -n calico-system -o wide

Table Annex.2: Calico pods information.

NAME READY STATUS RESTARTS IP NODE

calico-kube-
controllers-

7f58dbcbbd-
zn8qw

1/1 Running 0 10.43.79.43
kubernetes

-master

calico-node-
7s4gw

1/1 Running 0 10.43.79.43
kubernetes

-master

calico-node-
nvnph

1/1 Running 1 10.43.79.7
kubernetes
-worker2

calico-node-
xsx2g

1/1 Running 0 10.43.79.1
kubernetes
-worker1

calico-typha-
b6f4d48cd-48rbl

1/1 Running 1 10.43.79.1
kubernetes
-worker1

calico-typha-
b6f4d48cd-

9nvpw
1/1 Running 0 10.43.79.7

kubernetes
-worker2

calico-typha-
b6f4d48cd-

zqmf7
1/1 Running 0 10.43.79.43

kubernetes
-master

If all the nodes in Table 3.1 have the status “Ready” and all the pods of Table 3.2
have the status “Running”, the cluster has been properly created.

State of the art of virtualized cellular networks 65

ANNEX IV: DOCKER IMAGES

This section presents the content of the necessary files for the creation of both

Docker images: srsLTE and Open5GS.

srsLTE

Dockerfile:

This file creates the Docker image.

FROM ubuntu:20.04
MAINTAINER Javier Palomares <japato.96@gmail.com>
ENV DEBIAN_FRONTEND noninteractive
USER root

Dependencies needed for the UHD driver for the USRP B210
RUN apt-get update && \
 apt-get -yq install cmake git iputils-ping nano libfftw3-dev libmbedtls-dev libboost-
program-options-dev libconfig++-dev libsctp-dev libuhd-dev usbutils iproute2

Fetching empower-enb-agent
RUN git clone https://github.com/5g-empower/empower-enb-agent.git
RUN cd empower-enb-agent && \
 cmake -DCMAKE_BUILD_TYPE=Release . && \
 make && \
 make install

Fetching srsRAN
RUN git clone https://github.com/5g-empower/srsRAN.git && \
 cd srsRAN && \
 git checkout agent && \
 mkdir build && \
 cd build && \
 cmake ../ && \
 make

Running the image needed for the UHD driver for the USRP B210
RUN ./usr/lib/uhd/utils/uhd_images_downloader.py

ADD conf/enb.conf /etc/srsran/
ADD conf/drb.conf /etc/srsran/
ADD conf/rr.conf /etc/srsran/
ADD conf/sib.conf /etc/srsran/

Add Kubernetes config, setup and launch scripts
ADD dns_replace.sh /
ADD config.sh /
ADD launcher.sh /

Run the launcher script
ENTRYPOINT ["/launcher.sh"]

Annex IV: Docker images

66 Design and analysis of fully virtualized cellular networks based on open-source frameworks

dns_replace.sh:

This code assigns dynamically the IP addresses of the mme_addr,

gtp_bind_addr and s1c_bind_addr, to make the connections within the RAN and
with the CN.

if [-z "$empower_pod_addr"]; then

 while [-z $(getent hosts runtime-service | awk '{ print $1 }')]
 do
 echo "Waiting for the 5G-EmPOWER Runtime to come up..."
 sleep 10
 done

 echo "5G-EmPOWER Runtime service found"
 EMPOWER_POR_ADDR=$(getent hosts empower-service | awk '{ print $1 }')

else

 EMPOWER_POR_ADDR=$empower_pod_addr

fi

if [-z "$epc_pod_addr"]; then

 while [-z $(getent hosts epc-service | awk '{ print $1 }')]
 do
 echo "Waiting for the EPC to come up..."
 sleep 10
 done

 echo "EPC service found"
 EPC_POD_ADDR=$(getent hosts epc-service | awk '{ print $1 }')

else
 EPC_POD_ADDR=$epc_pod_addr
fi

if [-z "$local_pod_addr"]; then
 LOCAL_POD_ADDR=$(ip route get 1 | awk '{print $(NF-2);exit}')
else
 LOCAL_POD_ADDR=$local_pod_addr
fi

#Assignation of the new values to the variables
sed -i 's/ENB_ID_REPLACE/'$enb_id'/g' /etc/srsran/enb.conf
sed -i 's/EPC_REPLACE/'"$EPC_POD_ADDR"'/g' /etc/srsran/enb.conf
sed -i 's/LOCAL_REPLACE/'$LOCAL_POD_ADDR'/g' /etc/srsran/enb.conf
sed -i 's/EMPOWER_REPLACE/'$EMPOWER_POR_ADDR'/g' /etc/srsran/enb.conf

State of the art of virtualized cellular networks 67

config.sh:

This file provides the configurable feature.

#!/bin/bash

#Defines new variables that store the values introduced in the descriptor (.yaml)
N_ENB_MCC=$enb_mcc
N_ENB_MNC=$enb_mnc
N_ENB_PRB=$enb_prb

#Changes the value of the previous parameter to the new one
sed -i 's/ENB_MCC/'$N_ENB_MCC'/g' /etc/srsran/enb.conf
sed -i 's/ENB_MNC/'$N_ENB_MNC'/g' /etc/srsran/enb.conf
sed -i 's/ENB_PRB/'$N_ENB_PRB'/g' /etc/srsran/enb.conf

launcher.sh:

This file executes the RAN.

#!/bin/bash

_term() {
 echo "Caught SIGTERM signal!"
 kill -TERM "$child"
}

trap _term SIGTERM

env

#Launches the previous scripts and the command to start the srsENB
./config.sh
./dns_replace.sh
./srsRAN/build/srsenb/src/srsenb &

child=$!

wait "$child"

Annex IV: Docker images

68 Design and analysis of fully virtualized cellular networks based on open-source frameworks

conf/enb.conf:

 The full file it is too long, so only the parts that have been modified from
the original “srsLTE/enb.conf” file is going to be shown:

srsENB configuration file

Agent configuration

address: Controller IP address (default 127.0.0.1)
port: Controller port (default: 5533)
delay: Hello period (default: 2000)

[agent]
address = EMPOWER_REPLACE
port = 5533
delay = 2000

eNB configuration

enb_id: 20-bit eNB identifier.
mcc: Mobile Country Code
mnc: Mobile Network Code
mme_addr: IP address of MME for S1 connnection
gtp_bind_addr: Local IP address to bind for GTP connection
gtp_advertise_addr: IP address of eNB to advertise for DL GTP-U Traffic
s1c_bind_addr: Local IP address to bind for S1AP connection
n_prb: Number of Physical Resource Blocks (6,15,25,50,75,100)
tm: Transmission mode 1-4 (TM1 default)
nof_ports: Number of Tx ports (1 port default, set to 2 for TM2/3/4)

Parameters that have been introduced to make the RAN configurable
[enb]
enb_id = ENB_ID_REPLACE
mcc = ENB_MCC
mnc = ENB_MNC
mme_addr = EPC_REPLACE
gtp_bind_addr = LOCAL_REPLACE
s1c_bind_addr = LOCAL_REPLACE
n_prb = ENB_PRB
#tm = 4
#nof_ports = 2

State of the art of virtualized cellular networks 69

Open5GS

Dockerfile:

This file creates the Docker image.

FROM ubuntu:20.04
MAINTAINER Javier Palomares <japato.96@gmail.com>
ENV DEBIAN_FRONTEND noninteractive
USER root

Dependencies for the Open5gs
RUN apt-get update && \
 apt-get upgrade -y && \
 apt-get install -y --no-install-recommends \
 python3-pip python3-setuptools python3-wheel \
 ninja-build build-essential flex \
 bison git iputils-ping \
 nano libsctp-dev libgnutls28-dev \
 libgcrypt-dev libssl-dev libidn11-dev \
 libmongoc-dev libbson-dev libyaml-dev \
 libnghttp2-dev libmicrohttpd-dev libcurl4-gnutls-dev \
 meson netcat iproute2 \
 wget unzip iptables

Fetching Open5GS
RUN git clone https://github.com/open5gs/open5gs && cd /open5gs && meson build --
prefix=`pwd`/install && ninja -C build

RUN cd /open5gs/build && ninja install

Coping configuration files needed
COPY conf/* /open5gs/install/etc/open5gs/

Solve the shared libraries problem
RUN sh -c "echo /open5gs/install/lib/x86_64-linux-gnu > /etc/ld.so.conf.d/open5gs.conf"
RUN ldconfig

Add Kubernetes config, setup and launch scripts
ADD setup.sh /
ADD launcher.sh /
ADD config.sh /

Run the launcher script
ENTRYPOINT ["/launcher.sh"]

Annex IV: Docker images

70 Design and analysis of fully virtualized cellular networks based on open-source frameworks

config.sh:

This file provides the configurable feature.

