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ABSTRACT

The intense use of computers and visual terminals is a daily practice for many people. As

a consequence, there are frequent complaints of visual and non-visual symptoms, such

as headaches and neck pain. These symptoms make up Computer Vision Syndrome and

among the factors related to this syndrome are: the distance between the user and the

screen, the number of hours of use of the equipment and the reduction in the blink rate,

and also the number of incomplete blinks while using the device. Although some of these

items can be controlled by ergonomic measures, controlling blinks and their efficiency

is more complex. A considerable number of studies have looked at measuring blinks,

but few have dealt with the presence of incomplete blinks. Conventional measurement

techniques have limitations when it comes to detecting and analyzing the completeness

of blinks, especially due to the different eye and blink characteristics of individuals, as

well as the position and movement of the user. Segmenting the palpebral fissure can be

a first step towards solving this problem, by characterizing individuals well regardless

of these factors. This work investigates with the development of Deep Learning mod-

els to perform palpebral fissure segmentation in situations where the eyes cover a small

region of the images, such as images from a computer webcam. The segmentation of

the palpebral fissure can be a first step in solving this problem, characterizing individuals

well regardless of these factors. Training, validation and test sets were generated based

on the CelebAMask-HQ and Closed Eyes in the Wild datasets. Various machine learning

techniques are used, resulting in a final trained model with a Dice Coefficient metric close

to 0.90 for the test data, a result similar to that obtained by models trained with images in

which the eye region occupies most of the image.

Keywords: Palpebral fissure. UNet. LinkNet. Computer Vision Syndrome. incomplete

blink.



Modelo de aprendizagem de máquina profunda para segmentação da fissura

palpebral no contexto do monitoramento de usuários de computador

RESUMO

A utilização intensa de computadores e terminais visuais é algo cotidiano para muitas

pessoas. Como consequência, queixas com sintomas visuais e não visuais, como dores

de cabeça e no pescoço, são frequentes. Esses sintomas compõem a Síndrome da visão

de computador e entre os fatores relacionados a essa síndrome estão: a distância entre o

usuário e a tela, o número de horas de uso do equipamento e a redução da taxa de pisca-

das, e, também, o número de piscadas incompletas, durante a utilização do dispositivo.

Ainda que alguns desses itens possam ser controlados por medidas ergonômicas, o con-

trole das piscadas e a eficiência dessas é mais complexo. Um número considerável de

estudos abordou a medição de piscadas, porém, poucos trataram da presença de piscadas

incompletas. As técnicas convencionais de medição apresentam limitações para detec-

ção e análise completeza das piscadas, em especial devido as diferentes características

de olhos e de piscadas dos indivíduos, e ainda, pela posição e movimentação do usuário.

A segmentação da fissura palpebral pode ser um primeiro passo na resolução desse pro-

blema, caracterizando bem os indivíduos independentemente desses fatores. Este trabalho

aborda o desenvolvimento de modelos de Deep Learning para realizar a segmentação de

fissura palpebral em situações em que os olhos cobrem uma região pequena das imagens,

como são as imagens de uma webcam de computador. Foram gerados conjuntos de trei-

namento, validação e teste com base nos conjuntos de dados CelebAMask-HQ e Closed

Eyes in the Wild. São utilizadas diversas técnicas de aprendizado de máquina, resultando

em um modelo final treinado com uma métrica Coeficiente Dice próxima a 0,90 para os

dados de teste, resultado similar ao obtido por modelos treinados com imagens nas quais

a região dos olhos ocupa a maior parte da imagem.

Palavras-chave: fissura palpebral, UNet, LinkNet, Síndrome da Visão do Computador,

piscada incompleta.
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1 INTRODUCTION

The use of computers and others visual display-terminals (VTD) is a daily practice

for a large part of the world’s population. As a result, asthenopic symptoms associated

with Computer Vision Syndrome (CVS) are common: visual complaints, ocular disor-

ders, eye fatigue, eyestrain, dry eyes, and other visual diseases. American Optometric

Association (1997) first presented CVS definition as "the complex of eye and vision prob-

lems related to near work experienced during computer use". It can also be referred to

as Digital Eye Strain (DES) or VDT syndrome, emphasizing that it is not only associated

to computer use. Yan et al. (2008) indicates that headache and neck pain are commonly

observed CVS symptoms.

The emergency health situation caused by COVID-19 (SARS-CoV-2), declared a

pandemic disease by the World Health Organization in 2020, has given this topic new

relevance. The lockdown and remote working measures adopted in several countries have

abruptly changed the behaviors and lifestyles of the world population in general. Barros

et al. (2022) found a significant association in screen use for college lecturers in Brazil

giving remote classes, and the occurrence of asthenopia. This was especially true in

groups with longer screen time. Improper body posturing, not taking breaks, long-hour

duration of VDT use, and short-distance screen were all aspects associated with increased

odds of CVS by studies reviewed by Anbesu and Lema (2023).

While environment design measures can be taken prior to engaging in the com-

puter activities to reduce issues (DAIN; MCCARTHY; CHAN-LING, 1988), effects in

blinking pattern are not so simply addressed. Blinks may be partially inhibited when

subjects are engaged in a visual tracking task. According to Kennard and Smyth (1963),

blinking and visual search functions have been shown to be mutually inhibitory. Thus,

during a demanding visual task, blinking frequency is reduced and, conversely, it occurs

when the task is interrupted or ceases. Rosenfield (2011), in a review of CSV causes,

observed that while vergence1 and accommodation 2 responses to VDT appear to be sim-

ilar to those found for printed materials, dry eye symptoms are greater during computer

usage. The reason is considered to be probably because of the decrease in blink rate and

blink amplitude, as well as an increase of corneal exposure due to the monitor frequently

being positioned in primary gaze.

While studying the interaction between blinking and vertical following move-

1movement in opposite directions of eyes to obtain or maintain single binocular vision
2process by which the eye changes focus from distant to near objects



13

ments of eyes and lid, Kennard and Smyth (1963) noted the presence of "miniature",

partial blinks, during a demanding visual tracking task. According to Portello, Rosenfield

and Chu (2013), while CVS symptoms are associated with a reduced blink rate, blink

completeness can be equally significant. Hirota et al. (2013) concluded that even if the

total blink rate decreases, tear film remains stable if almost all blinks are complete. Mc-

Monnies (2021) highlights that measures and remediation focus in only total blink rate

have limited usefulness in the diagnosis and treatment of blink inefficiency-related ocular

surface exposure, dry eye symptoms and ocular surface disease.

Reliably measuring blinks is thus needed, specially because blink patterns change

with VDT use and the time spent in the task. Manually analyzing long videos (couple of

hours) is a cumbersome process, and many studies have verified blink patterns for only

a short period of time. Considering what was discussed before, investigating ways to

measure eye closeness is relevant. There is no exact model for the determination of blinks

and, in particular, incomplete blinks. Blinks are affected by many internal and external

factors, as shown in Table 1.1.

Table 1.1: Some factors that affect blink

Internal factors affecting blink External factors affecting blink

Age, Gender Change in environment
Ocular surface exposure and damage; Conversation

palpebral aperture size Reading
Tear film break up time, rate of tear evaporation Computer and e-reader use

Visual acuity Sleep
Mental/Muscular fatigue and tension Time of day

Contact lens wear and drug interactions Illumination
Mental disorders and emotional state Temperature and humidity

Concentration and cognitive processes Air movement
Ocular saccades and shifting gaze (focal distance) Noise

Awareness of measurement ...

Source: Adapted from Rodriguez et al. (2018).

Zheng et al. (2022a) have used a special type of deep learning fully convolutional

network, the UNet (RONNEBERGER; FISCHER; BROX, 2015), to detect incomplete

blinks. This was done with high-resolution palpebral fissure images obtained with a Ker-

atograph 5M. According to McMonnies (2021), however, blink performance during clini-

cal assessment of blink efficiency is unlikely to be characteristic of or relevant to the blink

inefficiency that develops and causes symptoms during patient’s various daily activities.

It is also difficult to measure blinks in normal situations (out of a laboratory or

clinic). Cruz et al. (2011) indicate that using a commercial camera with a temporal res-
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olution of 30 frames per second (FPS) may be employed to film the palpebral fissure to

analyze spontaneous eye blink. This method is not completely objective, as blinks have

a wide range of amplitudes, and the observer has to decide which upper lid movements

should be considered a blink. When blinking, the lid does not come to the original posi-

tion, for example (STERN; WALRATH; GOLDSTEIN, 1984). Differentiating a complete

blink from an incomplete blink is especially challenging for humans. Fogelton and Be-

nesova (2018) experienced this when annotating datasets obtained by cameras. Strictly

speaking, a complete blink happens when the two eyelids touch. The authors have some-

times found it difficult to annotate this situation on videos recorded at 15 FPS, mostly

because eyelashes may make not fully closed eyes look like closed eyes.

In this study, the segmentation of the palpebral fissure by the means of deep learn-

ing techniques is considered for situations where the eyes cover only a small region of the

images, that corresponds to webcam images of computers and laptops, ultimately return-

ing in each instance to a discussion of how these techniques may be used in the context

of CVS and blink completeness analysis applications.

The solution of tasks involving data-driven computational intelligence presents

several peculiarities. Cortacero, Fischer and Demiris (2019) highlight that the perfor-

mances of the methods used in gaze direction estimation and blink detection tasks are

significantly impacted by the database used. Deep learning models, for example, bene-

fit from large datasets with many annotated examples of blinks. Using pretrained models

can bootstrap deep learning applications through transfer learning. Furthermore, data aug-

mentation and some architectures like UNet have been particularly successful strategies

even when little data is available, as is the case of medical segmentation.

The analysis of the periocular region, of which the palpebral fissure is part, and

eye closure/blink have many potential uses and have been the subject of many studies that

are connected fields to this research. The iris is an individual characteristic that may be

used for recognition (LOZEJ et al., 2018). Biometrics applications where the image of

the iris does not have a good resolution may benefit of the segmentation of the palpebral

fissure components for authentication processes (LUCIO et al., 2018). Eye closure and

blink detection, in turn, may also be of interest for authentication of users, as in face

anti-spoofing applications Pan et al. (2007), driver-fatigue alert systems (ALPARSLAN;

ALPARSLAN; BURLICK, 2020) (HUDA; TOLLE; UTAMININGRUM, 2020), gaze es-

timation methods (CORTACERO; FISCHER; DEMIRIS, 2019), making realistic anima-

tions (TRUTOIU et al., 2011), engagement with content (RANTI et al., 2020), and the
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prevention and study of computer user related visual problems (YIN et al., 2022), Su et al.

(2018), Zheng et al. (2022a). A recent case of the use of blink detection is the detection

of fake face generated videos (LI; CHANG; LYU, 2018). The reduced number of face

images with closed eyes compared to open eyes and the complex patterns of blink are a

challenge for the techniques creating these videos.

In the chapter 2 Theoretical Background, physiological, ergonomic, and technical

information are introduced to the reader to provide the necessary context for the following

chapters. This includes information about the palpebral fissure, eye blink, and ergonomic

and ophthalmic aspects of computer use. These are useful from the perspective of en-

hancing the segmentation with geometrical constraints (detecting faulty segmentations

automatically) and of using palpebral fissures for blink completeness detection in videos.

Elements of machine and deep learning are also reviewed. A literature review is then pre-

sented in chapter 3 Related work discussing the benefits of the proposed palpebral fissure

segmentation approach. The chapter 4 Methods and methodology addresses the datasets

used and the choices impacting data preparation, as well as models training, validation,

testing, and display of relevant metrics. The results obtained will be presented and dis-

cussed in the chapter 5 Results and Discussion. Finally, in the chapter 6 Conclusion, a

conclusion is made based on the results obtained and the perspectives of future works.

1.1 Objective

To develop a segmentation model of the palpebral fissure region using images

where the eyes cover only a small region of the image, like the ones that could be obtained

by a computer webcam.

1.2 Specific objectives

• to address how the segmentation of the palpebral fissure region can be used for

analysis of blinks and their completeness, to aid in the diagnosis of CVS, from

webcam images;

• approach how deep learning and post-processing techniques can be employed for

the generation of palpebral fissure segmentation models;

• compare different architectures and topologies of models.



16

2 THEORETICAL BACKGROUND

2.1 Palpebral fissure, blink and computer use

The Figure 2.1 shows a periorbital image with a number of landmarks indicated.

Major periorbital features commonly measured are the outer canthal distance (distance be-

tween the lateral canthi of the eyes), the interpupillary distance, the inner canthal distance

(distance between the medical canthi of the eyes) and the palpebral fissure length (dis-

tance between the inner and outer canthi of the eye) (HALL et al., 2009). The Lacrimal

punctum (plural: puncta) corresponds to the external aperture of the tear duct system.

Figure 2.1: Periorbital anatomy and terminology

Source: Hall et al. (2009).

The palpebral fissure is the longitudinal opening between the eyelids, approxi-

mately of elliptical shape. It extends from the lateral canthus (outer canthus) to the me-

dial canthus (inner canthus). The normal adult eyelids frame a palpebral fissure measuring

about 8 to 11 mm vertically at the pupillary meridian by about 30 to 33 mm horizontally

(FANTE, 2007) (PRAKALAPAKORN et al., 2023).

Many factors, like the size, slant, eyelid architecture, and ptosis (blepharopto-

sis, the "dropping or falling" of the upper eyelid), can contribute to configuration of the

palpebral fissures (GRIPP et al., 2013). The eye fissure dimensions vary according to

age, gender, and ethnicity (VASANTHAKUMAR; KUMAR; RAO, 2013). Physiological

palpebral fissure asymmetry is common, with the ocular dominance known to have a rela-

tively small yet significant effect on the palpebral fissure height (DOGANAY et al., 2017)
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and width (GRIPP et al., 2013). Furthermore, horizontal and vertical palpebral fissure

dimensions change in downward gaze (READ et al., 2006).

2.1.1 Eyeblink

Eye closure can be associated to the different types of blink, i.e., endogenous

blink, reflex blinks and voluntary blinks, and non-blink closures events, like sleep and

microsleep. According to Stern, Walrath and Goldstein (1984), for blinks, the time from

initiation of the eyelid movement to full eye closure takes in general less than 150 ms,

contrasting with a time usually greater than 250 ms to close the eyes for non-blink closure.

The authors also affirm that the full reopening time for blinks is about 100 to 200 ms,

whereas for non-blink, the reopening seldom takes as much as 100 ms. Any closure for

which the time to close is greater than 300 ms, the closure duration is greater than 1 and

the time to reopen is less than 150 may not be relevant to blink analysis, although are

relevant in the study of attention, alertness, and drowsiness.

When considering time aspects of the blink, for developing more robust state ma-

chines or recurrent neural networks, considering the opening and closing phases of eye

blink may be relevant. Stern, Walrath and Goldstein (1984) states that a reasonable esti-

mate for total time taken for lid closure in a blink is from 50 ms to 145 ms. The reopening

takes longer than closing. It is relevant to note that the determination of blink completion

(not to be confounded with the completeness of the blink) is based in the final quiescent

(repose, inactivity) of the lid, as it may not return to the same position. A relatively steady

level lasting some tens of milliseconds may be sustained at full closure before reopening.

The excessive exposure to visual display terminals has been associated with wors-

ening dry eye symptoms, and possibly contributed to the increased incidence of dry eye

syndrome (DED) in research conducted by Nutnicha et al. (2021) in Thailand.

Su et al. (2018) concluded that partial blinks, prolonged closed eyelid time, and

short blink intervals were the three main characteristics observed in DED patients. Zheng

et al. (2022a) demonstrated that incomplete blink frequency is correlated with DED symp-

toms and signs. Figure 2.2 shows the blink pattern of a normal control and a DED patient.
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Figure 2.2: The blink pattern of a normal control and a DED patient

Palpebral opening height (the vertical distance between the central points of the upper and lower

eyelid margins) percentage (POH %) was evaluated as the POH divided by the maximum POH

opening observed during the recorded blinks.

Top: regular and symmetric blink pattern in normal controls; Bottom: irregular and partial blinks

and asymmetric patterns for blink pattern of a DED patient.

Source: Su et al. (2018).

2.1.2 Ergonomic and ophthalmic aspects of computer use

Yan et al. (2008) indicate that eyes use significantly more muscles when focusing

on objects at a near distance. Near work at the computer (viewing distance of less than 20

inches/ 50.8 cm) and long-hour use of the computer (3 h/day or more) are major factors

in CSV. Authors state that a minimum of 20 inches for the distance between the user’s

eyes and the screen should be kept, as suggested by clinical optometrists. A comfortable

horizontal distance for viewing the screen is usually around an arm’s length. Distances of

about 35 to 40 inches (88.9 to 101.6 cm) can produce fewer complaints of visual effort,

since they allow users’ eyes to relax (YAN et al., 2008).

Ankrum (1996) discusses the scientific evidence for the limits of the distance be-

tween the user and a monitor. The author points out that there is no scientific basis for a

maximum distance limit. He recommends a minimum distance of at least 25 inches (about

63.5 cm), indicating that a slightly smaller distance is not bothersome for some people.

Jaschinski-Kruza (1988) found less eye strain at a viewing distance of 100 cm than at 50



19

cm. Some national agencies have guides to the installation and operation of computers.

For example, German Social Accident Insurance recommends that the distance between

the eyes and the screen should be approximately 500 mm to 600 mm (Deutsche Geset-

zliche Unfallversicherung, 2019).

While studying the relationship between dry eyes and video display terminals use,

Tsubota and Nakamori (1993) have shown that the rate of tear evaporation increases as the

ocular surface area exposed, which is a function of the palpebral fissure width, increases.

Furthermore, the rate of the increase was found to be greater for larger surface areas. The

authors have suggested that this was possible due to an instability of the tear film over a

larger surface caused by the thinning mucin and lipid layers of the film.

Based on this study, Tsubota and Nakamori (1993) suggest that computer users

lower the monitor and tilt the screen upward, as eyelids partially close when we look

downward, reducing tear evaporation, which plays an important role in ocular fatigue af-

ter prolonged work at VDT. Yan et al. (2008) points out that computer users should adjust

their computer monitors to a viewing angle of about 15◦ lower than the horizontal level.

