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Abstract 
 

 
Virtualization of cellular networks is one of the key areas of research where 
technologies, infrastructure and challenges are rapidly changing as 5G system 
architecture demands a paradigm shift. Adding these necessities to the 
appearance of new technologies such as Software Defined Networks (SDN) 
and Network Function Virtualization (NFV), encourage the seeking for the 
implementation of a more flexible and adaptive architecture, for mobile cellular 
networks. 
 
In this Master Thesis, a comprehensive view is provided upon various 
scenarios to enable the deployment of a fully distributed and open-source 
cellular network, as well as to provide an analysis on the impact that both Radio 
Access Network (RAN) and Core Network have on the resource utilization 
(radio and virtualized infrastructure) as the network conditions vary. The 
prototype proposed has been performed using a 4G setup given the currently 
limited availability of 5G setup and its high cost and compare with a state-of-
the-art deployment using a different virtualization tool. Nevertheless, the results 
presented in this document could be extended to the 5G scenarios. The reason 
for this is that this Master Thesis aims to study the viability and the performance 
of virtualized infrastructure to host the aforementioned network segments, and 
the frameworks used implement both the 4G and the 5G stacks, and even 
share the same software modules to implement the network functions 
regardless of the cellular network. 
 
The analysis of the gathered data expose that fully virtualized cellular network 
deployments present better performance in case of the flexibility, low setting 
time and ease to deploy, while keeping the same level of resources usage as 
the non-virtualized deployments. Furthermore, some future works and 
directions for research to and develop more flexible and more adaptive 
deployments are proposed, as well as to expand the analysis with higher 
network capacities available in 5G. 
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Introduction  1 

INTRODUCTION 
 
 
In recent years, mobile networks have experienced great developments and 
wireless communications have become an essential part in our daily lives. Due 
to this need, consecutive generations of enhanced communication networks have 
been deployed globally. The new network’s main requirements are scalability, 
and ease of deployment, especially in a new fully distributed network paradigm 
where network functions are deployed in different locations and even provided by 
several software frameworks. Adding these necessities is possible thanks to the 
appearance of new technologies such as Software Defined Networks (SDN) and 
Network Function Virtualization (NFV), as well as of recent virtualized 
infrastructure managers, which encourage seeking for the implementation of a 
more flexible architecture for mobile cellular networks and analyzing their impact 
in the underlying physical components. 

 
In this context, the main objective of this Master Thesis is to enable the 
deployment of a fully distributed and open-source cellular network based on 
virtualization tools and virtualized infrastructure managers, as well as to analyze 
the impact that both Radio Access Network (RAN) and Core Network (CN) have 
on the resource utilization (radio and virtualized infrastructure) as the network 
conditions vary. This central objective can be divided in several ones: 
 
The first objective focuses on studying the state of the art, in order to identify the 
contributions that other authors have provided in the literature. The second target 
seeks to explore several open-source frameworks for cellular networks, making 
a differentiation between frameworks that implement the RAN and the CN 
functions. Similarly, the third objective completes the analysis of the technical 
background by getting familiar and understanding some container virtualization 
environments and their orchestration tools, such as Kubernetes. 
 
The fourth objective represents one of the core parts of this Master Thesis, 
introducing the prototype proposed based on virtualization tools to deploy a 
distributed cellular network. The prototype proposed has been performed using 
a 4G setup given the limited availability of 5G setup and its high cost at the 
moment. The process to fulfill this goal started with a first phase that consisted 
on achieving connectivity in a baremetal deployment, to verify that the basic 
deployment of the open-source modules behaves as expected. The second stage 
consisted in the deployment of the network using Kubernetes to automate the 
deployment and the management of the containers. This deployment has been 
performed separating the CN and the RAN logic into two different worker nodes.  
 
The fifth objective includes a thorough analysis on the impact of deploying such 
virtualization tools and how different network conditions could determine the 
resource capacity used. This analysis takes as baseline a baremetal deployed 
and is compared with a state-of-the-art deployment using Docker containers, 
without a container orchestration platform. Nevertheless, the process followed to 
virtualize, interconnect, and orchestrate the functions does not vary regarding the 
type of cellular network, and the results presented could be extended to the 5G  
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modes, especially because the frameworks used and analyzed, as srsLTE and 
open5GS, implement both the 4G and the 5G functionalities, and even share the 
same software modules to implement the network functions regardless of the 
cellular network. It is worthy to highlight that this Master Thesis does not aim to 
study the performance of the network at radio or throughput level, but by contrast, 
to analyze the behavior of the virtualization resources in the distributed scenarios 
introduced before. 
 
Finally, the last objective verses on the study of future research lines of work 
taking as a basis the contributions and conclusions reached in this Master Thesis, 
as well as to identify possible ethical or social impacts. 
 
This Master Thesis is organized in five chapters and several annexes. The first 
chapter presents the background technology, where a review of the background 
on cellular networks is explained in detail. Also, the concept of network 
virtualization is introduced, explaining and comparing the technologies that 
enable it. Chapter 2 focuses on the state of the art of virtualized 5G networks. 
The concepts of cloud native architecture, virtualization frameworks and open-
source 5G Frameworks are defined, giving examples in each of them. The last 
section of Chapter 2 is dedicated to related work in the literature on virtualization 
tools for building distributed cellular networks. Chapter 3 contains the research 
work of this project, explaining the configuration and launching of the three 
deployments (Baremetal, Kubernetes-based deployment and the state-of-the-art 
Docker-based deployment). The fourth chapter presents the performance 
evaluation and achieved results of the deployments mentioned before, 
highlighting the methodology used and the results discussion. Furthermore, 
Chapter 5 presents the conclusions and future lines of works of this Master 
Thesis, including some sustainability and ethical considerations. Finally, the 
content of the annexes includes: (i) the installation and setup processes of the 
different deployments; (ii) the complete content of the files used for the proper 
deployment of the fully distributed and open-source cellular network; and (iii) the 
code used to get the data clean for future analysis.  
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1. CHAPTER 1. BACKGROUND TECHNOLOGY 
 
 
In this chapter, the background technology context in which the Master Thesis is 
based, is presented. The first part covers an overall description on different 
cellular network generations such as 4G and 5G. Then, the second part 
discusses different Network Virtualization technologies such as Software Defined 
Network (SDN) and Network Function Virtualization (NFV). 

1.1. Cellular networks 
 
Over the last years, mobile networks have experienced great developments and 
wireless communications have become an essential part in our lives. Due to this 
need, consecutive generations of communication networks have been deployed 
globally. Nowadays, 4G and 5G networks coexist in commercial deployments. 
The next subsections detail the evolution of cellular technologies and the network 
architectures behind them. 

1.1.1. 4G 
 

The need to increase the capacity and speed while reducing the latency of the 
mobile networks caused the creation of the fourth-generation networks, under the 
name Long Term Evolution (LTE). 4G technology started to be standardized from 
Release 8 [1] of the 3rd Generation Partnership Project (3GPP). It is an evolution 
of the LTE standard (LTE-A standard from Release 10 [2] of 3GPP). It has 
practically the same characteristics as LTE [3], except it supports a mobility 
reaching of 350 km/h and it has a higher data rate flow (300 Mbps in the uplink 
and 1 Gbps in the downlink). The LTE-A system employs a SCFDMA [4] scheme 
for the uplink and a OFDMA [5] scheme for the downlink. It also uses a 4x4 
antenna or an 8x8 antenna MIMO technique. 

 

In [6] and, the authors list the main characteristics, as well as the main 
advantages and disadvantages of 4G. This network generation aims to guarantee 
a minimum Quality of Service (QoS) level and an improvement of the services 
provided, even when the user is moving at high speeds. The architecture of 4G 
is displayed on Figure 1.1. 

Figure 1.1: Architecture of the 4G network. Image based from [7]. 
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As shown in the previous figure, the 4G architecture is composed of two main 
blocks: 

 Evolved UMTS Terrestrial Radio Access Network (E-UTRAN): it is the 
Radio Network Subsystem and forms the access network. It is composed 
of the eNodeB’s (eNB), which are responsible for communicating with the 
User Equipment (UE) over the air. Also the eNB manages some radio 
resources management functions. 
 

 Evolved Packet Core (EPC): it is the core of the network, which 
optimizes traffic delivery. It is composed of a set of functions:  

 

- Packet Data Network Gateway (PGW): it is the EPC gateway to the 
Internet or other external Packet Data Networks (PDNs). A PDN is a 
generic description for a network that provides data services. In packet 
switching the message is broken into smaller pieces (packets) that are 
sent independently over an optimal route for each one. Those packets 
are reassembled when they reach the destination. In order to provide 
internet connectivity, each UE is assigned a default PGW when it is 
first connected to the EPC. Furthermore, the PGW is responsible for 
assigning IP addresses to the UE. 

  

- Serving Gateway (SGW): it is responsible for only managing tunnels 
to interconnect the eNB and the PGW. The creation and modification 
of those tunnels is controlled by the Mobile Management Entity (MME). 
A SGW is assigned to each UE after authentication. 

 

- Mobile Management Entity (MME): it controls the high-level operation 
of the UE by being responsible for the signaling between eNB’s and 
the EPC. As mentioned before, it is tasked to create the tunnels that 
interconnect the eNB and the PGW. Moreover, MME modules are 
responsible for tasks such as: authentication, handover support, NAS 
mobility management, interworking with other radio networks and SMS 
and voice support. MME modules are grouped in pools and can serve 
several eNB’s simultaneously. Each UE is assigned a single MME, 
known as serving MME.  

 

- Home Subscriber Server (HSS): it is responsible for storing 
subscriber’s information. The most important user parameters are: 

 

 The user’s International Mobile Subscriber Identity (IMSI): a 
unique identifier of each subscriber also stored in the Subscriber 
Identity Module (SIM) card of the user. It includes the Mobile 
Country Code (MCC) and the Mobile Network Code (MNC). 

 

 Authentication information to authenticate the subscribe and 
generate keys during session establishment. 

 

 The Mobile Subscriber Integrated Services Digital Network 
(MSISDN): the telephone number, used generally for circuit-
switched services. 

 

 The Access Point Names (APN) the subscriber can use. 
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1.1.2. 5G 

 
5G technology represents a complete change on the foundations of wireless 
communications. Unlike the previous upgrades, 5G defines a new network 
architecture, aiming to provide service delivery on a global scale, not only 
worrying about bandwidth and speed. 5G networks started to be standardized 
from Release 14 [8] and Release 15 [9] of 3GPP around three main service 
pillars: 

 

 Enhanced Mobile Broadband (eMBB): This requires a big capacity 
enhancement, in order to be able to manage multimedia contents, 
augmented reality, virtual reality, video 360, etc. 
 

 Massive Machine Type Communication (mMTC): A massive 
connectivity between devices is necessary to be able to manage sensors 
and actuators that compose the Internet of Things (IoT). 

 

 Ultra Reliable Low Latency (URLLC): To be able to manage industrial 
IoT, vehicle-to-vehicle connections, vehicle-to-infrastructure connectivity 
and real-time applications, an Ultra-high reliability and a Low Latency is 
required. 

 

This service differentiation allows applications with distinct QoS and performance 
requirements, such as: cloud virtual and augmented reality, connected 
automotive, smart manufacturing, connected energy or wireless e-health, to 
coexist with each other while meeting the user and services expectations. 

 
The core of the 5G networks described in Release 15 [9] of 3GPP have been 
defined to meet the following characteristics: 

 

 Support a service-based architecture for modularized network services. 
 

 Consistent user experience between 3GPP and non-3GPP access 
networks. 
 

 Harmonization of identity, authentication, QoS, policy and charging 
paradigms. 
 

 Adaption to cloud native and web scale technologies. 
 

 Edge Computing and nomadic/fixed access. Bringing computing closer to 
the point would reduce latency. 

 

 M2M communication services that could bring low latency connectivity to 
devices, such as self-driving cars.  

 

Also, in [6], the authors list the main characteristics, as well as the main 
advantages and challenges of 5G systems. These three service pillars can be 
observed in Figure 1.2.  
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Figure 1.2: 5G Service Pillars. Image taken from [10]. 
 

 
The 5G network is composed of three different functional blocks: The UE, the 5G 
Core (5GC) and the 5G Access Network (5G-AN). Moreover, the network also 
has different deployment modes that will be explained later in this work. 
 

1.1.2.1. 5G Core Functions 
 
From Release 14 [11] of 3GPP, the 5GC architecture has two different 
approaches: the Point-to-Point architecture and the Service Based Architecture 
(SBA).  Figure 1.3 shows the 5GC Point-to-Point architecture, which displays the 
traditional structure of interconnecting the Core functions. On the other hand, in 
the SBA approach, each Network Function (NF) offers one or more services to 
the other NF in the network. Moreover, the NF are self-contained, independent 
and reusable. Also, they are exposed via a South-Bound Interface (SBI) through 
an API as shown in Figure 1.4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3: Point-to-point 5GC architecture. Image based from [12]. 

NG14 

NG9 
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Figure 1.4: SBA 5GC Architecture. Image based from [12]. 

 
The main difference between both architectures is the introduction of the SBI, 
where all the 5GC modules get connected, giving the 5GC more flexibility. 

 
The UE is connected to the 5GC and to the Internet or other Data Networks (DN), 
over the 5G New Radio Access Network (RAN). As shown in the previous figures, 
the 5GC architecture is composed of many modules, which can be considered 
an evolution of the 4G functions: 

 

 Access and Mobility Management Function (AMF): Handles the 
connection between the UE and the access to the network core. The AMF 
supports encrypted signaling connections. This allows the UE to register, 
authenticate and move between different radio cells. 
 

 User Plane Function (UPF): Manages the forwarding data traffic of the 
UE. It connects with external networks and acts as a stable IP reference 
for them. It is also responsible for the QoS, the buffer handling, the packet 
classification and the packet inspection. 

 

 Policy Control Function (PCF): Provides a unified policy of rules and 
the framework to enforce them and govern the network behavior. 

 

 Session Management Control Function (SMF): Is responsible for the 
establishment, the modification and the release of UE sessions, as well 
as the assignment of the IP addresses for each session. It also manages 
the UPF and interacts with the PCF to support charges. 

 

 Authentication Server Function (AUSF): Performs authentication 
processes with the UE towards the network. 
 

 Unified Data Management (UDM): Stores the long term security 
credentials used in authentication as well as the subscription information. 
The UDM also keeps track of the AMF and SMF serving each UE (in case 
there is more than one in the network). 
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 Application Function (AF): Requests dynamic policies and/or charging 
control. 

 

1.1.2.2. 5G Deployment modes 
 

For the 5G network architecture, 3GPP describes an LTE access support. 

Additionally, there are two different combinations of LTE and the 5G New Radio 

(NR) access: Non Stand Alone (NSA) and Stand Alone (SA) architectures.  
 

The SA setup contains only one Radio Access Technology (RAT), either LTE 

radio or 5G Next Generation NodeB (gNB). Both control and user planes go 

through the same RAN element. As shown in Figure 1.5, there are three different 

deployment options: 
 

 Option 1: EPC and 4G eNB. 
 

 Option 2: 5GC and 5G gNB. 
 

 Option 5: 5GC and 4G ng-eNB. 

  

The NSA setup combines multiple RATs. The control plane goes through a 

master node whereas the data plane is split across the master node and a 

secondary node. As shown in Figure 1.5 there are three different deployment 

options: 
 

 Option 3: EPC and 4G eNB master node plus 5G gNB secondary node. 
 

 Option 4: 5GC and 5G gNB master node plus 4G ng-eNB secondary 

node. 
 

 Option 7: 5GC and 4G ng-eNB master node plus 5G gNB secondary 

node. 

Figure 1.5: SA and NSA deployment modes. Image based from [13]. 
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The NSA architecture was designed to maximize the reuse of the 4G architecture 
to make the transition to 5G progressively. Table 1.1 summarizes the different 
options, remarking the 3GPP term and release of each case. 

 

Table 1.1: SA and NSA architectures comparison. 

 
Core 

Network 

Principal 

RAT 

Secondary 

RAT 

3GPP 

term 
3GPP release 

Option 1 EPC eNB - LTE Rel. 8 

Option 3 EPC eNB gNB EN-DC Rel. 15 Dec 2017 

Option 2 5GC gNB - NR Rel. 15 June 2018 

Option 4 5GC gNB ng-eNB NE-DC Rel. 15 March 2019 

Option 5 5GC ng-eNB - eLTE Rel. 15 June 2018 

Option 7 5GC ng-eNB gNB 
NGEN-

DC 
Rel. 15 March 2019 

 

1.1.3. Comparison between 4G and 5G 

 

Taking into consideration what has been explained and the comparison of both 
technologies in [6], the following conclusions have been achieved: 

 

 In contrast with 4G, 5G is designed to support a diversity of applications 
such as augmented reality, IoT, self-driving cars and immersive gaming. 
It offers the faculty to handle loads of many different types of traffic and a 
massive number of devices connected. 
 

 Compared to 4G networks, 5G decreases the latency in less than five 
milliseconds. Also, the mobility speed range of 5G against 4G increases 
and it is more energy efficient. 

 

 5G technology expands its frequency domain to a wider range than 4G.  
 

Table 1.2 shows a more detailed comparison between features of the 4G and 5G 
technologies. 

 

Table 1.2: Comparison between 4G and 5G technologies. 

Features 4G 5G 

Start From 2010 2016 

Ultra low latency 10 ms to 100 ms 1 ms to 4 ms 

Ultra high data rate 1.2 Gbps 10 - 100 Gbps 

Massive connectivity 2,000 devices/km2 1,000,000 devices/km2 

Ultra high mobility 350 km/h 500 km/h 

Ultra low energy 
consumption 

90% more than 5G 
Up to 10 year battery life for 

low power MTC 

Frequency domain 2 – 8 GHz 3 – 300 GHz 

Handover Horizontal and Vertical Horizontal and Vertical 

Core network All IP networks 
Flatter IP network, 5G 

network interfacing 

Multiple Access OFDMA OFDMA, BDMA 
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To sum up, due to the big differences with regards to throughput, architecture 
and latency, the integration of 4G and 5G is almost impossible. So, there must 
be a progressive transition from the current 4G to 5G. 

 

Most of the services that emerge with 5G networks demand very low latency that 
arise the need and demand of Edge and Multi-access Edge Computing (MEC). 
Authors of [14] and [15] show why MEC is a key solution to enable operators to 
open their networks to new services and IT ecosystems. Operators would take 
advantage of the edge-cloud benefits in their networks and systems. When MEC 
is located in proximity from the end user, it provides extremely low latency and 
high bandwidth. 

 

1.2. Network Virtualization 

 

Due to the recent exponential growth in the number of users and their demands 
and requirements, cellular network technologies have evolved greatly following 
these needs, trying to meet these necessities. 5G technology will have to confront 
many challenges related to being able to enable multiple use cases and multi-
vendor integration. Another goal of 5G networks is the ability to adapt in real time 
to dynamic changes in traffic and complexity of the network. This will translate 
into a more flexible network regarding service demands. To do so, many enablers 
have been proposed. One of them is network slicing, which allows the creation of 
different and separate logical networks over the same physical infrastructure. 
Furthermore, SDN and NFV represent an essential part. These last two are 
explained with more detail as background of this work. 
 

1.2.1. Software Defined Network 

 

Commonly, mobile networks are composed of two main planes, the control plane 
and the data (also called forwarding or user) plane, since the introduction of the 
Control User Plane Separation (CUPS) concept in Release 14 [11] of 3GPP. 

 

The control plane manages the necessary operations to assure connectivity in 
the network. Some of those operations could: be the identification of the overall 
network topology, the discovery of the shortest path between two nodes and to 
make decisions about the allocation of the traffic, to name a few. The data plane 
contains the messages generated by the users of the network, which should be 
transferred according to a defined policy. 
 