#!/bin/bash

#Defines new variables that store the values introduced in the descriptor (.yaml)
N_MCC=$mcc
N_MNC=$mnc
N_TAC=$tac

#Changes the value of the previous parameter to the new one
sed -i 's/MCC/'$N_MCC'/g' /open5gs/install/etc/open5gs/mme.yaml
sed -i 's/MNC/'$N_MNC'/g' /open5gs/install/etc/open5gs/mme.yaml
sed -i 's/TAC/'$N_TAC'/g' /open5gs/install/etc/open5gs/mme.yaml

conf/mme.yaml:

The full file it is too long, so only the parts that have been modified from

the original “Open5GS/mme.yaml” file is going to be shown:

mme:
 freeDiameter: /open5gs/install/etc/freeDiameter/mme.conf
 s1ap:
 gtpc:
 - addr: 127.0.0.2
 gummei:
 plmn_id:
 mcc: MCC
 mnc: MNC
 mme_gid: 2
 mme_code: 1
 tai:
 plmn_id:
 mcc: MCC
 mnc: MNC
 tac: TAC
 security:
 integrity_order : [EIA2, EIA1, EIA0]
 ciphering_order : [EEA0, EEA1, EEA2]
 network_name:
 full: Open5GS
 mme_name: open5gs-mme0

State of the art of virtualized cellular networks 71

launcher.sh:

This file executes the CN.

#!/bin/bash

_term() {
 echo "Caught SIGTERM signal!"
 kill -TERM "$child"
}

trap _term TERM

echo -e "\n\n---------- ENV VARIABLES ----------"
env

#Launches the config script
./config.sh

until nc -z localhost 27017
do
 echo "waiting for mongodb to come up..."
 sleep 2
done

sleep 10

#Launches the setup script
/setup.sh

#Launches all the modules of Open5GS
/open5gs/install/bin/open5gs-mmed -D
/open5gs/install/bin/open5gs-sgwcd -D
/open5gs/install/bin/open5gs-smfd -D
/open5gs/install/bin/open5gs-amfd -D
/open5gs/install/bin/open5gs-sgwud -D
/open5gs/install/bin/open5gs-upfd -D
/open5gs/install/bin/open5gs-hssd -D
/open5gs/install/bin/open5gs-pcrfd -D
/open5gs/install/bin/open5gs-nrfd -D
/open5gs/install/bin/open5gs-ausfd -D
/open5gs/install/bin/open5gs-udmd -D
/open5gs/install/bin/open5gs-pcfd -D
/open5gs/install/bin/open5gs-nssfd -D
/open5gs/install/bin/open5gs-bsfd -D
/open5gs/install/bin/open5gs-udrd

Annex IV: Docker images

72 Design and analysis of fully virtualized cellular networks based on open-source frameworks

ANNEX V: KUBERNETES DESCRIPTOR FILE

This annex contains the file used to create the two-nodes and tree-nodes K8s
deployment explained in this Master Thesis.

K8s_deployment.yaml

apiVersion: v1
kind: Pod
metadata:
 name: epc
 labels:
 app: epc
spec:
 containers:
 - name: open5gs
 image: javipalomares/open5gs:latest
 env:
 - name: mcc
 value: "001"
 - name: mnc
 value: "03"
 - name: tac
 value: "7"
 securityContext:
 privileged: true
 - name: open5gs-webui
 image: snslab/open5gs-webui:latest
 - name: mongodb
 image: mongo
 - name: mongo-express
 image: mongo-express
 env:
 - name: ME_CONFIG_MONGODB_SERVER
 value: "localhost"
 nodeSelector:
 IDname: kubernetes-worker1

apiVersion: v1
kind: Service
metadata:
 name: epc-mongo-express-service
spec:
 selector:
 app: epc
 type: NodePort
 ports:
 - name: web-ui
 protocol: TCP
 port: 8081
 targetPort: 8081
 nodePort: 30000

State of the art of virtualized cellular networks 73

apiVersion: v1
kind: Service
metadata:
 name: epc-open5gs-webui-service
spec:
 selector:
 app: epc
 type: NodePort
 ports:
 - name: web-ui
 protocol: TCP
 port: 3000
 targetPort: 3000
 nodePort: 30001

apiVersion: v1
kind: Pod
metadata:
 name: srsenb
 labels:
 app: srsenb
spec:
 containers:
 - name: srsenb
 image: javipalomares/srslte:latest
 env:
 - name: enb_mcc
 value: "001"
 - name: enb_mnc
 value: "03"
 - name: enb_id
 value: "0x19B"
 - name: enb_prb
 value: "75"
 - name: empower_pod_addr
 value: "127.0.0.1"
 securityContext:
 privileged: true
 nodeSelector:
 IDname: kubernetes-worker2

Annex V: Kubernetes descriptor file

74 Design and analysis of fully virtualized cellular networks based on open-source frameworks

ANNEX VI: CODE TO CLEAN AND PLOT THE RESULTS

In this annex is going to be included the used code to clean, format and

plot the raw data extracted from Iperf3.

Throughput average

extract_average.py:

#File to extract the average throughput data
import pandas as pd

def format_line(text):
 text = text.replace("[6] ", "")
 text = text.replace("---", "")
 text = text.replace("[5] ", "")
 text = text.replace(" sec ", "")
 text = text.replace(" MBytes ", "")
 text = text.replace(" Mbits/sec ", "")
 text = text.replace(" Kbits/sec ", "")
 text = text.replace(" ms ", "")
 text = text.replace(" receiver", "")
 text = text.replace(" ", " ")
 # text = text.replace(".", ",")
 return text

def convert(lst):
 return lst[0].split()

def transform_csv(path, name):
 transfer = []
 bit_rate_real = []
 jitter = []

 df = pd.DataFrame()

 with open('{}/{}.txt'.format(path, name), 'r') as in_file:
 for myline in in_file:
 lines = convert([myline])
 transfer.append(lines[1])
 bit_rate_real.append(lines[2])
 jitter.append(lines[3])

 df['Transfer(KBytes)'] = transfer
 df['Bitrate_real(Mbits/sec)'] = bit_rate_real
 df['Jitter(ms)'] = jitter

State of the art of virtualized cellular networks 75

 df.to_csv('{}/{}.csv'.format(path, name))

def create_file(deployment, folder_origin, origin, destination, format_dest):
 myLines = []
 listNum = []
 cont = 0
 with open('Data/{}/{}/{}.txt'.format(deployment, folder_origin, origin), 'r') as myfile:
 for myline in myfile:
 myLines.append(myline.rstrip('\n'))
 for element in myLines:
 if element == "- -":
 listNum.append(cont)
 cont += 1

 with open('Results/{}/Average/{}/{}.{}'.format(deployment, folder_origin, destination,
format_dest), 'w+') as data:
 for num in listNum:
 formated_line = format_line(myLines[num + 2])
 data.write(formated_line + "\n")

 transform_csv('Results/{}/Average/{}/'.format(deployment, folder_origin),
'{}'.format(destination))

deploy = ["Local", "Kubernetes", "Kubernetes2"]
PRB = [25, 50, 75]
dist = [1, 3, 6, 10, 15, 20]

for i in deploy:
 for j in PRB:
 for k in dist:
 create_file(i, "{}PRB".format(j), "n_{}mPRB{}".format(k, j), "{}m".format(k), "txt")

clean_average.py:

#File to clean the average throughput data
import numpy as np
import pandas as pd
import scipy.stats

Set all in Mbps
def check_Mbps(array):
 for i in range(0, len(array)):
 if isinstance(array[i], str):
 array[i] = float(array[i])
 if array[i] > 900:
 array[i] = array[i] / 1000
 return array

Average the measurements and get the 0,95 confidence interval

Annex VI: Code to clean and plot the results

76 Design and analysis of fully virtualized cellular networks based on open-source frameworks

def get_mean_confidence_interval(data, average, sup, inf):
 cont = 0
 for i in range(0, int(len(data) / 5)+1):
 m, se = np.mean(data[i * cont:i * cont + 5]), scipy.stats.sem(data[i * cont:i * cont +
5])
 h = se * scipy.stats.t.ppf((1 + 0.95) / 2., len(data) - 1)
 cont += 1

 average.append(m)
 sup.append(m + h)
 inf.append(m - h)

 return average, sup, inf

def store_values(deploy, n_PRB, dist, average, sup, inf):
 df['Average_{}_{}PRB_{}m'.format(deploy, n_PRB, dist)] = average
 df['Sup_{}_{}PRB_{}m'.format(deploy, n_PRB, dist)] = sup
 df['Inf_{}_{}PRB_{}m'.format(deploy, n_PRB, dist)] = inf

 df.to_csv('Results/Clean data/{}/clean_average2.csv'.format(deploy))

def obtain_data(deploy, n_PRB, dist):
 average = []
 sup = []
 inf = []

 data = pd.read_csv("Results/{}/Average/{}PRB/{}m.csv".format(deploy, n_PRB, dist))
 bitRate = data['Bitrate_real(Mbits/sec)']

 # Set all in Mbps
 bitRate = check_Mbps(bitRate)

 bitRate = bitRate[0:29]
 average, sup, inf = get_mean_confidence_interval(bitRate, average, sup, inf)
 store_values(deploy, n_PRB, dist, average, sup, inf)

deployment = ["Local", "Kubernetes", "Kubernetes2"]
PRB = [25, 50, 75]
dist = [1, 3, 6, 10, 15, 20]

for i in deployment:
 df = pd.DataFrame()
 for j in PRB:
 for k in dist:
 obtain_data(i, j, k)

State of the art of virtualized cellular networks 77

plot_avera ge.py:

import pandas as pd
import matplotlib.pyplot as plt

def plot_Same_PRB(deployment):
 colors = ['#0000FF', '#66CD00', '#FF00FF', '#C76114', '#00BFFF', 'k']
 cnt_plots = 0

 for k in num_PRB:
 plt.figure(figsize=(15, 10))
 cnt_plots += 1
 cont = 0
 for s in distances:
 data_plot = data['Average_{}_{}PRB_{}m'.format(deployment, k, s)]
 plt.plot(range_plot, data_plot, colors[cont], linewidth=4, label='{}m'.format(s))
 data_error = data['Sup_{}_{}PRB_{}m'.format(deployment, k, s)] -
data['Average_{}_{}PRB_{}m'.format(deployment, k, s)]
 plt.errorbar(range_plot, data_plot, linewidth=2, marker="o", yerr=data_error,
fmt=(colors[cont]), capsize=10)
 #plt.title('{} deployment with {}PRB'.format(deployment, k))
 plt.grid(color='tab:gray', linestyle='--', linewidth=0.5)
 plt.xlabel('Throughput introduced (Mbps)', fontsize=22)
 plt.xticks(range(0, 151, 25), fontsize=20)
 plt.ylabel('throughput (Mbps)', fontsize=22)
 plt.yticks(range(0, 11), fontsize=20)
 plt.legend(loc=2, prop={'size': 15})
 cont += 1
 plt.show()

def plot_Same_Distance(deployment):
 colors = ["#1E90FF", "r", "k"]
 cnt_plots = 0

 for i in distances:
 plt.figure(figsize=(15, 10))
 cnt_plots += 1
 cont = 0
 for j in num_PRB:
 data_plot = data['Average_{}_{}PRB_{}m'.format(deployment, j, i)]
 data_error = data['Sup_{}_{}PRB_{}m'.format(deployment, j, i)]-
data['Average_{}_{}PRB_{}m'.format(deployment, j, i)]
 plt.errorbar(range_plot, data_plot, linewidth=2, marker="o", yerr=data_error,
fmt=colors[cont], capsize=10)
 plt.plot(range_plot, data_plot, colors[cont], linewidth=4, label='{}PRB'.format(j))
 #plt.title('{} deployment at {}m'.format(deployment, i))
 plt.grid(color='tab:gray', linestyle='--', linewidth=0.5)
 plt.xlabel('Throughput introduced (Mbps)', fontsize=22)
 plt.xticks(range(0, 151, 25), fontsize=20)
 plt.ylabel('Throughput (Mbps)', fontsize=22)
 plt.yticks(range(0, round(max(data_plot))+1, 5), fontsize=20)
 plt.legend(loc=2, prop={'size': 15})

Annex VI: Code to clean and plot the results

78 Design and analysis of fully virtualized cellular networks based on open-source frameworks

 cont += 1
 plt.show()

def plot_comparing_deployments(prb, dist):
 colors = ["#1E90FF", "r", "k"]

 cont = 0
 data1 = pd.read_csv("Results/Clean data/Local/clean_average.csv")
 data2 = pd.read_csv("Results/Clean data/Kubernetes/clean_average.csv")
 data3 = pd.read_csv("Results/Clean data/Kubernetes2/clean_average.csv")

 data_local_plot = data1['Average_Local_{}PRB_{}m'.format(prb, dist)]
 data_local_error = data1['Sup_Local_{}PRB_{}m'.format(prb, dist)] - data1[
 'Average_Local_{}PRB_{}m'.format(prb, dist)]
 data_k8s_plot = data2['Average_Kubernetes_{}PRB_{}m'.format(prb, dist)]
 data_k8s_error = data2['Sup_Kubernetes_{}PRB_{}m'.format(prb, dist)] - data2[
 'Average_Kubernetes_{}PRB_{}m'.format(prb, dist)]
 data_k8s2_plot = data3['Average_Kubernetes2_{}PRB_{}m'.format(prb, dist)]
 data_k8s2_error = data3['Sup_Kubernetes2_{}PRB_{}m'.format(prb, dist)] - data3[
 'Average_Kubernetes2_{}PRB_{}m'.format(prb, dist)]

 list_plot = [data_local_plot, data_k8s_plot, data_k8s2_plot]
 list_error = [data_local_error, data_k8s_error, data_k8s2_error]

 plt.figure(figsize=(15, 10))
 for i in range(0, 3):

 plt.errorbar(range_plot, list_plot[i], linewidth=2, marker="o", yerr=list_error[i],
fmt=colors[cont], capsize=10)
 plt.plot(range_plot, list_plot[i], colors[cont], linewidth=4, label='{} {}PRB
{}m'.format(deploys[i], prb, dist))
 cont += 1

 #plt.title('Comparing deployments')
 plt.grid(color='tab:gray', linestyle='--', linewidth=0.5)
 plt.xlabel('Throughput introduced (Mbps)', fontsize=22)
 plt.xticks(range(0, 151, 25), fontsize=20)
 plt.ylabel('Throughput (Mbps)', fontsize=22)
 plt.yticks(range(0, 11), fontsize=20)
 plt.legend(loc=2, prop={'size': 15})
 plt.show()

deploys = ["Local", "Kubernetes", "Kubernetes2"]
num_PRB = [25, 50, 75]
range_plot = [1, 25, 50, 75, 100, 150]
distances = [1, 3, 6, 10, 15, 20]

for i in deploys:
 data = pd.read_csv("Results/Clean data/{}/clean_average.csv".format(i))
 plot_Same_PRB(i)
 # plot_Same_Distance(i)

plot_comparing_deployments(25, 1)