This angle is likely to reduce both visual discomfort (for example dry eyes), and muscu-

loskeletal discomfort (like neck and back pain). The American Optometric Association

(n.d.) promotes the 20/20/20 rule. It states that after 20 minutes of computer usage (VDT,

in general), the user should look at a point 20 feet (about 6 m) distance for 20 seconds.

2.2 Machine Learning and Deep Learning

Machine learning is the study field related to allowing a computer model to "learn"

and perform a task without been explicitly programmed for it, with the ability, for exam-

ple, to deal with new data. Training a model means determining suitable values for all its

non-predefined internal parameters (weights and bias, for an artificial neural network).

2.2.1 Artificial neural network (ANN)

An artificial neural network (ANN) is a machine learning model inspired in the

human brain that consists of several interconnected neurons (arrangement of computa-

tional mathematical cells), with an input layers, at least one hidden layer and an output

layer. Figure 2.3 displays one artificial neuron model and an example of ANN with only
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one hidden layer. A deep learning model is an ANN composed of multiple hidden layers.

Figure 2.3: Artificial neuron model and artificial neuron network

Source: Author.

There are many algorithms for training ANN, with a considerable number been

based in the gradient descent method (LECUN et al., 1998a) (LECUN et al., 1998b), that

is typically used to find the local minimum of a function.

2.2.2 Feature scaling techniques

The magnitude of features affects machine learning models like ANNs for various

reasons. Scaling the data is relevant for algorithmic stability and prevents sensitivity to the

scale of input features. Standardization corresponds to rescaling data so that it will have a

mean of 0 and a standard deviation of 1. Normalization means collapsing the inputs range

to a value between 0 and 1. In the case of 8 bits black-and-white images, it is usual to

perform normalization by simply dividing the pixel intensity by 255.

2.2.3 Epoch, step, batch, and batch size

The number of epochs is the number of complete passes through the training

dataset, being an integer value between one and infinity (theoretically). An epoch may

contain many steps and batches. A batch tends to represent the distribution of the data

better than a single input, with larger batches generally making for a better approximation,

but tacking more time to be processed.

A model receives between 1 and all the training set samples before updating its
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internal parameters (i.e., a forward and backward pass known as "step"). This number is

the batch size and when it is between 1 and the size of the training set (both extremes not

included), the batch is called mini-batch. Common values include 32, 64, and 128.

2.2.4 Learning rate

The learning rate, or step size, in algorithms of optimization based on gradient

descent, is a scalar value that multiplies the gradient, used to update the weights of the

model. It effectively controls the speed of the learning process. If the learning rate is too

small, the algorithm would take too long to converge (or get stuck in a local minimal that

can be far from the actual minimal). If it is too large, the algorithm may fail to converge

at all, by missing the minimal value and assuming a bouncing pattern.

The learning rate is also related to other techniques being employed and can

change during training. While training Convolution Neural Networks (discussed in sub-

section 2.3.1 Convolutional neural network (CNN)) Krizhevsky, Sutskever and Hinton

(2012) and Simonyan and Zisserman (2014) used 0.01 as a starting point, dividing this

value by 10 when validation error rate stopped improving. In He et al. (2016), learning

rate starts 0.1, also dividing by 10 when the error plateaus. Chollet (2017) informs that

Inception V3 used 0.045, with a decay of rate 0.94 every 2 epochs.

2.2.5 Activation functions

Activation functions are part of the neurons of ANN, mapping the weighted sum of

inputs to the output. They incorporate non-linearities to the network, allowing it to solve

non-linearly separable problems. Two examples of activation functions are the sigmoid,

and Rectified Linear Unit (ReLU), expressed by Equation 2.1. ReLU was one of the major

factors in the success of deep learning model of Krizhevsky, Sutskever and Hinton (2012)

for image recognition that has surpassed traditional computer vision approaches.

f (yi) =

yi, ifyi > 0

0, ifyi ≤ 0
(2.1)

The sigmoid function, shown in Figure 2.4 with its first derivative, is monotoni-
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cally increasing, continuous everywhere, and also differentiable everywhere in its domain.

Its definition is done in Equation 2.2:

σ =
1

1+ exp(−x)
(2.2)

where x is the input, a real number. The output of sigmoid function is in the interval (0;1).

Figure 2.4: Sigmoid and sigmoid’s first derivative

.

Source: Author.

2.2.6 Imbalanced dataset – stratification

Some problems can exhibit a significant imbalance in the class distribution of

the dataset. This is common in medical applications, where collecting samples can be

difficult, and an especial condition is rarer than its absence. In these cases, it is important

that each set (training, validation, and test) contain approximately the same percentage of

samples from each class as the complete set. This is done by stratified sampling, a method

that guarantees that the relative frequencies of classes are approximately preserved in sets.

2.3 Deep Learning

2.3.1 Convolutional neural network (CNN)

Convolutional neural networks (CNNs) are a special type of neural network that

have the ability to learn a hierarchical representation of raw input data without relying on

features obtained by digital filters in a preprocessing stage. They are based on convolu-
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tional layers, that perform feature extraction, and pooling operations, for spatial subsam-

pling. The convolutional layers act as digital filters that learn to extract useful features

from the data through training, a step that would normally be done in a preprocessing

step for a traditional ANN and would require specific knowledge in the field of applica-

tion. The pooling layers reduce the dimension of the data by combining the output of the

previous layer, filtering out details.

In a CNN, the first layers learn low level features, for example how to detect lines

and shapes. The last layers are capable of detecting complex structures, like contours of

objects, animals, or faces.

2.3.1.1 ResNet

While training deep neural networks with increasingly more layers, the perfor-

mance of the model stars to drop, as in Figure 2.5, in a situation known as degradation

problem. He et al. (2016) introduced the Residual Networks (ResNets), by using a new

approach to the problem of learning in deep neural networks to address this issue. Instead

of training a network to learn a desired feature map H from an input map x (identity), it

makes more sense to teach the model to learn F = H− x, the residual map that added to

x, gives the desired output. This way, the optimization problem becomes easier.

Figure 2.5: Comparison between training of plain networks and ResNets on ImageNet

Thin curves denote training error, and bold curves denote validation error of the center crops.

Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. The residual

networks have no extra parameter compared to their plain counterparts.

Source: He et al. (2016).

To add this identity information from an early layer to another, they use skip con-

nections, that bypass some layers and feed their output to others, as shown in Figure 2.6.
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Figure 2.6: Residual learning: a building block

Source: He et al. (2016).

He et al. (2016) states that, even when the net is "not overly deep" (18 layers for

ResNet18) and the optimizer (they considered the Stochastic Gradient Descent) is still

able to find good solution in plain nets, ResNet makes the optimization task easier by

having a faster convergence at an early stage.

2.3.1.2 MobileNetV2

Sandler et al. (2018) introduced a neural network architecture designed for mobile

and resource constrained environments (like embedded systems). It is based in depthwise

separable convolutions, for which the base idea is to substitute a full convolutional opera-

tion by a drop-in replacement composed of two separate layers: a depthwise convolution,

performing lightweight filtering by applying a single convolutional filter per input chan-

nel; and a pointwise convolution (1 × 1 convolution), that builds new features through the

computation of linear combinations of the input channels.

2.3.2 Fully convolution network (FCN)

Semantic segmentation consist in classifying each pixel of an image to one or

more classes. This can be done by a fully convolutional network, which is similar to a

CNN, but it does not contain any "dense" (fully connected) layers. Instead, FCNs contain

1x1 convolutions to handle the classifier aspect performed by the fully connected layers.

This change allows the network to perform semantic segmentation of images of different

sizes and aspect ratios without using and combining parts of the input image. This is

specially relevant if resizing the images can distort important features.

Another pertinent aspect is the use of downsampling and upsampling in FCN ar-

chitectures. The first part of the model downsample the spacial resolution of the image,

obtaining feature mappings with finer information at each convolution, to discriminate



25

each class. The precise location is lost, but it can be recovered in an upsampling stage,

that transforms the low resolution map back to the original resolution of the input image.

2.3.2.1 U-Net (UNet)

U-Net (RONNEBERGER; FISCHER; BROX, 2015) is a deep learning architec-

ture for semantic segmentation based on a fully convolutional neural networks. It was

originally designed for biomedical image segmentations, a field where typically there is

few training data available (for example around 30 annotated images per application).

Figure 2.7 shows U-Net architecture. It is basically consisted of two parts: a contraction

path (down-sampling path, encoder) and an expansion path (decoder).

Figure 2.7: U-Net architecture (example for 32x32 pixels in the lowest resolution)

Each blue box corresponds to a multi-channel feature map. The number of channels is denoted

on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes

represent copied feature maps. The arrows denote the different operations.

Source: Ronneberger, Fischer and Brox (2015).

The encoder is composed of a sequence of convolutions and max pooling opera-

tions, as it is usual in convolution neural networks. This results in a spatial contraction

where gradually the classes in the image are identified, but the information of their precise

position decreases. A standard classification network would end at this point, having a

classifier composed of a dense neural network connected on the top of the encoder block.

The decoder is a sequence of up-convolutions and concatenations (skip connec-
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tions, the gray horizontal lines in the center of "U" in Figure 2.7) with high-resolution

features from the down-sampling path. This way, the U-Net combines spatial information

from the contraction path with the expansion path to retain good spatial information of

the identified classes in the output segmentation map.

2.3.2.2 LinkNet

LinkNet (CHAURASIA; CULURCIELLO, 2017) is defined as a light deep neural

network architecture designed for performing semantic segmentation. Figure 2.8 shows

the LinkNet architecture. It also consists of an encoder and a decoder, with the informa-

tion being shared by an addiction operation instead of a concatenation after each down-

sampling block. The encoder used in Chaurasia and Culurciello (2017) was a ResNet18,

and batch normalization between convolutional layers followed by ReLU is used.

Figure 2.8: LinkNet architecture

Source: Chaurasia and Culurciello (2017).

2.3.3 Transfer learning

Transfer learning consists of taking a model (or part of it) that has learned features

for one task and applying it in another context. One can benefit not only from the archi-

tecture developed but also reuse the weights learned as a starting point or even "freeze"

layers, which means their weights are not updated. For instance, a CNN model trained

for classifying animals is likely to be useful when used in another task where the goal is



27

to classify only a subset of these animals or even different species.

This is especially useful when there is not as much data available to train a com-

plete model for the new task. In the case of CNNs with a small dataset (a few thousands

images or less) and a similar task to the domain of the pre-trained model’s dataset, a strat-

egy is to freeze the group of convolutional layers and train only the classifier. However, in

a different domain with a small dataset, part of the convolutional layers should be trained.

According to Chollet (2020), a typical transfer learning workflow is:

• take layers from a previously trained model, loading pretrained weights into it;

• "freeze" the layers, to avoid losing their capacity to recognize features;

• add trainable layers on top of the frozen ones;

• train the new model on the dataset of the current task.

Fine-tuning can then be performed, which may improve the performance of the

model. In this case, a low learning rate is advisable, as the risk of overfitting is significant

if large weight updates are applied (CHOLLET, 2020).

2.3.3.1 ImageNet

ImageNet is a large scale dataset containing over 14 million images that have

been annotated by the ImageNet project (DENG et al., 2009) to indicate what objects are

pictured. Even if ImageNet is not a dataset focused on people, faces or eyes, this dataset

contains many such elements. There are 3 people categories in the 1000 categories of the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (RUSSAKOVSKY et

al., 2015). However, Yang et al. (2022a) annotated 1431093 images in ILSVRC, resulting

in 562626 faces from 243198 images (17% of all images have at least one face). They

also indicated that many non people categories have more than 90% images with faces

co-occurring with the object of interest, as in Figure 2.9, posing a potential privacy threat.

Figure 2.9: Some non people categories in ImageNet Challenge

Example images (with faces blurred or overlaid) of barber chair, husky, beer bottle, volleyball

and military uniform.

Source: Yang et al. (2022a).
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2.3.4 Loss Function (Cost function)

A loss function, as known as cost function, is used to quantify the error between

the output of an algorithm and the ground truth. During training, the goal of the optimizer

is to minimize the loss function. There are several losses used in semantic segmentation,

and they can also be combined, as each loss may prioritize different features in the mask.

Typically, accuracy is not a good metric for semantic segmentation, particularly because

of class imbalance. The inaccuracy of minority classes is hide by the accuracy of majority

classes. This can be the case for a mask whose largest area is background.

2.3.4.1 Binary Crossentropy Loss

Cross-entropy is a measure of the difference between two probability distributions

for a given random variable or set of events. Cross-entropy loss, also called logistic

regression loss or log loss in classification problems, is defined in Equation 2.3.

CE =−
C

∑
i

ti log(σ (s1)) (2.3)

where

• C - number of classes;

• ti ∈ {0,1} - target, the ground truth value for each class i in C classes;

• si - score outputted by the model for each class i in C classes.

For binary classification problems (when C = 2), the Cross-entropy loss is called

Binary Cross-entropy loss and can be defined as in Equation 2.4.

CE =−t1 log(σ (s1))− (1− t1) log(1−σ (s1)) =

 − log(σ (s1)) , if t1 = 1

− log(1−σ (s1)) , if t1 = 0

(2.4)

where

• t1 ∈ {0,1} - target, the ground truth value for the class 1;

• s1 - score outputted by the model for the class 1.

As shown in Figure 2.10, the negative logarithm function penalizes predictions,
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giving a high loss value for the worst predictions. In this case, s2 = 1− s1 and t2 = 1− t1.

Figure 2.10: Negative logarithm function

.

Source: Author.

2.3.4.2 Dice

Dice coefficient score is two times the area overlap between the prediction seg-

mentation mask and the original segmentation mask (the ground truth) divided by the

area of the prediction segmentation mask added by the area of the original segmentation

mask. The Figure 2.11 illustrates the concept of the Dice Coefficient.

Figure 2.11: Dice Coefficient

Source: Author.

The Dice coefficient can be expressed by the Equation 2.5.

Dice score =
2 · |X ∩Y |
|X |+ |Y |

(2.5)

where

• X is the predicted set of pixels;

• Y is the ground truth.
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Milletari, Navab and Ahmadi (2016) proposed using an objective function based

on Dice coefficient maximization as loss, as an alternative to using weights to increase

the importance of foreground compared to the rest of the volume (background).

2.3.4.3 Intersection over Union (IOU)

Intersection over Union is the area overlap between the prediction segmentation

mask and the original segmentation mask (the ground truth) divided by the area of union

between the prediction segmentation mask and the original segmentation mask. The Fig-

ure 2.12 illustrates this concept. Values closed to 1 are ideal.

Figure 2.12: Intersection over Union

Source: Author.

The Intersection over Union can be expressed by the Equation 2.6.

IoU =
|X ∩Y |
|X ∪Y |

(2.6)

where

• X is the predicted set of pixels;

• Y is the ground truth.

IoU is a metric featuring a function not differentiable, not suitable for being used

as a loss function for training. IoU is correlated to the Dice coefficient.

2.4 Overfiting

When a machine or deep learning model adapts so well to the training data, but

not for data not used for training, an overfitting has occurred. Overfitting usually happens

when there is not enough representative training data to a given problem or the complexity
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of the model is too large.

Two forms of handling overfitting are to increase the number of samples of the

training dataset (provided that the data is pertinent to the problem) and to reduce the

complexity of the model. In the first case, the samples added have to be meaningful to

this condition. If the original dataset is imbalanced, care should be taken to not further

aggravate the problem. The idea behind the second case is that a simpler model will have

to store less features, so, if well-trained, it will likely focus on the most relevant features

and has a better chance to generalize better.

2.4.1 Regularization

Regularization is used to modulate the entropy of the model, forcing the weights

to smaller values, and thus reducing the model complexity and forcing it to learn the most

relevant feature of data. A common type is the L2 regularization, expressed as the sum of

the squares of all the feature weights. The optimizer then searches to minimize the total

loss, as in Equation 2.7.

Total Loss = Loss+λ

M

∑
j=1

ω j
2, (2.7)

where:

• λ ∈ [0,1] is the regularization rate, the hyperparameter that controls the penalty;

• Loss is the cost function computeted;

• ω j corresponds to the synapses (weights) of the ANN.

• M is the total number of network parameters, i.e., the number of synapses.

Typical values of λ for convolutional deep learning models are small. In their

deep convolutional model trained in ILSVRC - 2010 subset of ImageNet (roughly 1.2 mil-

lion training images, 50000 validation images, and 150000 testing images), Krizhevsky,

Sutskever and Hinton (2012) commented that a small weight decay of 0.0005 had not

only a regularize effect, but also, helped to reduce the model training error. Simonyan and

Zisserman (2014) also used a weight decay (L2 penalty multiplier) of 0.0005, whereas

Chollet (2017) informs that Inception V3 model used 4 · 10−5, that have been carefully

tuned for performance in ImageNet. This value was judge suboptimal for the Xception

model where it was instead settled for 1 · 10−5, although an extensive search for the op-



32

timal weight decay rate was not performed. He et al. (2016) used 0.0001 for the ResNet

models for the ILSVRC-2012.

Google for Developers (2022) points out that the learning rate and the regulariza-

tion rate are close related, in that a high L2 regularization tend to drive feature weights

closer to 0, while a lower learning rate (together with early stopping technique) often

have this effect, because the steps away from 0 aren’t as large. Consequently, tweaking

learning rate and lambda simultaneously may have confounding effects.

2.4.2 Early stopping

Early stopping is a technique that stops training before it fully converges (for ex-

ample, before training loss finishes decreasing or when a monitored metric does not im-

prove anymore). As training a model for too many epochs can lead to overfitting, early

stopping can prevent these decrease in performance. In practice, often there is an implicit

early stopping when training a model with a limited number of epochs. Saving the model

(or its weights) that achieved the best performance so far for some metric or loss can also

be considered a form of early stopping and regularization.

2.4.3 Data augmentation

Data augmentation is a technique that applies minor changes to the data and can

be used to artificially extends the diversity of the training dataset. This helps to avoid

overfitting to the training dataset, because it adds some variability to the data, that can

be transformed differently on every epoch. Geometric and color space transformations

operations, like flipping, resizing, cropping, changing brightness and changing contrast

are examples of modifications used when augmenting images.