When traditional networks scale up, this approach of operation becomes very 
complex to manage. SDN technology was developed to grant the control plane 
the flexibility needed to support the traffic forwarding requirements of the data 
plane [9]. SDN is a dynamic architecture that guarantees an automation of the 
network. To do so, SDN is conceived around four aspects: 
 

 To separate the network control plane from the forwarding plane. This 
concept is also taken in 4G and 5G networks through the Control User 
Plane Separation concept described in 3GPP Release 14 [11]. This 
allows separating the Core Network (CN) functionalities into a control 
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plane and a user plane, which can be placed closer to the users and will 
be an essential enabler for MEC computing. Moreover, it allows the 
distribution and deployment of network functions on different nodes on 
demand. 

 

 To be able to set up new connections in a fast and agile procedure. 
 

 To provide the ability to respond rapidly to changes in the network 
conditions. 

 

 To make the connectivity services programmable using standardized 
Southbound APIs [16]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.6: Simplified SDN architecture. Image taken from [17]. 

 
By creating a physical separation between the network control plane and the 
forwarding plane, the network intelligence is removed from the hardware 
(forwarding equipment) and it is implemented into a logical instance called SDN 
controller. This translates into less complex elements in the forwarding plane. 
SDN controllers are now directly programmed through applications. The 
centralization of the intelligence into the control plane, provides a global view of 
the entire network. Also, this makes the management of the network highly agile 
and adaptable. Figure 1.6 shows a simplified representation of what has been 
explained. These concepts have been extended from the wired to the wireless 
domain and the same vision can be found in Wi-Fi and cellular networks by 
means of the deployment of Software-Defined RAN (SD-RAN) controllers such 
as 5G-EmPOWER [18], Odin [19], FlexRAN [20] or even one step beyond, 
through the vision promoted by the O-RAN Alliance, discussed in [21]. 
 

1.2.2. Network Function Virtualization 

 
As for SDN, the need to deliver network services faster and to replace the 
physical network devices performing such services, to one or more software 
programs executing network functions, while running on generic hardware has 
caused the appearance of the NFV. NFV implements a new way to abstract the 
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network functions. As the authors discussed in [22] and [23], NFV enables 
network functions to be created, managed, distributed and controlled by software 
in an agile way. 

Figure 1.7: ETSI NFV ref. architectural framework. Image taken from [23]. 

 
Figure 1.7 displays, the main components of the NFV architecture according to 
the ETSI NFV MANO reference architecture [23], which include: 

 

 Virtual Network Functions (VNFs): elements that provide part (or all) of 
the network services. It can be composed of many components known as 
VNF Components (VNFCs). Also, a VNF can be used in one or multiple 
virtual machines. 
 

 NFV Infrastructure (NFVI): aggregation of physical, virtual and software 
necessary resources, to build the scenario where the VNFs are deployed. 
Resources such as computing, storage or networking components are 
virtualized employing a hypervisor or a container system. 

 

 NFV Management and Orchestration (MANO): it is the module that 
performs the management and orchestration of both the infrastructure 
and all the VNFs that are deployed. It consists of (i) the Virtualized 
Infrastructure Manager (VIM), which allocates and handles the resources 
dedicated to each VNF; (ii) the VNF Manager (VNFM), which manages 
the lifecycle, the configuration, the performance and the security of the 
VNFs and (iii) the NFV Orchestrator (NFVO), which coordinates all the 
VNFMs and VIMs, as there can be more than one of each coexisting in 
the same system at the same time, to ensure proper operation. 
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1.2.3. NFV and SDN comparison 

 
Both NFV and SDN technologies are software-oriented solutions that are 
complementary but can be implemented separately. The NFV target is to facilitate 
flexible and scalable deployments of network functions in any data center. In 
contrast with that, the SDN target is the control of the packet transmission. It 
provides functionalities handling enormous quantities of traffic. Additionally, SDN 
separates the forwarding and the control plane, while NFV decouples functions 
from hardware. Besides that, a SDN controller can be executed as a VNF. Also, 
SDN makes the communication between VNFs more flexible and can 
concatenate VNFs in an automated way. On the other hand, NFV simplifies the 
management of SDN (due to the generalization of the network). 

 
In conclusion, both technologies are key enablers for the flexible deployment of 
5G networks as well as for the recent MEC-enabled systems, especially as 
communication networks continue becoming more agile and highly distributed 
systems in the road to cloud native networks. 
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2. CHAPTER 2. STATE OF THE ART OF VIRTUALIZED 
CELLULAR NETWORKS 

2.1. Cloud native architecture 
 

The cloud native architecture is a structure based on a series of patterns [24] that 
are constituted for applications and services, and specifically built for running in 
the cloud. Micro services are the core of this kind of architecture. Each one of 
them is created to execute a particular function (implementing, communicating, 
or running processes). Micro services are often packaged into containers. 
A container is a runnable instance of an image, that is a lightweight, standalone 
and executable package of software. This package includes everything needed 
to run an application: code, settings, system tools, system libraries, etc.   

 
An end-to-end application stack usually includes different technologies such 
as a web server (e.g., using node.js), a database (e.g., MongoDB), a 
messaging system (e.g., Kafka) and an orchestration tool (e.g., Jenkins). All 
these components must have compatibility not only with the underlying OS 
but also with the libraries and dependencies of the OS. Some incompatibility 
problems might occur when one service requires one version of a dependent 
library whereas another service requires another one. Also, each time an 
application changes, there might be a need to do a modification (i.e., upgrade) 
on the libraries or the dependencies and the precautions mentioned 
previously, must be taken into consideration. These compatibility issues can be 
observed in Figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Compatibility issues matrix in a traditional deployment. 

 
Every time a developer tries to set up the environment, a very long and 
tedious procedure has to be followed. They have to follow a large set of 
instructions and make sure they are using the right Operating System (OS) 
and the right versions of each of these components. This makes the launch 

https://www.sdxcentral.com/containers/definitions/what-are-containers-like-docker-linux-containers/
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of the environment very difficult for new developers. In this context, containers 
allow the modification of these components without affecting the other ones 
and even the modification of the underlying operating system as required. 
Furthermore, in a distributed scenario where one or more of the modules have 
any kind of problem, such as failing, the rest of the modules would keep 
working properly. Once those failing modules start working properly, the 
connection will resume.  
 
To be able to manage these container images, a cloud project infrastructure 
is needed. There are many options, such as: LXD [25], Windows Containers 
[26], Docker [27], etc. This particular project leverages Docker as a 
containerization tool. Moreover, besides the design and crafting of the 
applications, cloud native requires orchestration tools that enable the 
deployment of applications and containers. Despite the existence of several 
frameworks for this task (e.g., Docker swarm), this project studies the use of 
Kubernetes (K8s) that will be explained in the following sections. 

 

2.2. Virtualization Frameworks 

2.2.1. Docker 
 

Docker is an open-source project that automates the deployment of 
applications within software containers. A container is a standard unit of 
software that packages up code and all its dependencies so the application 
runs quickly and reliably decoupled from the underlying host infrastructure. 
By design, a container is immutable: the code cannot be modified after being 
run. Making changes in a containerized application, requires building a new 
container image that includes the changes. Once the modification is done, 
then the container has to be started from the updated image. A container 
image is a lightweight, standalone, executable package of software that 
includes everything needed to run an application.  

 

 

 

 

 

 

 

 
 
 
 
 
 

 

Figure 2.2: Overview of running Docker and some containers. 
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This containerization provides an additional layer of abstraction and an 
application virtualization automation across multiple operating systems. 
Figure 2.2 exhibits the overview of Docker and some containers running on 
top of the OS. Notice that the tools exposed in the figure are mere examples 
and other ones with similar capabilities could perform the same operations. 

 

2.2.2. Kubernetes 

 

Kubernetes (K8s) [28] is a portable, extensible and open-source container 
orchestrator. It is a platform that manages containerized workloads and services 
that facilitate the configuration and the automation. This lets the user run 
distributed systems in a resilient way, with scalability and failover for all the 
applications. 

 

2.2.2.1. Kubernetes Cluster 
 

Kubernetes is deployed in the form of a cluster, which consists of a set of worker 
machines, called nodes, that run containerized applications and are connected 
to work as a single unit.  A K8s cluster is formed out of two types of resources: (i) 
the Master node, which manages and coordinates the activity in the cluster and 
(ii) the worker nodes, where the applications run. To be considered a cluster, 
there must be at least a master and a worker node connected. The worker nodes 
can be Virtual Machines (VM) or physical devices that are used as worker 
machines in the cluster. 

 
The different node(s) host the Pods that contain the application workload. By the 
official Kubernetes definition, a Pod is “the smallest deployable unit of computing 
that you can create and manage in Kubernetes”. Additionally, a Pod is a group of 
one or more containers, with shared storage and network resources.  

 
Figure 2.3 shows the diagram of a Kubernetes cluster with all the components. 

Figure 2.3: Kubernetes cluster diagram. Image taken from [28]. 
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It is important to point out that the control plane manages all the worker nodes in 
the cluster and all the pods inside them. Usually, the control plane runs across 
multiple computers and the cluster runs multiple nodes, providing fault-tolerance 
and high availability. 

 

2.2.2.2. Cluster Networking 
 
Networking is a central and powerful part of Kubernetes, but usually there are 
four different networking problems that arise when the cluster is created: 

 

 The Container-to-Container communication, that is solved by 
Pods and localhost communications. 
 

 The Pod-to-Pod communications, that is solved by networks and 
services. 

 

 The Pod-to-Service communications, that is covered by services. 
 

 The External-to-Service communications, that is covered by services. 
 

A service is a way to expose an application running on a set of Pods as a network 
service. Kubernetes gives each service and Pod their own IP address and can 
load-balance across them. The difference in the address assignment is that Pods 
IP’s are dynamic and each time a Pod, for any reason, restarts, a new address is 
assigned. On the other hand, even if the Pod fails and restarts, the service that 
exposes the application keeps the same IP. 

 

Kubernetes requires that two applications do not try to use the same ports or a 
conflict will arise. Coordinating ports across multiple machines and developers is 
a very difficult task, even more so when the cluster scales up. Instead of 
dynamically create port allocation, Kubernetes imposes the following 
fundamental requirements: 

 

 Pods on a node can communicate with all the Pods on all nodes in the 
cluster without the need of a Network Address Translation (NAT). 
 

 Agents on a node (e.g. system daemons, kubelet) can communicate with 
all Pods on that node. 

 

This means that it is not required to create links between Pods and that the effort 
in mapping container ports to the host ports is minimal. From the perspective of 
load balancing, naming, configuration and port allocation, this helps the user to 
treat each Pod as a physical host. 
 

2.2.2.3. Container Network Interface 
 

The Container Network Interface (CNI) is a container networking specification 
[29] proposed by CoreOS and adopted by container runtimes such as Apache 

https://kubernetes.io/docs/concepts/workloads/pods/
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Mesos [30], Cloud Foundry [31] and Kubernetes. The CNI is a set of standards 
that define how programs should be developed to solve networking challenges in 
a container runtime environment. The programs are going to be referred to as 
plugins. CNI was created to be a simple interconnection between the container 
runtime and the network plugins as shown in Figure 2.4. It defines how the plugin 
should be developed and how the container runtime should invoke them. Also, it 
defines a set of responsibilities for container runtimes and plugins: 

 

 For container runtimes, the CNI specifies that they are responsible for: (i) 
creating a network namespace for each container; (ii) identifying the 
network the container must attach to; (iii) invoking the plugin when a 
container is created and also when it is deleted; and (iv) defining how to 
configure a network plugin in the container runtime environment using a 
JSON file. 
 

 For plugins, the CNI specifies that they must: (i) support command line 
arguments such as ADD/DEL/CHECK; (ii) accept parameters such as 
container id, network namespace, etc. (iii) take care of assigning IP 
addresses to the PODs and any associated routes required for the 
containers to reach other containers in the network; and (iv) return results 
in a specific format.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.4: CNI connection overview. Image based from [32]. 

 
CNI comes with a set of supported plugins, such as the ones in Figure 2.4. All 
the container runtimes mentioned before implement CNI standards so any of 
them can work with any of these supported plugins. There are also plugins 
created by third parties organizations such as Contiv Networking [33], Project 
Calico [34] and Weave [35]. In this Master Thesis Calico is going to be used 
because of its very detailed and useful documentation and due to, it is trusted by 
companies all over the world such as: L3Harris, Discover or AT&T. 
 

Docker does not implement CNI, it has its own set of standards known as 
Container Network Model (CNM). But, CNI can be used with Docker by creating 
a Docker container without any network configuration and then manually invoking 
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the bridge plugin yourself. By contrast, when K8s creates Docker containers, it 
creates them in a none network and then invokes the configuration CNI plugins 
who will take care of the rest of the configuration. 

 
2.3. Open-source 5G Frameworks 
 

Open-source frameworks are software for which the original source code has 
been made freely available and may be redistributed, modified or enhanced 
according to the user requirements. In this section, some open-source projects 
providing RAN and CN implementations are discussed.  

  

2.3.1. Radio Access Network 

 
The RAN is an essential part of a mobile telecommunication system. 
Conceptually, it is located between a remotely controlled machine and its CN to 
provide connectivity. Four main open-source RAN initiatives widely used in the 
research community are described below. 

 
2.3.1.1. Open Air Interface 5G Radio Access Network 

 
The scope of the Open Air Interface (OAI) 5G RAN project [36] is to build the 5G 
protocol stack for both the gNB and UE, allowing an end-to-end deployment of a 
5G network. The OAI RAN source code can be found at [37] 

 
Their first target is to develop a 5G Non-Stand Alone RAN software and enable 
connection and traffic flow through an NSA-capable 5G commercial UE. The OAI 
5G stack supports: (i) NSA gNB software stack; (ii) SA gNB software stack; (iii) 
5G UE software stack; (iv) RAN Intelligent Controller (RIC) interfaces; and (v) a 
Continuous Integration/Continuous Deployment (CI/CD) framework allowing for 
testing and data-center deployment of the 5G split architecture. 

 
The OAI 5G RAN project consists of three different phases attending to the 
availability of NSA and SA connectivity over the course of two years, starting the 
summer of 2020. Figure 2.5 displays a high-level view of those phases. 

 

 

 

 

 

 
 

 
Figure 2.5: OAI 5G RAN project phases. Image taken from [38]. 

https://en.wikipedia.org/wiki/Telecommunication
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2.3.1.2. srsLTE 
 
The srsLTE project has evolved and has been renamed Software Radio Systems 
RAN (srsRAN) [39]. srsRAN is a free and open-source 4G and 5G NSA software 
radio suite that features both the UE and eNB/gNB applications. It can be used 
with a third-party CN to build a complete end-to-end mobile wireless network. The 
srsRAN source code can be found at [40]. 

 
Currently, srsRAN includes: (i) srsUE, which is a full-stack 4G and 5G NSA UE 
application with a 5G SA version still under development; (ii) srsENB, which is a 
full-stack 4G eNB application with a 5G NSA and 5G SA version still under 
development. This solution is portable with x86, ARM and PowerPC platforms; 
and (iii) srsEPC, which is a light-weight 4G EPC implementation with MME, HSS 
and S/P-GW. 
 
The srsGNB is a full-stack software radio gNB solution for 5G NR Standalone, 
which is still under development and will be commercially available in Q2 2022. 
All srsRAN software runs in Linux with off-the-shelf compute and radio hardware.  
 

2.3.1.3. free5GRAN 
 
free5GRAN [41] is an open-source 5G RAN stack. It works in SA mode and the 
current version includes a receiver which decodes Master Information Block 
(MIB) and System Information Block#1 (SIB1) data. Moreover, free5GRAN acts 
as a cell scanner and it includes a library which can be reused for further 
developments. The free5GRAN source code can be found at [42].   
 
As 5G NSA uses 4G cell for attachment, SIB are transmitted on a 4G cell and 
this receiver cannot decode SIB1 data from 5G NSA mode. However, this 
receiver should be able to detect 5G NSA cells and decode MIB data. 

 

2.3.1.4. 5G-EmPOWER 
 

5G-EmPOWER [43] is an open-source framework that implements a SDN 
Platform for 5G RAN. Its flexible architecture provides an open ecosystem where 
new 5G services can be tested in realistic conditions. Figure 2.6 displays the 5G-
EmPOWER system architecture that is composed by the following components. 

 

 The empower-core, which is the core library used to develop the 5G-
EmPOWER controller. 
 

 The empower-runtime, which is the Python-based 5G-EmPOWER 
Controller. This allows network apps to control Wi-Fi APs and LTE eNB’s 
using either a representational state transfer (REST) API or a Python API. 

 

 The empower-enb-agent, which is the 5G-EmPOWER LTE agent library. 
This agent allows controlling the LTE eNB’s using the empower-runtime.  
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Figure 2.6: 5G-EmPOWER system architecture. Image taken from [44]. 

 

2.3.2. Core Network 

 
The CN is an essential part of any IT infrastructure. It is the central element of a 
network, which provides services and a path to exchange of information to 
customers who are connected by the access network.  
 

2.3.2.1. Open Air Interface 5G Core Network 
 

The scope of OAI 5G Core Network [45] project is to deliver a 3GPP compliant 
5G CN under the OAI Public License. In Figure 2.7 and marked in orange, are 
the developments in the sphere of the OAI 5G CN project, that covers all parts of 
the 5G core. The OAI 5G CN source code can be found at [46]. 

 
 

 
 
 
 
 
 
 
 

 

Figure 2.7: OAI 5G CN developments in the 5GC. Image taken from [47]. 
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As the OAI 5G RAN project, the OAI 5G CN project consists of three different 
phases over the course of two years, starting the summer of 2020: 
 

 Phase I: Consists on the basic deployment of AMF, SMF and UPF in 
Docker containers based on the Ubuntu bionic. 

 

 Phase II: Consists on continuous implementation of features and updates 
for the existing network components (AMF, SMF and UPF) and the 
addition of extra network components like UDM and AUSF. 

 

 Phase III: Consist on a full SA 5GC implementation and the deployment 
of a framework for a microservices-based architecture. This phase is still 
under development. 

 

2.3.2.2. Open5GS 
 
Open5GS [48] is a free and open-source initiative that contains a series of 
software components and network functions that implement the 4G/5G NSA and 
5G SA core functions. 
 

The Open5GS 4G/5G NSA core contains the following components: (i) MME; (ii) 
HSS; (iii) Policy and Charging Rules Function (PCRF); (iv) Serving Gateway 
Control Plane (SGWC); (v) Serving Gateway User Plane (SGWU); (vi) Packet 
Gateway Control Plane (PGWC) that is contained in Open5GS SMF; and (vii) 
Packet Gateway User Plane (PGWU) that is contained in Open5GS UPF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.8: Open5GS 4G/5G function representation. Image taken from [49]. 
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The core network has two main planes: the control plane and the user plane. 
These are physically separated in Open5GS as CUPS is implemented. Figure 
2.8 shows the interconnection of the components already mentioned and the 
separation between the main planes. 
 
In the control plane of this deployment, the MME is the main hub of the core. It 
primarily manages sessions, mobility, paging and bearers. It links to the HSS, 
which generates SIM authentication vectors and holds the subscriber profile. 
Additionally, it links to the SGWC and PGWC, which are the control planes of the 
gateway servers. Also, all the eNB’s are connected to the MME. The last element 
of the control plane is the PCRF, which sits in-between the PGWC and the HSS, 
and handles enforcing subscriber policies. 
 
On the other hand, the user plane carries user data packets between the 
eNB/NSA gNB and the external WAN. There are two core user plane components 
that are the SGWU and the PGWU. The eNB’s/NSA gNB’s connect to the SGWU, 
which connects to the PGWU, which connects to the WAN. The separation of the 
control and the user planes physically, allows the deployment of multiple user 
plane servers, while keeping the control functionality centralized. This enables 
support for MEC use cases. 