State of the art of virtualized cellular networks 79

Tempor al

Scripts to extract, clean and plot the temporal representation of the data.

extract_temporal.py:

def format_line(text):
 text = text.replace("[5] ", "")
 text = text.replace("[5] ", "")
 text = text.replace("[6] ", "")
 text = text.replace(" sec ", "")
 text = text.replace(" MBytes ", "")
 text = text.replace(" KBytes ", "")
 text = text.replace(" Bytes ", "")
 text = text.replace(" Mbits/sec ", "")
 text = text.replace(" Kbits/sec ", "")
 text = text.replace(" bits/sec ", "")
 text = text.replace(" ms ", "")
 text = text.replace(" receiver", "")
 text = text.replace(" ", " ")
 text = text.replace("[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams",
"")
 text = text.replace("[SUM] 0.0-15.2 sec 1 datagrams received out-of-order", "")
 text = text.replace("[SUM] 0.0-15.3 sec 1 datagrams received out-of-order", "")
 text = text.replace("WARNING: Size of data read does not correspond to offered
length", "")
 text = text.replace("- -", "")
 text = text.replace("---", "")
 text = text.replace("Server listening on 5000", "")
 # text = text.replace(".", ",")
 return text

def create_file(deployment, folder_origin, origin, destination, format_dest):
 myLines = []

 with open('Data/{}/{}/{}.txt'.format(deployment, folder_origin, origin), 'r') as myfile:
 for myline in myfile:
 myLines.append(myline.rstrip('\n'))

 with open('Results/{}/Temporal/{}/{}.{}'.format(deployment, folder_origin, destination,
format_dest), 'w+') as data:
 for element in myLines:
 not_found = 0
 for word in bad_words:
 if element.__contains__(word):
 break
 else:
 not_found += 1

 if not_found == len(bad_words):
 formated_line = format_line(element)
 data.write(formated_line + "\n")

Annex VI: Code to clean and plot the results

80 Design and analysis of fully virtualized cellular networks based on open-source frameworks

bad_words = ["Accepted", "omitted", "local"]
deploy = ["Local", "Kubernetes", "Kubernetes2"]
PRB = [25, 50, 75]
dist = [1, 3, 6, 10, 15, 20]

for i in deploy:
 for j in PRB:
 for k in dist:
 create_file(i, "{}PRB".format(j), "n_{}mPRB{}".format(k, j), "{}m".format(k), "txt")

clean_temporal.py:

import pandas as pd

def convert(lst):
 return lst[0].split()

def transform_csv(path, file):
 cont = 0
 n_parse = 0
 df = pd.DataFrame()
 interval = []
 transfer = []
 bit_rate_real = []
 jitter = []

 with open('{}/{}m.txt'.format(path, file), 'r') as in_file:
 for myline in in_file:
 if myline == "\n":
 continue
 else:
 if cont == 61:
 n_parse += 1
 df['{} Interval(sec)'.format(n_parse)] = interval[0:60]
 df['{} Transfer(KBytes)'.format(n_parse)] = transfer[0:60]
 df['{} Bitrate_real(Mbits/sec)'.format(n_parse)] = bit_rate_real[0:60]
 df['{} Jitter(ms)'.format(n_parse)] = jitter[0:60]

 interval = []
 transfer = []
 bit_rate_real = []
 jitter = []
 cont = 0

 else:
 lines = convert([myline])
 interval.append(lines[0])
 transfer.append(lines[1])
 bit_rate_real.append(lines[2])
 jitter.append(lines[3])
 cont += 1

State of the art of virtualized cellular networks 81

 df.to_csv('{}/{}m.csv'.format(path, file))
bad_words = ["Accepted", "omitted", "local"]
deploy = ["Local", "Kubernetes", "Kubernetes2"]
PRB = [25, 50, 75]
dist = [1, 3, 6, 10, 15, 20]

for i in deploy:
 for j in PRB:
 for k in dist:
 transform_csv('Results/{}/Temporal/{}PRB/'.format(i, j), k)

Annex VI: Code to clean and plot the results

82 Design and analysis of fully virtualized cellular networks based on open-source frameworks

plot_temporal.py:

import pandas as pd
import matplotlib.pyplot as plt

def plot_dist(data, mbps, dep):

 colors = ['#0000FF', 'g', '#FF00FF', '#C76114', '#00BFFF', 'k']
 for rb in num_PRB:
 cont = 0
 plt.figure(figsize=(15, 10))
 for i in distances:
 data_plot = data['Temporal_{}_{}PRB_{}m'.format(dep, rb, i)]
 data_error = data['Temporal_{}_{}PRB_{}m'.format(dep, rb, i)] - \
 data['Sup_{}_{}PRB_{}m'.format(dep, rb, i)]
 #plt.errorbar(range_plot, data_plot, linewidth=2, marker="o", yerr=data_error,
fmt=colors[cont], capsize=10)
 plt.plot(range_plot, data_plot, colors[cont], linewidth=3, label='{}m'.format(i))
 plt.title('{}Mbps {} deployment with {}PRB'.format(mbps, dep, rb))
 plt.grid(color='tab:gray', linestyle='--', linewidth=0.5)
 plt.xlabel('Time (sec)', fontsize=22)
 plt.yticks(fontsize=15)
 plt.xticks(range_plot, labels, rotation=90, fontsize=12,
horizontalalignment='center')
 plt.ylabel('Throughput (Mbps)', fontsize=22)
 plt.legend(loc=1, prop={'size': 20})
 cont += 1
 plt.show()

deploys = ["Local", "Docker", "Kubernetes"]
num_PRB = [25, 50, 75]
range_plot = range(0, 60, 1)
distances = [1, 3, 6, 10, 15, 20]
mbps = [1, 25, 50, 75, 100, 150]
labels = []
sum = 0

for i in range(0, 60):
 labels.append('{:.2f}'.format(sum+0.25))
 sum += 0.25

for dep in deploys:
 for i in mbps:
 data = pd.read_csv("Results/Clean
data/{}/clean_temporal_{}Mbps.csv".format(dep, i))
 plot_dist(data, i, dep)

State of the art of virtualized cellular networks 83

Resources

Scripts to extract, clean and plot the resources usage data.

extract_resources.py:

import os
import pandas as pd

containers = ['mme', 'sgwu', 'amf', 'sgwc', 'upf', 'bsf', 'udr', 'ausf', 'pcf', 'smf', 'udm', 'nssf',
'webui', 'hss',
 'pcrf', 'mongo', 'nrf']

for i in range(25, 76, 25):
 os.system('cat Data/Local/resources/{}_resources_local.txt | grep open5gs > '
 'Results/Local/Resources/{}_clean_open5gs_resources.txt'.format(i, i))

 os.system('cat Data/Local/resources/{}_resources_local.txt | grep srsenb > '
 'Results/Local/Resources/{}_clean_srsenb_resources.txt'.format(i, i))

 os.system('cat Data/Local/resources/{}_resources_local.txt | grep mongodb > '
 'Results/Local/Resources/{}_clean_mongo_resources.txt'.format(i, i))

 for cont in containers:
 os.system('cat Data/Docker/resources/{}_resources_docker.txt | grep {} > '
 'Results/Docker/Resources/{}_clean_open5gs-{}_resources.txt'.format(i,
cont, i, cont))

 os.system('cat Data/Docker/resources/{}_resources_docker.txt | grep srsenb > '
 'Results/Docker/Resources/{}_clean_srsenb_resources.txt'.format(i, i))

 os.system('cat Data/Kubernetes/resources/{}_resources_kub.txt | grep open5gs > '
 'Results/Kubernetes/Resources/{}_clean_open5gs_resources.txt'.format(i, i))

 os.system('cat Data/Kubernetes/resources/{}_resources_kub.txt | grep srsenb > '
 'Results/Kubernetes/Resources/{}_clean_srsenb_resources.txt'.format(i, i))

def convert(lst):
 return lst[0].split()
def transform_csv(path, name, case):

 if case == 'Local':
 PR = []
 NI = []
 RES = []
 VIRT = []
 SHR = []
 CPU = []
 MEM = []

 df = pd.DataFrame()

 with open('{}/{}.txt'.format(path, name), 'r') as in_file:

Annex VI: Code to clean and plot the results

84 Design and analysis of fully virtualized cellular networks based on open-source frameworks

 for myline in in_file:
 if myline == "\n":
 continue
 else:
 lines = convert([myline])
 PR.append(lines[2])
 NI.append(lines[3])
 VIRT.append(lines[4])
 RES.append(lines[5])
 SHR.append(lines[6])
 CPU.append(lines[8])
 MEM.append(lines[9])

 df['PR'] = PR
 df['NI'] = NI
 df['VIRT'] = VIRT
 df['RES'] = RES
 df['SHR'] = SHR
 df['%CPU'] = CPU
 df['%MEM'] = MEM

 df.to_csv('{}/Final/{}.csv'.format(path, name))
 else:
 CPU = []
 NI = []
 RES = []
 VIRT = []
 SHR = []
 CPU = []
 MEM = []

cases = ['mongo', 'open5gs', 'srsenb']

for i in range(25, 76, 25):
 for nom in cases:
 transform_csv('Results/Local/Resources', '{}_clean_{}_resources'.format(i, nom),
'Local')

State of the art of virtualized cellular networks 85

plot_resources.py:

import numpy as np
import pan das as pd
import matplotlib.pyplot as plt

def plot_CPU_Resources(deploy, j, s):
 cont = 0
 CPU_mongo = data['CPU_mongo_{}PRB'.format(j)]
 CPU_srsenb = data['CPU_srsenb_{}PRB'.format(j)]
 CPU_amfd = data['CPU_amfd_{}PRB'.format(j)]
 CPU_ausfd = data['CPU_ausfd_{}PRB'.format(j)]
 CPU_bsfd = data['CPU_bsfd_{}PRB'.format(j)]
 CPU_mmed = data['CPU_mmed_{}PRB'.format(j)]
 CPU_nrfd = data['CPU_nrfd_{}PRB'.format(j)]
 CPU_nssfd = data['CPU_nssfd_{}PRB'.format(j)]
 CPU_sgwcd = data['CPU_sgwcd_{}PRB'.format(j)]
 CPU_sgwud = data['CPU_sgwud_{}PRB'.format(j)]
 CPU_smfd = data['CPU_smfd_{}PRB'.format(j)]
 CPU_udmd = data['CPU_udmd_{}PRB'.format(j)]
 CPU_upfd = data['CPU_upfd_{}PRB'.format(j)]
 CPU_udrd = data['CPU_udrd_{}PRB'.format(j)]
 CPU_hssd = data['CPU_hssd_{}PRB'.format(j)]
 CPU_pcfd = data['CPU_pcfd_{}PRB'.format(j)]
 CPU_pcrfd = data['CPU_pcrfd_{}PRB'.format(j)]

 # labels = ['25', '50', '75']
 labels = ['{}'.format(j)]
 width = 0.3 # the width of the bars

 bar1 = np.arange(len(labels))
 bar2 = []
 list_other = list(np.add(CPU_mongo, CPU_amfd))

 for k in bar1:
 bar2.append(k + width)

 plt.bar(bar1, CPU_mongo, width, label='Mongo', color=colors[cont])
 cont += 1
 plt.bar(bar1, CPU_amfd, width, bottom=CPU_mongo, label='amfd',
color=colors[cont])
 cont += 1
 plt.bar(bar1, CPU_ausfd, width, bottom=list_other, label='ausfd', color=colors[cont])
 list_other = add_fragment(list_other, CPU_ausfd)
 cont += 1
 plt.bar(bar1, CPU_bsfd, width, bottom=list_other, label='bsfd', color=colors[cont])
 list_other = add_fragment(list_other, CPU_bsfd)
 cont += 1
 plt.bar(bar1, CPU_mmed, width, bottom=list_other, label='mmed', color=colors[cont])
 list_other = add_fragment(list_other, CPU_mmed)
 cont += 1
 plt.bar(bar1, CPU_nrfd, width, bottom=list_other, label='nrfd', color=colors[cont])
 list_other = add_fragment(list_other, CPU_nrfd)
 cont += 1

Annex VI: Code to clean and plot the results

86 Design and analysis of fully virtualized cellular networks based on open-source frameworks

 plt.bar(bar1, CPU_nssfd, width, bottom=list_other, label='nssfd', color=colors[cont])
 list_other = add_fragment(list_other, CPU_nssfd)
 cont += 1
 plt.bar(bar1, CPU_sgwcd, width, bottom=list_other, label='sgwcd', color=colors[cont])
 list_other = add_fragment(list_other, CPU_sgwcd)
 cont += 1
 plt.bar(bar1, CPU_sgwud, width, bottom=list_other, label='sgwud',
color=colors[cont])
 list_other = add_fragment(list_other, CPU_sgwud)
 cont += 1
 plt.bar(bar1, CPU_smfd, width, bottom=list_other, label='smfd', color=colors[cont])
 list_other = add_fragment(list_other, CPU_smfd)
 cont += 1
 plt.bar(bar1, CPU_udmd, width, bottom=list_other, label='udmd', color=colors[cont])
 list_other = add_fragment(list_other, CPU_udmd)
 cont += 1
 plt.bar(bar1, CPU_upfd, width, bottom=list_other, label='upfd', color=colors[cont])
 list_other = add_fragment(list_other, CPU_upfd)
 cont += 1
 plt.bar(bar1, CPU_udrd, width, bottom=list_other, label='udrd', color=colors[cont])
 list_other = add_fragment(list_other, CPU_udrd)
 cont += 1
 plt.bar(bar1, CPU_hssd, width, bottom=list_other, label='hssd', color=colors[cont])
 list_other = add_fragment(list_other, CPU_hssd)
 cont += 1
 plt.bar(bar1, CPU_pcfd, width, bottom=list_other, label='pcfd', color=colors[cont])
 list_other = add_fragment(list_other, CPU_pcfd)
 cont += 1
 plt.bar(bar1, CPU_pcrfd, width, bottom=list_other, label='pcrfd', color=colors[cont])
 cont += 1

 plt.bar(bar2, CPU_srsenb, width, label='srsenb', color=colors[cont])

 plt.grid(color='tab:gray', linestyle='--', linewidth=0.5)
 plt.ylabel('% CPU', fontsize=22)
 plt.xlabel('Nº of PRB', fontsize=22)
 plt.title('{} deployment of {}Mbps'.format(deploy, s), fontsize=20)
 plt.xticks(bar1 + width / 2, labels, fontsize=20)
 plt.yticks(fontsize=20)
 plt.legend(loc=2, prop={'size': 15})

def add_fragment(old_list, fragment):
 old_list = list(np.add(old_list, fragment))
 return old_list

def plot_MEM_Resources(deploy, j, s):
 cont = 0
 MEM_mongo = data['MEM_mongo_{}PRB'.format(j)]
 MEM_srsenb = data['MEM_srsenb_{}PRB'.format(j)]
 MEM_amfd = data['MEM_amfd_{}PRB'.format(j)]
 MEM_ausfd = data['MEM_ausfd_{}PRB'.format(j)]
 MEM_bsfd = data['MEM_bsfd_{}PRB'.format(j)]
 MEM_mmed = data['MEM_mmed_{}PRB'.format(j)]