In tasks like semantic segmentation, it is important to match up images and masks

when performing operations like flipping, zooming and rotating. Likewise, the trans-

formations should match changes that the model can face once training is done. Data

augmentation can also improve the performance of the models, provided that the changes

are meaningful, not "too aggressive" and the original dataset is not "too small" (which

depends on task and data available). For example, when determining the state of the eye,

the model is unlikely to have a face upside down as an input.
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Architectures like U-Net are used in biomedical image processing for image seg-

mentation, where thousands of images are not available. Ronneberger, Fischer and Brox

(2015) utilized U-Net to the segmentation of neuronal structures in electron microscopic

recordings in a dataset of 30 images (512x512 pixels) and extensive data augmentation to

the available training images.

Zheng et al. (2022a) utilized U-Net and 1019 pairs of images and manual annota-

tions of right eyes obtained with a Keratograph 5M (512x512 pixels) and performing data

augmentation on-the-fly (random flipping along the vertical axes, translation by −10% to

10% per axis, rotation from −20 to 20 in degrees, and scaling from 0.9 to 1.1.)

It should be noted that the augmented images are still highly correlated. Because

of this, issues like data imbalance by absence of a class are not addressed by common

transformations like flipping and translations of data augmentation.

2.4.4 Batch normalization

Batch normalization is a technique introduced by Ioffe and Szegedy (2015) to

accelerate deep network training, improving generalization and convergence. It is intro-

duced between the layers of the models, performing a transformation that maintains the

mean output of the layer close to 0 and the standard deviation close to 1 for each batch.

Equation 2.8 represents this technique.

y = γ
x−µ

σ
+β (2.8)

where:

• y is the output (scaled and shifted value representing the batch normalization result);

• γ is the scale (parameter to be learned);

• x is the input;

• µ is the mean of x in mini-batch;

• σ is the standard of x in mini-batch.

• β is the shift (parameter to be learned).

It should be noted that the size of the batches should not be too small, otherwise

the statistics of the batch will not represent the actual dataset.
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2.5 Hyperparameter tuning

In machine learning and deep learning, the parameters that are set before the start

of the training are called hyperparameters. These parameters can define the topology of a

neural network (like its depth or the number of neurons per layer), the learning rate used

in a gradient descent type of algorithm, the regularization applied to each layer, and many

other characteristics of the model and of the learning process.

When using transfer learning with deep learning, many parameters regarding the

topology of the network are already set. However, hyperparameters related to the learning

processes, which are key to avoiding overfit, must be set. Manually setting the parameters

and analyzing the learning curve is useful for verifying if the model is adapted to the

data and judging its performance and generalization. While this is useful, searching the

hyperparameter space may be relevant to obtaining the best score.

Two strategies to perform this search automatically are Grid Search and Random

Search. Grid Search tests all possible combinations of values from the subset of hyper-

parameters chosen, while Random Search consists of independent draws generating trial

sets of hyperparameters from a uniform density in the same configuration space as would

be spanned by grid search.

Bergstra and Bengio (2012) suggests that there may be a small reduction in effi-

ciency in low-dimensional spaces using random trials, but a large improvement in effi-

ciency in high-dimensional search spaces can be achieved. While Random Search does

not guarantee to find the best score in the sample space as Grid Search does, it is likely

to find a good combination faster as it allows exploring the choices of hyperparameters

more widely than Grid Search. This is especially relevant if some hyperparameters are

more relevant than others, as depicted in Figure 2.13.
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Figure 2.13: Grid and Random Search of nine trials

Grid and Random Search of nine trials for optimizing a function f (x,y) = g(x)+h(y)≈ g(x)

with low effective dimensionality. Above each square g(x) is shown in green, and left of each

square h(y) is shown in yellow. With grid search, nine trials only test g(x) in three distinct places.

With random search, all nine trials explore distinct values of g.

Source: Bergstra and Bengio (2012).

2.6 Image post-processing techniques

Connected-component analysis (CCA), also known as connected-component la-

beling and blob extraction, is a traditional image post-processing algorithm. It’s an appli-

cation of graph theory, where subsets of connected components are uniquely labeled based

on a given heuristic. It allows filtering the noise in a segmentation mask and to extract the

most relevant components from it, as well as statistics, like the area of components and

their centroids.

For the 4-way connectivity, only the pixels that share at least one border are con-

sidered connected. In the 8-way connectivity, pixels that are in the diagonals, i.e., share

at least a vertex, are also considered. Connected-components in a binary mask can have

their contours analyzed by contour detection. This can be done by the comparison of each

pixel with its neighbors and extracting the location of pixels where there is a color change.
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3 RELATED WORK

3.1 Blink rate level, blink inducing and blink detection

Lee et al. (2021) have applied a sensor-embedded chair to obtain sitting postu-

ral behavior data that was compared to eye blinking data collected with Dikablis head-

mounted eye tracking system (Ergoneers). A blink was defined as the pupil not being

detected in the eye-tracking system for more than 100 ms. Compared to a high eye blink

rate condition, low eye blink rate condition was related to less overall postural variability

and greater extent of forward bending posture.

There are other systems based in external hardware, like an electrooculography

based blink detection to prevent CVS by Pal et al. (2014), eyewear systems for helping

users follow the 20−20−20 rule by monitoring user’s screen viewing activities (MIN et

al., 2019) or tracking blinks by means of infrared reflections from the wearer’s cornea or

eyelid (DEMENTYEV; HOLZ, 2017). Most of the related work analyzed here will focus

in systems that do not depend on external hardware and uses a webcam, that is commonly

available for computers and built-in for some models of VDT (laptops and smartphones).

3.1.1 Blink Animation Software to Improve Blinking and Dry Eye Symptoms

Nosch et al. (2015) introduce "Blink Blink" software based on an animation to

increase blink rate and reduce dry eye syndrome symptoms during daily computer use.

Two semi-transparent bars move from the top and bottom of the screen towards the center

of the screen, independently of the application in use on the computer. The percentage

of the screen covered, the opacity of the bars, the duration of the animation and the ap-

pearance interval can be individually configured to best suit the user. In the study, each

animation was set to 600 ms, with 20% coverage for each bar and 25% opacity. The aim

of these settings was that the animation would be noticeable, but the user’s concentration

would not be substantially affected, nor the use of the mouse and keyboard during the

presentation.

https://ergoneers.com/en/dikablis-eye-tracking-hardware/
https://ergoneers.com/en/dikablis-eye-tracking-hardware/
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3.1.2 Stimulating a Blink: Reduction of Eye Fatigue With Visual Stimulus

Crnovrsanin, Wang and Ma (2014) investigated four different types of eye-blink

stimulus: screen blurring, screen flashing, border flashing, and pop-up notifications to

increase blink rate of 13 computer users, which rated each stimulus type in terms of ef-

fectiveness, intrusiveness, and satisfaction in an active image task (spotting the difference

between images). Results from the studies showed that all stimuli are effective in increas-

ing user blink rate with screen blurring being the best. The Blur stimuli causes the screen

to slowly blur until the user blinks.

Crnovrsanin, Wang and Ma (2014) comments that user frustration and interruption

of workflow play a big role in individuals adopting these systems, pointing out that correct

blink detection plays a huge role in how intrusive the subject feels a stimulus method is.

3.1.3 RT-BENE: A Dataset and Baselines for Real-Time Blink Estimation in Natural

Environment

Cortacero, Fischer and Demiris (2019) addresses the estimation of blinks and

gaze direction together and introduces the RT-BENE dataset. This dataset has more than

200,000 eye images, with more than 10,000 with eyes closed. The technique of over-

sampling with weights is used to deal with the class imbalance. The authors make use of

CNN (Mask R-CNN) and transfer learning (MobileNetV2, ResNet50 and DenseNet121).

Cortacero, Fischer and Demiris (2019) also points out that CNNs have been used

to partly overcome the limitations of traditional methods based on feature extraction such

as scale-invariant feature transform (SIFT) and Histogram of Oriented Gradients (HOG)

followed by a classification stage. According to the authors, the accuracy of these methods

is reduced for head positions with extreme angles and for varying skin tones and lighting.

CNNs also allow the estimation of blinks for faces in a non-full frontal position. This is

especially interesting when considering the use of a second monitor (second screen) by

the user.

An alternative to the use of CNNs with traditional methods is to consider a se-

quence of images, instead of each image isolated. Fogelton and Benesova (2016) consid-

ered a state machine, while Fogelton and Benesova (2018) use a recurrent neural network.
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3.1.4 Eyeblink, de Andrej Fogelton

Andrej Fogelton, author of research in the area of blink detection and analysis, has

developed the Eyeblink software, available at <https://www.blinkingmatters.com>. This

software alerts the user according to the time of use and number of low blinks, in order to

prevent CVS and Dry Eye Syndrome. Blink completeness is not analyzed.

3.1.5 Eye Aspect Ratio (EAR)

Soukupová and Cech (2016b) proposed to distinguish between open and closed

eyes using 6 landmarks points and analyzing the Eye Aspect Ratio (EAR). Equation 3.1

shows how EAR is computed.

EAR =
‖p2− p6‖+‖p3− p5‖

2 ‖p1− p4‖
(3.1)

where p1, · · · , p6 are 2D landmark locations, depicted in Figure 3.1.

Figure 3.1: EAR: Open and closed eyes with landmarks pi automatically detected

The eye aspect ratio EAR in Equation 3.1 plotted for several frames of a video sequence. A

single blink is present.

Source: Soukupová and Cech (2016b).

Some EAR properties are:

• it has an almost constant value when the eye is open, and the value decreases and

then increases again during a blink;

• its value is close to 0 while the eye is closed;

• it is partially person and head pose insensitive;

https://www.blinkingmatters.com
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• it is theoretically invariant to uniform image scaling and in-plane face rotation.

In a simplified approach, if the EAR is greater than the threshold of 0.20, then

the system identifies the region of interest as opened eyes. If the EAR is less than this

threshold, then it is classified as a closed eye.

Low values of EAR may indicate that the subject is performing a facial expression

(person squinting eyes, screaming, smiling, disgusted), closing the eyes for longer periods

than a blink, yawing or even that EAR is reproducing a short fluctuation of the landmarks.

Soukupová and Cech (2016b) also experimented using a Support Vector Machine

(SVM) classifier that takes a temporal window of ±6 frames (for 30 FPS videos tested)

into account to classify the blinks. SVM is a machine learning technique that can separate

classes of data by generating a hyperplane that tries to maximize the separation between

the classes of elements. Since eye blinking is performed by both eyes synchronously, an

average of the EAR of both eyes is computed.

Yin et al. (2022) used the EAR with a threshold of 0.20 to detect blink frames.

After that, the authors used image enhancement strategies and magnification before cal-

culating the vertical distance between the upper eyelid and eye corner to finally recognize

incomplete blink.

3.1.6 Eye Aspect Ratio based variations

Huda, Tolle and Utaminingrum (2020) proposed a modified EAR, using 4 points

around the eye, as shown in Figure 3.2. According to the authors, the 4 greatly affect the

measurement of closed eyes, and this reduction has a significant impact on the calculation

process and improves computational time to work in real-time on a mobile device.

Figure 3.2: 4 Points EAR

(a) Closed Eye. (b) Open Eye.

p1 denotes the point at the eye gland, p3 denotes the point at the other corner of the eye, p2

denotes the top point at upper lid and p4 denotes the point at the lower lid.

Source: Huda, Tolle and Utaminingrum (2020).
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Equation 3.2 demonstrates an estimation of 4 points in the eye area.

EAR4points =
|p2− p4|
|p1− p3|

(3.2)

where

• p1 - point at eye gland;

• p2 - top point at upper lid;

• p3 - point at the other corner of the eye, opposed to p1;

• p4 - point at lower lid.

Table 3.1 shows the result of closed eye identification with EAR (4 points) thresh-

old variation with 10 people of four different types of Indonesian races (HUDA; TOLLE;

UTAMININGRUM, 2020). Test have been done with 640 x 480 resolution with 8 FPS

acquisition by an Asus Zenfone 2 ZE551M smartphone camera. Huda, Tolle and Utamin-

ingrum (2020) have considered 0.24 the optimal threshold value for detecting closed eyes.

Table 3.1: Result of closed eye identification with variation of EAR (4 points) threshold

N◦
Mean EAR of
Opened Eyes

Number of
Closed Eyes

Result of System Detection with variation
of EAR (4 points) threshold

0.20 0.22 0.24 0.26 0.28

1 0.26 20 17 19 18 3 0
2 0.26 20 16 18 18 5 0
3 0.27 20 13 18 19 8 3
4 0.29 20 17 18 18 17 1
5 0.29 20 17 18 19 18 10
6 0.29 20 18 18 19 18 13
7 0.31 20 0 10 17 18 18
8 0.31 20 10 16 18 18 17
9 0.32 20 10 12 17 18 18
10 0.33 20 13 16 18 19 19
Mean 13.1 16.3 18.1 14.2 9.9
Percent 65.5% 81.5% 90.5% 71.0% 49.5%

Source: Huda, Tolle and Utaminingrum (2020).

As Soukupová and Cech (2016a) experiments have shown, the facial landmarks

are very precise even at low resolution, allowing a SVM blink detector based on EAR

to give good results even at interocular distance of only 10 pixels. But EAR is affected

by the number of pixels in the input image. According to Kuwahara et al. (2022), when

the face is small, the noise in the EAR becomes large, which is one of the causes of the
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decrease in blink detection accuracy. This has being also studied by Ye et al. (2022), as

shown in Appendix A EAR and DLib model performance in images as function of image

quality. One interesting aspect is that the model positioning the landmarks in Ye et al.

(2022) seems to generally perform better with open eyes images.

Kuwahara et al. (2022) have used blink detection based on the Eye Aspect Ratio

Mapping (EARM), proposed in Kuwahara et al. (2021a), to estimate eye fatigue. Equation

3.3 shows the definition of EARM.

EARM(t) = EAR
(

t− X +1
2

)
+ EAR

(
t− X−1

2

)
+ EAR

(
t +

X−1
2

)
+ EAR

(
t +

X +1
2

)
− 4×EAR(t)

(3.3)

where t is the number of frames since the start and X is an odd number of frames per eye

blink. In Kuwahara et al. (2021b) and Kuwahara et al. (2022), this number is defined as 9

and 11, respectively.

Kuwahara et al. (2021b) test with 5 subjects have found that both EAR (with fixed

threshold of 0.20) and EARM may benefit of normalizing facial image, with EARM with

normalized face displaying the best results. However, in some cases, normalizing was

not beneficial. The authors believed that this was possibly because part of the face was

occluded, which inhibited an improvement in the recognition rate of the face.

Maior et al. (2020), constructing a drowsiness detection model using EAR, has

tested two methods to differentiate short and long blinks. The first used a calibration

procedure comparing a subject’s neutral face (when reading) to a smiling face in order

to define the EAR threshold. They reported that this method leads to many false positive

warnings from trivial expressions (e.g. talking). The second method was the concatena-

tion of 15 consecutive EARs values from 13 users, classified in open eye, short blink, and

long blink, to train different machine learning models. The model selects inputs every 5

frames and a blink was considered if the touch of eyelids occurred in the 5 central frames.

A SVM model was chosen, and user-specific data was aggregated with existing training

data to train a new SVM model, and the updated model is used for state detection. Specif-

ically, a pre-trained model automatically classifies user’s new data during runtime and

open eyes data sequences not near to blinks are added to the training data. This SVM-

based model with personal feedback have an improved accuracy, which highlights the

value of user specific calibration.



42

Dewi et al. (2022) have proposed a modified eye aspect ratio (Modified EAR), that

is a threshold to determinate eye status (open or closed) and correspond to the average of

the result of Equation 3.4 (EAR for closed Eyes) and Equation 3.5 (EAR for open Eyes).

The entire video was analyzed in this case.

EARClosed =
‖p2− p6‖min +‖p3− p5‖min

2 ‖p1− p4‖max
(3.4)

EAROpen =
‖p2− p6‖max +‖p3− p5‖max

2 ‖p1− p4‖min
(3.5)

3.2 Analysis of complete and incomplete blinks

3.2.1 Eye blink completeness detection

Fogelton and Benesova (2018) use a larger and particularly challenging dataset

for computer vision tasks, given inadequate lighting conditions: Researcher’s night re-

annotated. 100 individuals with 1849 annotated blinks with hectic and disorganized back-

ground. People are often acting naturally, wearing glasses (about 20%), touching their

faces, moving their heads or talking with someone (FOGELTON; BENESOVA, 2016).

On the website https://www.blinkingmatters.com/, maintained by Andrej Fogel-

ton, the annotations of the blinks from the datasets ZJU, Talking Face, Eyeblink8, Sile-

sian5 (on demand for the videos) and Reseacher’s night (on demand) are available. They

all were analyzed for blink completeness.

Introduced by Drutarovsky and Fogelton (2015) and then re-annotated, Eyeblink8

dataset consists of 8 videos with 3 individuals (1 wearing or not wearing glasses) with

their faces directed towards the camera most of the time and more than 800 blinks with

each eye evaluated separately (762 completes and 44 incompletes). This dataset has the

advantage of being available directly to the community, and it is specially interesting

for investigating eye blink completeness in the context of CSV, as it represents similar

conditions to the ones a computer would be used, and the 640 x 480 resolution videos

were recorded at 30 FPS, a frame rate that is adequate for eye blink completeness analysis

(ZHENG et al., 2022a). Figure 3.3 shows some sample snapshots from Eyeblink8 dataset.

https://www.blinkingmatters.com/research
https://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/talking_face/talking_face.html
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Figure 3.3: Sample snapshots from Eyeblink8 dataset

Source: Drutarovsky and Fogelton (2015).

In Fogelton and Benesova (2018), they make use of a recurrent neural network.

This type of ANN has internal state memories to process sequences of data and is applied

by the authors to estimate blink completeness based on optical flow for motion detection.

3.2.2 Impact of Incomplete Blinking Analyzed Using a Deep Learning Model With

the Keratograph 5M in Dry Eye Disease

Zheng et al. (2022a) analyzed the impact of incomplete blinking on dry eye syn-

drome using a deep learning model with images obtained from a Keratograph 5M. This

instrument is a corneal topographer; it has a high-resolution camera and allows the exam-

ination of the meibomian glands, non-invasive examination of the tear film break-up time,

measurement of the height of the tear meniscus, and evaluation of the lipid layer.