 
The 5G SA core contains the following functions: (i) AMF; (ii) SMF; (iii) UPF; (iv) 
AUSF; (v) NF Repository Function (NRF); (vi) UDM; (vii) Unified Data Repository 
(UDR); (viii) PCF; Network Slice Selection Function (NSSF); and (ix) Binding 
Support Function (BSF). 

 

The 5G SA core uses a SBA and SBI to interconnect its modules. As shown in 
Figure 2.8, in this scenario the control plane functions are configured to register 
with the NRF, and then, the NRF helps them discover the other core functions. 
Besides that, the AMF handles connection and mobility management. The UDM, 
AUSF and UDR carry out similar operations as the 4G HSS, generating SIM 
authentication vectors and holding the subscriber profile. The session 
management is managed by the SMF. Also, the NSSF provides a way to select 
the network slice. Finally, the PCF is used for enforcing subscriber policies. 
 
In this case, the 5G SA core user plane only contains one function, the UPF, 
which carries user data packets between the gNB and the external WAN. It 
connects back to the SMF too. 
 
All of the previous components have config files to help the users deploy their 
own setup. Each config file (with the exception of the SMF and the UPF) contains 
the component’s IP bind addresses/local interface names and the IP 
addresses/DNS names of the other components it needs to connect to. 

 

2.3.2.3. free5GC 
 
free5GC [50] is an open-source project for 5G mobile core networks. The main 
goal of this project is to implement the 5GC defined in 3GPP from Release 15 [9]. 
They have divided this task into three main stages. In the first one they migrated 
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from the 4G Evolved Packet Core to the 5GC Service-Based Architecture that 
supported NSA 5G. Then, in the second stage, they implemented the SA 5GC 
functions and features. And finally, in the last stage, which is still under 
development, their aim is to develop a fully operational 5GC. The free5GC source 
code can be found at [51]. 

2.4. Related work on virtualization tools for building 
distributed cellular networks 
 

This section describes some papers and projects found in the literature, which 
covers topics that are very similar or follow a common interest, as the one 
discussed in this Master Thesis.  

 
The virtualization and cloudification of the mobile network have been a hot 
research topic in the recent times, especially when it comes to highly distributed 
networking systems. In this respect, containerization has played a key role in this 
objective. The authors of [52] define this key step especially in what regards 
agility as: “The containerization seems to be the adequate approach to overcome 
the bottleneck caused by the Serving Gateway (SGW), as it could enable rapid 
deployment by scaling SGW instances based on workload”. Based on this idea, 
Figure 2.9 displays the cloudification of mobile network functions the authors 
defend, using Docker and twelve factors for enabling it. They also build a proof 
of concept of the scalability of SGW, comparing the performances of Kubernetes 
and Mesos-Marathon. The proof of concepts showed that a container-based 
approach is a viable option for achieving elasticity of future mobile networks. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.9: Cloudification design of mobile network. Image taken from [52]. 
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Furthermore, in [53] and [54] a review of the current NFV management solutions 
and a definition of the cloud native toolbox in the context of NFV is presented. It 
is exposed that NFV technology is a promising attempt to solve the increase in 
the demand of the vital requirements for bandwidth, latency, and quality of 
service. Then, authors of [53] introduce an implementation of an open source 
Cloud Native VNF API design over the top layer, 5GaaS. As an application of the 
proposed design, the authors define the principles and describe from a standard 
perspective the feasibility of the prototype. They mentioned that, as part of their 
future work, it should address the application of Kubernetes orchestration at the 
VIM layer and to update the CN-VNF framework with better support for the RAN 
API. In addition to that, in [54], a container-based design of a virtual evolved 
packet core, based on the OAI software package, is presented. They successfully 
containerized (and virtualized) the EPC component functions into two separate 
Docker containers: (i) the control plane container, for virtual home subscriber 
server and virtual mobility management entity; and (ii) the data plane container, 
for virtual serving and packet data network gateway. This paper also proposes 
an algorithm called Specifically Assigned Cores (SAC) to achieve a better 
utilization of CPU cores. Their preliminary results show that SAC outperforms the 
default scheme, Randomly Assigned Cores (RAC), in terms of lower CPU load 
and less packet loss. The authors point out the superiority of SAC over RAC is 
amplified with the traffic level. 
 
Moreover, two different sets of testbeds for cloud based 5G networks are 
analyzed in [55] and [56] to shape 5G technology as a flexible, scalable, and 
demand-oriented network. Paper [55] introduces a novel testbed called 5GIIK, 
which provides implementation, management, and orchestration across all 
network domains and different access technologies. 5GIIK is one of the most 
comprehensive testbeds because it provides additional features and capabilities 
such as slice provision dynamicity, real-time monitoring. On the other hand, 
authors of [56] display a 5G mobile network testbed with a virtualized and 
orchestrated structure using containers. It is focused on integration to artificial 
intelligence applications. The presented testbed uses open-source technologies 
to deploy and orchestrate the VNFs to flexibly create various mobile network 
scenarios. 
 
Furthermore, taking into consideration the virtualization of the RAN, two very 
interesting papers have been found in the literature.  The first one [57], aims to 
ease the integration of satellite components in forthcoming 5G systems 
(SatCloudRAN). Authors give special attention to the design, by considering the 
split and placement of virtualized and non-virtualized functions, while taking into 
account the characteristics of the transport links between both kinds of functions. 
They assess how virtualization and softwarization technologies, such as NFV and 
SDN can deliver part of the satellite gateway functionalities as virtual network 
functions and can achieve a flexible and programmable control and management 
of the satellite infrastructure. The authors of the second paper [58] focus their 
attention to the reduction of the handover in virtualized cloud RAN. They 
explained that in order to meet the challenging 5G capacity requirements, 
operators are densifying their cellular networks by deploying additional small cells 
to cover hot spots, and such an increase in the number and density of cells may 
result in excessive numbers of handovers. To avoid that, a handover reduction 
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mechanism is implemented in a Cloud Radio Access Network (CRAN). There, 
the digital unit of a conventional BS is separated from the radio unit and moved 
to the cloud for better mobility management and cost saving.  
 
Due to the importance of virtualized infrastructures on the achievement of the 
requirements of 5G networks and beyond, many research groups and projects in 
the literature focus their efforts, not only in the advancement of the containerized 
paradigm, but also to analyze the security and robustness of the available 
frameworks. In [59], the importance of a secure framework for virtualized 
networks is pointed out. They indicate the open research issues and future 
research directions of 5G security and trust in the context of virtualized 
networking and SDN. A framework of security and trust focusing on solving 5G 
network security issues is proposed. 
 
Finally, the Open-VERSO [60] project aims to achieve a generic hardware based 
platform, which will allow advanced networks to get deployed on demand. The 
platform is a computing environment designed to allow the hardware to operate 
on real time while being orchestrated from the cloud. It was created to 
demonstrate and evaluate the viability of an infrastructure based on the “Open 
RAN” concept and its integration in the cloud. Furthermore, it was conceived to 
demonstrate the viability and performance of key technologies for the evolution 
of networks beyond 5G. It has demonstrated the viability and performance of key 
technologies for the evolution of networks beyond 5G. 
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3. CHAPTER 3. RESEARCH WORK 
 
 

3.1. Introduction 
 

For the development of this Master Thesis the srsLTE and Open5GS solutions 
have been chosen to deploy the RAN and the core of our network respectively. 
Those open-source initiatives have been selected due to the features they have 
available and offer, that cover all the essentials of this deployment. Also, both 
solutions have a very active community behind them and a very updated, clear 
and detailed documentation, so in order to solve any kind of problem, there is 
plenty of information online.  
 

The final aim of this project is to set up a fully virtualized, containerized and 
distributed open-source-based network that can be deployed on different nodes, 
separating RAN and core network functions, or even the modules of the core 
network itself if required on a cellular network.  Based on this deployment, this 
work aims to analyze the performance of the network and the virtualized 
infrastructure when varying different network parameters. The road to fulfill this 
goal has been started with a first phase consisting on achieving connectivity in a 
baremetal deployment, using only one computer, with the aim of verifying that the 
basic deployment of the open-source modules behaves as expected. The second 
stage consisted in the deployment of the network using Kubernetes to automate 
the deployment and the management of the containers. This deployment has 
been performed in two different manners: (i) a single worker node cluster 
containing the RAN and the core network; and (ii) the separation of the core and 
RAN logic into two different worker nodes. Finally, this setup has been compared 
with existing projects following the same deployment using Docker containers, 
without a container orchestration platform [61].  

 

3.2. Baremetal Deployment 
 

This deployment has the most basic setup and it is composed of the next 
hardware components: (i) two computers with Ubuntu 20.04; (ii) an USRP B210 
[62] with USB 3.0 connected to the computer running srsLTE; (iii) a sysmoUSIM 
[63] and (iv) a HUAWEI LTE USB Stick [64]. Figure 3.1 exhibits the setup 
connected.  

 

 

 

 

 
 
 

 
Figure 3.1: Baremetal deployment setup. 
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3.2.1. Installing software and dependencies 
 

This section includes the installation of: (i) the Ettus driver to manage the USRP; 
(ii) the srsLTE software and dependencies for the RAN; and (iii) the Open5GS 
and Open5GS Web-UI software and dependencies, which will form the CN and 
the UE registration interface respectively. 

 
First of all, it is important to check if the computer recognizes the USRP. To do 
so, in the command terminal run:   

 
uhd_usrp_probe  

 
If the console output shows an error or no devices connected, a new command 
is needed to download Ettus driver, otherwise the connection was successful:  

 
./usr/lib/uhd/utils/uhd_images_downloader.py 

 
Then, the installation process of srsLTE and Open5Gs with all their dependencies 
can be followed in ANNEX I. 
 
Open5GS is composed of several modules besides the core functions, such as 
the Open5GS Web-UI and a MongoDB database. The database will be created 
with the Open5GS installation command. The Web-UI allows users to register 
and store the details of the SIM cards. In this Master Thesis, programmable 
sysmoISIM-SJA2 SIM cards, which has been properly programmed and 
configure beforehand using the pysim software package [65] with the card data 
supplied by the vendor. More information about this process can be found in [66]. 
The srsLTE source code can be found at [67] and the Open5GS source code at 
[49] 

  

3.2.2. Setup and configuration 
 

Once everything is properly connected, the order of setting srsLTE and Open5GS 
up is not vital, and it can be interchangeable. In this work, the configuration files 
of srsLTE are set up in the first place, as follows:  

 
~/.config/srsran/enb.conf 

 
To get access to that file, and edit the configuration file, the following commands 
must be executed: 
 

sudo -i 
nano ~/.config/srsran/enb.conf 
 
[enb] 
enb_id = 0x19B 
mcc = 001   ----> Put your MCC information 
mnc = 03    ----> Put your MNC information 
mme_addr = 127.0.1.100 
gtp_bind_addr = 127.0.1.1 
s1c_bind_addr = 127.0.1.1 
n_prb = 50   ---> Number of Physical Resource Blocks (PRB) assigned 
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The MCC and MNC codes are part of the IMSI of the SIM card. The IP addresses 
shown belong to the local domain, due to the deployment being done in one 
computer. The number of Physical Resource Blocks (PRB) used can be also 
configured. This value will change in the performance evaluation shown in the 
next Chapter. 
 
To configure Open5GS, some modifications have to be done in two different files. 
The first one is the file “mme.yaml”, that is stored in:  
 

/etc/open5gs/mme.yaml 
 
The changes to be done are: (i) set the S1AP IP address; (ii) set the Public Land 
Mobile Network ID (PLMN), which are the MCC and the MNC; and (iii) set the 
Tracking Area Code (TAC). Once it has been properly setup, the file should look 
like the following: 

 
mme: 
    s1ap: 
      - addr: 127.0.1.100 #mme_addr of the enb.conf file of the srsLTE  
    gtpc: 
      - addr: 127.0.0.2 
    gummei:  
      plmn_id: 
        mcc: 001  ----> Put your MCC information 
        mnc: 03   ----> Put your MNC information 
      mme_gid: 2 
      mme_code: 1 
    tai: 
      plmn_id: 
        mcc: 001  ----> Put your SIM information 
        mnc: 03   ----> Put your SIM information 
      tac: 7      ----> Put your Tracking Area Code 

 
The second file that has to be modified is the “sgwu.yaml” to set the GTP-U IP 
address. It is stored in:  
 

/etc/open5gs/sgwu.yaml 
 
It should look like the following: 

 
sgwu: 
    pfcp: 
      - addr: 127.0.0.6 
    gtpu: 
      - addr: 127.0.1.100  #mme_addr of the enb.conf file of the srsLTE 

 
After making those modifications in the previous config files, the Open5gs 
daemons must be restarted by running to make the changes effective: 
 

sudo systemctl restart open5gs-mmed 
sudo systemctl restart open5gs-sgwud 

 
Once both system services are restarted, the subscriber information (the SIM) 
has to be registered. To do so, the Web-UI can be access at 
“http://localhost:3000” with the following credentials: 
 

Username: admin 

Password: 1423 

Research work 
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To add a subscriber, some data is required: (i) the IMSI; (ii) the authentication 
key (K) and (iii) the derived operator code (OPc). To finish the registration, an 
APN has to be configured (name and type). Figure 3.2 displays a successful 
registration. 

 

 

 
 

 

Figure 3.2: Subscriber registered in the Web-UI. 

 
In order of the UE to have WAN connectivity, a route has to be added by 
enabling forwarding and adding a NAT rule: 
 

### Enable IPv4/IPv6 Forwarding 
 

sudo sysctl -w net.ipv4.ip_forward=1 
sudo sysctl -w net.ipv6.conf.all.forwarding=1 

 
### Add NAT Rule 

 

sudo iptables -t nat -A POSTROUTING -s 10.45.0.0/16 ! -o ogstun -
j MASQUERADE 

sudo ip6tables -t nat -A POSTROUTING -s 2001:230:cafe::/48 ! -o 
ogstun -j MASQUERADE 

 

It is very important to point out that these commands are not persistent, so 
they have to be reintroduced each time the computer is restarted. 

 

3.2.3. Get the deployment running 
 

As soon as all the configurations are finished, it is time to launch srsLTE (only 
srsLTE because the system services of Open5GS are already running, since they 
have been restarted in the setup section). To run srsENB, this statement must be 
typed in the command console: 

 
sudo srsenb 

 

To achieve connectivity in the UE, the SIM card can be introduced in a regular 
off-the-shelf phone or via a USB dongle. Then, a new APN has to be added by 
introducing the name and the apn (same as name), that corresponds to the one 
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registered in the Web-UI. Leave the remaining fields by default. At that moment, 
enable the APN and the UE gets connected, as shown in Figure 3.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: Baremetal connectivity achieved. 

 
Figure 3.3 depicts that the setup has been properly configured and that User 0x46 
has been registered correctly and it can connect to the internet without any 
problems. Notice that srsRAN uses the Radio Network Temporary Identifier 
(RNTI) as user identifier, which may change every time the user is disconnected.  
 
If for any reason there is a need to remove either Open5GS or the Web-UI 
packages, is possible to do it by running the following commands: 
 

sudo apt-get purge open5gs 
sudo apt-get autoremove 
sudo rm -Rf /var/log/open5gs 
curl -fsSL https://open5gs.org/open5gs/assets/webui/uninstall | 

sudo -E bash – 

 

3.2.4. Problems found 
 

Three main problems have been faced during this deployment, which are not 
completely documented in the project websites: 

  

 The incorrect selection of the mme_s1ap, sgwu_gtpu and 
enb_mme_addr IP addresses, due to using different local IP’s. This 
caused that the modules of each software could not find each other. This 
problem was solved by selecting the same IP address in all of the three. 
 

 Not taking into account that and the addition of the NAT rule and the port 
forwarding configuration were not persistent, so one day the deployment 
was working and the next one was not, without any modifications. 
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 The incorrect creation of the APN (not using the exact same name as the 
one in adding the subscriber), so as shown in Figure 3.4, the UE was not 
able to get connected. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.4: Failure on connectivity due to wrong APN. 
 

 

3.3. Kubernetes-based Deployment 
 

As mentioned in the introduction section, two different K8s setups have been 
deployed: a two nodes (master and a worker) setup and a three nodes (master 
and two workers) setup. Most of the steps taken to deploy and configure the K8s 
cluster are very similar, but there are a few differences between both 
deployments that are going to be explained. This deployment is composed of the 
following hardware components: (i) three/four computers with Ubuntu 20.04; (ii) 
an USRP B210 [63] with USB 3.0 connected to the computer; (iii) a HUAWEI LTE 
USB Stick [64]; (iv) a D-Link DGS 108 Switch [68] and (v) a sysmoUSIM [63]. 
Figure 3.5 shows both setups connected. In the two nodes deployment (blue) 
both srsLTE and Open5GS run in the worker node 1. On the other hand, in the 
three nodes setup (red), even if the Open5GS software still runs in the worker 
node 1, srsLTE is executed in the worker node 2. Take into consideration that the 
USRP must be connected to the node that deploys the RAN. The third node 
contains the master K8s node. 

Figure 3.5: Two and three nodes deployments. 
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3.3.1. Installing software and dependencies 
 
Before starting to set the K8s cluster, some modifications have to be made in all 
the nodes: (i) setting the computer hostnames; (ii) installing Docker; (iii) disabling 
swap and enabling IP forwarding; and (iv) installing kubectl, kubelet and 
kubeadm. This process can be followed in the ANNEX II. 
 

3.3.2. Kubernetes cluster setup 
 
For both cases, the setup and the configuration of the cluster is very similar. The 
only difference is that, instead of adding only one worker node, two worker nodes 
are added. 
 
Kubernetes uses the CNI to interact with networking providers like Calico. In this 
case, the Tigera operator is going to be used to install Calico. The operator 
provides lifecycle management for Calico exposed via the Kubernetes API. The 
process of setting up the K8s cluster can be followed in ANNEX III. 

 
3.3.3. Design and creation of the Docker images 
 
In order to deploy either the RAN or the CN in the K8s cluster, a Docker image 
containing the logic of each software is needed. Due to the existing images found 
in Docker Hub [69] (public repository for Docker images) were too specific, just 
defined for their own UE, new Docker images were needed. 

 
3.3.3.1. srsLTE Docker image 
 
After researching many Docker images to see how they faced different problems 
of networking I was having, it was decided to base the Docker image on an 
existing open-source project [70], that was solving most of them. In order to make 
the deployment work correctly for our scenario, some modifications and 
improvements were made: 

 

 Create a new config file to make the deployment configurable for any UE. 
Without this file, each time a new UE was required, (i) a new Docker 
image had to be built; or (ii) the corresponding pod had to be accessed to 
edit the UE configuration and restart the service, making any change less 
agile and flexible. 
 

 Update the “launcher.sh” and the “conf/enb.conf” files to include the 
configurable feature that the config file allows. This lets the user make the 
deployment for any particular UE. 

 

 Changed the Dockerfile, adding some commands to install all the 
dependencies needed that were not included before and to load all the 
files that the modifications mentioned previously required. 

 
This Docker image can be found at [71]. The content of all the files forming the 
srsLTE Docker image can be found in ANNEX IV: srsLTE. 
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3.3.3.2. Open5GS Docker image 
 

As in the previews case, after researching many Docker images to see how other 
initiatives proposed their solutions, the same repository as the one for srsRAN 
was used as reference for building the Open5GS image [72], because of the 
quality of his documentation and that the previous srsRAN Docker image was 
based in his other container. The modifications done are:  
 

 Create a new config file to make the deployment configurable for any UE, 
as in the srsLTE Docker image. 
 

 This deployment does not support IPv6 yet, so every line in all the 
modules that included this feature were commented. This is not 
mandatory for the image to work, but removes all the errors that used to 
appear on the console. 