State of the art of virtualized cellular networks 87

 MEM_nrfd = data['MEM_nrfd_{}PRB'.format(j)]
 MEM_nssfd = data['MEM_nssfd_{}PRB'.format(j)]
 MEM_sgwcd = data['MEM_sgwcd_{}PRB'.format(j)]
 MEM_sgwud = data['MEM_sgwud_{}PRB'.format(j)]
 MEM_smfd = data['MEM_smfd_{}PRB'.format(j)]
 MEM_udmd = data['MEM_udmd_{}PRB'.format(j)]
 MEM_upfd = data['MEM_upfd_{}PRB'.format(j)]
 MEM_udrd = data['MEM_udrd_{}PRB'.format(j)]
 MEM_hssd = data['MEM_hssd_{}PRB'.format(j)]
 MEM_pcfd = data['MEM_pcfd_{}PRB'.format(j)]
 MEM_pcrfd = data['MEM_pcrfd_{}PRB'.format(j)]

 labels = ['{}'.format(j)]
 width = 0.3 # the width of the bars

 bar1 = np.arange(len(labels))
 bar2 = []
 list_other = list(np.add(MEM_mongo, MEM_amfd))

 for k in bar1:
 bar2.append(k + width)

 plt.bar(bar1, MEM_mongo, width, label='Mongo', color=colors[cont])
 cont += 1
 plt.bar(bar1, MEM_amfd, width, bottom=MEM_mongo, label='amfd',
color=colors[cont])
 cont += 1
 plt.bar(bar1, MEM_ausfd, width, bottom=list_other, label='ausfd', color=colors[cont])
 list_other = add_fragment(list_other, MEM_ausfd)
 cont += 1
 plt.bar(bar1, MEM_bsfd, width, bottom=list_other, label='bsfd', color=colors[cont])
 list_other = add_fragment(list_other, MEM_bsfd)
 cont += 1
 plt.bar(bar1, MEM_mmed, width, bottom=list_other, label='mmed',
color=colors[cont])
 list_other = add_fragment(list_other, MEM_mmed)
 cont += 1
 plt.bar(bar1, MEM_nrfd, width, bottom=list_other, label='nrfd', color=colors[cont])
 list_other = add_fragment(list_other, MEM_nrfd)
 cont += 1
 plt.bar(bar1, MEM_nssfd, width, bottom=list_other, label='nssfd', color=colors[cont])
 list_other = add_fragment(list_other, MEM_nssfd)
 cont += 1
 plt.bar(bar1, MEM_sgwcd, width, bottom=list_other, label='sgwcd',
color=colors[cont])
 list_other = add_fragment(list_other, MEM_sgwcd)
 cont += 1
 plt.bar(bar1, MEM_sgwud, width, bottom=list_other, label='sgwud',
color=colors[cont])
 list_other = add_fragment(list_other, MEM_sgwud)
 cont += 1
 plt.bar(bar1, MEM_smfd, width, bottom=list_other, label='smfd', color=colors[cont])
 list_other = add_fragment(list_other, MEM_smfd)
 cont += 1
 plt.bar(bar1, MEM_udmd, width, bottom=list_other, label='udmd', color=colors[cont])

Annex VI: Code to clean and plot the results

88 Design and analysis of fully virtualized cellular networks based on open-source frameworks

 list_other = add_fragment(list_other, MEM_udmd)
 cont += 1
 plt.bar(bar1, MEM_upfd, width, bottom=list_other, label='upfd', color=colors[cont])
 list_other = add_fragment(list_other, MEM_upfd)
 cont += 1
 plt.bar(bar1, MEM_udrd, width, bottom=list_other, label='udrd', color=colors[cont])
 list_other = add_fragment(list_other, MEM_udrd)
 cont += 1
 plt.bar(bar1, MEM_hssd, width, bottom=list_other, label='hssd', color=colors[cont])
 list_other = add_fragment(list_other, MEM_hssd)
 cont += 1
 plt.bar(bar1, MEM_pcfd, width, bottom=list_other, label='pcfd', color=colors[cont])
 list_other = add_fragment(list_other, MEM_pcfd)
 cont += 1
 plt.bar(bar1, MEM_pcrfd, width, bottom=list_other, label='pcrfd', color=colors[cont])
 cont += 1

 plt.bar(bar2, MEM_srsenb, width, label='srsenb', color=colors[cont])

 plt.grid(color='tab:gray', linestyle='--', linewidth=0.5)
 plt.ylabel('% MEM', fontsize=22)
 plt.xlabel('Nº of PRB', fontsize=22)
 plt.xticks(bar1 + width / 2, labels, fontsize=20)
 plt.yticks(range(0, 11), fontsize=20)
 plt.title('{} deployment of {}Mbps'.format(deploy, s))
 plt.legend(loc=2, prop={'size': 15})

deploys = ["Local", "Docker”, "Kubernetes"]
num_PRB = [25, 50, 75]
range_plot = [1, 25, 50, 75, 100, 150]
colors = ['#0000CD', '#FF6103', '#76EE00', '#DC143C', '#9932CC', '#8B4500',
'#FFC125', '#00EEEE',
 '#8B8878', '#FF6103', '#C0FF3E', '#E0EEEE', '#E3CF57', '#7CFC00',
'#9AC0CD', '#030303', '#FF1493']

for i in deploys:
 for s in range_plot:
 data = pd.read_csv("Results/Clean data/{}/clean_resources_{}Mbps.csv".format(i,
s))

 for j in num_PRB:
 plt.figure(figsize=(15, 10))

 plot_CPU_Resources(i, j, s)
 #plot_MEM_Resources(i, j, s)
 plt.show()

State of the art of virtualized cellular networks 89

Forced disconnection

Scripts to extract, clean and plot the forced disconnection data.

extract_disc.py:

def format_line(text):
 text = text.replace("[5] ", "")
 text = text.replace("[5] ", "")
 text = text.replace("[6] ", "")
 text = text.replace(" sec ", "")
 text = text.replace(" MBytes ", "")
 text = text.replace(" KBytes ", "")
 text = text.replace(" Bytes ", "")
 text = text.replace(" Mbits/sec ", "")
 text = text.replace(" Kbits/sec ", "")
 text = text.replace(" bits/sec ", "")
 text = text.replace(" ms ", "")
 text = text.replace(" receiver", "")
 text = text.replace(" ", " ")
 text = text.replace("[ID] Interval Transfer Bitrate Jitter Lost/Total Datagrams",
"")
 text = text.replace("[SUM] 0.0-15.2 sec 1 datagrams received out-of-order", "")
 text = text.replace("[SUM] 0.0-15.3 sec 1 datagrams received out-of-order", "")
 text = text.replace("WARNING: Size of data read does not correspond to offered
length", "")
 text = text.replace("- -", "")
 text = text.replace("---", "")
 text = text.replace("Server listening on 5000", "")
 # text = text.replace(".", ",")
 return text

def create_file(deployment, file):
 myLines = []

 with open('Data/{}/forced_dis/{}.txt'.format(deployment, file), 'r') as myfile:
 for myline in myfile:
 myLines.append(myline.rstrip('\n'))

 with open('Results/{}/Forced_dis/forced_dis.txt'.format(deployment), 'w+') as data:
 for element in myLines:
 not_found = 0
 for word in bad_words:
 if element.__contains__(word):
 break
 else:
 not_found += 1

 if not_found == len(bad_words):
 formated_line = format_line(element)
 data.write(formated_line + "\n")

Annex VI: Code to clean and plot the results

90 Design and analysis of fully virtualized cellular networks based on open-source frameworks

bad_words = ["Accepted", "omitted", "local"]
deploy = ["Local", "Docker", "Kubernetes"]

for i in deploy:
 create_file(i, 'f_1mPRB50_25M')

clean_disc.py:

import pandas as pd

def convert(lst):
 return lst[0].split()

def transform_csv(file, i):
 cont = 0
 num_file = 1
 df = pd.DataFrame()
 interval = []
 transfer = []
 bit_rate_real = []
 jitter = []

 with open('{}'.format(file), 'r') as in_file:
 for myline in in_file:
 if myline == "\n":
 continue
 else:
 if cont == 121:
 df['Interval(sec)'] = interval[cont-121:cont-1]
 df['Transfer(KBytes)'] = transfer[cont-121:cont-1]
 df['Bitrate_real(Mbits/sec)'] = bit_rate_real[cont-121:cont-1]
 df['Jitter(ms)'] = jitter[cont-121:cont-1]
 df.to_csv('Results/Clean data/{}/clean_forced_disc{}.csv'.format(i,
num_file))

 interval = []
 transfer = []
 bit_rate_real = []
 jitter = []
 cont = 0
 num_file += 1

 else:
 lines = convert([myline])
 interval.append(lines[0])
 transfer.append(lines[1])
 bit_rate_real.append(lines[2])
 jitter.append(lines[3])
 cont += 1

bad_words = ["Accepted", "omitted", "local"]