Figure 3.4 shows the original and labeled image after manual processing. In part

B, the image was manually filled in the interpalpebral region with white color and with

black color in the rest. The interpalpebral zone was annotated by a single investigator.

Figure 3.4: Original and labeled image after manual processing

The concentric circular pattern is generated by the Keratograph 5M.

Source: Zheng et al. (2022a).

The original image and its manual annotation were resized to 512 by 512 pixels

using the nearest neighbor interpolation feature of Python Image Lybrary (version 6.2.0)

and then merged as a single set. A total of 1019 images were used, collected and randomly

distributed into three distinct training, validation and test sets in a ratio of 8 : 1 : 1. These

images were used to train a U-Net convolutional network to segment the exposed palpe-

bral fissure. The model was implemented in the Python programming language (version
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3.7.4) with the Keras library (version 2.1.6).

Once the model is trained, the average relative interpalpebral height (IPH) is used

to determine whether a blink is complete or not. First, the maximum value of the IPH was

determined, which is done by analyzing the entire video. When a certain blink occurs, if

it is greater than 30% of the maximum IPH value, this blink is considered incomplete in

the scope of this work. Figure 3.5 shows the detection of one blink.

Figure 3.5: Detection of a blink for Keratograph 5M images

The interpalpebral zone is colored green and the average relative interpalpebral height (IPH) is

represented by the blue segment.

Source: Zheng et al. (2022a).

3.2.3 Evaluation of VDT-Induced Visual Fatigue by Automatic Detection of Blink

Features

This study evaluates the progression of visual fatigue induced by the use of VDT.

Yin et al. (2022) detect blinks and incomplete blinks through automatic video detection

(frame rate of 60 FPS) using computer vision techniques.

The algorithm used consists of:

• reading the image from the recorded video;

• downsample for 600 by 450 of the faces images to reduce computation;

• applying advanced facial landmarks (set of regression trees to estimate the position

of landmarks on the face from a subset of pixel intensities; real-time performance

with high quality prediction) to detect the face and localize the eyes;

• obtaining a frame containing blinking eyes, based on the variation of the EAR de-

termined from the markers positioned in the previous step;
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• application of single scale retinex to improve brightness, contrast and sharpness of

a grayscale image through a combination of spatial and spectral transformations,

with the eye image being enlarged and subsequently converted to grayscale and

binarized, and then applying adaptive threshold segmentation (see Figure 3.6);

• calculation of the distance between the upper eyelid and the corner of the eye (Duc =

xu− xc), as outlined in Figure 3.7 ;

• recognition of incomplete blinks (with threshold determined per individual);

• extraction of blink features.

• saves the features in a file.

Figure 3.6: Contour extraction process

Source: Yin et al. (2022).

Figure 3.7: Vertical distance between the upper eyelid’s midpoint and the eye’s corner

Source: Yin et al. (2022).

The Figure 3.8 shows the change in Duc during one blink.
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Figure 3.8: Change in Duc during one blink

Source: Yin et al. (2022).

Manual labeling of complete and incomplete blinks was performed for all individ-

uals (about 3000 blinks, including 500 incomplete). Duc was calculated for each frame

with blinking images and maxDuc, the maximum Duc obtained for each blink, was de-

termined. The median value of maxDuc for each individual in the 10 min was computed

(mmDuc). If the maxDuc was less than 75% of the mmDuc, the blink was considered in-

complete; otherwise, complete. The subject-specific threshold was used in the following

110 minutes of recorded videos to detect complete and incomplete blinks.

3.3 Perorbital and palpebral fissure segmentation

3.3.1 End-to-end Iris Segmentation Using U-Net

Lozej et al. (2018) inform that traditional iris segmentation techniques have typ-

ically been focused on hand-crafted procedures. More recently, researchers are increas-

ingly looking towards CNNs to further improve on the accuracy of existing iris segmen-

tation techniques. The authors then present an iris segmentation approach based on the

popular U-Net architecture (RONNEBERGER; FISCHER; BROX, 2015), trainable end-

to-end and, hence, avoiding the need for hand designing the segmentation procedure.

The CNN-based segmentation model proved to be successful at segmenting the

iris images, even with a reduced dataset (200 samples) and no data augmentation, outper-
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forming four established techniques from the literature. The accuracy of the best model

was reported to be 97,79%. The authors also reported the average intersection over union

at the threshold with the best ratio between precision and recall: 0.912± 0.031. Figure

3.9 show some samples of the training data, while Table 3.2 shows the time and space

complexity for U-Net models of different depths.

Figure 3.9: Illustration of the training data for iris segmentation

The top row shows sample images from the CASIA dataset (Chinese Academy of Sciences

Institute of Automation (CASIA), 2003), the bottom row shows the annotated (binary)

segmentation ground truth.

Source: Lozej et al. (2018).

Table 3.2: Time and space complexity for U-Net models for iris segmentation

Depth Time/image Maximum memory used

3 45 ms/image 5173 MB
4 60 ms/image 5181 MB
5 102 ms/image 5185 MB

A desktop was used with an Intel I7-2600k processor with 8 GB of RAM and a Nvidia
GTX-1060 6 GB GPU. The grayscale images containing one eye were of size 320 × 320.

Source: Lozej et al. (2018).

3.3.2 PeriorbitAI: Artificial intelligence automation of eyelid and periorbital mea-

surements

Brummen et al. (2021) describe an open source, fully automated AI system for

segmentation and quantification of eyelid and periorbital measurements. They have used

an UNet-style architecture with ResNet50 (ResNet with 50 layers) backbone with the

last layer been a pyramidal pooling layer. Introduced in Zhao et al. (2017), this layer

gets to model greater global context of the image, been specially useful for complex-

scene images, where there are many classes to segment. Adam optimization algorithm
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(KINGMA; BA, 2017) is used, with a starting learning rate of 0.001 decreased by a factor

of 10 if the validation set average did not improve for 10 epochs. The batch size was set

to 4.

418 photographs with image resolution of 6000x4000 pixels were taken. Approx-

imately 80% and 20% of 397 images for training and validation (used for hyperparameter

tuning), respectively, were segmented by two trained human graders. The remaining 21

images were used for a retrospective test set and were segmented by 3 human graders

to evaluate the model. The images were splinted in half and resized to 256×256 pixels

before input to the deep learning model. A prospective study was also performed latter.

Authors have used the dice coefficient to evaluate the accuracy of the model and

human-generated segmentation using on expert as reference. The model obtained a Dice

coefficient of 0.90 for the palpebral fissure.

The system performed within the range of inter-human variability with high pre-

cision despite multiple photographers (certified ophthalmic technicians), and a broader

spectrum of conditions was considered in the data, making the model measurement spec-

trum more inclusive and more generalizable.

It should be noted that the images are of high resolution for the periorbital region,

so eyes pixels occupy represent more image space.

3.4 Webcam and frame rate acquisition

Considering the discussion in 2.1.1 Eyeblink, an average blink takes between 150

to 300 ms (5 to 10 frames while 30 frames per second), making it feasible to be detected

by a standard webcam, as the ones typically available in notebooks. Zheng et al. (2022a)

demonstrated experimentally that an acquisition frame rate of 30 FPS provides more ac-

curate and sensitive information than those of 8 FPS, as it is possible that some complete

blinks are misjudged as incomplete in recordings with 8 frames per second. Yin et al.

(2022) have used a frame rate of 60 FPS, while Fogelton and Benesova (2018) considered

30 FPS sufficient for blink completeness detection.

With the development of more powerful hardware and memory in these devices,

and the increase of remote work, it is likely that better cameras will be available for

notebooks and computers, specially in terms of resolution, as it is also a trend in mobile

devices.

Blink analysis can be performed in a video or in real-time. Both situations are
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interesting. The first can be used in case of diagnostic, as in Zheng et al. (2022b) (with

a Keratograph 5m) and Yin et al. (2022) (Spedal MF934H webcam), in the case of in-

complete blink; and the second for prevention, as is the case of the software Eyeblink

(FOGELTON, 2018).

3.4.1 Real-time use of blink analysis systems

The overall processing time including blink completeness algorithm should take

less than 33,33 ms for real-time use with a webcam recording at 30 FPS. Without con-

sidering a pipeline system, in which an image is being processed in parallel to the image

acquisition (with a delay of one frame), the blink completeness step has to be performed

in even less time, as face detection must be performed beforehand.

Table 3.3 shows an evaluation of processing time for Fogelton and Benesova

(2016) blink detection algorithm (blink completeness was not considered). As it can be

seen, the amount of time taken to perform face detection using OpenCV implementation

of Viola–Jones Viola and Jones (2004) algorithm and also localize eye corners annotation

automatically is quite fast, lesser than 12 ms for Eyeblink8 dataset, for a computer with

Intel core i5 3.3 GHz with CPU usage from 25 to 50% in 2016.

Table 3.3: Evaluation of processing time for Fogelton and Benesova (2016) blink detec-
tion algorithm

Dataset Resolution Viola–Jones + CLandmark Blink detection

Talking face 720 x 576 10.3 ms 8 ms
Basler5 640 × 480 9.4 ms 10.6 ms
ZJU 320 x 240 6.5 ms 2 ms
Eyeblink8 320 x 240 11.6 ms 2.6 ms

The amount of time taken to localize eye corners annotation automatically and how much it takes
to detect eye blinks is shown. In Basler5 subject’s face is very close to the camera. Times are
measured on Intel core i5 3.3 GHz with CPU usage from 25 to 50%. Overall processing time

(face, facial landmark and blink detection) is under 20 ms per image, which suits this method for
real-time use.

Source: Fogelton and Benesova (2016).

Soukupová and Cech (2016a) indicate that the average time for processing one

frame of Eyeblink8 dataset using EAR SVM is 19.2 ms. This time already includes the

processing time taken for finding facial landmarks, so the algorithm can run in about

50− 60 FPS while using an ordinary laptop (64-bit Windows 8, Intel Core i7-5500U @

2.4 GHz, 8 GB RAM).

https://spedal.cc/html/products-sp/MF934H.html
https://www.blinkingmatters.com
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3.5 Discussion on Related Work

There is a considerable number of studies regarding blink detection, with some fo-

cusing in the context of ophthalmological and ergonomics of the computer use. Nonethe-

less, not many studies have focused on detecting incomplete blinks and blink complete-

ness, which remains a complex problem.

Deep learning approaches have been used to measure blink completeness. Fogel-

ton and Benesova (2018) RNN best reported F1-score (a performance metric) for incom-

plete blinks was 0.49, while they achieve 0.758 for complete blinks, indicating that there

is still space for improvement. His movement based method can be trapped by head move-

ments. Appearance based methods can be trapped by make-up and eyelashes extensions.

It is hypothesized here that, if enough quality data is provided, a fully convolutional net-

work based architecture could overcome these challenges and provide reliable palpebral

fissure segmentations that could be used to detect incomplete blinks by means of another

algorithm, even with images where the eyes cover only a small region of the frames.

The use of CNNs could also be more flexible compared to Viola-Jones face de-

tection algorithms that required frontal faces. Cortacero, Fischer and Demiris (2019) also

points out that CNNs have been used to partly overcome the limitations of traditional

methods based on feature extraction such as scale-invariant feature transform (SIFT) and

Histogram of Oriented Gradients (HOG) followed by a classification stage. According

to the authors, the accuracy of these methods is reduced for head positions with extreme

angles and for varying skin tones and lighting. CNNs also allow the estimation of blinks

for faces in a non-full frontal position. This is especially interesting when considering the

use of a second monitor (second screen) by the user.

A similar feature to measure eye closeness was suggested by Lee, Lee and Park

(2010), but it was derived from the eye segmentation in a binary image instead of the

palpebral fissure and relied on morphological operations. While monitoring the iris or

the pupil could be interesting for detecting blinks, this is less practical for incomplete

blinks. EAR has been explored in the context of blink and eye closure detection, as

it is robust provided that the landmarks are detected. Occlusion of part of the faces is

one of the remaining challenges in the field of computer vision Alashbi (2021) and may

be distracting for a landmark detector, as pointed out by Soukupová and Cech (2016a).

Part of face can be occluded by masks, as it was common during COVID-19 pandemic,

garments, clothes, and accessories (hat, veil, hijab, niqab, . . . ) and hands.
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One difficulty with EAR is that it varies from person to person and even between

the eyes of the same person, so a threshold to determine a complete blink for one subject

may misclassify blinks for another. Eye completeness can also differ for both eyes. The

same can be said of incomplete blinks.

For the palpebral fissure aspect ratio, this would not be the case for complete

blinks, as its value is 0 for completely closed eyes. Detecting incomplete blinks still has

the same problem of intra- and inter-person variability, as the palpebral fissure is often

asymmetric (DOGANAY et al., 2017) and different from person to person.

As for EAR blink detection, there are some workarounds to this problem. For

blink detection, instead of a simple constant threshold, Soukupová and Cech (2016a) have

used a support vector machine and a time-window. Changes to the EAR metric were also

proposed to incorporated temporal information and per user calibration, as discussed.

Except for Fogelton and Benesova (2018), Yin et al. (2022) and Zheng et al. (2022a)

methods for incomplete blinks analysis require some sort of calibration per user. Inspired

in Maior et al. (2020), the first frames of a video could be used to adjust a threshold based

on the palpebral fissure aspect ratio to detect incomplete blinks.

It is valid to note that EAR is an artifact develop with the goal of measuring blinks,

based on facial landmarks detectors Soukupová and Cech (2016a). The palpebral fissure

dimensions, by the other hand, are a biometric measures already studied in other contexts

(medical, orbital surgery, facial plastic surgery, congenital or post-traumatic facial disfig-

urements). Their analysis by photograph is also not uncommon (VASANTHAKUMAR;

KUMAR; RAO, 2013), (BRUMMEN et al., 2021). Analyzing the palpebral fissure height

and width directly seems to be, therefore, closer to the medical field.

Providing more than just the eyes or the periorbital region to the model is interest-

ing because there are situations that may be particularly hard even for humans to define

the state of the eye, or if the frame is part of a blink or not, without context. If the whole

face is available, as in the proposed approach, the facial expression (contracted forehead,

mouth opened in scream or smile, periorbital lines in relaxed or contracted state) that is

given to the model may help. Using temporal information about the opening and closing

time for a blink event, may also fulfill this role, and possibly only the periorbital region

could be used. For improved blink analysis performance, though, a combination of meth-

ods is likely to perform better. This may be specially interesting when analyzing long

videos for research or diagnosis purposes, where real-time is not mandatory.

An eye blink analysis system based in the palpebral fissure aspect ratio can be
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used together with other methods to ensure an ergonomic use of the computer. Toda,

Nakai and Liu (2015) developed a software that, using only the webcam of the user’s

computer, estimates the distance of the user to the screen through the face area (number

of pixels with skin color). The aim is to prevent incorrect posturing of the user’s neck,

not the precise measurement of the target distance, that would require two or more images

(cameras). A pop-up alert message is displayed when the distance is below a set threshold.

The tests indicated that the face distance was estimated within 9.42% error in the distance

from 25 to 55 cm. Alternatively, the distance between the eyes (for example the distance

of the centroids of the palpebral fissures) can be used to roughly estimate this distance.
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4 METHODS AND METHODOLOGY

In this section, the generation of a deep learning based segmentation model for

the palpebral fissures is described in detail, as well as the steps that both precede and

follow its use in a video analysis context to detect complete and incomplete blinks. The

Figure 4.1 shows a schematic depicting the use of a palpebral fissure segmentation model

to determine eye state.

Figure 4.1: Palpebral fissure segmentation model for eye state determination diagram

Source: Author.

The Figure 4.2 presents a simple high-level state machine overview of a complete

and incomplete blink-detection system, based on such palpebral fissure segmentation.

Figure 4.2: High-level state machine of blink completeness analysis algorithm

Source: Author.
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In practice, however, the system could benefit of using the information of previous

frames. For example, a sequence composed of a frame for which the prediction is open

eyes, closing eyes (or completely closed eyes) and open eyes, respectively, is likely to

be caused by a misclassification, because a blink takes more than one frame with an

acquisition of 30 frames per second.

Alternatively, the output of the last block in the Figure 4.1 could be the features

extracted from the palpebral fissure, such as the ratio of height to width. Similarly to

Zheng et al. (2022a), a blink profile, here based on this ratio, could be generated with

the proposed segmentation model. The height to width ratio of the segmented palpebral

fissure could be used as a feature without the morphological operations of erosion and

dilatation used for the eyes in Lee, Lee and Park (2010), only performing the connected-

component analysis post-processing step followed by the authors, with up to the two

largest areas (excluding the background) been considered as palpebral fissures.

4.1 Overview

To develop the segmentation model, the steps shown in Figure 4.3 are followed.

The first steps consist in the analysis and treatment of the base dataset selected for training

the segmentation model, the CelebAMask-HQ dataset (LEE et al., 2020), as described in

section 4.3 Dataset generation. The dataset is then split in sets for training, validation,

and evaluation. These subsets are then processed by a pipeline that applies data augmen-

tation on-the-fly on the training set, as in section 4.4 Pipeline with data augmentation for

processing images and mask, preparing the images and segmentations mask to be used as

input for training the selected deep learning models, that are discussed in section 4.5 Deep

Learning Segmentation Models. Pretraining of the models and hyperparameters tuning is

covered in section 4.6 Deep Learning models pretraining phase, while evaluation is cov-

ered in section 4.7 Deep Learning models evaluation on images of the generated dataset.

Section 4.8 Reducing generated dataset imbalance address the attempt of using images

from the Closed Eyes in the Wild dataset to improve the models. Finally, 4.9 Evaluation

of the best model after training describes the fine-tuning of the best model.

https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html
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Figure 4.3: Diagram of the development stages of a palpebral fissure segmentation model
for eye state determination

Source: Author.