 

 While deploying the original container, a problem of shared libraries 
arose. This problem was caused when more than one module of the 5GC 
tried to access the same resources at the same time. It was solved by 
adding the following command in the Dockerfile: 

 
RUN sh -c "echo /open5gs/install/lib/x86_64-linux-gnu > 

/etc/ld.so.conf.d/open5gs.conf 

 

This Docker image can be found at [73]. The content of all the files forming the 
Open5GS Docker image can be found in ANNEX IV: Open5GS. 
 

3.3.4. Design the descriptor file 
 

The descriptor file is in charge of deploying the different pods, services and 
containers needed for the proper functioning of the project. The file is divided 
below into manageable parts to be able to explain it in detail. 
 

kind: Pod 
metadata: 
    name: epc    #Name of the Pod 
    labels: 
        app: epc 
spec: 
    containers: 
    - name: open5gs   #Container Nº 1 
        image: javipalomares/open5gs:latest 
        env:    #Environmental variables 
        - name: mcc 
            value: "001" 
        - name: mnc 
            value: "03" 
        - name: tac 
            value: "7"   
        securityContext: 
            privileged: true 
    - name: open5gs-webui  #Container Nº 2 
        image: snslab/open5gs-webui:latest 
    - name: mongodb   #Container Nº 3 
        image: mongo 
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    - name: mongo-express  #Container Nº 4 
        image: mongo-express 
        env: 
        - name: ME_CONFIG_MONGODB_SERVER 
            value: "localhost" 
    nodeSelector: 
        IDname: kworker1      #Node label 

 
This part defines a pod labeled and called epc. This pod contains a total of four 
containers: 

 

 The first one is called open5gs. It is based on the last version of the 
Open5GS Docker image created and explained in the previous section 
(javipalomares/open5gs:latest). After that, the environmental variables to 
configure it (mcc, mnc and tac) must be instantiated. Then, to give the 
container root privileges, the securityContext is set to true. This gives the 
container access to all the ports and resources of the system. 
 

 The second container is called open5gs-webui. It is based on the last 
version of the Docker image taken as reference (snslab/open5gs-
webui:latest). This container holds the logic of the Open5GS Web-UI, 
where the subscribers are registered. No more declarations have to be 
introduced in this container. 
 

 The third and fourth containers are called mongodb and mongo-express 
respectively. They are based on the last versions of the Docker images of 
mongo and mongo-express. They are used to store the subscribers list 
and also, mongo-express lets the host view a graphical interface of the 
content of the mongo database. In the last one, a parameter has to be 
introduced to configure where the host can access the already mentioned 
interface, that is set to localhost. 

 

The last parameter that has to be introduced is the node in which this Pod has to 
be deployed. As mentioned at the beginning of this section, the CN logic is 
deployed at the worker-node1. To be able to make the assignment, the 
kubernetes-workers have to be labeled. This procedure will be explained in the 
next section. The kubernetes-worker1 is labeled kworker1 and through the 
nodeSelector the assignment is achieved. nodeSelector is a field that specifies 
the node in which the pod is chosen to run.  

 

The motive to define the four previous containers in the same Pod is to avoid 
networking problems between them.  

 

The next part defines another pod labeled and named srsenb. Inside of it, only 
one container, also called srsenb, is defined. It is based on the last version of 
the srsLTE Docker image created and explained in the previous section 
(javipalomares/srslte:latest). After that, the environmental variables to configure 
the container (enb_mcc, enb_mnc, enb_prb, empower_pod_addr) are 
instantiated. Then, as in the previous case, to give the container root privileges, 
the securityContext is set to true. As mentioned at the beginning of this section, 
the RAN logic is going to be deployed in the worker-node2. So, once the node is 
labeled kworker2, the pod is assigned to it.  
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kind: Pod 
metadata: 
    name: srsenb 
    labels: 
        app: srsenb 
spec: 
    containers: 
        - name: srsenb   #Container Nº1 
            image: javipalomares/srslte:latest 
            env:     #Environmental variables 
            - name: enb_mcc 
                value: "001" 
            - name: enb_mnc 
                value: "03" 
            - name: enb_id 
                value: "0x19B" 
            - name: enb_prb 
                value: "75"     
            - name: empower_pod_addr 
                value: "127.0.0.1" 
            securityContext: 
                privileged: true 
    nodeSelector: 
        IDname: kworker2  #Node label 

 
In the scenario of having only one worker node, the only thing that needs to be 
changed is to assign the core and the RAN containers to the label of your node 
and everything will be deployed in that node.  

  
The following part defines a service named epc-mongo-express-service that is 
connected to the pod called epc. As explained in Section 2.2.2, a service is an 
abstract way to expose an application running on a set of pods. The type of 
service is defined, in this case is NodePort, that is used to expose the service on 
each Node's IP at a static port. The port command exposes the K8s service on 
the specified port within the cluster. The targetPort indicates the port on which 
the service will send requests to. The port that is exposed is called web-ui, it is 
accessible in port 8081 and exposed externally in port 30000. The connecting 
protocol is TCP. This port gives access to the mongo express interface with the 
list of subscribers. 
 

kind: Service 
metadata: 
    name: epc-mongo-express-service 
spec: 
    selector: 
        app: epc    #Connect to this pod 
    type: NodePort   #Type of the service 
    ports: 
    - name: web-ui 
        protocol: TCP   #Connecting protocol 
        port: 8081    
        targetPort: 8081   #Exposed port 
        nodePort: 30000   #NodePort assigned static port 

 
Finally, the last part defines a service named epc-open5gs-webui-service that 
is connected to the pod called epc. The port exposed is called web-ui, it is 
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accessible in port 3000 and it is exposed externally in port 30001. The connecting 
protocol is TCP. This port gives access to the Open5GS Web-UI, where the 
subscribers have to be registered. 
 

kind: Service 
metadata: 
    name: epc-open5gs-webui-service 
spec: 
    selector: 
        app: epc    #Connect to this pod 
    type: NodePort   #Type of the service 
    ports: 
    - name: web-ui 
        protocol: TCP   #Connecting protocol 
        port: 3000 
        targetPort: 3000   #Exposed port 
        nodePort: 30001   #NodePort assigned static port 

 

The complete descriptor file can be found in ANNEX V: Descriptor file. 
 
 
3.3.5. Get the deployment running 
 

Once the setup is properly physically connected and set up as explained in 
Section 3.3.1 and Section 3.3.2, it is time to label each worker node in orderto 
assign the pods described in the descriptor file. To do so, the following commands 
must be run in the master console: 

 
kubectl label nodes kubernetes-worker1 IDname=kworker1 
kubectl label nodes kubernetes-worker2 IDname=kworker2 

 
After that, the descriptor file to deploy the containers and services can be 
launched by introducing the following command: 

 
kubectl apply –f K8s_deployment.yaml 

Figure 3.6: Output of the launched descriptor. 

 
Figure 3.6 shows the pods and the services have been properly created. Then, it 
can be accessing from the master web browser by typing type <IP>:3000. The 
value of IP can be got by running any of the next commands: 

 
kubectl get pods -o wide   or   kubectl get service 

 
When using the first command, the IP address of a pod called epc has to be 
retrieved. On the other hand, when using the second command, the IP of the 
service named epc-open5gs-webui-service must be checked. Both IP 
addresses redirect the user to the Open5GS Web-UI web page. The usage of the 
second option is recommended due to its persistence against pod failure. 
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To register the UE in the Open5GS Web-UI, the same steps as in Section 3.2.2 
have to be followed, but using the <IP>:3000 instead of localhost:3000. Once the 
subscriber is added, the APN can be activated and the UE connected. To check 
that everything has been connected properly the following commands can be 
used: 

 

 To get the logs of the Open5GS software, the following steps can be taken 
as a reference: 
 
kubectl log epc open5gs 

 
Figure 3.7 shows that the MME service has been initiated and connected through 
the port 36412 of the S1-MME. Furthermore, it displays that the eNB-S1 
connection is accepted and added. Also, the UE is detected and connected, and 
the number of MME-sessions is increased to 1. 

 

Figure 3.7: Open5GS MME console output. 

 
Figure 3.8 displays that the SGW-U service has been initiated and connected 
through the port 2152 of the S1-U. Furthermore, PFCP is associated, and the 
number of SGWU-sessions is increased to 1. 

Figure 3.8: Open5GS SGW-U console output. 
 

Figure 3.9 depicts that the SGW-C service has been initiated and connected 
through the port 2123. Also, PFCP is associated, and the number of SGWC-
sessions is increased to 1. 
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Figure 3.9: Open5GS SGW-C console output. 
 
 

 To get the logs of the srsLTE software: 
 

kubectl log srsenb 

 
Figure 3.10 displays that the eNB has been properly configured and that the User 
0x46 has been registered correctly and it can connect to the internet without any 
problems.  

Figure 3.10: srsLTE eNB console output. 
 

 

The ports shown in, Figure 3.8 and Figure 3.9 are the same ports used to 
interconnect the Open5GS 5G NSA architecture shown in Figure 2.8. Adding that 
to the connectivity achievement, it can be stated that the setup has been 
deployed correctly. 

 

3.3.6. Problems found  
 

Four main problems have been faced during this deployment: 
 

 While deploying the Open5GS CN container, an error of shared libraries 
arose and it was solved as explained in Section 3.3.3.2. 
 

 The assignation of IPs done by the switch to the nodes is not permanent 
so, in various occasions, the cluster stopped working because the 
addresses had changed and the cluster had to be deployed all over again. 
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It only happened once, so the solution was to deploy the cluster again 
with the new addresses by adding them to the “etc/hosts” file as explained 
in Section 3.3.1. 

 

 Due to the fact that the nodes that compose the cluster are physically 
connected to the switch, sometimes they got disconnected from it and the 
deployment stopped functioning even if the pods seem to be in a 
“Running” status. This behavior can be observed in Figure 3.11. If the 
disconnection was brief, the Calico services and pods that controlled the 
networking between nodes could get restarted automatically. If the 
disconnection occurred overnight, the only solution that was found was to 
remove and recreate the previous processes manually. 

 

 Networking problems such as no connection between the containers on 
different pods (srsLTE and Open5GS) appeared. The creation of K8s 
services was necessary to expose the necessary ports for the pods to see 
connect correctly. 

 
 

 

 

Figure 3.11: Calico pod running error. 

 
3.4. Docker-based Deployment 
 
In order to compare the behavior of Docker containers and analyze the 
performance of other existing open-source projects, a Docker-based project is 
selected for deployment and analysis [61]. This section deploys a single node 
setup using an existing Docker project and the following hardware components: 
(i) two computers with Ubuntu 20.04; (ii) an USRP B210 [62] with USB 3.0 
connected to the computer that deploys the RAN; (iii) a sysmoUSIM [63]; and (iv) 
a HUAWEI LTE USB Stick [64]. displays the setup connected. 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3.12: Docker deployment setup. 
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3.4.1. Installing software and dependencies 
 

In this setup, there are two mandatory software requirements: (i) docker-ce and 
(ii) docker-compose. To install them, the following commands are required: 
 

sudo apt-get update 
sudo apt-get install docker-ce docker-ce-cli containerd.io 
sudo apt-get install docker-compose 

 
After that, the repository can be cloned to build the base Docker image of 
Open5GS: 

 
git clone https://github.com/herlesupreeth/docker_open5gs 
cd docker_open5gs/base 
docker build -t docker_open5gs . 
 

cd ../ims_base 
docker build -t docker_kamailio . 

 

3.4.2. Setup and configuration 
 
To properly configure the network, the following parameters in the “.env” file for 
the particular scenario must be edited: 
 

MCC  --> First three digits of the IMSI of the SIM card. 
MNC  --> Next two digits after the MCC of your IMSI. 
DOCKER_HOST_IP --> IP address of the host running the Docker 

setup. 
SGWU_ADVERTISE_IP --> Change this value to the DOCKER_HOST_IP only 

if the eNB is not running in the same host. 
UPF_ADVERTISE_IP --> Like the SGWU_ADVERTISE_IP, change this value 

to the DOCKER_HOST_IP only if the eNB is not running in the same host. 

 
Furthermore, the TAC parameter in the “srslte/rr.conf” file must be edited to match 
the corresponding Tracing Area Code (TAC). Also, If the eNB is not running in 
the same host as the CN, the additional steps are required: 
 

Under the “mme” section in the nsa-deploy.yaml file, uncomment the 
following part: 

 

    # ports: 
    #   - "36412:36412/sctp" 
 
Under the “amf” section in the nsa-deploy.yaml file, uncomment the 

following part: 
 

    # ports: 
    #   - "38412:38412/sctp" 
 
Under the “sgwu” section in the nsa-deploy.yaml file, uncomment 

the following part: 
 

    # ports: 
    #   - "2152:2152/udp" 

 

These ports have to be exposed in order to assure there is connectivity between 
the modules of the Open5GS core, as shown in Figure 2.8. 
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On the other hand, If the eNB is not running in the same host as the CN, make 
sure that the host running the eNB has the static route to the SGWU container or 
the UE will not find the core. It can be added by running: 

 
ip r add <SGWU_CONTAINER_IP> via <SGWU_ADVERTISE_IP> 

 

3.4.3. Get the deployment running 
 

Once the previous modifications have been made, the following commands are 
of guide to deploy the network. Notice that it is needed to run the core and the 
RAN commands in separate terminals: 
 

cd .. 
set -a 
source .env 
 

#Build and run the Open5GS NSA network in terminal 1 
sudo docker-compose build 
sudo docker-compose -f nsa-deploy.yaml up 
 

# Build and run srsRAN eNB in terminal 2 
sudo docker-compose -f srsenb.yaml build 
sudo docker-compose -f srsenb.yaml up -d && sudo docker attach 

srsenb 

 

This creates a Docker container for each of the modules that are part of the 
Open5GS CN (amf, ausf, hss, mme, sgwu, sgwc, etc.) and one for the srsenb. 
This can be checked by running: 

 
sudo docker ps 

 

To register the UE in the Open5GS Web-UI, the same steps as in Section 3.2.2 
have to be followed, but using the <DOCKER_HOST_IP>:3000 instead of 
localhost:3000. Once the subscriber is added, the UE can be connected and the 
APN activated. Figure 3.13 shows the output of the srsenb running command. 
Even though the UE achieves constant internet connectivity, it connects and 
disconnects continuously from the network. For now, it is a valid solution, but this 
will represent a problem in the network evaluation of the next chapter. This issue 
has been reported to the maintainers of the project. 

 

 

 

 

 

 

 

 

  

Figure 3.13: Intermittent connectivity achieved with Docker.  
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4. CHAPTER 4. PERFORMANCE EVALUATION AND 
ACHIEVED RESULTS 

 

4.1. Methodology 
 

This chapter will be focusing on an analysis of the resources performance of the 
three deployments, taking special attention to the results achieved in the fully 
virtualized open-source-based network. The setup utilized for the baremetal, 
Kubernetes and Docker deployments are represented in Figure 3.1, Figure 3.5 
and Figure 3.12, respectively. The specifications of the computers used in all the 
scenarios are: an Intel Core i7-6500 2,5GHz processor with 16 GB of RAM. Table 
4.1 summarizes a set of experiments that are going to be carried out for each 
deployment. It also specifies the aimed measurement and the parameters that 
will be changed for each case. 
  

Table 4.1: List of the experiments with their parameters. 

# Experiment # PRBs Distances (m) BW (Mbps) Measurement 

1 25 [1, ..., 20] [1, ..., 150] Throughput 

2 50 [1, ..., 20] [1, ..., 150] Throughput 

3 75 [1, ..., 20] [1, ..., 150] Throughput 

4 25, 50, 75 1 [1, ..., 150] Throughput 

5 25, 50, 75 3 [1, ..., 150] Throughput 

6 25, 50, 75 6 [1, ..., 150] Throughput 

7 25, 50, 75 10 [1, ..., 150] Throughput 

8 25, 50, 75 15 [1, ..., 150] Throughput 

9 25, 50, 75 20 [1, ..., 150] Throughput 

10 25, 50, 75 1, 3 1 Resources 

11 25, 50, 75 1, 6 25 Resources 

12 25, 50, 75 1 50 Resources 

13 25, 50, 75 1 75 Resources 

14 25, 50, 75 1 100 Resources 

15 25, 50, 75 1 150 Resources 

16 50 1 100 Time to restart 

17 75 3 75 Time to restart 

 
The tests have been carried out using the IPERF3 [74] software, which is a tool 
that allows generating data streams for both Transport Control Protocol (TCP) 
and User Datagram Protocol (UDP), to measure network performance. For the 
evaluation of the deployments, only UDP streams are going to be used, to be 
able to change the transmission speed parameter. 
 

In the deployed networks, the IPERF3 software has to be installed on both 
terminals: the UE and the node that deploys the eNB. A phone is being used as 
UE and acts as an IPERF3 client and the eNB acts as the server. In order to do 
so, run the following commands: 

 

#Server: 
 

iperf3 -s -B 192.168.11.194 -p 5000 -i 0.25 > n_15mPRB50.txt 

Performance evaluation and achieved results 
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#Client: 
 

-u –c 192.168.11.194 –t 60 –i 0.25 -4 –p 5000 –O 1 –b 25M 

 

The meaning of the flags of the server command are: (i) the “s” indicates that 
IPERF3 is going to be used as a server; (ii) the “B” is followed by the IP address 
of the server; (iii) the “p” represents the port that the server is going to be exposed; 
and (iv) the “i” represents the granularity of the measurements (the unit is the 
second). The last parameter indicates the name of the file where the data is going 
to be stored. For the sake of this work and to make it easier for the future 
managing and analysis of the data, the next structure has been followed:  

 

“n_distancePRBNumberofPRB.txt” ---> n_15mPRB50.txt 
  

The meaning of the flags of the client command are: (i) the “u” indicates UDP 
data streams are going to be used; (ii) the “c” shows that IPERF3 is going to be 
used as a client and it is followed by the IP address of the server; (iii) the “t” 
represents the number of measurements of the transmission; (iv) the “i” 
represents the granularity of the measurements (the unit is the second); (v) the 
“4” indicates that iPv4 addresses are going to be used; (vi) the “p” represents the 
port that the client is going to be accessing; (vii) the “O” indicates the number of 
initial seconds that are going to be omitted, to avoid inaccuracies related to the 
setting up of the connection (is a real connection and it can’t change the state 
instantly); and (viii) the “b” represents the speed of the transmitted data. 

 

To acquire the computational resources utilized by each module of Open5GS and 
srsLTE, a different command had to be run in each of the deployments: 
 

 For the Baremetal deployment, the following command saves in the “top-
5iterations.txt” file, five iterations of the system resources: 

 

top -b -n 5 > top-5iterations.txt 

 For the Docker and K8s deployments, the following command saves each 
second the system resources in the “resources.txt” file: 
 

sudo docker stats > resources.txt 

 

The measurements have been executed five times, to provide better accuracy to 
the evaluation and to show the confidence interval at 95%, in each of the following 
scenarios: 
 

 Different deployments: Baremetal, Docker, two nodes Kubernetes and 
three nodes Kubernetes. 
 

 Number of PRBs on the eNB: 25, 50 and 75. 
 

 Distances of the UE form the RAN: 1m, 3m, 6m, 10m, 15m and 20m. 
 

 Transmission speed of the packet streams: 1Mbps, 25Mbps, 50Mbps, 
75Mbps, 100Mbps and 150Mbps. 

 

𝑁𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = 5 ∗ 4 ∗ 3 ∗ 6 ∗ 6 = 2160         𝑁𝑙𝑖𝑛𝑒𝑠 𝑜𝑓 𝑑𝑎𝑡𝑎 = 2160 ∗ 60 = 129600  

 
Furthermore, in addition to the previous number, other measurements have been 
made to test the resource usage and the relaunch time of the system, when 
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(a) Results with 25PRB and 1m. (b) Results with 50PRB and 6m. 