State of the art of virtualized cellular networks 91

deploy = ["Local", "Docker", "Kubernetes"]

for i in deploy:
 transform_csv('Results/{}/Forced_dis/forced_dis.txt'.format(i), i)

plot_disc.py:

import pandas as pd
import matplotlib.pyplot as plt

def plot_disc(data, dep, cont):
 data_plot = data['Bitrate_real(Mbits/sec)']

 plt.plot(range_plot, data_plot, colors[cont], linewidth=4, label='Attempt {}'.format(i))
 plt.title('{} deployment'.format(dep))
 plt.grid(color='tab:gray', linestyle='--', linewidth=0.5)
 plt.xlabel('Time (sec)', fontsize=22)
 plt.xticks(range_plot, labels, rotation=90, fontsize=12, horizontalalignment='center')
 plt.yticks(fontsize=15)
 plt.ylabel('Throughput (Mbps)', fontsize=22)
 plt.legend(loc=3, prop={'size': 15})

deploys = ["Local", "Docker", "Kubernetes"]
colors = ['#0000FF', '#66CD00', '#FF00FF', '#C76114', '#00BFFF', 'k']
range_plot = range(0, 120, 1)
labels = []
sum = 0

for i in range(0, 120):
 labels.append('{:.2f} '.format(sum+0.25))
 #labels.append('')
 sum += 0.25

for dep in deploys:
 cont = 0
 plt.figure(figsize=(15, 10))

 for i in range(1, 6):
 data = pd.read_csv("Results/Clean data/{}/clean_forced_disc{}.csv".format(dep, i))
 plot_disc(data, dep, cont)
 cont += 1
 plt.show()

Annex VI: Code to clean and plot the results

92 Design and analysis of fully virtualized cellular networks based on open-source frameworks

REFERENCES

[1] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Link
Control (RLC) protocol specification (Release 8), Rep. TS 36.322," Sophia
Antipolis, 2010.

[2] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); Base
Station (BS) conformance testing (Release 10), Rep. TS 36.141," Sophia
Antipolis, 2011.

[3] C. Cox, "An introduction to LTE. LTE, LTE-Advanced, SAE, VoLTE and 4G
mobile communications," John Wiley & Sons, pp. 53-66, 2014.

[4] H. Yeh and H. Mutahir Abdul, "Hadamard SCFDMA-A modified uplink
transmission scheme with low PAPR and SER," Proceedings of Annual
IEEE Systems Conference (SysCon), 2015, pp. 711-715, doi:
10.1109/SYSCON.2015.7116834.

[5] H. Yin and S. Alamouti, "OFDMA: A Broadband Wireless Access
Technology," 2006 IEEE Sarnoff Symposium, 2006, pp. 1-4, doi:
10.1109/SARNOF.2006.4534773.

[6] E. Hajlaoui, A. Zaier, A. Khlifi, J. Ghodhbane, M. B. Hamed and L. Sbita,
"4G and 5G technologies: A Comparative Study," Proceedings of
International Conference on Advanced Technologies for Signal and Image
Processing (ATSIP), 2020, pp. 1-6, doi:
10.1109/ATSIP49331.2020.9231605.

[7] Source: “LTE Network Architecture”, [Online]. Available:
https://www.tutorialspoint.com/lte/lte_network_architecture.htm.
Accessed: 01/09/2021

[8] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA);
Requirements on User Equipment’s (UE’s) supporting a release-
independent frequency band (Release 14), Rep. TS 36.307," Sophia
Antipolis, 2017.

[9] 3GPP, "Physical layer; General description (Release 15), Rep. TS 38.201,"
Sophia Antipolis, 2018.

[10] Source: "ITU-R IMT 2020 requirements," ETRI graphic.

[11] 3GPP, "Technical Specification Group Services and System Aspects;
Study on Architecture for Next Generation System (Release 14), Rep. TR
23.799," Sophia Antipolis, 2016.

[12] Source: “5G Core Network Functions” [Online]. Available:
https://www.grandmetric.com/2018/03/02/5g-core-network-functions/.
Accessed: 01/09/2021

[13] Source: “5G NR Deployment Scenarios” [Online]. Available:
https://www.rfwireless-world.com/Terminology/5G-NR-deployment-
scenarios-or-modes.html. Accessed: 01/09/2021

State of the art of virtualized cellular networks 93

[14] Antony Franklin, A., Tambe, S.D. Multi-access edge computing in cellular
networks. CSIT 8, 85–92 (2020). https://doi.org/10.1007/s40012-020-
00276-6

[15] A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane and M. Guizani, "Multi-
Access Edge Computing: A Survey," in IEEE Access, vol. 8, pp. 197017-
197046, 2020, doi: 10.1109/ACCESS.2020.3034136.

[16] VENTRE, Pier Luigi et al. SDN Architecture and Southbound APIs for IPv6
Segment Routing Enabled Wide Area Networks. . 2018.
DOI: 10.1109/TNSM.2018.2876251

[17] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S.
Azodolmolky and S. Uhlig, "Software-Defined Networking: A
Comprehensive Survey," in Proceedings of the IEEE, vol. 103, no. 1, pp.
14-76, Jan. 2015, doi: 10.1109/JPROC.2014.2371999.

[18] "5G-EmPOWER," [Online]. Available: https://github.com/5g-empower/5g-
empower.github.io/wiki. Accessed: 01/09/2021

[19] "Odin controller," [Online]. Available: https://github.com/Wi5/odin-wi5-
controller. Accessed: 01/09/2021

[20] "FlexRAN", [Online]. Available: https://mosaic5g.io/flexran/. Accessed:
01/09/2021

[21] O-RAN Alliance, "O-RAN Use Cases and Deployment Scenarios, White
Paper," 2020.

[22] Y. Bo, W. Xingwei, L. Keqin , D. k. Sajal and H. Min, "A comprehensive
survey of Network Function Virtualization," Computer Networks, vol. 133,
pp. 212-262, 2018.

[23] ETSI, "Architectural Framework, GS NFV 002 V1.2.1," Sophia Antipolis,
2014.

[24] Kratzke, Nane & Quint, Peter-Christian. (2017). Understanding Cloud-
native Applications after 10 Years of Cloud Computing - A Systematic
Mapping Study. Journal of Systems and Software. 126. 1-16.
10.1016/j.jss.2017.01.001.

[25] “LXD”, [Online]. Available: https://wiki.archlinux.org/title/LXD. Accessed:

01/09/2021

[26] “Windows Containers”, [Online]. Available: https://docs.microsoft.com/en-

us/virtualization/windowscontainers/. Accessed: 01/09/2021

[27] “Docker”, [Online]. Available: https://www.docker.com/. Accessed:

01/09/2021

[28] “Kubernetes”, [Online]. Available: https://kubernetes.io/. Accessed:
01/09/2021

94 Design and analysis of fully virtualized cellular networks based on open-source frameworks

[29] “CNI Specification”, [Online]. Available:
https://github.com/containernetworking/cni/blob/master/SPEC.md.
Accessed: 01/09/2021

[30] “Apache Mesos”, [Online]. Available:
https://github.com/apache/mesos/blob/master/docs/cni.md. Accessed:
01/09/2021

[31] “Cloud Foundry”, [Online]. Available: https://github.com/cloudfoundry-
attic/guardian-cni-adapter. Accessed: 01/09/2021

[32] Source: “CNI” [Online]. Available: https://thenewstack.io/container-
networking-landscape-cni-coreos-cnm-docker/. Accessed: 01/09/2021

[33] “Contiv Networking”, [Online]. Available:
https://github.com/contiv/netplugin?utm_source=thenewstack&utm_mediu
m=website&utm_campaign=platform. Accessed: 01/09/2021

[34] “Project Calico”, [Online]. Available: https://docs.projectcalico.org/getting-
started/kubernetes/. Accessed: 01/09/2021