4.2 Packages and libraries

The code for training the machine learning and deep learning models was executed

in Google Colab, which runs in a cloud Virtual Machine. The Google Colab notebook is

running on top of Ubuntu operating system. The packages and libraries used with python

3.10.12 programming language can be seen in Table 4.1:

Table 4.1: Packages and Libraries used

Packages and Libraries Version Packages and Libraries Version

Keras 2.12.0 OpenCV 4.7.0
KerasTuner 1.3.5 Pandas 1.5.3

Keras-applications 1.0.8 Segmentation Models 1.0.1
Image-classifiers 1.0.0 Sklearn 1.2.2

Matplotlib 3.7.1 TensorFlow 2.12.0
Numpy 1.22.4

Source: Author.

https://colab.research.google.com/
https://colab.research.google.com/
https://www.releases.ubuntu.com
https://github.com/keras-team/keras/tree/v2.12.0
https://docs.opencv.org/4.7.0/
https://github.com/keras-team/keras-tuner/tree/v1.3.5
https://pandas.pydata.org/pandas-docs/version/1.5/reference/index.html
https://www.tensorflow.org/versions/r2.12/api_docs/python/tf/keras/applications
https://github.com/qubvel/segmentation_models/releases/tag/1.0.1
https://scikit-learn.org/1.2/
https://matplotlib.org/3.7.1/index.html
https://github.com/tensorflow/tensorflow/tree/v2.12.0
https://numpy.org/doc/1.22/index.html


56

To ensure a reproducible hash, "PYTHONHASHSEED" environment variable

was set to 0 in the begging of the executions of code. The random generators of Python,

Numpy and TensorFlow also received a "seed" value, to make most of the program fully

deterministic, like the shuffling of the dataset and its batches. The training of the models,

which are run in GPU, involves certain non-deterministic operations that create sources

of randomness.

4.3 Dataset generation

4.3.1 Base dataset: CelebAMask-HQ

CelebAMask-HQ dataset (LEE et al., 2020) contains 30000 high-resolution face

images (512×512 resolution) and the correspondent segmentation mask of 19 facial at-

tributes and accessories. This is a large scale dataset when compared, for example, to

Helen Facial Feature Dataset (LE et al., 2012), which contains 2300 high resolution im-

ages also with 11 primary facial components according to Lee et al. (2020).

CelebAMask-HQ dataset images were selected from the CelebFaces Attributes

Dataset (CelebA dataset, Liu et al. (2015)) by following CelebA-HQ (KARRAS et al.,

2018). Figure 4.4 shows some sample images and segmentations masks of the dataset.

Note that each segmentation mask is actually a binary image (black-and-white) file in

Portable Network Graphics (PNG) format.

Figure 4.4: CelebAMask-HQ sample images and segmentations masks

Multiple segmentations are displayed together for each image.

Source: Lee et al. (2020).

https://docs.python.org/3.10/library/random.html#random.seed
https://numpy.org/doc/1.22/reference/random/generated/numpy.random.seed.html
https://www.tensorflow.org/api_docs/python/tf/random/set_seed
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
http://www.ifp.illinois.edu/~vuongle2/helen/
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
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These masks are identified with a 5-digit numeric prefix (e.g. 00001) followed by

the segmentation type, which have the following form:

• _l_eye.png, for the segmentation image of the left eye;

• _r_eye.png, for the segmentation image of the right eye;

• _eye_g.png, for the glasses’ segmentation image;

A python script (using python 3.10.11, Numpy 1.22.4, Pandas 1.5.3) was devel-

oped to, for each image, indicate in a CVS file these parameters:

• "number", the 5-digit numeric prefix for the mask and identifier of the image;

• "Folder", one of 14 folders where the segmentation masks are organized;

• "Left_eye", 1, if there is a file with the number prefix followed by _l_eye.png in its

name, 0 otherwise;

• "Right_eye", 1, if there is a file with the number prefix followed by _r_eye.png in

its name, 0 otherwise;

• "Eyeglasses", 1, if there is a file with the number prefix followed by _eye_g.png in

its name, 0 otherwise;

• "No_eye_segmented", 1, if there are no files with the number prefix followed by

with _l_eye.png or _r_eye.png in their name.

The Table 4.2 shows number of segmentation masks by annotation type.

Table 4.2: Number of segmentation masks by annotation type
Type of annotation N of segmentation masks annotated

left eye 29258
right eye 29260

both eyes annotated 29132
left eye only annotated 126

right eye only noted 128
no eyes annotated 614

glasses noted 1549
no eyes annotated with glasses annotated 406

no glasses annotated nor eyes noted 208

Source: Author.



58

4.3.2 Dataset treatment

Based on the dataset CelebAMask-HQ, a new dataset was generated considering

the segmentations masks of the left and right eyes available in the dataset CelebAMask-

HQ. If the image does not have these two segmentations masks, the eyes have not been

annotated for this image. This can be the case if the eyes are not completely visible (by

wearing sunglasses, for example) or are closed.

The right and left eye segmentation masks were combined, generating a single

image, using the OpenCV function add. Completely black images were generated for the

images with no segmentation of either eye.

In addition, a visual inspection was performed on the generated masks. 62 images

for which the segmentation presented some kind of problem (e.g., one ear or eyebrow

were also annotated) were discarded. The Figure 4.5 shows some discarded samples. The

list of discarded images with the identification of the problem that caused the exclusion

can be found in the appendices.

Figure 4.5: Discarded samples of CelebAMask-HQ

(a) 12633. (b) 14400. (c) 16823.

(d) 1840. (e) 19336. (f) 2110.

(g) 2807. (h) 6136. (i) 8181.

(a) visible eyes (looking down); (b) eyebrows also annotated; (c) ears annotated; (d) left ear

annotated; (e) visible eyes; (f) outlier: small eyes compared to the rest of the dataset; (g) right

eyebrow annotated; (h) right ear annotated; (i) left eyebrow annotated.

Source: Author, based on CelebAMask-HQ (LEE et al., 2020).

https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://docs.opencv.org/4.6.0/d2/de8/group__core__array.html#ga10ac1bfb180e2cfda1701d06c24fdbd6
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
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The Table 4.3 shows the number of segmentation masks by annotation type after

the discard of the 62 pairs of images and masks.

Table 4.3: Number of segmentation masks by annotation type after visual inspection
Type of annotation N of segmentation masks annotated

left eye 29205
right eye 29209

both eyes annotated 29086
left eye only annotated 119

right eye only annotated 123
no eyes annotated 610

glasses noted 1545
no eyes annotated with glasses annotated 406

no glasses annotated nor eyes noted 204

Source: Author.

The images where only the left eye or the right eye were annotated (119+123 =

242 pairs of images and masks) were discarded, as well as the images for which no eyes

were annotated and the person was using eyeglasses ("Left_eye" and "Right_eye" equals

to 0 while "Eyeglasses" equals to 1; 406 pairs of images and masks). For the later case,

in most cases, this indicates that the person was using sunglasses, which is not expected

for this indoor application. For the first case, there were images where the person was in

profile or one eye was not visible because of the angle between the face and the camera.

These images and masks were also discarded because they do not represent the typical

situation where a computer user is facing the screen and the eyes are expected to blink

together in general.

It is observed that the base dataset has some small inconsistencies in annotation,

a natural aspect of annotations performed by multiple individuals, as mentioned by (LEE

et al., 2020). Although quality control is mentioned by the authors, some minor incon-

sistencies occur in the dataset due to subjective interpretations by each annotator, such

as an image of an eye containing only pixels of the palpebral fissure or some of its sur-

roundings, such as part of the eyelid. Given the size of the dataset, it is expected that an

intelligent model can learn the essence of the data and that these annotations containing a

bit more (or less) of the palpebral fissure will not be represented by the model.

The segmentation masks generated and the original images were then resized to

224 x 224 using resize of OpenCV with bilinear interpolation (INTER_LINEAR). This

reduction in the input image resolution allows a memory usage reduction. 224 is the stan-

dard input shape of some deep learning models pretrained in ImageNet, like the Keras

https://docs.opencv.org/4.7.0/da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d
https://docs.opencv.org/4.7.0/da/d54/group__imgproc__transform.html#ga5bb5a1fea74ea38e1a5445ca803ff121
https://www.image-net.org/index.php
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implementations of VGG (SIMONYAN; ZISSERMAN, 2014) and MobileNetV2 (SAN-

DLER et al., 2018). For the latter architecture, when the input shape is undefined or

non-square, or square but not in [96, 128, 160, 192, 224], weights for input shape (224,

224) are loaded as the default. The images and segmentation masks were then compressed

to be used in Google Colab platform.

4.3.3 Connected-component analysis

A connected-component analysis (CCA) is performed in the generated masks

where both eyes are open. The goal is to analyze the dimensions and coordinates of

the palpebral fissures. The dimensions are useful to get insights on values that can be

used as a threshold when both eyes are completed close, but the mask has some pixels set

(instead of an empty mask). The extreme coordinates are useful to establish reasonable

translation values to the data augmentations performed in the images, to avoid cropping

the eyes. For the topmost and bottom most points, the y coordinate is relevant for de-

termining the vertical translation. For the horizontal translation, the x coordinate of the

leftmost point of the right palpebral fissure and the rightmost point of the left palpebral

fissure are of interest.

CCA is the first step in this process. OpenCV 4.7.0 implementation of Spaghetti

algorithm (BOLELLI et al., 2020) for 8-way connectivity, connectedComponentsWith-

Stats, is used to compute the connected components labeled in the segmentation masks.

The components are then filtered with only the two largest areas detected being consid-

ered. A minimal size area equals 0 is used for filtering when analyzing the dataset.

The next step is to find the contours of the two largest palpebral fissures. A topo-

logical structural analysis algorithm for binary images (OpenCV 4.7.0 implementation of

Suzuki and Abe (1985), findContours) is used to perform this.

With the contours of both palpebral fissures, the bounding box containing each

palpebral fissure can be computed. This gives the width of the palpebral fissure. The

height is computed using the maximal value of the vertical projection profile along the

y axis of the palpebral fissure (i.e, for every mask column, the sum of all column pixel

values is computed; the maximal value is the height). Using the height of the bounding

box directly does not fully represent what is done in the EAR feature: a closing eye in a

waning/waxing crescent moon shape would have a bigger height, as exemplified in Figure

4.6.

https://keras.io/api/applications/vgg/#vgg16-function
https://keras.io/api/applications/mobilenet/#mobilenetv2-function
https://colab.research.google.com/
https://docs.opencv.org/4.7.0/d3/dc0/group__imgproc__shape.html#ga107a78bf7cd25dec05fb4dfc5c9e765f
https://docs.opencv.org/4.7.0/d3/dc0/group__imgproc__shape.html#ga107a78bf7cd25dec05fb4dfc5c9e765f
https://docs.opencv.org/4.7.0/d3/dc0/group__imgproc__shape.html#gadf1ad6a0b82947fa1fe3c3d497f260e0
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Figure 4.6: Segmentation mask with one eye in a waning/waxing crescent moon shape

(a) Annotated right palpebral fis-
sure and vertical projection profile,
with maximal value of 4 pixels.

(b) Generated image
segmentation mask.

(c) Annotated left palpebral fissure
mask and vertical projection pro-
file, with maximal value of 2 pixels.

Source: Author, based on CelebAMask-HQ.

The extreme points are computed individually from the dimensions. Only the co-

ordinates relevant for the axis in question should be considered, because when multiple

pixels have the same coordinate, the first occurrence found is chosen. For the leftmost

point, if several pixels have the same x coordinate, the first one in the contour list is cho-

sen, so the y coordinate may not be the most representative for the eye corner. The same

goes for the bottom most and the top most point: only the y coordinate is representative:

the x coordinate may not be centralized in the palpebral fissure, as in Figure 4.6c.

For the extreme coordinates of the palpebral fissure, what is significant is:

• the x value of the left most and right most pixel;

• the y value of the top most and bottom most pixel.

4.3.4 Splitting the dataset

The sample indexes (images and corresponding masks) were randomized and di-

vided into training, validation, and test sets in the ratio 6:2:2. This was done using strati-

fied sampling, to ensure that the relative frequency between samples annotated as having

both eyes open and both eyes completely closed in the dataset were approximately pre-

served in each set. The original dataset is highly imbalanced in this aspect.

Two subsets with of the test set were also defined. The "closed eyes test set"

contains the closed eyes samples, while the "opened eyes test set" contains the rest of

the samples of the test set (both eyes opened). They allow a visual verification of the

predictions and that the imbalance of the class in terms of images with both eyes closed

https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
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is not misleading the models in the segmentation task.

4.4 Pipeline with data augmentation for processing images and mask

A data pipeline with data augmentation "on-the-fly" was written based on the

Dataset class of the TensorFlow’s data module to feed the samples to train the mod-

els. The images (JPEG format) and masks (PNG format) are supplied in batches to the

model in order to reduce the use of RAM. Also, while the model uses some samples for

training, through prefetching another batch is prepared at the same time.

The samples are read from the disk and decoded. The masks are scaled by a factor

of 1
255 , so the pixel values are 0 to 1 later on. Samples are then cached in memory the

first time the dataset is iterated over. This save some operations (like file opening and

data reading) from being executed during each epoch. Training samples are also pseu-

dorandomly reshuffled for each epoch (after retrieving data from cache) and the batches

are constituted after shuffling to get unique batches for each epoch. For the training set,

data augmentation is applied on a batch of items at once, thus vectorizing the mapping, to

reduce the overhead related to scheduling and executing augmentations.

4.4.1 Reading and resizing JPEG images in different frameworks

As discussed in Sinha (2020), there are differences in a JPEG image read and re-

sized between frameworks, for example, OpenCV, TensorFlow, and Pillow. These steps

may impact the pre-processing of the images. As OpenCV is focused on real-time appli-

cations and has modules to interface with the camera of a computer, a verification of the

type of JPEG decompression by TensorFlow, which is used to develop the deep learning

modules, is performed in Google Colab to ensure compatibility.

The images read are decoded using the function tensorflow.io.decode_jpg; the ar-

gument dct_method equals to INTEGER_ACCURATE is used to specify a hint about the

algorithm used for JPEG decompression. The type hint was respected for the experi-

ments described here, and a model trained with this pipeline should not be affected when

changing the reading function of JPEG images from TensorFlow to OpenCV.

https://www.tensorflow.org/versions/r2.12/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/versions/r2.12/api_docs/python/tf/data/
https://www.tensorflow.org/versions/r2.12/api_docs/python/tf/data/Dataset#prefetch
https://pypi.org/project/Pillow/
https://colab.research.google.com/
https://www.tensorflow.org/versions/r2.12/api_docs/python/tf/io/decode_jpeg
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4.4.2 Data augmentation on-the-fly for training set

As the images in the CelebAMask-HQ dataset are most of the time bright, an

adjustment is randomly applied to reduce their brightness by a factor. This happens if a

random sorted value in the half-open interval [0.0,1.0) is less than 0.5, and the factor is

0.4 times this random value, so the brightness reduction is of 20% at most.

The images and mask pairs are randomly flipped horizontally (left to right), and

translation from −20% to 20% in the horizontal axis and from −25% to 25% in the

vertical axis are also applied. The same data augmentations are applied to all images

and masks (for translation and flipping along vertical axes) in an epoch, which will be

processed asynchronously on the CPU. The data therefore given to the model is likely to

be different each epoch.

Empty space due to the translations is filled with zeros instead of other types of

filling. This is based in the work of Hashemi (2019), that proposed zero-padding around

smaller images, as opposed to interpolation, to resize images to a fixed size before passing

then to a CNN. The author has shown that zero-padding has no effect on the classification

accuracy, but reduced the training time.

The vertical translations are important because a face detection algorithm, like

OpenCV’s implementation of Viola-Jones algorithm (VIOLA; JONES, 2004), may de-

termine a bounding box containing only part of the face. Eyeblink8 annotations, for

example, don’t consider the whole face, as many times forehead and hair is missing;

CelebAMask-HQ images, on the other hand, contain many "complete" faces, with even

some surrounding features.

4.5 Deep Learning Segmentation Models

Two models architectures are tested for the binary image segmentation: Unet and

Linknet. The backbones used for the encoder path are ’resnet18’ and ’mobilenetv2’ for

each architecture. All backbones have pre-trained weights on the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) 2012 dataset for faster and better convergence.

Initializing the models with the pre-trained weights on ILSVRC 2012 helps the model

to already recognize not only curved lines and shapes like circles and ellipsis, but also

human palpebral fissures.

The python library Segmentation Models (IAKUBOVSKII, 2019) with Neural

https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://www.blinkingmatters.com/research
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://segmentation-models.readthedocs.io/en/1.0.1/
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Networks for Image Segmentation based on Keras and TensorFlow is used to define the

deep learning modules and to benefit of transfer learning.

The backbones of Segmentation Models, as each Keras Application models, ex-

pect a specific kind of input preprocessing. This is done using Segmentation Models’s

get_preprocessing method with the name of the backbone as argument. For MobileNetV2

model, this corresponds to scale input pixels between−1 and 1. For ResNet, input images

are converted from RGB color space to BGR, then each color channel is zero-centered

with respect to ImageNet dataset, without scaling.

The preprocessing layers are part of the model that is going to be trained. Accord-

ing to the TensorFlow documentation (CHOLLET; OMERNICK, 2021), doing prepro-

cessing inside the model has some benefits: it benefits from GPU acceleration; and, at in-

ference time, this option makes the model portable and it helps reduce the training/serving

skew (difference between performance during training and performance during serving).

It also avoids reimplementing the pipeline when exporting the model to another runtime,

such as TensorFlow.js.

Batch normalization is not a part of the original Unet design, as it was introduced

latter. Here, batch normalization is used because of its ability to improve convergence and

reduce training time.

4.6 Deep Learning models pretraining phase

While the encoders have pre-trained weights, the decoders are randomly initial-

ized. The pretraining phase corresponds to adjust the decoders weights values. As stated

in Iakubovskii (2018), "sometimes, it is useful to train only randomly initialized decoder

in order not to damage weights of properly trained encoder with huge gradients during

first steps of training". This may lead to a performance that may be enough for the appli-

cation, without a need for fine-tuning (unfreezing all or some layers of the encoder and

training).