(a) 1Mbps Docker temporal response. (b) 1Mbps K8s temporal response. 

forcing failure in a part of the deployment. Over 2300 measurements and 130000 
lines of data have been obtained in total. In order to extract evaluations and 
comparisons of the raw data, some cleaning scripts have been necessary. This 
code is shown in the ANNEX VI. Also the scripts used to plot the results can be 
found in that annex. 

 

4.2. Results discussion 
 

Before discussing the obtained results, it is necessary to indicate a few things. 
The first one is that, due to the similarity of the data gathered from the two-node 
K8s and the three-node K8s deployments, only the three nodes setup results will 
be shown due to space constraints in this document. These similarities can be 
appreciated as an example in Figure 4.1, where it is shown the throughput 
comparison of both setups, for two different set of conditions (distance an number 
of PRB).  
 

  
 

 

Figure 4.1: Results comparison between two and three nodes in K8s. 

 

 

 

Figure 4.2: Comparison between the temporal response of Docker and K8s. 

 

The second point to take into account is that, as mentioned in Section 3.4.3, the 
Docker deployment used to compare with the Kubernetes setup designed in this 
Master Thesis, has an error, which makes the UE get connected and 
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(a) Baremetal 25PRB. (b) Baremetal 50PRB. (c) Baremetal 75PRB. 

(a) Local 25PRB. (a) Local 50PRB. (a) Local 75PRB. 

(a) K8s 25PRB. (b) K8s 50PRB. (c) K8s 75PRB. 

(a) Docker 25PRB. (b) Docker 50PRB. (c) Docker 75PRB. 

Figure 4.5: Docker throughput comparison at diff. distances with each PRB. 

disconnected continuously. This makes the average throughput of the Docker 
setup decrease in comparison with the baseline case. This behavior can be 
clearly seen in Figure 4.2, that compares the temporal response of the Docker 
and the Kubernetes deployment while injecting a bandwidth of 1 Mbps. 

 

4.2.1. Measuring throughput 
 

In experiments 1 to 9 the average throughput has been measured using the 
values that IPERF3 provides at the end of each test. It automatically averages 
the throughput of the whole connection. Experiments 1, 2, and 3 compare the 
effects of distance and number of PRB in the output, on each deployment, as 
shown in Figure 4.3, Figure 4.4 and Figure 4.5, respectively.  
 

 
 

Figure 4.3: Baremetal throughput comparison at diff. distances with each PRB. 

 

 
 

Figure 4.4: K8s throughput comparison at different distances with each PRB. 
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(a) 1m throughput comparison. (b) 3m throughput comparison. 

(c) 6m throughput comparison. (d) 10m throughput comparison. 

(e) 15m throughput comparison. (f) 20m throughput comparison. 

Figure 4.6: Comparison between deployments and PRBs at diff. distances. 

By analyzing the results, it is readily observed in Figure 4.4, the impact that the 
parameters distance and number of PRB have in the throughput of the 
Kubernetes deployment. As it could be deduced, the more resources are 
allocated (higher number of PRB), the better throughput is obtained. On the other 
hand, it is noticed that the longer the distance between the UE and the RAN, the 
lower the throughput. Furthermore, in longer distances, the confidence interval at 
95% gets increased. This means that the value of the throughput fluctuates more 
with regard of the average. These behaviors are due to interferences and free 
space losses. As displayed in Figure 4.3 and, the other deployments follow the 
same tendencies as the ones commented in the K8s deployment. 
 

Moreover, in experiments 4 to 9 the average throughput of the three deployments 
is tested using distance as the comparing factor. 
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(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth. 

(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth. 

Figure 4.7: Comparison of baremetal CPU resources at different bandwidths. 

Figure 4.6 displays six subfigures that represent a summary of the average 
throughput in all the deployments, while changing the value of the parameter 
number of PRB, at different distances. Furthermore, the tendencies obtained in 
experiments 1 to 3 are observed as well, such as the impact of: (i) the number of 
PRB; and (ii) the distance between UE and RAN. This method of representing 
the information provides more trends in the results. By evaluating the gathered 
data from the K8s deployment against the rest of the setups, the first tendency 
that can be clearly appreciated in any of the subfigures, is different levels of 
achieved throughput. Comparing it to the baremetal setup, there is no actual 
improvement on the throughput. Their tendencies and values are very similar. In 
contrast with that, the achieved throughput compared with the Docker 
deployment, is much higher. This is due to the previously mentioned connectivity 
error. The difference becomes more obvious as the value of the number of PRB 
and distance increases. On the other hand, the Docker deployment has higher 
throughput at sorter areas, in the range of 0 to 25 Mbps of injected bandwidth. 
Lastly, as in the previous experiments, Figure 4.6 (f) shows how the fluctuation 
of the throughput with regard of the average, increases at larger distances (values 
of the 95% confidence interval are larger). 

 

4.2.2. Measuring resource consumption 
 

In experiments 10 to 15 the computational resources utilized by each module of 
Open5GS and srsLTE has been measured. Mainly, these experiments aim to 
compare the impact of the injected bandwidth and the number of PRB in the 
resources utilized on each deployment. Finally, some of the measurements have 
been repeated at different distances, to check their impact on the resources. 
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(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth. 

(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth. 

(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth. 

(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth. 

  

 

 
 

Figure 4.8: Comparison of K8s CPU resources at different bandwidths. 

 

 

 

 

 
Figure 4.9: Comparison of Docker CPU resources at different bandwidths. 
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(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth. 

(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth. 

Figure 4.10: Comparison of baremetal MEM resources at diff. bandwidths. 

Figure 4.7, Figure 4.8 and Figure 4.9 show the usage of CPU resources of the 
baremetal, the Kubernetes and the Docker deployments respectively, at four 
different injected bandwidths. After evaluating the results, the following 
conclusions have been achieved in the K8s deployment: 

 

 The “srsenb” module requires much more resources than all the other 
modules combined, reaching almost the 60% of the CPU capacity at high 
injected bandwidths. This tendency is replicated in the rest of the setups. 
 

 The number of PRB has a slight impact on the resources of the “srsenb” 
module and almost no repercussion in the rest of the elements. This 
behavior is repeated in the baremetal deployment, but not in the Docker 
setup. Figure 4.9 shows that, at higher injected bandwidths the impact of 
the number of PRB on the core modules is noticeable.   

 

 The parameter that has the biggest impact in the used resources of all the 
modules, is the injected bandwidth. The higher it gets, the more resources 
are needed. This tendency is also replicated in the rest of the setups. 

 

 The “epc” pod contains all the core functions and as it was expected, it 
consumes as much as all the baremetal and Docker contributions of the 
CN functions added together. Globally, under the same conditions, the 
same percentage of CPU is used in the three deployments.  

 
The usage of the memory resources of the baremetal, the Kubernetes and the 
Docker deployments, at four different injected bandwidths, has been measured 
and are shown in Figure 4.10, Figure 4.11 and Figure 4.12 respectively. 

 

 

 

 

 



State of the art of virtualized cellular networks   51 

(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth. 

(c) 100Mbps of injected bandwidth. (d) 150Mbps of injected bandwidth. 

(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth. 

(a) 1Mbps of injected bandwidth. (b) 25Mbps of injected bandwidth. 

 

 

 

 

Figure 4.11: Comparison of K8s MEM resources at different bandwidths. 

 

  

 

  

 
Figure 4.12: Comparison of Docker MEM resources at different bandwidths. 
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(a) 1Mbps of injected 
bandwidth at 1m. 

(b) 1Mbps of injected 
bandwidth at 3m. 

(a) 25Mbps of injected 
bandwidth at 1m. 

(b) 25Mbps of injected 
bandwidth at 6m. 

In contrast with the results achieved in the CPU resources experiments, 
the memory usage is more related to the number of PRB than to the injected 
bandwidth. Furthermore, the magnitude of the “srsenb” module is no longer 
dominant in terms of memory usage, even though it still has the biggest 
contribution. Finally, the K8s deployments is the most memory consuming of the 
three deployments by 4% in average, due to the memory cost of the deployment 
of the Kubernetes cluster. This extra 4% can be considered negligible when 
comparing it to the flexibility and ease to deploy that the K8s setup provides. 
Moreover, this effect is visible because there is no memory allocation on demand 
and all the modules are always working. A future line of work is to implement it 
and test the energy efficiency of the deployment.  
 

To prove that the distance between the RAN and the UE does not affect either 
the CPU or the memory recourses, the same experiment has been executed at 
different distances locking the rest of the parameters in the K8s deployment. 
Figure 4.13 and Figure 4.14 show that the distance between the UE and the RAN 
does not alter the usage of the system resources.  

    

 

 

 

Figure 4.13: Comparison of K8s MEM resources at different distances. 

 

 

 

 

Figure 4.14: Comparison of K8s CPU resources at different distances.  
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4.2.3. Measuring forced reconnecting time 
 

The aim of experiments 16 and 17 is to observe how the system responds to a 
failure in any of its modules and if it is capable of solving that error and keep 
functioning. This is especially relevant in distributed environments where a virtual 
network function can suffer some temporary unavailability. These experiments 
aim to measure the time to reestablish the connection in those cases where the 
modules are able to reconnect after a failure. To do so, some of the CN modules 
have been forced to failed. 
 
Figure 4.15 presents the reconnecting attempts of the Kubernetes deployment. If 
any of the modules that are related to the registration and storage of the UE fails, 
the system cannot regain connectivity. This behavior can be observed in the 
attempts 2 and 5 of Figure 4.15. This is due to the K8s descriptor file did not 
include volumes to storage the sensible information of the UE and once one of 
these modules fails, the information gets lost. Kubernetes restarts the container 
with a clean state. A volume is a directory on disk or in another container that 
storages information. A future line of work consists on implementing these 
volumes in the deployment file, to prevent this from happening again. Otherwise, 
two different times of reconnection can be observed: t and t+10. This is due to 
the working mode of the “srsenb” module. If the connection is lost, this module 
tries to reconnect every ten seconds, and repeats a reconnection attempt in case 
of failure. 
 

 

Figure 4.15: K8s forced reconnection time. 

 
Figure 4.16 displays the attempts of making the baremetal system fail. All of them 
were solved and the reconnection was achieved. Two different times of 
reconnection can be observed in Figure 4.16: t’ and t’+10. This is due to the 
already mentioned behavior of the “srsenb” module. The reconnection is always 
achieved due to all the modules that form the baremetal deployment are daemons 
that relaunch each time they fail. Otherwise, these modules and the entire 
network would have stayed down.  
 

t ≈ 6.5 sec 

t + 10 
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Figure 4.16: Baremetal forced reconnection time. 

 

The response of the Docker deployment is very similar to the previous one. In 
this occasion, instead of been daemons, each module forming the CN and the 
RAN are Docker containers, which restart every time they fail. The same structure 
of time reconnecting can be observed in Figure 4.17. 
 

 

 
Figure 4.17: Docker forced reconnection time. 

 

 

By comparing the reconnection time t, t’ and t’’ of Figure 4.15, Figure 4.16 and 
Figure 4.17 respectively, some differences on the waiting time until reconnection 
can be observed. Ordering the deployments from slowest to fastest: baremetal 
(8 seconds), Docker (7 seconds) and Kubernetes (6.5 seconds). This result can 
be explained due the last two are containerized and virtualized deployments. 
Moreover, K8s is the fastest ought to the Calico networking controller.    
  
Lastly, the reconnection time has been measured at different distances, number 
of PRB and injected bandwidth, but any of those parameters affect the 
reconnection time.    

t' ≈ 8 sec 

t' + 10 

t'’ ≈ 7 sec 

t’’ + 10 
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CONCLUSIONS AND FUTURE WORKS 

 
5.1. Conclusions of the work 

As explained in the objectives section, the aim of this project has been to set up 
a fully virtualized, containerized and distributed open-source-based network that 
can be deployed on different nodes, separating RAN and core network functions 
on different nodes. This work has analyzed the performance of the network and 
the virtualized infrastructure while varying different network parameters and 
perform a comparison with a state-of-the-art deployment based on Docker tools. 
To this purpose, this Master thesis was divided in different phases. Firstly, to 
achieve connectivity in a baremetal deployment, to verify the behavior of the 
open-source modules in a basic deployment. The second stage consisted on the 
design of the descriptors and containers required for the deployment of the 
network using Kubernetes in order to automate the deployment and the 
management of the aforementioned containers. Lastly, the K8s setup has been 
compared with existing state-of-the-art projects following the same deployment 
using Docker containers, without a container orchestration platform. 

As is natural, some problems have been faced in the understanding and 
deploying of some of the software and hardware equipment, but after consulting 
related works and documentation, all the problems were resolved satisfactorily. 
Due to this project aims to explain the operation of each of the already mentioned 
deployments, a section dedicated to these problems has been added to every 
setup. 

 
From the representation of the data in the section results discussion, some 
conclusions have been achieved: 
 

 The module “srsenb” of the RAN consumes the most memory and CPU 
resources on every deployment. 
 

 The number of PRB has a direct impact on the system throughput. The 
more PRB are allocated, the higher the throughput. Moreover, the usage 
of memory resources is more related to the number of PRB, but the usage 
of CPU resources is more related to injected bandwidth. 
 

 On average, the same percentage of CPU is used in the three 
deployments. But the K8s deployment has a 4% more usage of system 
memory resources than the rest. That can be considered negligible when 
comparing it to the flexibility, low setting time and ease to deploy that the 
K8s setup provides. 

 

 Kubernetes orchestration platform facilitates the configuration and 
deployment of the virtualized network, having the scenario ready in a few 
seconds. Also, has the fastest reconnecting time in case of an internal 
failure, due to the cluster networking. 

Conclusions and future works 
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While performing the tests, a connectivity problem was found in the docker-based 
project that was being used to compare with the K8s deployment. That error was 
reducing the capabilities of the setup due to the reconnection errors. This issue 
has been reported to the maintainers of the project. 

The principal contributions of this Master Thesis are: (i) the creation of two Docker 
images that can set up a K8s fully virtualized, containerized and distributed open-
source-based network, as well as the Kubernetes descriptors required for the 
automated deployment of the network on a fully configurable manner (i.e., the 
network can be deployed on different nodes, separating RAN and CN functions 
in seconds); (ii) the introduction of a programmable feature in the deployment, to 
let the end user register its own UE; and (iii) the analysis of the resource 
performance of the three deployments, giving more emphasis to the K8s 
scenario. 

A forthcoming paper entitled “Design and evaluation of a kubernetes-based 
system for distributed open-source cellular networks” including the main results 
of this work is being prepared for submission to the IEEE Wireless 
Communications and Networking Conference to be held in Austin, USA (April 10-
13, 2022).  

 

5.2. Future lines of development and research 

 
Taking as a reference the contributions, the conclusions of the analysis and the 
issues identified in this Master Thesis, it is possible to establish several future 
lines of development and research.  
 
As it was mentioned in Section 4.2.3, the first improvement that this project has 
to execute is to add volumes to the Kubernetes deployment. This will solve the 
issue of disconnection in case of failure of any module related with the storage or 
registration of the UE since they will persistently storage the UE information and 
once the failed module is restarted, it will retrieve the necessary information from 
the volume and regain connectivity. Moreover, as mentioned in Section 4.2.3, to 
get an energy and resources advantage on the network virtualization, an 
implementation of an smart resource allocation function has to be investigated. 
This would assign each module the necessary resources on demand, instead of 
been running all the time.    

 
One more future line of work would be related to an extension of the analysis 
performed. On the one hand, it is worthy studying the impact of an increasing 
number of UEs, together with the already covered amount of traffic in the user 
plane. On the other hand, in addition to the resource usage of the virtualization 
infrastructure, it would be interesting to test the energy consumption of the 
deployment before and after the virtualization. 
 
Another future line of work in this regard would be to test the deployment for 5G 
NSA and 5G SA equipment’s, to verify that the same performance holds. In 
addition to that, a much broader repertoire (beyond 5) of repetitions of each 



State of the art of virtualized cellular networks   57 

experiment must be done. Moreover, to allow full assurance of the results, the 
use of statistical methods would be a tool to explore. 

 
Furthermore, in this project a containerized separation of the CN and the RAN 
has been executed, but if needed, a separation of each core function into a 
container, or in the form of microservices, can be implemented. This would have 
the advantage of an easy deployment on demand of the functions. Moreover, 
after researching the state of the art of virtualized networks, some solutions such 
as [48], defend that the separation the logic of the SGW and PGW of the 4G CN 
can solve the bottleneck caused by those modules. Extrapolating this idea to the 
5GC, creates a great future line of work, which is to test the performance of 
separating the UPF module form the CN and deploy it with the MEC platform to 
handle the traffic. 

 
Lastly, to test how the deployment behaves when extrapolated to serverless 
scenarios on top of K8s, would be interesting. 

5.3. Sustainability considerations 

 
This project presents a fully virtualized open-source-based network. In terms of 
economic impact, the ability to launch the network modules on demand, will 
translate into a reduction of the resources, that will have an impact in the energy 
consumption. This will reduce the cost of actual RAN and CN. Moreover, in terms 
of social impact, the containerization of the software will facilitate the deployment 
for new users and save them time and effort when trying to integrate or update 
modules or when deploying the setup. Finally, as shown in [75], in terms 
environmental impact, the reduction of energy consumption will translate not only 
in economic impact, but also in a greener world. 
 

5.4. Ethical and security considerations 

 
As it has been mentioned before, this project presents a fully virtualized open-
source-based deployment. Ethically, this means that this Master Thesis is part of 
a worldwide community that works together to accomplish a common goal. 
Moreover, this software cannot be licensed by any company and anyone can use. 
Furthermore, this deployment can be run in a generic hardware, avoiding the bad 
implications of depending on the prices of a few big companies. Taking into 
account ethical considerations, this technology has no negative contributions. 
Moreover, in terms of security, a global concern has arisen from the technological 
community due to the vulnerabilities that a fully virtualized deployment may 
encounter that were not possible in non-virtualized setups. By researching the 
state of the art, some papers have been found around this topic. The work in [76] 
analyzes the impact that an attack to a system component under the 
responsibility of a given stakeholder may yield to a completely different player in 
a complex and virtualized system such as the 5G infrastructure. Finally, to solve 
these threats, authors in [77] propose a secure and trustworthy framework for 
virtualized networks and software-defined networking.  
  
