1,223 research outputs found

    EYE ASPECT RATIO ADJUSTMENT DETECTION FOR STRONG BLINKING SLEEPINESS BASED ON FACIAL LANDMARKS WITH EYE-BLINK DATASET

    Get PDF
    Blink detection is an important technique in a variety of settings, including facial motion analysis and signal processing.  However, automatic blink detection is challenging due to its blink rate. This paper proposes a real-time method for detecting eye blinks in a video series. The method is based on automatic facial landmark detection trained on real-world datasets and demonstrates robustness against various environmental factors, including lighting conditions, facial emotions, and head position. The proposed algorithm calculates the position of facial landmarks, extracts scalar values using the Eye Aspect Ratio (EAR), and characterises eye proximity in each frame. For each video frame, the proposed method calculates the location of the facial landmark and extracts the vertical distance between the eyelids using the position of the facial landmark. Blinks are detected by using the EAR threshold value and recognising the pattern of EAR values in a short temporal window. According to the results from a common data set, it is shown that the proposed approach is more efficient than state-of-the-art techniques

    A deep learning palpebral fissure segmentation model in the context of computer user monitoring

    Get PDF
    The intense use of computers and visual terminals is a daily practice for many people. As a consequence, there are frequent complaints of visual and non-visual symptoms, such as headaches and neck pain. These symptoms make up Computer Vision Syndrome and among the factors related to this syndrome are: the distance between the user and the screen, the number of hours of use of the equipment and the reduction in the blink rate, and also the number of incomplete blinks while using the device. Although some of these items can be controlled by ergonomic measures, controlling blinks and their efficiency is more complex. A considerable number of studies have looked at measuring blinks, but few have dealt with the presence of incomplete blinks. Conventional measurement techniques have limitations when it comes to detecting and analyzing the completeness of blinks, especially due to the different eye and blink characteristics of individuals, as well as the position and movement of the user. Segmenting the palpebral fissure can be a first step towards solving this problem, by characterizing individuals well regardless of these factors. This work investigates with the development of Deep Learning models to perform palpebral fissure segmentation in situations where the eyes cover a small region of the images, such as images from a computer webcam. The segmentation of the palpebral fissure can be a first step in solving this problem, characterizing individuals well regardless of these factors. Training, validation and test sets were generated based on the CelebAMask-HQ and Closed Eyes in the Wild datasets. Various machine learning techniques are used, resulting in a final trained model with a Dice Coefficient metric close to 0.90 for the test data, a result similar to that obtained by models trained with images in which the eye region occupies most of the image.A utilização intensa de computadores e terminais visuais é algo cotidiano para muitas pessoas. Como consequência, queixas com sintomas visuais e não visuais, como dores de cabeça e no pescoço, são frequentes. Esses sintomas compõem a Síndrome da visão de computador e entre os fatores relacionados a essa síndrome estão: a distância entre o usuário e a tela, o número de horas de uso do equipamento e a redução da taxa de piscadas, e, também, o número de piscadas incompletas, durante a utilização do dispositivo. Ainda que alguns desses itens possam ser controlados por medidas ergonômicas, o controle das piscadas e a eficiência dessas é mais complexo. Um número considerável de estudos abordou a medição de piscadas, porém, poucos trataram da presença de piscadas incompletas. As técnicas convencionais de medição apresentam limitações para detecção e análise completeza das piscadas, em especial devido as diferentes características de olhos e de piscadas dos indivíduos, e ainda, pela posição e movimentação do usuário. A segmentação da fissura palpebral pode ser um primeiro passo na resolução desse problema, caracterizando bem os indivíduos independentemente desses fatores. Este trabalho aborda o desenvolvimento de modelos de Deep Learning para realizar a segmentação de fissura palpebral em situações em que os olhos cobrem uma região pequena das imagens, como são as imagens de uma webcam de computador. Foram gerados conjuntos de treinamento, validação e teste com base nos conjuntos de dados CelebAMask-HQ e Closed Eyes in the Wild. São utilizadas diversas técnicas de aprendizado de máquina, resultando em um modelo final treinado com uma métrica Coeficiente Dice próxima a 0,90 para os dados de teste, resultado similar ao obtido por modelos treinados com imagens nas quais a região dos olhos ocupa a maior parte da imagem

    Directional Sensitivity of Gaze-Collinearity Features in Liveness Detection

    Get PDF
    To increase the trust in using face recognition systems, these need to be capable of differentiating between face images captured from a real person and those captured from photos or similar artifacts presented at the sensor. Methods have been published for face liveness detection by measuring the gaze of a user while the user tracks an object on the screen, which appears at pre-defined, places randomly. In this paper we explore the sensitivity of such a system to different stimulus alignments. The aim is to establish whether there is such sensitivity and if so to explore how this may be exploited for improving the design of the stimulus. The results suggest that collecting feature points along the horizontal direction is more effective than the vertical direction for liveness detection

    Video surveillance for monitoring driver's fatigue and distraction

    Get PDF
    Fatigue and distraction effects in drivers represent a great risk for road safety. For both types of driver behavior problems, image analysis of eyes, mouth and head movements gives valuable information. We present in this paper a system for monitoring fatigue and distraction in drivers by evaluating their performance using image processing. We extract visual features related to nod, yawn, eye closure and opening, and mouth movements to detect fatigue as well as to identify diversion of attention from the road. We achieve an average of 98.3% and 98.8% in terms of sensitivity and specificity for detection of driver's fatigue, and 97.3% and 99.2% for detection of driver's distraction when evaluating four video sequences with different drivers

    Efficient and Robust Driver Fatigue Detection Framework Based on the Visual Analysis of Eye States

    Get PDF
    Fatigue detection based on vision is widely employed in vehicles due to its real-time and reliable detection results. With the coronavirus disease (COVID-19) outbreak, many proposed detection systems based on facial characteristics would be unreliable due to the face covering with the mask. In this paper, we propose a robust visual-based fatigue detection system for monitoring drivers, which is robust regarding the coverings of masks, changing illumination and head movement of drivers. Our system has three main modules: face key point alignment, fatigue feature extraction and fatigue measurement based on fused features. The innovative core techniques are described as follows: (1) a robust key point alignment algorithm by fusing global face information and regional eye information, (2) dynamic threshold methods to extract fatigue characteristics and (3) a stable fatigue measurement based on fusing percentage of eyelid closure (PERCLOS) and proportion of long closure duration blink (PLCDB). The excellent performance of our proposed algorithm and methods are verified in experiments. The experimental results show that our key point alignment algorithm is robust to different scenes, and the performance of our proposed fatigue measurement is more reliable due to the fusion of PERCLOS and PLCDB

    Drowsy Driver Detection System Using Eye Blink Patterns

    Get PDF
    International audienceThis paper presents an automatic drowsy driver monitoring and accident prevention system that is based on monitoring the changes in the eye blink duration. Our proposed method detects visual changes in eye locations using the proposed horizontal symmetry feature of the eyes. Our new method detects eye blinks via a standard webcam in real-time at 110fps for a 320×240 resolution. Experimental results in the JZU [3] eye-blink database showed that the proposed system detects eye blinks with a 94% accuracy with a 1% false positive rate
    corecore