As a first approach for the pretraining, the hyperparameters are set manually, as

explained in subsection 4.6.1 Manual setting of hyperparameters. As mentioned previ-

ously, searching the hyperparameter space is relevant to obtaining the best score, or at

least verifying that the previous manual choice has led to a good performance in the sam-

ple space. This is described in subsection 4.6.2 Searching the hyperparameter space.

https://github.com/keras-team/keras/tree/v2.12.0
https://www.tensorflow.org/versions/r2.12/api_docs/
https://segmentation-models.readthedocs.io/en/1.0.1/
https://segmentation-models.readthedocs.io/en/1.0.1/
https://github.com/qubvel/segmentation_models/blob/1.0.1/segmentation_models/__init__.py#L124
https://keras.io/api/applications/mobilenet/
https://keras.io/api/applications/resnet/
https://www.tensorflow.org/guide/keras/preprocessing_layers?hl=en#benefits_of_doing_preprocessing_inside_the_model_at_inference_time
https://www.tensorflow.org/js
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4.6.1 Manual setting of hyperparameters

A combined loss is used as a cost function, as done, for example, in Kolarik, Bur-

get and Riha (2020) and in a well ranked solution to Carvana Image Masking Challenge in

Kaggle by Yokoo (2017). The loss is 1 minus the value of the Dice coefficient calculated

per image (loss is calculated for each image in batch and then averaged) increased by the

binary cross-entropy, as expressed in Equation 4.1.

bce_dice_lossper batch =

1− 1
B

B

∑
i=1

(1+β 2) ·T Pi + ε

(1+β 2) ·T Pi +β 2FNi +FPi + ε︸ ︷︷ ︸
Dice per image

+BCE (4.1)

where

• B - number of samples in batch;

• β - f-score coefficient; equals to 1 for the Dice coefficient;

• T Pi - true positive pixels for mask i;

• FPi - false positive pixels for mask i;

• FNi - false negative pixels for mask i;

• ε - smooth coefficient to avoid division by zero, equals to 1e−05;

• BCE is defined in Equation 2.4.

Cross-entropy prioritizes the overall pixel-wise accuracy, treating each pixel as an

independent prediction, while Dice loss acts in the level of the resulting mask and is less

sensitive to class imbalance (MU; SUN; HE, 2022).

The loss, as well as the Dice similarity coefficient and Jaccard’s index (Intersection

over Union) are monitored during model training. The loss functions and performance

metrics use the implementation available in the python module Segmentation Models,

adding a smooth coefficient to the numerator and to the denominator to avoid division by

zero. The default value for both Dice coefficient and Jaccard index is 1e−05.

The Adam optimization algorithm (KINGMA; BA, 2017) is used as an optimizer

of the loss function, which is an extension to stochastic gradient descent method and is

based on adaptive estimation of first-order and second-order moments. The Keras im-

plementation is used with default parameters (β1, the exponential decay rate for the first

moment estimates equals to 0.9; β2, the exponential decay rate for the second moment

https://segmentation-models.readthedocs.io/en/1.0.1/
https://www.tensorflow.org/versions/r2.12/api_docs/python/tf/keras/optimizers/Adam
https://www.tensorflow.org/versions/r2.12/api_docs/python/tf/keras/optimizers/Adam
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estimates, equals to 0.999; and ε , a constant for numerical stability, equals to 1e−07).

For this experiment, the learning rate is equal to 0.0015 (divided by 5 after the

epochs 10 and 15) and the regularization factor L2 is equals 0.005 for each model. Pre-

training is performed over 20 epochs, with the best model obtained so far based on the

maximal Dice coefficient of the validation set being saved. This type of early stopping

technique adds a regularization effect to the pretraining, reducing the magnitude of over-

fitting. The batches contain 32 samples, to reduce large variances in training batch nor-

malization layers caused by smaller mini-batch sizes. Three experiments for each combi-

nation of architecture and backbone are realized to reduce the variance of the results.

4.6.2 Searching the hyperparameter space

The Keras Tuner library O’Malley et al. (2019) implementation of Random Search

was used for searching the hyperparameter space for the learning rate and L2 regulariza-

tion factor. Table 4.4 shows the minimal and maximal values used.

Table 4.4: Minimal and maximal values for hyperparameter space

Minimal value Maximal value

Learning Rate (LR) 0.0001 0.001
L2 regularization factor (λ ) 0.01 0.1

Source: Author.

Log sampling value was used, according to Equation 4.2.

hyperparameter value = minimal value ·
(

maximal value
minimal value

)value

(4.2)

where value is in the range [0.0,1.0). The minimal and maximal limits are arbitrated. The

maximal value of learning rate in the distribution is smaller than the value used before

(0.0015). Also, the maximal regularization in its interval is greater than the value used

before (0.005). This is because the networks are likely to present some degree of overfit-

ting, given the complexity of the networks, and both increasing the L2 regularization as

decreasing the learning rate may reduce overfitting.

Two random searches are performed for each combination of architecture and

backbone. The first one consists of 15 trials, with each trial having different hyperparam-

eter values and being executed once. The idea is to quickly explore the hyperparameter

search space. The Dice metric of the validation set is used directly as objective, and the
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optimizer tries to maximize it. The best combination of hyperparameters is then used to

train each model in the same fashion as the first manual test (3 times). The second random

search consists of 8 trials with 3 executions per trial, with each execution within the same

trial having the same hyperparameter values. The purpose of having multiple executions

per trial is to reduce the variance of the results and therefore be able to more accurately

assess the performance of a mode. The objective to be minimized is the combined loss

function of the validation set. The models obtained in both random searches are then

evaluated in the test set.

Searching in a low-dimensional space is often done with grid search, which is less

practical in high-dimensional spaces, which is not the case here. Because the importance

of each parameter was not known a priori, random search was chosen to explore the

hyperparameter space. Furthermore, random sampling helps find good candidates faster.

4.7 Deep Learning models evaluation on images of the generated dataset

The evaluation, prediction, and evaluation of time for prediction are executed in

the test set, to provide an unbiased evaluation of model fit and verify if the model gener-

alizes well to new data.

For the evaluation, the Dice coefficient score, IoU score as well as the loss, are

computed. Zheng et al. (2022a) considered a Dice similarity coefficient of a model over

90% to be reliable for the segmentation model used to segment the palpebral fissures

obtain from the Keratograph 5M. This is adopted as the base criteria.

For visualizing the prediction masks, a figure is generated for each pair of 20 sam-

ples of the test set, containing 6 subfigures: the original mask segmentation; an overlay

between the original and the generated mask; the generated mask; an overlay between the

original mask and the image; the original image; and an overlay between the generated

mask and the image. A connected-component analysis followed by the contour detection

to determine palpebral dimensions are also performed. The same visualization procedure

is also applied to 20 samples of the closed eyes test set.

The time for inference per image in GPU is evaluated in 30 batches in 10 repe-

titions, each batch with 32 images. Another test is performed with the 960 images not

predicted in batches, using predict and __call__ methods of Keras models, again with 10

repetitions. The idea is to simulate directly processing an image retrieved from a video.

Two confusion matrices and a histogram are also used to determine the ability of

https://www.tensorflow.org/versions/r2.12/api_docs/python/tf/keras/Model#predict
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the models to distinguish between two open and two fully closed eyes in faces. The first

confusion matrix assumes that if at least one palpebral fissure is not fully closed (i.e., at

least one connected component was found), then the eyes are not fully closed. As in a

spontaneous blink, both eyes typically close, a second confusion matrix considers that if

at least one palpebral fissure is fully closed, the eyes are closed. In terms of segmentation

mask prediction, this means that the mask is not empty but has only one connected com-

ponent detected. In practice, a good model can present a segmentation mask with only

a few incorrect pixels instead of an empty mask when both eyes are closed. As the two

biggest connected components are not filtered when computing the confusion matrices, a

histogram of the maximal area determined in the CCA is also displayed.

4.8 Reducing generated dataset imbalance

With the goal of investigating the impact of reducing the imbalance of the dataset,

face images with closed eyes from the Closed Eyes in the Wild (CEW) were added to

the training and validation sets. CEW dataset, presented by Song et al. (2014), contains

approximately 4800 images, between left and right eyes, closed and open, taken from

the Labeled Face in the Wild database (HUANG et al., 2007). In particular, there are

1192 face images containing closed eyes. Some challenges of this set include amateur

photography, occlusions, lighting problems, pose, and motion blur, as noted by Alparslan,

Alparslan and Burlick (2020). Figure 4.7 shows some samples.

Figure 4.7: Closed Eyes in The Wild sample images

Source: Song et al. (2014).

4.8.1 Dataset treatment

CEW consists of images with different sizes, not always with square shape (by one

pixel line, usually). Images were resized to 224 x 224 for compatibility with the training

http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html
https://vis-www.cs.umass.edu/lfw/
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and validation sets. To keep the aspect ratio of images, they were rescaled such that the

shorter side was of length 224, and then cropped keeping the top left side unchanged. The

generated masks are empty, as only faces with completely closed eyes were selected.

The CEW dataset was filtered, so that only faces with both eyes completely closed

and with a reasonable resolution were used. In a first pass through the dataset, images with

partially open eyes, eyes from another person or situations where it was difficult to judge

the state of the eye due to low resolution or blur were marked. Then, all images with a

minimal size lower than 73 were also marked. The marked images were then excluded.

The Figure 4.8 shows some examples of the 365 discarded samples.

Figure 4.8: Discarded samples CEW

(a) Closed eye 0033.jpg
face 2.

(b) Closed eye 0038.jpg
face 1.

(c) Closed eye 0107.jpg
face 1.

(d) Closed eye 0280.jpg
face 2.

(e) Closed eye 0347.jpg
face 2.

(f) Closed eye 0493.jpg
face 1.

(g) Closed eye 1263.jpg
face 1.

(h) Closed eye 2205.jpg
face 2.

(a) partial visible eyes; (b) one partial open eye; (c) low resolution, possible 1 partial open eye;

(d) low resolution; (e) one open eye from another person; (f) partial open eyes; (g) reflection; (h)

image effects, face features not clear.

Source: Closed Eyes in the Wild (SONG et al., 2014).

The exclusion of low dimension images is relevant, as resizing an image from

56 x 56 to 224 x 224 would make it specially blur, making it too different from the

CelebAMask-HQ dataset (LEE et al., 2020) dataset. This would constitute a sort of bias

(TORRALBA; EFROS, 2011) that the model could lean on without improving overall

metrics in test sets.

http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
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The CEW dataset was then split. 620 CEW samples were randomly assigned to

increment the training set, and 207 were assigned to increment the validation set (keeping

the ratio of 0.75 between the sets).

4.8.2 Testing the best pretrained models

The model considered the best in terms of dice metric were pretrained and tested

again (3 times), now with the increased training and validation sets, considering the same

procedure described in subsection 4.6.1 Manual setting of hyperparameters.

4.9 Evaluation of the best model after training

The model considered the best in terms of dice metric is then trained and tested

again, with the corresponding training and validation set (3 times). For the training, the

last 2 blocks that compose the encoder are unfrozen, and the model is trained for 10

epochs. Then, another 2 blocks that compose the encoder are unfrozen, and the model is

trained for another 10 epochs.
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5 RESULTS AND DISCUSSION

5.1 Analysis of images with both eyes open for the generated dataset

The scatter plot of palpebral fissure coordinates in Figure 5.1 indicates the position

of the coordinates of the palpebral fissure after the contour analysis. As it can be seen, the

centroids are usually vertically centralized in images. The leftmost x coordinate for the

right eye is 60 and the rightmost x coordinate for the left eye is 161. As the image size is

224, a 20% translation to left or right (about 45 pixels) in the data augmentation process

should not be too aggressive, as it will not position any part of the eye outside the image.

Similarly, the topmost y coordinate is 82, and the bottom most y coordinate is 123, so a

vertical translation of 25% (56 pixels) also maintains the eye region in the image.

Figure 5.1: Scatter plot of palpebral fissure coordinates

Source: Author.

The Figure 5.2 shows the palpebral fissure area histograms for the 29086 masks

with both eyes open. The first aspect is the bell-shaped distribution of the left, right,

maximal, and minimal areas. The blue line in the histograms is a kernel density estimate

computed to display a smoothed version of the distribution. The mean ± standard devia-

tion for the left and the right palpebral fissures are 128.2±37.8 and 127.9±37.4 pixels,

respectively. The mean ± standard deviation for the maximal and minimal palpebral fis-

sures are 136.7±38.3 and 119.4±34.7 pixels, respectively, which illustrates the facts of

palpebral fissure asymmetry and that not all images have the person facing the camera.



72

Figure 5.2: Palpebral fissure area histograms for masks with both eyes open

(a) Right area. (b) Left area histogram.

(c) Maximal area. (d) Maximal area – zoom.

(e) Minimal area. (f) Minimal area – zoom.

Source: Author.

The Figure 5.2f analysis suggests that ignoring connected-components with small

areas (inferior to about 10 pixels of the total, 224 x 224 = 50176) can be used as part of

a heuristic for detecting closed eyes even when there is a small error in the segmentation

mask prediction. Similarly, as both eyes blink together in a spontaneous blink, Figure 5.2d

analysis suggests that ignoring connected-components when the larger one is smaller than

a certain small threshold (as about 20 pixels from 50176) can also be considered.
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As a reference, Figure 4.5f, an outlier image that was not considered in this analy-

sis because the face covers too little from the image compared to the majority of samples,

has two palpebral fissures of areas 8 and 7 pixels. Normally, computer users tend to be

too close from the screen. The face detected in the frame is not likely to be as small as the

image in Figure 4.5f. This is also likely the case for a frame capture by the front camera

of a mobile device.

The eye region area in an image depends on the camera resolution and the distance

between the person and the camera, with the size of the eye having a correlation with the

intraocular distance. This is, however, affected by yaw angle variations (horizontal non-

frontal head rotations), as shown in the Figure 5.3. The same is valid for pitch rotation

(vertical non-frontal head rotations, when the person is looking up or down).

Figure 5.3: Interocular distance (IOD) for pose variation

Source: Adapted from Kim et al. (2017)

To illustrate some samples of CCA and contour detection with usual and ex-

treme values in the dataset, the reader is referred to Appendix B Examples of connected-

component analysis of images with both eyes open for the generated dataset. The Figure

5.4 shows the palpebral fissure width and height, as well as distance between palpebral

fissures for masks with both eyes open. Note that the inner distance roughly corresponds

to the intraocular distance, as the extremes of the palpebral fissures are not always well

define for flat regions, as discussed early in subsection 4.3.3 Connected-component anal-

ysis. The same consideration applies to the outer distance. All distances are subjected to

in-plane rotation of the face (not common in CelebAMask-HQ dataset) and non-frontal

head rotations (common), making them of limited use.
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Figure 5.4: Palpebral fissure measures histograms for masks with both eyes open

(a) Right width. (b) Left width.

(c) Right height. (d) Left height.

(e) Distance between the areas centroids.

(f) Approximation of the inner distance
between extreme points (close to the nose).

(g) Approximation of the outer distance
between lateral extreme points.

Source: Author.
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The palpebral fissures are not always aligned in CelebAMask-HQ Dataset, which

implies that the ratios ("height" by width) computed may not always be meaningful re-

garding eye closure by themself. The Figure 5.5 shows the palpebral fissure ratio his-

tograms for the masks with both eyes open and makes clear this fact.

Figure 5.5: Palpebral fissure ratio histograms for masks with both eyes open

(a) Right ratio. (b) Left ratio.

(c) Mean ratio.

(d) Maximal ratio. (e) Minimal ratio.

Source: Author.

The version used for palpebral fissure aspect ratio is not invariant to in-plane face

rotations like the EAR based in landmarks proposed by Soukupová and Cech (2016b).

One could find the minimal bounding box containing the eyes to compensate for this
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angle, but: pure in-plane rotation like in Figure B.7 are rare in the CelebAMask-HQ

dataset; and CelebAMask-HQ samples may have strong non-frontal head rotations, with

some faces almost in profile (even when images with only both eyes open are considered).

These images with strong face rotations are still relevant to train a segmentation

model. For faces where the angle θ in Figure 5.3 is small, and thus cos θ is close to 1,

there are no in-plane face rotations, as usually is the case in front of the computer, the

version of the palpebral fissure aspect ratio based on the horizontal width of the eyes and

the vertical projection is suitable. In-plane face rotations are not usual when using the

computer, as a typical user using only one screen usually has the eyes aligned with the

horizontal level (i.e., no in-plane rotation), and the head yaw and pitch angles are small

(inferior to about 10◦ for some notebooks). Occupational Safety and Health Adminis-

tration (n.d.) indicates that monitors should not be farther than 35◦ degrees to the left or

right. When using a bigger screen, or a second screen next to the first one (that is fac-

ing the user and where the webcam is positioned), the yaw angle can increase to values

greater than 35◦. To illustrate the effects of head position in palpebral fissure width and

provide a rough idea of head pose angle, the reader is referred to Appendix C Width (in

pixels) of the palpebral fissure multiplied by the cosine of the yaw angle.

5.2 Enhancements: palpebral fissure dimensions correction and automatic detection

of segmentation errors in static and video images

It is possible to estimate the yaw angle θ . Lee, Lee and Park (2010) have used the

distance between the eyes and the laterals of the face to empirically estimate the rotation

angle of the face. The palpebral fissure dimensions can then be "corrected" for non-

frontal faces. Authors have also considered only the largest palpebral fissure available

when analyzing blinks in non-frontal faces.

Some characteristics of the palpebral fissure and the face can also be used to au-

tomatically detect cases of incorrect segmentation. The face width and height are usually

known, as a face detector is used and its output is the input for the model.

Assuming that the user is facing the camera (or the screen and the webcam), if two

components have been selected as palpebral fissure candidates, the interocular distance

can be verified. An incorrect segmentation is likely to has occurred if the value is "too

small": in an average face, the distance between the inner eye corners is roughly equal

to the width of one eye (JESORSKY; KIRCHBERG; FRISCHHOLZ, 2001). The use of

https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
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test-time augmentation or meta-classifiers can help achieve the correct segmentation. The

palpebral fissure aspect can also be used to perform this check. Its height is less than its

width, so the expected ratio value is smaller than 1. When applying the model to video,

the interocular distance can be monitored and compared with previous values, making it

easier to detect anomalous segmentations.