 

Conclusions and future works 
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ACRONYMS 

 
 3GPP   3rd Generation Partnership Project 

5G-AN  5G Access Network 

5GC   5G Core 

AF   Application Function  

AMF   Access and Mobility Management Function 

APN   Access Point Name 

AUSF   Authentication Server Function 

BSF  Binding Support Function 

CI/CD  Continuous Integration/Continuous Deployment 

CN  Core Network 

CNI   Container Network Interface 

CNM  Container Network Model  

CUPS  Control User Plane Separation 

eMBB  enhanced Mobile Broadband 

eNB   eNodeB 

EPC   Evolved Packet Core  

E-UTRAN  Evolved UMTS Terrestrial Radio Access Network 

gNB  Next Generation NodeB  

HSS   Home Subscriber Server 

IMSI   International Mobile Subscriber Identity 

IoT  Internet of Things  

K8s   Kubernetes 

LTE   Long Term Evolution  

MANO  NFV Management and Orchestration  

MCC   Mobile Country Code 

MEC   Multi-access Edge Computing 

MIB  Master Information Block 

MIMO  Multiple Input, Multiple Output 

MME   Mobile Management Entity  

mMTC  massive Machine Type Communication 

MNC   Mobile Network Code  

MSISDN  Mobile Subscriber Integrated Services Digital Network  

NAT   Network Address Translation 

NF   Network Function  

NFV   Network Function Virtualization  

NFVI   NFV Infrastructure  

NR   New Radio 

NRF  NF Repository Function 

NSA   Non Stand Alone 

NSSF  Network Slice Selection Function  

OAI  Open Air Interface 
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OFDMA  Orthogonal Frequency Division Multiple Access 

OP  Operator Code 

OS   Operating System  

PCF   Policy Control Function 

PCRF  Policy and Charging Rules Function  

PDN   Packet Data Network 

PGW   Packet Data Network Gateway  

PGWC Packet Gateway Control Plane 

PGWU Packet Gateway User Plane 

PLMN  Public Land Mobile Network 

PRB  Physical Resource Block 

QoS   Quality of Service 

RAN  Radio Access Network 

RAT   Radio Access Technology  

RIC  RAN Intelligent Controller 

SA   Stand Alone  

SBA   Service Based Architecture 

SBI   South-Bound Interface 

SCFDMA  Single Carrier Frequency Division Multiple Access 

SDN   Software Defined Network 

SD-RAN  Software-Defined RAN  

SGW   Serving Gateway 

SGWC Serving Gateway Control Plane 

SGWU Serving Gateway User Plane  

SIB  System Information Block 

SIM   Subscriber Identity Module 

SMF   Session Management Control Function 

srsRAN Software Radio Systems RAN 

TAC  Tracking Area Code 

TCP  Transport Control Protocol  

UDM   Unified Data Management 

UDP  User Datagram Protocol 

UDR  Unified Data Repository  

UE   User Equipment 

UPF   User Plane Function  

URLLC  Ultra Reliable Low Latency  

VIM   Virtualized Infrastructure Manager 

VM   Virtual Machine 

VNF   Virtual Network Functions  

VNFM  VNF Manager  

VNFO  NFV Orchestrator 

 

  

Acronyms 
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ANNEX I: INSTALLING SRSLTE AND OPEN5GS 

 
This section explains the installation process of srsLTE and Open5GS with all the 
necessary dependencies in Ubuntu 20.04. To do so, the following commands in 
the console terminal must be run: 
   

# Installing srsLTE 
 

sudo add-apt-repository ppa:softwareradiosystems/srsran 

sudo apt-get update 

sudo apt-get install srsran –y 

 
Once the srsLTE process is completed, MongoDB has to be installed for 
Open5GS and Open5GS Web-UI to work. The next commands are used to install 
all the software’s with the necessary dependencies: 
 

# Installing MongoDB 
 

sudo apt-get update 

sudo apt-get install mongodb 

 
# Installing Open5GS 

 

sudo apt-get install software-properties-common 

sudo add-apt-repository ppa:open5gs/latest 

sudo apt-get update 

sudo apt-get install open5gs 

 

# Installing the Open5GS Web-UI 
 

curl -fsSL https://deb.nodesource.com/setup_14.x | sudo -E bash - 

sudo apt install nodejs 

curl -fsSL https://open5gs.org/open5gs/assets/webui/install | 
sudo -E bash - 
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ANNEX II: NODES PREPARATION TO DEPLOY THE K8S 
CLUSTER 

 
This section will be focused on the installation of the necessary software and 
dependencies required to deploy the K8s cluster. Before starting to set the K8s 
cluster, some modifications have to be made in all the nodes: 
 

 Set hostnames: ensure that all of the nodes have a unique hostname. In 
this scenario, the hostnames are kubernetes-master, kubernetes-worker1 
and kubernetes-worker2. The following command can be used in each 
node to set the host names: 

 
sudo hostnamectl set-hostname <chosen_name> 

 

The changes will not be noticeable in the terminal until it is restarted. 
Then, some entries have to be added into the “/etc/hosts” file. Those 
entries are: 
 

<IP address master>  chosen_name_master 
<IP address worker1>  chosen_name_worker1 
<IP address worker2>  chosen_name_worker2 

 
In this project are: 
 
10.43.79.43    kubernetes-master 
10.43.79.1    kubernetes-worker1 
10.43.79.7    kubernetes-worker2 

 
 Install ssh (optional): ssh is a tunneling tool to manage all the nodes from 

the master console terminal and facilitates the management of the cluster 
from a single node. To get it install, the following commands are required: 
 
sudo apt-get install shh 
sudo systemctl enable –-now ssh  

 
Once, it is installed in all the nodes, the following command can be used 
to get access and control over the other nodes: 

 
 shh <user_name>@<chosen_name_workerX> 

 For this project: shh javi@kubernetes-worker1 

 
 Installing Docker: Connect (or do it manually) to each node and run the 

following commands: 
 
sudo apt-get update 
sudo apt-get install docker.io 

 
Now the Docker service can be enabled and its status can be verified: 
 
sudo systemclt enable docker.service --now 
sudo systemctl status docker 

 

Annex II: Nodes preparation to deploy the K8s cluster 
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If everything has been done correctly, it should be active and running. 

 
 Disable swap and enable IP forwarding: Kubernetes will refuse to work if 

the system used is using swap memory. Before proceeding any further, it 
has to be ensured that the master and worker nodes have swap memory 
disabled with this command: 

   
  sudo swapoff -a 

      
This will disable swap memory until the system reboots. To make this 
change persistent it is needed to edit the “/etc/fstab” file and comment the 
“/swap” line. 

 
To enable IP forwarding permanently, the file “/etc/sysctl.conf” must be 
edited to uncomment the “net.ipv4.ip_forward=1” line. To make sure it 
worked, the following command must be run: 
 

 sudo sysctl –p 

 Console output: net.ipv4.ip_forward = 1 

 Install kubectl, kubelet and kubeadm: to finish the installation process, the 
following commands must be introduced in each node: 
 
sudo apt-get install -y apt-transport-https curl 

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | 
sudo apt-key add 

sudo apt-add-repository "deb http://apt.kubernetes.io/ 
kubernetes-xenial main" 

sudo apt update 

sudo apt install -y kubelet kubeadm kubectl 
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ANNEX III: DEPLOYMENT OF THE K8S CLUSTER 

 
This annex explains the procedure to deploy the Kubernetes cluster in detailed. 
 
All the following commands are run in the master node: 

 

 Initialize the K8s cluster, assigning the pod network an IP range: 
   

sudo kubeadm init  

 
The console returns a set of commands and an identification token for the worker 
nodes to join the cluster. Those commands are required to configure kubectl and 
to get the token. This token is a private key that the master node can share with 
other worker nodes to authenticate them and attach them to the K8s cluster. The 
console output must be similar to: 

 
Commands: 

 

mkdir -p $HOME/.kube` 

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config` 

sudo chown $(id -u):$(id -g) $HOME/.kube/config` 

 
Token: 
 

kubeadm join 10.43.79.43:6443 --token b4sfnc.53ifyuncy017cnqq --
discovery-token-ca-cert-hash 
sha256:5078c5b151bf776c7d2395cdae08080faa6f82973b989d29caaa4d58c28d0e4 

  
 The Tigera Calico operator can be installed by running: 

  
kubectl create -f https://docs.projectcalico.org/manifests/ 

tigera-operator.yaml` 

 

 After that, Calico itself can be installed by creating the necessary custom 
resource: 
kubectl create -f https://docs.projectcalico.org/manifests/ 

custom-resources.yaml 

 

 Once this is done, the previous noted token must be introduced in all 
worker nodes to include them into the cluster: 

  
sudo kubeadm join 10.43.79.43:6443 --token 

b4sfnc.53ifyuncy017cnqq --discovery-token-ca-cert-hash 
sha256:5078c5b151bf776c7d2395cdae08080faa6f82973b989d29caaa4d58c28d0e4 

 
To check that the deployment of the cluster has been done correctly and that the 
worker nodes have been well added to the cluster, the next two commands must 
be run, analyzing the obtained output: 
 

kubectl get nodes -o wide 
   

Annex III: Deployment of the K8s cluster 
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Table Annex.1: K8s cluster nodes information. 

NAME STATUS ROLES AGE VERSION INTERNAL-IP 

kubernetes-
master 

Ready 
control-

plane,master 
4m v1.21.2 10.43.79.43 

kubernetes-
worker1 

Ready <none> 46s v1.21.2 10.43.79.1 

kubernetes-
worker2 

Ready <none> 59s v1.21.2 10.43.79.7 

     
kubectl get pods -n calico-system -o wide 

   

Table Annex.2: Calico pods information. 

NAME READY STATUS RESTARTS IP NODE   

calico-kube-
controllers-

7f58dbcbbd-
zn8qw 

1/1 Running 0 10.43.79.43 
kubernetes

-master 

calico-node-
7s4gw 

1/1 Running 0 10.43.79.43 
kubernetes

-master 

calico-node-
nvnph 

1/1 Running 1 10.43.79.7 
kubernetes
-worker2 

calico-node-
xsx2g 

1/1 Running 0 10.43.79.1 
kubernetes
-worker1 

calico-typha-
b6f4d48cd-48rbl 

1/1 Running 1 10.43.79.1 
kubernetes
-worker1 

calico-typha-
b6f4d48cd-

9nvpw 
1/1 Running 0 10.43.79.7 

kubernetes
-worker2 

calico-typha-
b6f4d48cd-

zqmf7 
1/1 Running 0 10.43.79.43 

kubernetes
-master 

 
If all the nodes in Table 3.1 have the status “Ready” and all the pods of Table 3.2 
have the status “Running”, the cluster has been properly created.  
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ANNEX IV: DOCKER IMAGES 

 

This section presents the content of the necessary files for the creation of both 

Docker images: srsLTE and Open5GS. 

 

srsLTE 
 

Dockerfile: 

 

This file creates the Docker image. 
 
FROM ubuntu:20.04 
MAINTAINER Javier Palomares <japato.96@gmail.com> 
ENV DEBIAN_FRONTEND noninteractive 
USER root 
 

# Dependencies needed for the UHD driver for the USRP B210 
RUN apt-get update && \ 
    apt-get -yq install cmake git iputils-ping nano libfftw3-dev libmbedtls-dev libboost-
program-options-dev libconfig++-dev libsctp-dev libuhd-dev usbutils iproute2 
 

# Fetching empower-enb-agent 
RUN git clone https://github.com/5g-empower/empower-enb-agent.git 
RUN cd empower-enb-agent && \ 
    cmake -DCMAKE_BUILD_TYPE=Release . && \ 
    make && \ 
    make install 
 

# Fetching srsRAN 
RUN git clone https://github.com/5g-empower/srsRAN.git && \ 
    cd srsRAN && \ 
    git checkout agent && \ 
    mkdir build && \ 
    cd build && \ 
    cmake ../ && \ 
    make 
 

# Running the image needed for the UHD driver for the USRP B210     
RUN ./usr/lib/uhd/utils/uhd_images_downloader.py 
 

ADD conf/enb.conf /etc/srsran/ 
ADD conf/drb.conf /etc/srsran/ 
ADD conf/rr.conf /etc/srsran/ 
ADD conf/sib.conf /etc/srsran/ 
 

# Add Kubernetes config, setup and launch scripts 
ADD dns_replace.sh / 
ADD config.sh / 
ADD launcher.sh / 
 

# Run the launcher script 
ENTRYPOINT ["/launcher.sh"]  

Annex IV: Docker images 
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dns_replace.sh:  

  
This code assigns dynamically the IP addresses of the mme_addr, 

gtp_bind_addr and s1c_bind_addr, to make the connections within the RAN and 
with the CN. 

 
if [ -z "$empower_pod_addr" ]; then 
 
    while [ -z $(getent hosts runtime-service | awk '{ print $1 }') ] 
    do 
        echo "Waiting for the 5G-EmPOWER Runtime to come up..." 
        sleep 10 
    done 
 
    echo "5G-EmPOWER Runtime service found" 
    EMPOWER_POR_ADDR=$(getent hosts empower-service | awk '{ print $1 }') 
 
else 
 
    EMPOWER_POR_ADDR=$empower_pod_addr 
 
fi 
 
if [ -z "$epc_pod_addr" ]; then 
 
    while [ -z $(getent hosts epc-service | awk '{ print $1 }') ] 
    do 
        echo "Waiting for the EPC to come up..." 
        sleep 10 
    done 
 
    echo "EPC service found" 
    EPC_POD_ADDR=$(getent hosts epc-service | awk '{ print $1 }') 
 
else 
    EPC_POD_ADDR=$epc_pod_addr 
fi 
 
if [ -z "$local_pod_addr" ]; then 
    LOCAL_POD_ADDR=$(ip route get 1 | awk '{print $(NF-2);exit}') 
else 
    LOCAL_POD_ADDR=$local_pod_addr 
fi 
 
#Assignation of the new values to the variables 
sed -i 's/ENB_ID_REPLACE/'$enb_id'/g' /etc/srsran/enb.conf 
sed -i 's/EPC_REPLACE/'"$EPC_POD_ADDR"'/g' /etc/srsran/enb.conf 
sed -i 's/LOCAL_REPLACE/'$LOCAL_POD_ADDR'/g' /etc/srsran/enb.conf 
sed -i 's/EMPOWER_REPLACE/'$EMPOWER_POR_ADDR'/g' /etc/srsran/enb.conf 
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config.sh: 

 
This file provides the configurable feature. 
 
#!/bin/bash 
 
#Defines new variables that store the values introduced in the descriptor (.yaml) 
N_ENB_MCC=$enb_mcc 
N_ENB_MNC=$enb_mnc 
N_ENB_PRB=$enb_prb 
 
#Changes the value of the previous parameter to the new one  
sed -i 's/ENB_MCC/'$N_ENB_MCC'/g' /etc/srsran/enb.conf 
sed -i 's/ENB_MNC/'$N_ENB_MNC'/g' /etc/srsran/enb.conf 
sed -i 's/ENB_PRB/'$N_ENB_PRB'/g' /etc/srsran/enb.conf 

 
 
 
launcher.sh: 

 

This file executes the RAN. 
 
#!/bin/bash 
 
_term() { 
  echo "Caught SIGTERM signal!" 
  kill -TERM "$child" 
} 
 
trap _term SIGTERM 
 
env 
 
#Launches the previous scripts and the command to start the srsENB 
./config.sh 
./dns_replace.sh 
./srsRAN/build/srsenb/src/srsenb & 
 
child=$! 
 
wait "$child" 

 
  

Annex IV: Docker images 
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conf/enb.conf:  

 
 The full file it is too long, so only the parts that have been modified from 
the original “srsLTE/enb.conf” file is going to be shown: 
 
########################################################## 
#                   srsENB configuration file 
########################################################## 
 
########################################################## 
# Agent configuration 
# 
# address:               Controller IP address (default 127.0.0.1) 
# port:                  Controller port (default: 5533) 
# delay:                 Hello period (default: 2000) 
# 
########################################################## 
[agent] 
address = EMPOWER_REPLACE 
port = 5533 
delay = 2000 
 
########################################################## 
# eNB configuration 
# 
# enb_id:               20-bit eNB identifier. 
# mcc:                  Mobile Country Code 
# mnc:                  Mobile Network Code 
# mme_addr:             IP address of MME for S1 connnection 
# gtp_bind_addr:        Local IP address to bind for GTP connection 
# gtp_advertise_addr:   IP address of eNB to advertise for DL GTP-U Traffic 
# s1c_bind_addr:        Local IP address to bind for S1AP connection 
# n_prb:                Number of Physical Resource Blocks (6,15,25,50,75,100) 
# tm:                   Transmission mode 1-4 (TM1 default) 
# nof_ports:            Number of Tx ports (1 port default, set to 2 for TM2/3/4) 
# 
########################################################## 
# Parameters that have been introduced to make the RAN configurable 
[enb] 
enb_id = ENB_ID_REPLACE 
mcc = ENB_MCC 
mnc = ENB_MNC 
mme_addr = EPC_REPLACE 
gtp_bind_addr = LOCAL_REPLACE 
s1c_bind_addr = LOCAL_REPLACE 
n_prb = ENB_PRB 
#tm = 4 
#nof_ports = 2 
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Open5GS  
 

Dockerfile: 

This file creates the Docker image. 
 
FROM ubuntu:20.04 
MAINTAINER Javier Palomares <japato.96@gmail.com> 
ENV DEBIAN_FRONTEND noninteractive 
USER root 
 
# Dependencies for the Open5gs 
RUN apt-get update && \ 
    apt-get upgrade -y && \ 
    apt-get install -y --no-install-recommends \ 
        python3-pip python3-setuptools python3-wheel \ 
        ninja-build build-essential flex \ 
        bison git iputils-ping \  
        nano libsctp-dev libgnutls28-dev \ 
        libgcrypt-dev libssl-dev libidn11-dev \ 
        libmongoc-dev libbson-dev libyaml-dev \ 
        libnghttp2-dev libmicrohttpd-dev libcurl4-gnutls-dev \ 
        meson netcat iproute2 \ 
        wget unzip iptables 
  
# Fetching Open5GS   
RUN git clone https://github.com/open5gs/open5gs && cd /open5gs && meson build --
prefix=`pwd`/install && ninja -C build 
 
RUN cd /open5gs/build && ninja install 
 
# Coping configuration files needed 
COPY conf/* /open5gs/install/etc/open5gs/ 
 
# Solve the shared libraries problem 
RUN sh -c "echo /open5gs/install/lib/x86_64-linux-gnu > /etc/ld.so.conf.d/open5gs.conf" 
RUN ldconfig 
 
# Add Kubernetes config, setup and launch scripts 
ADD setup.sh / 
ADD launcher.sh / 
ADD config.sh / 
 
# Run the launcher script 
ENTRYPOINT ["/launcher.sh"] 
  

Annex IV: Docker images 
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config.sh: 

 
This file provides the configurable feature. 
 
#!/bin/bash 
 
#Defines new variables that store the values introduced in the descriptor (.yaml) 
N_MCC=$mcc 
N_MNC=$mnc 
N_TAC=$tac 
 
#Changes the value of the previous parameter to the new one  
sed -i 's/MCC/'$N_MCC'/g' /open5gs/install/etc/open5gs/mme.yaml 
sed -i 's/MNC/'$N_MNC'/g' /open5gs/install/etc/open5gs/mme.yaml 
sed -i 's/TAC/'$N_TAC'/g' /open5gs/install/etc/open5gs/mme.yaml 
 
 
 
conf/mme.yaml: 

 
The full file it is too long, so only the parts that have been modified from 

the original “Open5GS/mme.yaml” file is going to be shown: 
 
mme: 
    freeDiameter: /open5gs/install/etc/freeDiameter/mme.conf 
    s1ap: 
    gtpc: 
      - addr: 127.0.0.2 
    gummei:  
      plmn_id: 
        mcc: MCC 
        mnc: MNC 
      mme_gid: 2 
      mme_code: 1 
    tai: 
      plmn_id: 
        mcc: MCC 
        mnc: MNC 
      tac: TAC 
    security: 
        integrity_order : [ EIA2, EIA1, EIA0 ] 
        ciphering_order : [ EEA0, EEA1, EEA2 ] 
    network_name: 
        full: Open5GS 
    mme_name: open5gs-mme0  
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launcher.sh:  

 
This file executes the CN. 
 
#!/bin/bash 
 
_term() { 
  echo "Caught SIGTERM signal!" 
  kill -TERM "$child" 
} 
 
trap _term TERM 
 
echo -e "\n\n---------- ENV VARIABLES ----------" 
env 
 
#Launches the config script 
./config.sh 
 
until nc -z localhost 27017 
do 
    echo "waiting for mongodb to come up..." 
    sleep 2 
done 
 
sleep 10 
 
#Launches the setup script 
/setup.sh 
 
#Launches all the modules of Open5GS 
/open5gs/install/bin/open5gs-mmed -D 
/open5gs/install/bin/open5gs-sgwcd -D 
/open5gs/install/bin/open5gs-smfd -D 
/open5gs/install/bin/open5gs-amfd -D 
/open5gs/install/bin/open5gs-sgwud -D 
/open5gs/install/bin/open5gs-upfd -D 
/open5gs/install/bin/open5gs-hssd -D 
/open5gs/install/bin/open5gs-pcrfd -D 
/open5gs/install/bin/open5gs-nrfd -D 
/open5gs/install/bin/open5gs-ausfd -D 
/open5gs/install/bin/open5gs-udmd -D 
/open5gs/install/bin/open5gs-pcfd -D 
/open5gs/install/bin/open5gs-nssfd -D 
/open5gs/install/bin/open5gs-bsfd -D 
/open5gs/install/bin/open5gs-udrd  

Annex IV: Docker images 
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ANNEX V: KUBERNETES DESCRIPTOR FILE 

 
This annex contains the file used to create the two-nodes and tree-nodes K8s 
deployment explained in this Master Thesis.  
 