[35] “Weave”, [Online]. Available:
https://github.com/weaveworks/weave?utm_source=thenewstack&utm_m
edium=website&utm_campaign=platform. Accessed: 01/09/2021

[36] “OIA 5G RAN”, [Online]. Available: https://openairinterface.org/oai-5g-ran-
project/. Accessed: 01/09/2021

[37] Code source: “OIA 5G RAN”, [Online]. Available:
https://gitlab.eurecom.fr/oai/openairinterface5g/. Accessed: 01/09/2021

[38] Source: “OIA 5G RAN Documentation”, [Online]. Available:
https://openairinterface.org/oai-5g-ran-project/. Accessed: 01/09/2021

[39] “srsLTE”, [Online]. Available: https://www.srslte.com/. Accessed:
01/09/2021

[40] Code source: “srsLTE”, [Online]. Available:
https://github.com/srsran/srsran. Accessed: 01/09/2021

[41] “free5GRAN”, [Online]. Available: https://free5g.github.io/free5GRAN-
documentation/index.html. Accessed: 01/09/2021

[42] Code source: “free5GRAN”, [Online]. Available:
https://github.com/free5G/free5GRAN. Accessed: 01/09/2021

[43] “5G-EMPOWER”, [Online]. Available: https://github.com/5g-empower/5g-
empower.github.io/wiki. Accessed: 01/09/2021

[44] Source: “5G-EMPOWER”, [Online]. Available: https://github.com/5g-
empower/5g-empower.github.io/wiki. Accessed: 01/09/2021

[45] “OIA 5G CN”, [Online]. Available: https://openairinterface.org/oai-5g-core-
network-project/. Accessed: 01/09/2021

[46] OIA 5G CN code source: https://gitlab.eurecom.fr/oai/cn5g. Accessed:
01/09/2021

State of the art of virtualized cellular networks 95

[47] Source: “OIA-CN Documentation”, [Online]. Available:
https://openairinterface.org/oai-5g-core-network-project/. Accessed:
01/09/2021

[48] “Open5GS”, [Online]. Available: https://open5gs.org/. Accessed:
01/09/2021

[49] Source: “Open5GS Documentation”, [Online]. Available:

https://open5gs.org/open5gs/docs/guide/01-quickstart/ Accesed
01/09/2021

[50] “free5GC”, [Online]. Available: https://www.free5gc.org/. Accessed:
01/09/2021

[51] Source code “free5GC”, [Online]. Available:
https://github.com/free5gc/free5gc. Accessed: 01/09/2021

[52] D. Luong, H. Thieu, A. Outtagarts and Y. Ghamri-Doudane, "Cloudification
and Autoscaling Orchestration for Container-Based Mobile Networks
toward 5G: Experimentation, Challenges and Perspectives," Proceedings
of the IEEE 87th Vehicular Technology Conference (VTC Spring), 2018,
pp. 1-7, doi: 10.1109/VTCSpring.2018.8417602.

[53] S. Imadali and A. Bousselmi, "Cloud Native 5G Virtual Network Functions:
Design Principles and Use Cases," 2018 IEEE 8th International
Symposium on Cloud and Service Computing (SC2), 2018, pp. 91-96, doi:
10.1109/SC2.2018.00019.

[54] W. Lai, Y. Wang and K. Chiu, "Containerized Design and Realization of
Network Functions Virtualization for a Light-Weight Evolved Packet Core
Using OpenAirInterface," Proceedings of the Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference
(APSIPA ASC), 2018, pp. 472-477, doi: 10.23919/APSIPA.2018.8659522.

[55] A. Esmaeily, K. Kralevska and D. Gligoroski, "A Cloud-based SDN/NFV
Testbed for End-to-End Network Slicing in 4G/5G," Proceedings of the
IEEE Conference on Network Softwarization (NetSoft), 2020, pp. 29-35,
doi: 10.1109/NetSoft48620.2020.9165419.

[56] C. V. Nahum et al., "Testbed for 5G Connected Artificial Intelligence on
Virtualized Networks," in IEEE Access, vol. 8, pp. 223202-223213, 2020,
doi: 10.1109/ACCESS.2020.3043876.

[57] Ahmed, T., Dubois, E., Dupé, J.-B., Ferrús, R., Gélard, P., and Kuhn,
N. (2018) Software-defined satellite cloud RAN. Int. J. Satell. Commun.
Network., 36: 108– 133. doi: 10.1002/sat.1206.

[58] X. Wang et al., "Handover reduction in virtualized cloud radio access
networks using TWDM-PON fronthaul," in IEEE/OSA Journal of Optical
Communications and Networking, vol. 8, no. 12, pp. B124-B134, December
2016, doi: 10.1364/JOCN.8.00B124.

[59] YAN, Zheng, Peng ZHANG a Athanasios V VASILAKOS. A security and

trust framework for virtualized networks and software‐defined networking.

96 Design and analysis of fully virtualized cellular networks based on open-source frameworks

Security and communication networks. Hindawi Limited, 2016, roč. 9, č. 16,
s. 3059–3069. ISSN 1939-0114. DOI: 10.1002/sec.1243

[60] “Open-VERSO”, [Online]. Available: https://www.openverso.org/en/open-
verso/. Accessed: 01/09/2021

[61] “Docker project”, [Online]. Available:
https://github.com/herlesupreeth/docker_open5gs. Accessed: 01/09/2021

[62] “USRP B210”, [Online]. Available:
https://files.ettus.com/manual/page_usrp_b200.html

[63] “SIM Card”, [Online]. Available:
http://shop.sysmocom.de/products/sysmoISIM-SJA2. Accessed:
01/09/2021

[64] “HUAWEI LTE USB Stick”, [Online]. Available:
https://consumer.huawei.com/en/routers/e3372/specs/. Accessed:
01/09/2021

[65] “Pysim software package”, [Online]. Available:
http://git.osmocom.org/pysim/. Accessed: 01/09/2021

[66] “Pysim project”, [Online]. Available:
https://osmocom.org/projects/pysim/wiki. Accessed: 01/09/2021

[67] “srsLTE installation source code”, [Online]. Available:
https://docs.srslte.com/en/latest/general/source/1_installation.html#install
ation-from-source. Accesed 01/09/2021

[68] “D-Link DGS 108 Switch”, [Online]. Available: https://images-eu.ssl-
images-amazon.com/images/I/A1j3YykkauS.pdf. Accessed: 01/09/2021

[69] “Docker Hub”, [Online]. Available: https://hub.docker.com/

[70] “Base srsLTE image”, [Online]. Available: https://github.com/5g-
empower/docker/tree/master/srsenb. Accessed: 01/09/2021

[71] “srsLTE Docker image”, [Online]. Available:
https://hub.docker.com/r/javipalomares/srslte. Accessed: 01/09/2021

[72] “Base srsLTE image”, [Online]. Available: https://github.com/5g-
empower/docker/tree/master/open5gs. Accessed: 01/09/2021

[73] “Open5GS Docker image”, [Online]. Available:
https://hub.docker.com/r/javipalomares/open5gs. Accessed: 01/09/2021

[74] “IPERF”, [Online]. Available: https://iperf.fr/. Accessed: 01/09/2021

[75] Marotta, Antonio et al. On the energy cost of robustness for green virtual
network function placement in 5G virtualized infrastructures. 2017.

[76] Suraci, Chiara et al. A stakeholder-oriented security analysis in virtualized
5G cellular networks. Computer networks (Amsterdam, Netherlands:
1999). Elsevier B.V, 2021, roč. 184, s. 107604–. ISSN 1389-1286.
DOI: 10.1016/j.comnet.2020.107604

State of the art of virtualized cellular networks 97

[77] Yan, Zheng, Peng ZHANG a Athanasios V VASILAKOS. A security and
trust framework for virtualized networks and software-defined networking:
Security and trust framework for virtualized networks and SDN. Security
and communication networks. 2016, roč. 9, č. 16, s. 3059–3069.
ISSN 1939-0114. DOI: 10.1002/sec.1243

References