While working if eye localization, Ahmad et al. (2022) considered that the dis-

tance between the eyes candidates (and here the palpebral fissure candidates) should be

within about 1/5 and 4/5 of the face size. The Figure 5.6 illustrate the relationship be-

tween the area of the eye relative to interocular distance.

Figure 5.6: Eye relative to interocular distance

Source: Monzo et al. (2011).

Monzo et al. (2011) applied restrictions to the maximum rotation angle referred to

the horizontal in the subject of eye localization: if the pair was rotated more than ±20◦,

it was discarded. Ahmad et al. (2022) considered that the eyes should be aligned from

±30◦. As in-plane face rotations are not usual when using the computer, the palpebral

fissure candidates are also usually aligned, and a reasonable threshold can be used to

indicate a segmentation fault.

5.3 Pretraining with CelebAMask-HQ samples only

5.3.1 Manual Search

Figure 5.7 shows the Dice coefficient score and the loss for the best models, in

terms of validation Dice, found by the manual search, with validation combined loss as

the objective being optimized.
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Figure 5.7: Dice score and loss – Manual Search pretraining with CelebAMask-HQ

(a) LinkNet MobileNetV2 – pretraining. (b) LinkNet MobileNetV2 – pretraining.

(c) LinkNet ResNet18 – pretraining. (d) LinkNet ResNet18 – pretraining.

(e) UNet MobileNetV2 – pretraining. (f) UNet MobileNetV2 – pretraining.

(g) UNet ResNet18 – pretraining. (h) UNet ResNet18 – pretraining.

Left: Dice Coefficient Score. Right: Loss function.

Source: Author.
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All models soon achieved a high validation Dice coefficient score. This is due to

the pretrained backbones, and probably is also an effect of the use of batch normalization.

They also have a noticeable overfit. It should be noted, however, that the models are not

yet fine-tuned. Still, one can observe a better performance in this metric for the UNet

models and the LinkNet model with ResNet18 backbone. This also holds true when

looking to the loss of the models.

The Table 5.1 shows the confusion matrices for the models obtained with the man-

ual search of learning rate 0.0015 and regularization factor 0.005, considering that, if one

eye is not fully closed, eyes are not fully closed. As already mentioned, this test is rather

strict, in the sense that even a 1 pixel wrong in a segmentation mask that should be empty

makes it a false negative, instead of a true positive.

Table 5.1: Confusion matrices (one eye not fully closed, eyes not fully closed) for the
pretrained models in manual search

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5814
5815
5815

3
2
2

Positive:
both eyes

closed

32
38
38

9
3
3

(a) LinkNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5815
5815
5814

2
2
3

Positive:
both eyes

closed

34
38
35

7
3
6

(b) LinkNet ResNet18.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5817
5814
5815

0
3
2

Positive:
both eyes

closed

41
36
39

0
5
2

(c) UNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5816
5816
5815

1
1
2

Positive:
both eyes

closed

39
40
37

2
1
4

(d) UNet ResNet18.

Considers that, if at least one eye is not fully closed, eyes are not fully closed.

Source: Author.

The Table 5.2 shows the confusion matrices for the models obtained with the man-

ual search of learning rate 0.0015 and regularization factor 0.005, considering that, if at

least one eye is fully closed, eyes are fully closed.



80

Table 5.2: Confusion matrices (one eye fully closed, eyes fully closed) for the pretrained
models in manual search

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5768
5774
5779

49
43
38

Positive: at
least 1 eye

closed

22
25
22

19
16
19

(a) LinkNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5774
5782
5779

43
35
38

Positive: at
least 1 eye

closed

18
27
22

23
14
19

(b) LinkNet ResNet18.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5800
5769
5783

17
48
34

Positive: at
least 1 eye

closed

32
24
24

9
17
17

(c) UNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5795
5783
5767

22
34
50

Positive: at
least 1 eye

closed

21
30
22

20
11
19

(d) UNet ResNet18.

Considers that, if at least one eye is fully closed, eyes are fully closed.

Source: Author.

This consideration, that eyes normally close together in a spontaneous blink, has

increased the perception of all models that both eyes are closed when they were annotated

as closed eyes, which translates to an increase in true positives and a decrease in false

positives. Nevertheless, this also has a negative impact on the eyes considered open that

are truly open: there was an increase in false negatives. Fogelton and Benesova (2018)

evaluated each eye separately because their completeness can differ, but they noted that if

only one of the eye blink detection is enough to report blink, this can dramatically change

the results.

The Figure 5.8 shows the maximal area histogram for the test set (and the subset

of CelebAMask-HQ with only closed eyes) for the pretrained models in manual search

for the best execution in terms of Dice score value. All models returned a bell-shaped

histogram for the test set. The maximal area histogram for closed eyes test set indicates

that sometimes, the models classified only some pixels incorrectly. Interestingly, UNet

MobileNetV2 best model always predicts that there are at least a part of a palpebral fissure

open (or a connected-component that is taken by as part of palpebral fissure), probably

because of class imbalance.
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Figure 5.8: Maximal area histogram – Manual Search with CelebAMask-HQ (pretrain-
ing)

(a) LinkNet MobileNetV2 – execution 3. (b) LinkNet MobileNetV2 – execution 3.

(c) LinkNet ResNet18 – execution 1. (d) LinkNet ResNet18 – execution 1.

(e) UNet MobileNetV2 – execution 1. (f) UNet MobileNetV2 – execution 1.

(g) UNet ResNet18 – execution 1. (h) UNet ResNet18 – execution 1.

Left: Complete test set. Right: Closed eyes test set (CelebAMask-HQ subset).

Source: Author.
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5.3.2 Random Search – 15 trials, 1 execution per trial

The Figure 5.9 shows the hyperparameters search space using Random Search

for the different models and topologies. As it can be seen, the results for UNet tend

to be superior to those of LinkNet models, with UNet MobileNetV2 having a similar

performance for the various pairs combinations of the selected hyperparameters.

Figure 5.9: Hyperparameters search space (Random Search): 15 trials with validation
Dice score as objective

(a) LinkNet MobileNetV2. (b) LinkNet ResNet18.

(c) UNet MobileNetV2. (d) UNet ResNet18.

Source: Author.

The Figure 5.10 shows the Dice score and the loss for the best model found by the

Random Search in the 15 trials per model, with validation Dice score as objective. All

models display some overfit, as the Dice coefficient score for the training set is greater

than 0.90 but that is not the case for the validation set and the distance between the training

and the validation curves increases over the epochs. It should be noted, however, that the

models are not yet fine-tuned. Still, one can observe a better performance in this metric

for the UNet models. This also holds true when looking at the loss of the models.
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Figure 5.10: Dice score and loss – Random Search pretraining

(a) LinkNet MobileNetV2 – execution 3. (b) LinkNet MobileNetV2 – execution 3.

(c) LinkNet ResNet18 – execution 2. (d) LinkNet ResNet18 – execution 2.

(e) UNet MobileNetV2 – execution 2. (f) UNet MobileNetV2 – execution 2.

(g) UNet ResNet18 – execution 2. (h) UNet ResNet18 – execution 2.

Left: Dice Coefficient Score. Right: Loss function.

Source: Author.
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The Table 5.3 shows the confusion matrices for the models obtained with random

search with 15 trials, 1 execution per trial, considering that, if one eye is not fully closed,

eyes are not fully closed.

Table 5.3: Confusion matrices (one eye not fully closed, eyes not fully closed) for the
pretrained models in random search with 15 trials, 1 execution per trial

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5816
5813
5814

1
4
3

Positive:
both eyes

closed

38
37
33

3
4
8

(a) LinkNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5808
5814
5811

9
3
6

Positive:
both eyes

closed

33
36
37

8
5
4

(b) LinkNet ResNet18.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5815
5813
5816

2
4
1

Positive:
both eyes

closed

39
34
39

2
7
2

(c) UNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5816
5815
5815

1
2
2

Positive:
both eyes

closed

41
39
38

0
2
3

(d) UNet ResNet18.

Considers that, if at least one eye is not fully closed, eyes are not fully closed.

Source: Author.

The Table 5.4 shows the confusion matrices for the models obtained with random

search with 15 trials, 1 execution per trial, considering that, if at least one eye is fully

closed, eyes are fully closed.
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Table 5.4: Confusion matrices (one eye fully closed, eyes fully closed) for the pretrained
models in random search with 15 trials, 1 execution per trial

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5784
5773
5754

33
44
63

Positive: at
least 1 eye

closed

23
22
15

18
19
26

(a) LinkNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5748
5736
5768

69
81
49

Positive: at
least 1 eye

closed

17
23
21

24
18
20

(b) LinkNet ResNet18.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5795
5762
5792

22
55
25

Positive: at
least 1 eye

closed

25
14
26

16
27
15

(c) UNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5781
5777
5778

36
40
39

Positive: at
least 1 eye

closed

27
25
27

14
16
14

(d) UNet ResNet18.

Considers that, if at least one eye is fully closed, eyes are fully closed.

Source: Author.

The Figure 5.11 shows the maximal area histogram for the open eyes test set for

the pretrained models in random search with 15 trials, 1 executions per trial. Again, all

models returned a bell-shaped histogram for the test set.



86

Figure 5.11: Maximal area histogram – Random Search with 15 trials (pretraining)

(a) LinkNet MobileNetV2 – execution 3. (b) LinkNet MobileNetV2 – execution 3.

(c) LinkNet ResNet18 – execution 2. (d) LinkNet ResNet18 – execution 2.

(e) UNet MobileNetV2 – execution 2. (f) UNet MobileNetV2 – execution 2.

(g) UNet ResNet18 – execution 2. (h) UNet ResNet18 – execution 2.

Left: Complete test set. Right: Closed eyes test set (subtest of CelebAMask-HQ).

Source: Author.
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5.3.3 Random Search – 8 trials, 3 executions per trial

The Figure 5.12 shows the hyperparameters search space using Random Search

for the different models and topologies. Again, the results for UNet tend to be superior to

those of LinkNet models, with UNet MobileNetV2 having a similar performance for the

various pairs combinations of the selected hyperparameters.

Figure 5.12: Hyperparameters search space (Random Search): 8 trials, 3 executions per
trial, with validation loss as objective

(a) LinkNet MobileNetV2 – pretraining. (b) LinkNet ResNet18 – pretraining.

(c) UNet MobileNetV2 – pretraining. (d) UNet ResNet18 – pretraining.

Source: Author.

Table 5.5 shows the confusion matrices for the models obtained with random

search with 8 trials, 3 execution per trial, considering that, if one eye is not fully closed,

eyes are not fully closed.
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Table 5.5: Confusion matrices (one eye not fully closed, eyes not fully closed) for the
pretrained models in random search with 8 trials, 3 executions per trial

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5782 35

Positive:
both eyes

closed
15 26

(a) LinkNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5799 18

Positive:
both eyes

closed
15 26

(b) LinkNet ResNet18.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5813 4

Positive:
both eyes

closed
28 13

(c) UNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5798 19

Positive:
both eyes

closed
14 27

(d) UNet ResNet18.

Considers that, if at least one eye is not fully closed, eyes are not fully closed.

Source: Author.

Comparing the Table to Table 5.3 and Table 5.1, there is a noticeable reduction

in incorrect predictions indicating that the segmentation mask is empty, with an increase

for the true positives. Models with ResNet18 have a better balance between false positive

and false negative with the selected hyperparameters and the combined loss, that was also

used in Manual Search.

Table 5.6 shows the confusion matrices for the models obtained with random

search with 8 trials, 3 execution per trial, considering that, if at least one eye is fully

closed, eyes are fully closed. Again, there is an increase in the detection of closed eyes,

both for true and false positives.
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Table 5.6: Confusion matrices (one eye fully closed, eyes fully closed) for the pretrained
models in random search with 8 trials, 3 executions per trial

Predicted label

Negative Positive

True
label

Negative:
both eyes

open
5618 199

Positive: at
least 1 eye

closed
3 38

(a) LinkNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open
5693 124

Positive: at
least 1 eye

closed
3 38

(b) LinkNet ResNet18.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open
5771 46

Positive: at
least 1 eye

closed
14 27

(c) UNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open
5702 115

Positive: at
least 1 eye

closed
3 38

(d) UNet ResNet18.

Considers that, if at least one eye is fully closed, eyes are fully closed.

Source: Author.

The Figure 5.13 shows Maximal area histogram for open eyes test set for the pre-

trained models in random search with 8 trials, 3 executions per trial. All models present a

bell-shaped histogram for the test set, but there is a noticeable peak close to 0 for LinkNet

models and the UNet ResNet18.
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Figure 5.13: Maximal area histogram – Random Search with 24 executions (pretraining)

(a) LinkNet MobileNetV2. (b) LinkNet MobileNetV2.

(c) LinkNet ResNet18. (d) LinkNet ResNet18.

(e) UNet MobileNetV2. (f) UNet MobileNetV2.

(g) UNet ResNet18. (h) UNet ResNet18.

Left: Test set. Right: Closed eyes test set (CelebAMask-HQ subset). 8 trials, 3 executions/trial.

Source: Author.
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5.3.4 Results

Appendix D Tables of results of experiments contains the experiment’s outcomes

in detail. The Table D.1 displays the results for the experiments with CelebAMask-HQ

dataset, in descending order for the Dice score. The Table D.2 summarizes metrics values,

while the Table D.3 displays the inference time experiments results.

The best model in terms of Dice Score for the whole test set was a UNet Mo-

bileNetV2 (0.8885), followed by LinkNet ResNet18 (0.8878) with learning rate 0.0015

and λ = 0.005. Considering these choice of hyperparameters, the mean ± standard devi-

ation Dice Score of these models for the 3 trials was:

• UNet MobileNetV2: 0.8874±0.0014;

• LinkNet ResNet18: 0,8857±0.0023.

Interestingly, the worst performance was also one of a LinkNet ResNet18 model

(0.7936), with a mean ± standard deviation of these models equal to 0,8008±0.0080 for

learning rate 0.000353 and λ = 0.0346, indicating the importance of adjusting these hy-

perparameters in performance. UNet’s models, specially MobileNetV2 ones, on the other

hand, had a generally better performance independently of the choice of hyperparameters.

Concerning the time inferences shown in Table D.3 displays, it can be observed

that there is a time difference between using predicting a single image or a batch. In fact,

it is not possible to predict the images in real-time as the frames are retrieved. However,

these times drop considerably if a batch of images is given to the GPU. There seems to

be a limit in performance for predict single inputs that may arise from the CPU to GPU

communication, as for the same model/backbone, predicting 30 batch is faster in Tesla

V100 GPU than Tesla T4, but that is not the case for a single image. Inference times

for a single image are also similar when using predict method between architectures e

backbones. It is also interesting to observe the call and predict do not have a similar

performance only for MobileNetV2 backbones, regardless the architecture.

5.4 Pretraining adding CEW closed eyes samples

The Figure 5.14 shows the Dice coefficient score and the loss for the best models,

in terms of validation Dice, found by the Manual Search, with validation combined loss

as the objective being optimized.
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Figure 5.14: Dice score and loss – pretraining (CelebAMask-HQ and CEW)

(a) LinkNet MobileNetV2 – pretraining. (b) LinkNet MobileNetV2 – pretraining.

(c) LinkNet ResNet18 – pretraining. (d) LinkNet ResNet18 – pretraining.

(e) UNet MobileNetV2 – pretraining. (f) UNet MobileNetV2 – pretraining.

(g) UNet ResNet18 – pretraining. (h) UNet ResNet18 – pretraining.

Left: Dice Coefficient Score. Right: Loss function.

Source: Author.
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All models soon achieved a high validation Dice coefficient score, again due to

the pretrained backbones, and probably is also an effect of the use of batch normalization.

There seems to be a trend that the best epoch of the models (the one kept by early stop-

ping saving technique) occurs later than in previous experiments. They also still have a

noticeable overfit, but is specially visible that the models with ResNet18 backbone, were

benefited by the additional images. It should be noted, however, that the models are not

yet fine-tuned. As in the previous manual search, one can observe a better performance

of the validation Dice metric for the UNet models and the LinkNet model with ResNet18

backbone. This also holds true here and when looking at the loss.

Comparing the validation loss curves of Figure 5.7 and Figure 5.14 for ResNet18

backbone models show the reduction of overfit (or, at least, that early stopping happens

latter).

The Table 5.7 shows the confusion matrices for the models obtained with the man-

ual search of learning rate 0.0015 and regularization factor 0.005, considering that, if one

eye is not fully closed, eyes are not fully closed.

Table 5.7: Confusion matrices (one eye not fully closed, eyes not fully closed) for the
pretrained models in manual search with CEW

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5813
5814
5810

4
3
7

Positive:
both eyes

closed

35
37
31

6
4
10

(a) LinkNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5799
5805
5793

18
12
24

Positive:
both eyes

closed

5
13
5

36
28
36

(b) LinkNet ResNet18.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5792
5811
5817

25
6
0

Positive:
both eyes

closed

13
27
32

28
14
9

(c) UNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5797
5800
5806

20
17
11

Positive:
both eyes

closed

6
10
8

35
31
33

(d) UNet ResNet18.

Considers that, if at least one eye is not fully closed, eyes are not fully closed.

Source: Author.

The Table 5.8 shows the confusion matrices for the models obtained with the man-
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ual search of learning rate 0.0015 and regularization factor 0.005, if at least one eye is

fully closed, eyes are fully closed.

Table 5.8: Confusion matrices (one eye fully closed, eyes fully closed) for the pretrained
models in manual search with CEW

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5775
5778
5761

42
39
56

Positive: at
least 1 eye

closed

20
18
15

21
23
26

(a) LinkNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5779
5730
5707

107
87
110

Positive: at
least 1 eye

closed

2
5
2

39
36
39

(b) LinkNet ResNet18.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5704
5751
5782

113
66
35

Positive: at
least 1 eye

closed

3
8
20

38
33
21

(c) UNet MobileNetV2.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5722
5712
5741

95
105
76

Positive: at
least 1 eye

closed

3
3
2

38
38
39

(d) UNet ResNet18.

Considers that, if at least one eye is fully closed, eyes are fully closed.

Source: Author.