K8s_deployment.yaml 

 
apiVersion: v1 
kind: Pod 
metadata: 
    name: epc 
    labels: 
        app: epc 
spec: 
    containers: 
    - name: open5gs 
        image: javipalomares/open5gs:latest 
        env: 
        - name: mcc 
            value: "001" 
        - name: mnc 
            value: "03" 
        - name: tac 
            value: "7"   
        securityContext: 
            privileged: true 
    - name: open5gs-webui 
        image: snslab/open5gs-webui:latest 
    - name: mongodb 
        image: mongo 
    - name: mongo-express 
        image: mongo-express 
        env: 
        - name: ME_CONFIG_MONGODB_SERVER 
            value: "localhost" 
    nodeSelector: 
        IDname: kubernetes-worker1     
--- 
apiVersion: v1 
kind: Service 
metadata: 
    name: epc-mongo-express-service 
spec: 
    selector: 
        app: epc 
    type: NodePort 
    ports: 
    - name: web-ui 
        protocol: TCP 
        port: 8081 
        targetPort: 8081 
        nodePort: 30000 
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---  
apiVersion: v1 
kind: Service 
metadata: 
    name: epc-open5gs-webui-service 
spec: 
    selector: 
        app: epc 
    type: NodePort 
    ports: 
    - name: web-ui 
        protocol: TCP 
        port: 3000 
        targetPort: 3000 
        nodePort: 30001 
--- 
apiVersion: v1 
kind: Pod 
metadata: 
    name: srsenb 
    labels: 
        app: srsenb 
spec: 
    containers: 
        - name: srsenb 
            image: javipalomares/srslte:latest 
            env: 
            - name: enb_mcc 
                value: "001" 
            - name: enb_mnc 
                value: "03" 
            - name: enb_id 
                value: "0x19B" 
            - name: enb_prb 
                value: "75"     
            - name: empower_pod_addr 
                value: "127.0.0.1" 
            securityContext: 
                privileged: true 
    nodeSelector: 
        IDname: kubernetes-worker2 

     
     

  

Annex V: Kubernetes descriptor file 
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ANNEX VI: CODE TO CLEAN AND PLOT THE RESULTS  

 

In this annex is going to be included the used code to clean, format and 

plot the raw data extracted from Iperf3.  

 

Throughput average 

 
extract_average.py: 

 

#File to extract the average throughput data 
import pandas as pd 
 
 
def format_line(text): 
    text = text.replace("[  6]   ", "") 
    text = text.replace("-----------------------------------------------------------", "") 
    text = text.replace("[  5]   ", "") 
    text = text.replace("  sec ", "") 
    text = text.replace(" MBytes ", "") 
    text = text.replace(" Mbits/sec ", "") 
    text = text.replace(" Kbits/sec ", "") 
    text = text.replace(" ms ", "") 
    text = text.replace("  receiver", "") 
    text = text.replace("  ", " ") 
    #    text = text.replace(".", ",") 
    return text 
 
 
def convert(lst): 
    return lst[0].split() 
 
 
def transform_csv(path, name): 
    transfer = [] 
    bit_rate_real = [] 
    jitter = [] 
 
    df = pd.DataFrame() 
 
    with open('{}/{}.txt'.format(path, name), 'r') as in_file: 
        for myline in in_file: 
            lines = convert([myline]) 
            transfer.append(lines[1]) 
            bit_rate_real.append(lines[2]) 
            jitter.append(lines[3]) 
 
 
        df['Transfer(KBytes)'] = transfer 
        df['Bitrate_real(Mbits/sec)'] = bit_rate_real 
        df['Jitter(ms)'] = jitter 
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        df.to_csv('{}/{}.csv'.format(path, name)) 
 
 
def create_file(deployment, folder_origin, origin, destination, format_dest): 
    myLines = [] 
    listNum = [] 
    cont = 0 
    with open('Data/{}/{}/{}.txt'.format(deployment, folder_origin, origin), 'r') as myfile: 
        for myline in myfile: 
            myLines.append(myline.rstrip('\n')) 
    for element in myLines: 
        if element == "- - - - - - - - - - - - - - - - - - - - - - - - -": 
            listNum.append(cont) 
        cont += 1 
 
    with open('Results/{}/Average/{}/{}.{}'.format(deployment, folder_origin, destination, 
format_dest), 'w+') as data: 
        for num in listNum: 
            formated_line = format_line(myLines[num + 2]) 
            data.write(formated_line + "\n") 
 
    transform_csv('Results/{}/Average/{}/'.format(deployment, folder_origin), 
'{}'.format(destination)) 
 
 
deploy = ["Local", "Kubernetes", "Kubernetes2"] 
PRB = [25, 50, 75] 
dist = [1, 3, 6, 10, 15, 20] 
 
for i in deploy: 
    for j in PRB: 
        for k in dist: 
            create_file(i, "{}PRB".format(j), "n_{}mPRB{}".format(k, j), "{}m".format(k), "txt") 

 
clean_average.py: 

 

#File to clean the average throughput data 
import numpy as np 
import pandas as pd 
import scipy.stats 
 
 
# Set all in Mbps 
def check_Mbps(array): 
    for i in range(0, len(array)): 
        if isinstance(array[i], str): 
            array[i] = float(array[i]) 
        if array[i] > 900: 
            array[i] = array[i] / 1000 
    return array 
 
 
# Average the measurements and get the 0,95 confidence interval 

Annex VI: Code to clean and plot the results 
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def get_mean_confidence_interval(data, average, sup, inf): 
    cont = 0 
    for i in range(0, int(len(data) / 5)+1): 
        m, se = np.mean(data[i * cont:i * cont + 5]), scipy.stats.sem(data[i * cont:i * cont + 
5]) 
        h = se * scipy.stats.t.ppf((1 + 0.95) / 2., len(data) - 1) 
        cont += 1 
 
        average.append(m) 
        sup.append(m + h) 
        inf.append(m - h) 
 
    return average, sup, inf 
 
 
def store_values(deploy, n_PRB, dist, average, sup, inf): 
    df['Average_{}_{}PRB_{}m'.format(deploy, n_PRB, dist)] = average 
    df['Sup_{}_{}PRB_{}m'.format(deploy, n_PRB, dist)] = sup 
    df['Inf_{}_{}PRB_{}m'.format(deploy, n_PRB, dist)] = inf 
 
    df.to_csv('Results/Clean data/{}/clean_average2.csv'.format(deploy)) 
 
 
def obtain_data(deploy, n_PRB, dist): 
    average = [] 
    sup = [] 
    inf = [] 
 
    data = pd.read_csv("Results/{}/Average/{}PRB/{}m.csv".format(deploy, n_PRB, dist)) 
    bitRate = data['Bitrate_real(Mbits/sec)'] 
 
    # Set all in Mbps 
    bitRate = check_Mbps(bitRate) 
 
    bitRate = bitRate[0:29] 
    average, sup, inf = get_mean_confidence_interval(bitRate, average, sup, inf) 
    store_values(deploy, n_PRB, dist, average, sup, inf) 
 
 
deployment = ["Local", "Kubernetes", "Kubernetes2"] 
PRB = [25, 50, 75] 
dist = [1, 3, 6, 10, 15, 20] 
 
for i in deployment: 
    df = pd.DataFrame() 
    for j in PRB: 
        for k in dist: 
            obtain_data(i, j, k) 
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plot_avera ge.py: 

 
import pandas as pd 
import matplotlib.pyplot as plt 
 
 
def plot_Same_PRB(deployment): 
    colors = ['#0000FF', '#66CD00', '#FF00FF', '#C76114', '#00BFFF', 'k'] 
    cnt_plots = 0 
 
    for k in num_PRB: 
        plt.figure(figsize=(15, 10)) 
        cnt_plots += 1 
        cont = 0 
        for s in distances: 
            data_plot = data['Average_{}_{}PRB_{}m'.format(deployment, k, s)] 
            plt.plot(range_plot, data_plot, colors[cont], linewidth=4, label='{}m'.format(s)) 
            data_error = data['Sup_{}_{}PRB_{}m'.format(deployment, k, s)] - 
data['Average_{}_{}PRB_{}m'.format(deployment, k, s)] 
            plt.errorbar(range_plot, data_plot, linewidth=2, marker="o", yerr=data_error, 
fmt=(colors[cont]), capsize=10) 
            #plt.title('{} deployment with {}PRB'.format(deployment, k)) 
            plt.grid(color='tab:gray', linestyle='--', linewidth=0.5) 
            plt.xlabel('Throughput introduced (Mbps)', fontsize=22) 
            plt.xticks(range(0, 151, 25), fontsize=20) 
            plt.ylabel('throughput (Mbps)', fontsize=22) 
            plt.yticks(range(0, 11), fontsize=20) 
            plt.legend(loc=2, prop={'size': 15}) 
            cont += 1 
        plt.show() 
 
 
def plot_Same_Distance(deployment): 
    colors = ["#1E90FF", "r", "k"] 
    cnt_plots = 0 
 
    for i in distances: 
        plt.figure(figsize=(15, 10)) 
        cnt_plots += 1 
        cont = 0 
        for j in num_PRB: 
            data_plot = data['Average_{}_{}PRB_{}m'.format(deployment, j, i)] 
            data_error = data['Sup_{}_{}PRB_{}m'.format(deployment, j, i)]-
data['Average_{}_{}PRB_{}m'.format(deployment, j, i)] 
            plt.errorbar(range_plot, data_plot, linewidth=2, marker="o", yerr=data_error, 
fmt=colors[cont], capsize=10) 
            plt.plot(range_plot, data_plot, colors[cont], linewidth=4, label='{}PRB'.format(j)) 
            #plt.title('{} deployment at {}m'.format(deployment, i)) 
            plt.grid(color='tab:gray', linestyle='--', linewidth=0.5) 
            plt.xlabel('Throughput introduced (Mbps)', fontsize=22) 
            plt.xticks(range(0, 151, 25), fontsize=20) 
            plt.ylabel('Throughput (Mbps)', fontsize=22) 
            plt.yticks(range(0, round(max(data_plot))+1, 5), fontsize=20) 
            plt.legend(loc=2, prop={'size': 15}) 

Annex VI: Code to clean and plot the results 
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            cont += 1 
        plt.show() 
 
 
def plot_comparing_deployments(prb, dist): 
    colors = ["#1E90FF", "r", "k"] 
 
    cont = 0 
    data1 = pd.read_csv("Results/Clean data/Local/clean_average.csv") 
    data2 = pd.read_csv("Results/Clean data/Kubernetes/clean_average.csv") 
    data3 = pd.read_csv("Results/Clean data/Kubernetes2/clean_average.csv") 
 
    data_local_plot = data1['Average_Local_{}PRB_{}m'.format(prb, dist)] 
    data_local_error = data1['Sup_Local_{}PRB_{}m'.format(prb, dist)] - data1[ 
        'Average_Local_{}PRB_{}m'.format(prb, dist)] 
    data_k8s_plot = data2['Average_Kubernetes_{}PRB_{}m'.format(prb, dist)] 
    data_k8s_error = data2['Sup_Kubernetes_{}PRB_{}m'.format(prb, dist)] - data2[ 
        'Average_Kubernetes_{}PRB_{}m'.format(prb, dist)] 
    data_k8s2_plot = data3['Average_Kubernetes2_{}PRB_{}m'.format(prb, dist)] 
    data_k8s2_error = data3['Sup_Kubernetes2_{}PRB_{}m'.format(prb, dist)] - data3[ 
        'Average_Kubernetes2_{}PRB_{}m'.format(prb, dist)] 
 
    list_plot = [data_local_plot, data_k8s_plot, data_k8s2_plot] 
    list_error = [data_local_error, data_k8s_error, data_k8s2_error] 
 
    plt.figure(figsize=(15, 10)) 
    for i in range(0, 3): 
 
        plt.errorbar(range_plot, list_plot[i], linewidth=2, marker="o", yerr=list_error[i], 
fmt=colors[cont], capsize=10) 
        plt.plot(range_plot, list_plot[i], colors[cont], linewidth=4, label='{} {}PRB 
{}m'.format(deploys[i], prb, dist)) 
        cont += 1 
 
        #plt.title('Comparing deployments') 
        plt.grid(color='tab:gray', linestyle='--', linewidth=0.5) 
        plt.xlabel('Throughput introduced (Mbps)', fontsize=22) 
        plt.xticks(range(0, 151, 25), fontsize=20) 
        plt.ylabel('Throughput (Mbps)', fontsize=22) 
        plt.yticks(range(0, 11), fontsize=20) 
        plt.legend(loc=2, prop={'size': 15}) 
    plt.show() 
 
 
deploys = ["Local", "Kubernetes", "Kubernetes2"] 
num_PRB = [25, 50, 75] 
range_plot = [1, 25, 50, 75, 100, 150] 
distances = [1, 3, 6, 10, 15, 20] 
 
for i in deploys: 
    data = pd.read_csv("Results/Clean data/{}/clean_average.csv".format(i)) 
    plot_Same_PRB(i) 
    # plot_Same_Distance(i) 
 
# plot_comparing_deployments(25, 1) 
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Tempor al 

 
Scripts to extract, clean and plot the temporal representation of the data. 
 
extract_temporal.py: 

 
def format_line(text): 
    text = text.replace("[  5]   ", "") 
    text = text.replace("[  5]  ", "") 
    text = text.replace("[  6]  ", "") 
    text = text.replace("  sec ", "") 
    text = text.replace(" MBytes ", "") 
    text = text.replace(" KBytes ", "") 
    text = text.replace(" Bytes ", "") 
    text = text.replace(" Mbits/sec ", "") 
    text = text.replace(" Kbits/sec ", "") 
    text = text.replace(" bits/sec ", "") 
    text = text.replace(" ms ", "") 
    text = text.replace("  receiver", "") 
    text = text.replace("  ", " ") 
    text = text.replace("[ ID] Interval      Transfer   Bitrate     Jitter  Lost/Total Datagrams", 
"") 
    text = text.replace("[SUM] 0.0-15.2 sec 1 datagrams received out-of-order", "") 
    text = text.replace("[SUM] 0.0-15.3 sec 1 datagrams received out-of-order", "") 
    text = text.replace("WARNING: Size of data read does not correspond to offered 
length", "") 
    text = text.replace("- - - - - - - - - - - - - - - - - - - - - - - - -", "") 
    text = text.replace("-----------------------------------------------------------", "") 
    text = text.replace("Server listening on 5000", "") 
    #    text = text.replace(".", ",") 
    return text 
 
 
def create_file(deployment, folder_origin, origin, destination, format_dest): 
    myLines = [] 
 
    with open('Data/{}/{}/{}.txt'.format(deployment, folder_origin, origin), 'r') as myfile: 
        for myline in myfile: 
            myLines.append(myline.rstrip('\n')) 
 
    with open('Results/{}/Temporal/{}/{}.{}'.format(deployment, folder_origin, destination, 
format_dest), 'w+') as data: 
        for element in myLines: 
            not_found = 0 
            for word in bad_words: 
                if element.__contains__(word): 
                    break 
                else: 
                    not_found += 1 
 
                if not_found == len(bad_words): 
                    formated_line = format_line(element) 
                    data.write(formated_line + "\n") 
 

Annex VI: Code to clean and plot the results 
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bad_words = ["Accepted", "omitted", "local"] 
deploy = ["Local", "Kubernetes", "Kubernetes2"] 
PRB = [25, 50, 75] 
dist = [1, 3, 6, 10, 15, 20] 
 
for i in deploy: 
    for j in PRB: 
        for k in dist: 
            create_file(i, "{}PRB".format(j), "n_{}mPRB{}".format(k, j), "{}m".format(k), "txt") 

 
clean_temporal.py: 

 

import pandas as pd 
 
 
def convert(lst): 
    return lst[0].split() 
 
 
def transform_csv(path, file): 
    cont = 0 
    n_parse = 0 
    df = pd.DataFrame() 
    interval = [] 
    transfer = [] 
    bit_rate_real = [] 
    jitter = [] 
 
    with open('{}/{}m.txt'.format(path, file), 'r') as in_file: 
        for myline in in_file: 
            if myline == "\n": 
                continue 
            else: 
                if cont == 61: 
                    n_parse += 1 
                    df['{} Interval(sec)'.format(n_parse)] = interval[0:60] 
                    df['{} Transfer(KBytes)'.format(n_parse)] = transfer[0:60] 
                    df['{} Bitrate_real(Mbits/sec)'.format(n_parse)] = bit_rate_real[0:60] 
                    df['{} Jitter(ms)'.format(n_parse)] = jitter[0:60] 
 
                    interval = [] 
                    transfer = [] 
                    bit_rate_real = [] 
                    jitter = [] 
                    cont = 0 
 
                else: 
                    lines = convert([myline]) 
                    interval.append(lines[0]) 
                    transfer.append(lines[1]) 
                    bit_rate_real.append(lines[2]) 
                    jitter.append(lines[3]) 
                    cont += 1 



State of the art of virtualized cellular networks   81 

 
        df.to_csv('{}/{}m.csv'.format(path, file)) 
bad_words = ["Accepted", "omitted", "local"] 
deploy = ["Local", "Kubernetes", "Kubernetes2"] 
PRB = [25, 50, 75] 
dist = [1, 3, 6, 10, 15, 20] 
 
for i in deploy: 
    for j in PRB: 
        for k in dist: 
            transform_csv('Results/{}/Temporal/{}PRB/'.format(i, j), k) 

 
  

Annex VI: Code to clean and plot the results 
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plot_temporal.py:  
 

import pandas as pd 
import matplotlib.pyplot as plt 
 
 
def plot_dist(data, mbps, dep): 
 
    colors = ['#0000FF', 'g', '#FF00FF', '#C76114', '#00BFFF', 'k'] 
    for rb in num_PRB: 
        cont = 0 
        plt.figure(figsize=(15, 10)) 
        for i in distances: 
            data_plot = data['Temporal_{}_{}PRB_{}m'.format(dep, rb, i)] 
            data_error = data['Temporal_{}_{}PRB_{}m'.format(dep, rb, i)] - \ 
                         data['Sup_{}_{}PRB_{}m'.format(dep, rb, i)] 
            #plt.errorbar(range_plot, data_plot, linewidth=2, marker="o", yerr=data_error, 
fmt=colors[cont], capsize=10) 
            plt.plot(range_plot, data_plot, colors[cont], linewidth=3, label='{}m'.format(i)) 
            plt.title('{}Mbps {} deployment with {}PRB'.format(mbps, dep, rb)) 
            plt.grid(color='tab:gray', linestyle='--', linewidth=0.5) 
            plt.xlabel('Time (sec)', fontsize=22) 
            plt.yticks(fontsize=15) 
            plt.xticks(range_plot, labels, rotation=90, fontsize=12, 
horizontalalignment='center') 
            plt.ylabel('Throughput (Mbps)', fontsize=22) 
            plt.legend(loc=1, prop={'size': 20}) 
            cont += 1 
        plt.show() 
 
 
deploys = ["Local", "Docker", "Kubernetes"] 
num_PRB = [25, 50, 75] 
range_plot = range(0, 60, 1) 
distances = [1, 3, 6, 10, 15, 20] 
mbps = [1, 25, 50, 75, 100, 150] 
labels = [] 
sum = 0 
 
for i in range(0, 60): 
    labels.append('{:.2f}'.format(sum+0.25)) 
    sum += 0.25 
 
 
for dep in deploys: 
    for i in mbps: 
        data = pd.read_csv("Results/Clean 
data/{}/clean_temporal_{}Mbps.csv".format(dep, i)) 
        plot_dist(data, i, dep) 
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Resources  

 
Scripts to extract, clean and plot the resources usage data. 
 
extract_resources.py: 

 
import os 
import pandas as pd 
 
containers = ['mme', 'sgwu', 'amf', 'sgwc', 'upf', 'bsf', 'udr', 'ausf', 'pcf', 'smf', 'udm', 'nssf', 
'webui', 'hss', 
              'pcrf', 'mongo', 'nrf'] 
 
for i in range(25, 76, 25): 
    os.system('cat Data/Local/resources/{}_resources_local.txt | grep open5gs > ' 
              'Results/Local/Resources/{}_clean_open5gs_resources.txt'.format(i, i)) 
 
    os.system('cat Data/Local/resources/{}_resources_local.txt | grep srsenb > ' 
              'Results/Local/Resources/{}_clean_srsenb_resources.txt'.format(i, i)) 
 
    os.system('cat Data/Local/resources/{}_resources_local.txt | grep mongodb > ' 
              'Results/Local/Resources/{}_clean_mongo_resources.txt'.format(i, i)) 
 
    for cont in containers: 
        os.system('cat Data/Docker/resources/{}_resources_docker.txt | grep {} > ' 
                  'Results/Docker/Resources/{}_clean_open5gs-{}_resources.txt'.format(i, 
cont, i, cont)) 
 
    os.system('cat Data/Docker/resources/{}_resources_docker.txt | grep srsenb > ' 
              'Results/Docker/Resources/{}_clean_srsenb_resources.txt'.format(i, i)) 
 
    os.system('cat Data/Kubernetes/resources/{}_resources_kub.txt | grep open5gs > ' 
              'Results/Kubernetes/Resources/{}_clean_open5gs_resources.txt'.format(i, i)) 
 
    os.system('cat Data/Kubernetes/resources/{}_resources_kub.txt | grep srsenb > ' 
              'Results/Kubernetes/Resources/{}_clean_srsenb_resources.txt'.format(i, i)) 
 
 
def convert(lst): 
    return lst[0].split() 
def transform_csv(path, name, case): 
 
    if case == 'Local': 
        PR = [] 
        NI = [] 
        RES = [] 
        VIRT = [] 
        SHR = [] 
        CPU = [] 
        MEM = [] 
 
        df = pd.DataFrame() 
 
        with open('{}/{}.txt'.format(path, name), 'r') as in_file: 

Annex VI: Code to clean and plot the results 
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            for myline in in_file: 
                if myline == "\n": 
                    continue 
                else: 
                    lines = convert([myline]) 
                    PR.append(lines[2]) 
                    NI.append(lines[3]) 
                    VIRT.append(lines[4]) 
                    RES.append(lines[5]) 
                    SHR.append(lines[6]) 
                    CPU.append(lines[8]) 
                    MEM.append(lines[9]) 
 
            df['PR'] = PR 
            df['NI'] = NI 
            df['VIRT'] = VIRT 
            df['RES'] = RES 
            df['SHR'] = SHR 
            df['%CPU'] = CPU 
            df['%MEM'] = MEM 
 
            df.to_csv('{}/Final/{}.csv'.format(path, name)) 
    else: 
        CPU = [] 
        NI = [] 
        RES = [] 
        VIRT = [] 
        SHR = [] 
        CPU = [] 
        MEM = [] 
 
 
cases = ['mongo', 'open5gs', 'srsenb'] 
 
for i in range(25, 76, 25): 
    for nom in cases: 
        transform_csv('Results/Local/Resources', '{}_clean_{}_resources'.format(i, nom), 
'Local') 
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plot_resources.py: 

 

import numpy as np 
import pan das as pd 
import matplotlib.pyplot as plt 
 
 
def plot_CPU_Resources(deploy, j, s): 
    cont = 0 
    CPU_mongo = data['CPU_mongo_{}PRB'.format(j)] 
    CPU_srsenb = data['CPU_srsenb_{}PRB'.format(j)] 
    CPU_amfd = data['CPU_amfd_{}PRB'.format(j)] 
    CPU_ausfd = data['CPU_ausfd_{}PRB'.format(j)] 
    CPU_bsfd = data['CPU_bsfd_{}PRB'.format(j)] 
    CPU_mmed = data['CPU_mmed_{}PRB'.format(j)] 
    CPU_nrfd = data['CPU_nrfd_{}PRB'.format(j)] 
    CPU_nssfd = data['CPU_nssfd_{}PRB'.format(j)] 
    CPU_sgwcd = data['CPU_sgwcd_{}PRB'.format(j)] 
    CPU_sgwud = data['CPU_sgwud_{}PRB'.format(j)] 
    CPU_smfd = data['CPU_smfd_{}PRB'.format(j)] 
    CPU_udmd = data['CPU_udmd_{}PRB'.format(j)] 
    CPU_upfd = data['CPU_upfd_{}PRB'.format(j)] 
    CPU_udrd = data['CPU_udrd_{}PRB'.format(j)] 
    CPU_hssd = data['CPU_hssd_{}PRB'.format(j)] 
    CPU_pcfd = data['CPU_pcfd_{}PRB'.format(j)] 
    CPU_pcrfd = data['CPU_pcrfd_{}PRB'.format(j)] 
 
    # labels = ['25', '50', '75'] 
    labels = ['{}'.format(j)] 
    width = 0.3  # the width of the bars 
 
    bar1 = np.arange(len(labels)) 
    bar2 = [] 
    list_other = list(np.add(CPU_mongo, CPU_amfd)) 
 
    for k in bar1: 
        bar2.append(k + width) 
 
    plt.bar(bar1, CPU_mongo, width, label='Mongo', color=colors[cont]) 
    cont += 1 
    plt.bar(bar1, CPU_amfd, width, bottom=CPU_mongo, label='amfd', 
color=colors[cont]) 
    cont += 1 
    plt.bar(bar1, CPU_ausfd, width, bottom=list_other, label='ausfd', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_ausfd) 
    cont += 1 
    plt.bar(bar1, CPU_bsfd, width, bottom=list_other, label='bsfd', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_bsfd) 
    cont += 1 
    plt.bar(bar1, CPU_mmed, width, bottom=list_other, label='mmed', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_mmed) 
    cont += 1 
    plt.bar(bar1, CPU_nrfd, width, bottom=list_other, label='nrfd', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_nrfd) 
    cont += 1 

Annex VI: Code to clean and plot the results 
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    plt.bar(bar1, CPU_nssfd, width, bottom=list_other, label='nssfd', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_nssfd) 
    cont += 1 
    plt.bar(bar1, CPU_sgwcd, width, bottom=list_other, label='sgwcd', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_sgwcd) 
    cont += 1 
    plt.bar(bar1, CPU_sgwud, width, bottom=list_other, label='sgwud', 
color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_sgwud) 
    cont += 1 
    plt.bar(bar1, CPU_smfd, width, bottom=list_other, label='smfd', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_smfd) 
    cont += 1 
    plt.bar(bar1, CPU_udmd, width, bottom=list_other, label='udmd', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_udmd) 
    cont += 1 
    plt.bar(bar1, CPU_upfd, width, bottom=list_other, label='upfd', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_upfd) 
    cont += 1 
    plt.bar(bar1, CPU_udrd, width, bottom=list_other, label='udrd', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_udrd) 
    cont += 1 
    plt.bar(bar1, CPU_hssd, width, bottom=list_other, label='hssd', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_hssd) 
    cont += 1 
    plt.bar(bar1, CPU_pcfd, width, bottom=list_other, label='pcfd', color=colors[cont]) 
    list_other = add_fragment(list_other, CPU_pcfd) 
    cont += 1 
    plt.bar(bar1, CPU_pcrfd, width, bottom=list_other, label='pcrfd', color=colors[cont]) 
    cont += 1 
 
    plt.bar(bar2, CPU_srsenb, width, label='srsenb', color=colors[cont]) 
 
    plt.grid(color='tab:gray', linestyle='--', linewidth=0.5) 
    plt.ylabel('% CPU', fontsize=22) 
    plt.xlabel('Nº of PRB', fontsize=22) 
    plt.title('{} deployment of {}Mbps'.format(deploy, s), fontsize=20) 
    plt.xticks(bar1 + width / 2, labels, fontsize=20) 
    plt.yticks(fontsize=20) 
    plt.legend(loc=2, prop={'size': 15}) 
 
 
def add_fragment(old_list, fragment): 
    old_list = list(np.add(old_list, fragment)) 
    return old_list 
 
 
def plot_MEM_Resources(deploy, j, s): 
    cont = 0 
    MEM_mongo = data['MEM_mongo_{}PRB'.format(j)] 
    MEM_srsenb = data['MEM_srsenb_{}PRB'.format(j)] 
    MEM_amfd = data['MEM_amfd_{}PRB'.format(j)] 
    MEM_ausfd = data['MEM_ausfd_{}PRB'.format(j)] 
    MEM_bsfd = data['MEM_bsfd_{}PRB'.format(j)] 
    MEM_mmed = data['MEM_mmed_{}PRB'.format(j)] 
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    MEM_nrfd  = data['MEM_nrfd_{}PRB'.format(j)] 
    MEM_nssfd = data['MEM_nssfd_{}PRB'.format(j)] 
    MEM_sgwcd = data['MEM_sgwcd_{}PRB'.format(j)] 
    MEM_sgwud = data['MEM_sgwud_{}PRB'.format(j)] 
    MEM_smfd = data['MEM_smfd_{}PRB'.format(j)] 
    MEM_udmd = data['MEM_udmd_{}PRB'.format(j)] 
    MEM_upfd = data['MEM_upfd_{}PRB'.format(j)] 
    MEM_udrd = data['MEM_udrd_{}PRB'.format(j)] 
    MEM_hssd = data['MEM_hssd_{}PRB'.format(j)] 
    MEM_pcfd = data['MEM_pcfd_{}PRB'.format(j)] 
    MEM_pcrfd = data['MEM_pcrfd_{}PRB'.format(j)] 
 
    labels = ['{}'.format(j)] 
    width = 0.3  # the width of the bars 
 
    bar1 = np.arange(len(labels)) 
    bar2 = [] 
    list_other = list(np.add(MEM_mongo, MEM_amfd)) 
 
    for k in bar1: 
        bar2.append(k + width) 
 
    plt.bar(bar1, MEM_mongo, width, label='Mongo', color=colors[cont]) 
    cont += 1 
    plt.bar(bar1, MEM_amfd, width, bottom=MEM_mongo, label='amfd', 
color=colors[cont]) 
    cont += 1 
    plt.bar(bar1, MEM_ausfd, width, bottom=list_other, label='ausfd', color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_ausfd) 
    cont += 1 
    plt.bar(bar1, MEM_bsfd, width, bottom=list_other, label='bsfd', color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_bsfd) 
    cont += 1 
    plt.bar(bar1, MEM_mmed, width, bottom=list_other, label='mmed', 
color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_mmed) 
    cont += 1 
    plt.bar(bar1, MEM_nrfd, width, bottom=list_other, label='nrfd', color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_nrfd) 
    cont += 1 
    plt.bar(bar1, MEM_nssfd, width, bottom=list_other, label='nssfd', color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_nssfd) 
    cont += 1 
    plt.bar(bar1, MEM_sgwcd, width, bottom=list_other, label='sgwcd', 
color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_sgwcd) 
    cont += 1 
    plt.bar(bar1, MEM_sgwud, width, bottom=list_other, label='sgwud', 
color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_sgwud) 
    cont += 1 
    plt.bar(bar1, MEM_smfd, width, bottom=list_other, label='smfd', color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_smfd) 
    cont += 1 
    plt.bar(bar1, MEM_udmd, width, bottom=list_other, label='udmd', color=colors[cont]) 

Annex VI: Code to clean and plot the results 
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    list_other = add_fragment(list_other, MEM_udmd) 
    cont += 1 
    plt.bar(bar1, MEM_upfd, width, bottom=list_other, label='upfd', color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_upfd) 
    cont += 1 
    plt.bar(bar1, MEM_udrd, width, bottom=list_other, label='udrd', color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_udrd) 
    cont += 1 
    plt.bar(bar1, MEM_hssd, width, bottom=list_other, label='hssd', color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_hssd) 
    cont += 1 
    plt.bar(bar1, MEM_pcfd, width, bottom=list_other, label='pcfd', color=colors[cont]) 
    list_other = add_fragment(list_other, MEM_pcfd) 
    cont += 1 
    plt.bar(bar1, MEM_pcrfd, width, bottom=list_other, label='pcrfd', color=colors[cont]) 
    cont += 1 
 
    plt.bar(bar2, MEM_srsenb, width, label='srsenb', color=colors[cont]) 
 
    plt.grid(color='tab:gray', linestyle='--', linewidth=0.5) 
    plt.ylabel('% MEM', fontsize=22) 
    plt.xlabel('Nº of PRB', fontsize=22) 
    plt.xticks(bar1 + width / 2, labels, fontsize=20) 
    plt.yticks(range(0, 11), fontsize=20) 
    plt.title('{} deployment of {}Mbps'.format(deploy, s)) 
    plt.legend(loc=2, prop={'size': 15}) 
 
 
deploys = ["Local", "Docker”, "Kubernetes"] 
num_PRB = [25, 50, 75] 
range_plot = [1, 25, 50, 75, 100, 150] 
colors = ['#0000CD', '#FF6103', '#76EE00', '#DC143C', '#9932CC', '#8B4500', 
'#FFC125', '#00EEEE', 
          '#8B8878', '#FF6103', '#C0FF3E', '#E0EEEE', '#E3CF57', '#7CFC00', 
'#9AC0CD', '#030303', '#FF1493'] 
 
for i in deploys: 
    for s in range_plot: 
        data = pd.read_csv("Results/Clean data/{}/clean_resources_{}Mbps.csv".format(i, 
s)) 
 
        for j in num_PRB: 
            plt.figure(figsize=(15, 10)) 
 
            plot_CPU_Resources(i, j, s) 
            #plot_MEM_Resources(i, j, s) 
            plt.show()  
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Forced disconnection 

 
Scripts to extract, clean and plot the forced disconnection data. 
 
extract_disc.py: 

 
def format_line(text): 
    text = text.replace("[  5]   ", "") 
    text = text.replace("[  5]  ", "") 
    text = text.replace("[  6]  ", "") 
    text = text.replace("  sec ", "") 
    text = text.replace(" MBytes ", "") 
    text = text.replace(" KBytes ", "") 
    text = text.replace(" Bytes ", "") 
    text = text.replace(" Mbits/sec ", "") 
    text = text.replace(" Kbits/sec ", "") 
    text = text.replace(" bits/sec ", "") 
    text = text.replace(" ms ", "") 
    text = text.replace("  receiver", "") 
    text = text.replace("  ", " ") 
    text = text.replace("[ ID] Interval      Transfer   Bitrate     Jitter  Lost/Total Datagrams", 
"") 
    text = text.replace("[SUM] 0.0-15.2 sec 1 datagrams received out-of-order", "") 
    text = text.replace("[SUM] 0.0-15.3 sec 1 datagrams received out-of-order", "") 
    text = text.replace("WARNING: Size of data read does not correspond to offered 
length", "") 
    text = text.replace("- - - - - - - - - - - - - - - - - - - - - - - - -", "") 
    text = text.replace("-----------------------------------------------------------", "") 
    text = text.replace("Server listening on 5000", "") 
    #    text = text.replace(".", ",") 
    return text 
 
 
def create_file(deployment, file): 
    myLines = [] 
 
    with open('Data/{}/forced_dis/{}.txt'.format(deployment, file), 'r') as myfile: 
        for myline in myfile: 
            myLines.append(myline.rstrip('\n')) 
 
    with open('Results/{}/Forced_dis/forced_dis.txt'.format(deployment), 'w+') as data: 
        for element in myLines: 
            not_found = 0 
            for word in bad_words: 
                if element.__contains__(word): 
                    break 
                else: 
                    not_found += 1 
 
                if not_found == len(bad_words): 
                    formated_line = format_line(element) 
                    data.write(formated_line + "\n") 
 
 

Annex VI: Code to clean and plot the results 
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bad_words = ["Accepted", "omitted", "local"] 
deploy = ["Local", "Docker", "Kubernetes"] 
 
for i in deploy: 
    create_file(i, 'f_1mPRB50_25M') 

 
clean_disc.py: 

 

import pandas as pd 
 
 
def convert(lst): 
    return lst[0].split() 
 
 
def transform_csv(file, i): 
    cont = 0 
    num_file = 1 
    df = pd.DataFrame() 
    interval = [] 
    transfer = [] 
    bit_rate_real = [] 
    jitter = [] 
 
    with open('{}'.format(file), 'r') as in_file: 
        for myline in in_file: 
            if myline == "\n": 
                continue 
            else: 
                if cont == 121: 
                    df['Interval(sec)'] = interval[cont-121:cont-1] 
                    df['Transfer(KBytes)'] = transfer[cont-121:cont-1] 
                    df['Bitrate_real(Mbits/sec)'] = bit_rate_real[cont-121:cont-1] 
                    df['Jitter(ms)'] = jitter[cont-121:cont-1] 
                    df.to_csv('Results/Clean data/{}/clean_forced_disc{}.csv'.format(i, 
num_file)) 
 
                    interval = [] 
                    transfer = [] 
                    bit_rate_real = [] 
                    jitter = [] 
                    cont = 0 
                    num_file += 1 
 
                else: 
                    lines = convert([myline]) 
                    interval.append(lines[0]) 
                    transfer.append(lines[1]) 
                    bit_rate_real.append(lines[2]) 
                    jitter.append(lines[3]) 
                    cont += 1 
 
 
bad_words = ["Accepted", "omitted", "local"] 
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deploy = ["Local", "Docker", "Kubernetes"] 
 
 
for i in deploy: 
    transform_csv('Results/{}/Forced_dis/forced_dis.txt'.format(i), i) 

 
plot_disc.py: 

 

import pandas as pd 
import matplotlib.pyplot as plt 
 
 
def plot_disc(data, dep, cont): 
    data_plot = data['Bitrate_real(Mbits/sec)'] 
 
    plt.plot(range_plot, data_plot, colors[cont], linewidth=4, label='Attempt {}'.format(i)) 
    plt.title('{} deployment'.format(dep)) 
    plt.grid(color='tab:gray', linestyle='--', linewidth=0.5) 
    plt.xlabel('Time (sec)', fontsize=22) 
    plt.xticks(range_plot, labels, rotation=90, fontsize=12, horizontalalignment='center') 
    plt.yticks(fontsize=15) 
    plt.ylabel('Throughput (Mbps)', fontsize=22) 
    plt.legend(loc=3, prop={'size': 15}) 
 
 
deploys = ["Local", "Docker", "Kubernetes"] 
colors = ['#0000FF', '#66CD00', '#FF00FF', '#C76114', '#00BFFF', 'k'] 
range_plot = range(0, 120, 1) 
labels = [] 
sum = 0 
 
for i in range(0, 120): 
    labels.append('{:.2f} '.format(sum+0.25)) 
    #labels.append('') 
    sum += 0.25 
 
 
for dep in deploys: 
    cont = 0 
    plt.figure(figsize=(15, 10)) 
 
    for i in range(1, 6): 
        data = pd.read_csv("Results/Clean data/{}/clean_forced_disc{}.csv".format(dep, i)) 
        plot_disc(data, dep, cont) 
        cont += 1 
    plt.show()   

Annex VI: Code to clean and plot the results 
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