The Figure 5.15 shows the maximal area histogram for the test set for the pre-

trained models in manual search with CEW dataset for the best execution in terms of

Dice score value.
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Figure 5.15: Maximal area histogram – pretraining (CelebAMask-HQ and CEW)

(a) LinkNet MobileNetV2 – execution 2. (b) LinkNet MobileNetV2 – execution 2.

(c) LinkNet ResNet18 – execution 2. (d) LinkNet ResNet18 – execution 2.

(e) UNet MobileNetV2 – execution 3. (f) UNet MobileNetV2 – execution 3.

(g) UNet ResNet18 – execution 1. (h) UNet ResNet18 – execution 1.

Left: Complete test set. Right: Closed eyes test set (subtest of CelebAMask-HQ).

Source: Author.
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The Table D.4 displays the results for the experiments with CelebAMask-HQ and

CEW for the pretraining. Again, the best model in terms of Dice Score for the whole test

set was an UNet MobileNetV2 0.8894, followed by LinkNet ResNet18 (0.8855). This

UNet MobileNetV2 model was then chosen to be fine-tuned. It is interesting to point out

that even if the performance of this model in terms of Dice metric was a little inferior to

the one with only CelebAMask-HQ, it would still make sense to choose this model for

training, with both datasets, as it has been trained in more diverse data.

5.5 Training

The Figure 5.16 shows the Dice coefficient score and Loss function for the best

UNet MobileNetV2 model in terms of Dice coefficient score, that was obtained in the

second execution. As expected, the Dice value is high since the first epoch. The best

value was obtained at the epoch 18. The validation loss shows a decreasing behavior with

some oscillations.

Figure 5.16: Dice coefficient score and Loss for the best UNet MobileNetV2 model

(a) Dice coefficient score – training. (b) Loss function – training.

Source: Author.

The Table 5.9 shows the confusion matrices for the UNet MobileNetV2 trained in

CelebAMask-HQ and CEW, while the Figure 5.17 shows the Maximal area histogram for

the best UNet MobileNetV2 trained model.
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Table 5.9: Confusion matrices for the trained UNet MobileNetV2 models

Predicted label

Negative Positive

True
label

Negative: at
least 1 eye
not closed

5815
5806
5811

2
11
6

Positive:
both eyes

closed

30
13
25

11
28
16

(a) Considers that, if at least one eye is not fully
closed, eyes are not fully closed.

Predicted label

Negative Positive

True
label

Negative:
both eyes

open

5790
5767
5778

27
50
39

Positive: at
least 1 eye
not closed

16
5
10

25
36
31

(b) Considers that, if at least one eye is fully
closed, eyes are fully closed.

Source: Author.

Figure 5.17: Maximal area histogram for the trained models

(a) UNet MobileNetV2: test set – execution
2.

(b) UNet MobileNetV2: closed eyes test –
execution 2.

Source: Author.

The Figure 5.18 shows some examples of predicted mask for open eyes. In Figure

5.18a, the annotator selected more than the palpebral fissure, with some part of the eyelid

marked. It is interesting to observe that the model did not segment the eyelid, but only the

palpebral fissure. In the case of Figure 5.18c, the annotator did not include the corner of

the eye, but the model did, completing the palpebral fissure. Figure 5.18b shows a case

where both the ground truth and the prediction consider the complete palpebral fissure,

regardless of partial hair occlusion. Figure 5.18d exemplifies a prediction for someone

using glasses.

Figure 5.19a shows another prediction for someone using glasses. In this case, it is

interesting to observe that the prediction of the width of both palpebral fissures was greater

than the ground truths, but for the heights it was the contrary. Figure 5.19b shows a case

where the ground truth considered the complete palpebral fissure, regardless of partial
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hair occlusion, but the prediction did not. In Figure 5.19c, the prediction segmentation

mask also displays a problem in the segmentation of the right eye. In Figure 5.19d, there

is a partial occlusion of the periocular region and the face, and the person is looking down,

but the model did not predict any pixel as corresponding to the palpebral fissures.

The Figure 5.20 shows some examples of problematic predicted masks for closed

eyes, where eyes were annotated as closed, but the model returned non-empty masks. In

Figure 5.20a, the singer’s makeup seems to have misled the model. One can observe,

however, that the faulty segmentation has a small "interocular distance" and one compo-

nent is rather small. Furthermore, the angle between the components and the horizontal

is a great indication that a flawed segmentation took place. In Figure 5.20b, only one

component was predicted in the eye region. In Figure 5.20c and Figure 5.20d, the eyes

were annotated as closed, but the model predicted mask in the eyes’ region. In the second

case, it is a situation that is typically difficult even for humans to indicate the state of the

eyes, as the person is squinting them.
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Figure 5.18: Examples of predicted masks for open eyes

(a) 19987. (b) 02803.

(c) 16858. (d) 24016.

Source: Author.
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Figure 5.19: Examples of predicted masks for open eyes (continuation)

(a) 29652. (b) 17946.

(c) 10114. (d) 04620.

Source: Author.
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Figure 5.20: Examples of problematic predicted masks for closed eyes

(a) 06564. (b) 09545.

(c) 13200. (d) 21517.

Source: Author.
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5.6 Model discussions

Table D.5 shows the result for the test set (and open eyes test set) for the trained

models. As it can be seen, fine-tuning the UNet MobileNetV2 model has increased the

Dice Score coefficient to a maximum of 0.8939 for the test set (and 0.8952 if only images

with open eyes are considered).

The value is inferior to 0.90, but it should be noted that CelebAMask-HQ eyes

cover significant less of the image compared to Zheng et al. (2022a) and Brummen et al.

(2021).

Brummen et al. (2021) used a much smaller dataset, but contemplated higher res-

olution images focused on the periorbital region only. A limitation of the present study

is that it did not consider dysmorphologies of the periorbital region, some of which were

considered by Brummen et al. (2021). Their model is also more complex, as it uses a

ResNet50 backbone. Table 5.10 provides a comparison between the ResNet50 and Mo-

bileNetV2 models.

Table 5.10: ResNet50 and MobileNetV2 Keras Applications deep learning pretrained
models.

Model Size
(MB)

Top-1
Accuracy

Top-5
Accuracy Parameters

Time (ms)
per inference
step (CPU)

Time (ms)
per inference
step (GPU)

ResNet50 98 74.9% 92.1% 25.6M 58.2 4.6
MobileNetV2 14 71.3% 90.1% 3.5M 25.9 3.8

Source: Keras (2022)
The top-1/5 accuracy refers to the model’s performance on the ImageNet validation dataset.

Time per inference step is the average of 30 batches (batch size: 32) and 10 repetitions.

CPU: AMD EPYC Processor (with IBPB) (92 core), RAM: 1.7T, GPU: Tesla A100

The developed model can serve as a basis for aiding the generation of palpebral

fissure datasets by providing pre-annotation. The trained UNet and LinkNet models are

able to process images of any size, as long as the input shape (width and height) are

divisible by 32.

The use of GPU makes the model application in low-cost/standard computers dif-

ficult. For computers used for gaming and graphics works, GPUs are more common and

these are examples of a task where the subjects can be focused for extended periods of

time. A GPU powered computer could also be used only to process videos taken from the

subject.

https://keras.io/api/applications/resnet/#resnet50-function
https://keras.io/api/applications/mobilenet/#mobilenetv2-function
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6 CONCLUSION

The segmentation of palpebral fissures images through deep learning models on

images where the eyes correspond to a small portion of the image was discussed. Images

and segmentation masks generated based on the CelebAMask-HQ dataset were used for

training, validation, and testing of deep learning based intelligent models. Characteristics

of this dataset were discussed, and some erroneous base segmentations were identified

(listed in the appendices E and F). Closed eyes images of the Closed Eyes in the Wild

images were also used to investigate reducing the imbalance of the base dataset.

A review on physiological characteristics of the palpebral fissure was performed,

which would allow, for example, the elaboration of techniques for automatic detection

of failure in the segmentation process. The review on spontaneous blink characteristics

guides the use of the proposed models for the detection of incomplete blinks.

Potential uses of these models have been discussed mainly in the context of blink

completeness assessment, which could be a useful tool for CSV diagnosis (and with some

developments, possibly a predictive action). Finally, this work also aims to raise aware-

ness regarding computer vision syndrome.

The performance of the best model in terms of segmentation dice metric was sim-

ilar to state-of-art works with a much smaller number of samples, but that contemplated

higher resolution images focused on the periorbital region only. A limitation of the present

study is that it did not consider dysmorphologies of the periorbital region.

The models presented, as developed, cannot be used directly in real time, prevent-

ing their use in the context of computer vision syndrome prevention. They can, however,

be used as an aid in diagnosis from previously recorded videos of the user, this approach

being especially interesting as this is a non-invasive approach and can be replicated under

normal conditions of use.

The use of the appearance of the palpebral fissure obtained through the segmen-

tation of palpebral fissures by intelligent models has the advantage of not requiring mor-

phological operations of erosion and dilation to obtain the segmented image. Also, in

relation to the use of the eye aspect ratio (EAR) metric (Soukupová, 2016), commonly

used to monitor blinking and fatigue, the palpebral fissure aspect ratio has the advantage

of having a value of 0 when the eyes are closed. This avoids the need for empirical or

algorithmically determined determination of the threshold value, which varies by individ-

ual, to identify a complete blink. The determination of incomplete blinks, as in the case

https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html
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of EAR, still requires additional heuristics, such as temporal verification of the variation

in the appearance of the palpebral fissure. Besides the fact that it is a robust metric, EAR

is easy to compute and can be determined in real time. It is also invariant under in-plane

rotations, which the presented version of the palpebral fissure aspect ratio is not. It is pos-

sible to add detection of the angle between the palpebral fissures to compensate for this

effect, but this type of rotation is uncommon in the CelebAMask-HQ dataset as well as

in computer use. Both metrics, EAR and palpebral fissure aspect ratio, lose their ability

to discern eye status in the case of out-of-plane rotations. It was shown that for small

horizontal rotations (about 10◦), typical in front of a computer, this is not a problem. For

moderate rotations, such as when using a second screen, estimating the position of the

face allows the metric to be corrected, compensating for this effect.

Application of the segmentation model on video datasets such as Eyeblink8 can be

performed to ascertain the model’s ability to allow the detection of complete and incom-

plete blinks, and its performance can be compared with Fogelton, 2018. The reduction of

the inference time of the models can also be investigated, as it would allow its use with

CSV prevention character. Several approaches are possible, from reducing the size of the

images (resizing or cropping to contain only the face or even the periorbital region), to

reducing the complexity of the models. This can be done, for example, with a ResNet

model with fewer layers, simply, or via pruning strategies.

The evolution of authentication techniques can benefit from the use of these mod-

els for the detection of the palpebral fissure region when the iris is not easily recognized.

The extraction of the palpebral fissure and the determination of complete and incomplete

blinks may also prove to be a useful mechanism for the detection of videos with manipu-

lation of the face region (fake faces).

6.1 Future work

6.1.1 Dataset generation

Re-annotated the whole dataset by one annotator could be done to eliminate small

inconsistencies (like an annotation bigger than the palpebral fissure) and fixing the masks

with problems. This could lead to an improvement in the performance of the models, but

the task would be time-consuming, especially for the first part (checking 30000 pairs of

images of masks to ensure consistency in annotation).
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Instead, problematic images and mask identified were discarded, as they repre-

sented only a small part of the dataset. Given the size of the dataset, the best models were

able to not capture the small inconsistencies in data, given in general a good representation

of the palpebral fissure when this was visible in the image.

The original images and segmentation masks were resized to 224 using resize of

OpenCV with bilinear interpolation (INTER_LINEAR). Downscaling samples help in

managing RAM and compute limitations, allowing mini-batch learnings and speeding up

the training and inference times, but the resizing process may impact the performance of

models as well. Talebi and Milanfar (2021) have shown that learned resizers can substan-

tially improve performance of computer vision tasks.

Eyeblink8 annotations don’t consider the whole face, as many times the forehead

is missing. CelebAMask-HQ images, in contrast, contain many "complete" faces, with

even hair and some surrounding features. The information of background can to be "dis-

tracting" to the model. A face detection algorithm (for example face detection using Haar

Feature-based Cascade Classier) could be applied on CelebAMask-HQ original images,

so the model can focus on the eyes in the face. This could have been an alternative to the

pure resize approach when preprocessing the dataset. However, most likely, some faces

would have to be manually cropped, specially with non-frontal faces.

Another strategy would be to rescale images to another sizes, like 256 x 256,

and cropping random 224 x 224 patches, as done in Krizhevsky, Sutskever and Hinton

(2012). This would have an artificial zooming effect, as bigger palpebral fissures would

be available to the model.

Detection of faces with occlusion is one of the remaining challenges in the field of

computer vision Alashbi (2021). Occlusion of part of the faces (excluding or including the

eye region), that may be distracting for a landmark detector as pointed out by Soukupová

and Cech (2016a), can be used as additional data augmentation to further improve the

models. Part of face can be occluded by masks, as it was common during COVID-19

pandemic, garments, clothes, and accessories (hat, veil, hijab, niqab, ... ). Hands are,

by nature, one of the most frequent elements among occluders and, in some cases, they

temporally cover one eye.

One limitation is that CelebAMask-HQ does not contain many dysmorphologies

of the eye and periorbital region. This is also true for Closed Eyes in the Wild and thus

this is may limit the use of the models for these cases.

https://docs.opencv.org/4.7.0/da/d54/group__imgproc__transform.html#ga47a974309e9102f5f08231edc7e7529d
https://docs.opencv.org/4.7.0/da/d54/group__imgproc__transform.html#ga5bb5a1fea74ea38e1a5445ca803ff121
https://www.blinkingmatters.com/research
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html
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6.1.2 Reducing inference time and complexity

Resizing the images to a smaller size is a way of reducing the training and infer-

ence time of the models. Computational complexity can be reduced by regionalizing the

detection area, keeping only the face without hair and surroundings. Based in Hashemi

(2019), zero-padding around smaller images, as opposed to interpolation, could be used

to keep a fixed size before composing the batches that are used to training CNN.

Another approach would be to keep only the periocular region. This is an interest-

ing option, as information like the distance between the eyes, which can be used to give

a rough estimation of the user distance to the screen, is still available. However, in some

context, the forehead and mouth may be helpful to judge the state of the eyes and if the

frames are part of the blink.

Cropping the images of the eyes only can block an interesting application that is

to use the distance between the centroids of the palpebral fissures to roughly estimate the

distance of the user to the screen, which is an important factor in CVS.

Simpler architectures and backbones are also one possibility. For example, a

ResNet10 backbone could be tested. Other improvements can be made using pruning,

which is the gradual elimination of neurons and connections or layers (following some

heuristic) until the attainment of a simpler yet adequately performing model, and quan-

tization. The quantized models use lower-precision (e.g. 8-bit instead of 32-bit float),

which brings improvements via model compression and latency reduction. Converting

the models to the Open Neural Network Exchange (ONNX) format is also an option.

According to Rath (2021), some versions of the OpenCV DNN module may present a

better inference speed than TensorFlow, especially on Intel processors when running on

the CPU instead of a GPU.

Liu et al. (2021) have proposed an eye state detection based on weight binarization

CNN and Transfer Learning. The use of the binary network reduce the storage space and

speeds up the computation. An average accuracy of 97.41% on CEW, comparable to

state-of-art methods, was obtained by this approach that is faster than non-binary network

counterparts.
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6.1.3 Not real-time, the use of ensembles and Test Time Augmentation (TTA)

If the system is used for performing blink analysis studies or assisting in the diag-

nosis of CVS during normal use of the device, a real-time system is not strictly necessary.

Videos of the user can be taken under actual usage conditions, and these can be later an-

alyzed. The detection of the presence of incomplete blinking could be done at this point.

This is especially useful for monitoring the individual for longer periods to avoid having

the awareness of the measurement interfere with blink behavior.

With this hypothesis, the performance of the system can be improved by using for

example an ensemble of distinct neural networks, intelligent models, and other algorithms

and/or using Test Time Augmentation. Krizhevsky, Sutskever and Hinton (2012) used a

Test Time Augmentation (TTA) approach when testing their model in the 2010 version of

ILSVRC, applying translations to images of the test set to improve the results.

No matter how well the model performs and how well its hyperparameters are

fine-tuned, there can be stagnation in its performance, and the combination of models and

algorithms can (at a higher computational cost) deliver better results than an individual

model, assuming uncorrelated errors. This is the idea of meta-classifiers (ensembles).

A majority voting system can be assigned to decide the value of each pixel in the seg-

mentation mask, or different weights can be assigned to each model, if all solutions are

segmentations models.

6.1.4 Distillation

Further enhancements to the model and dataset (by adding more data augmenta-

tions transformations and images with both eyes closed or only one open) may enable its

utilization in a distillation fashion (HINTON; VINYALS; DEAN, 2015): another simpler

and with less latency model is trained to emulate the output of the more complex model

(or ensemble of models, as in Bucila, Caruana and Niculescu-Mizil (2006)) instead of a

pre-defined ground truth. This way, larger unlabeled datasets could be used, reducing the

risk of overfitting as more diverse data is available. This is specially interesting because

there are many datasets with a significant number of faces available (Liu et al. (2015), for

example, has 202599 faces and 10177 identities, and others can be found in Gross (2005)

and websites like <https://face-rec.org/databases/>), but this is not the case for segmenta-

tions of the eyes regions. Another model could be used to detect if there are eyes visible

https://face-rec.org/databases/
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in the images, to further improve robustness.

Datasets like Bae et al. (2023) may be an interesting option to be investigated,

as the pipeline of this synthetic dataset for face recognition have allowed controlling the

distribution of the data to ensure a fair dataset, by addressing ethical issues (many datasets

were collected without explicit consent) and data bias (celebrity faces images often are

taken with strong lighting and make-up, also having imbalanced racial distribution). Gou

et al. (2017) eye localization results were improved when a combination of real data and

synthetic data was used.

6.1.5 Palpebral fissure aspect ratio determination alternatives

Manually annotated eye corners are available at Eyeblink8 and could be used in-

stead of determining the width of the palpebral fissure. This would make the difference

between the palpebral fissure aspect ratio of an open eye and a closed one more distinct.

When not disposing of manually annotations, automatically localized eye corners

could be used, that may also serve another techniques in a metaclassifier approach. The

detection of eye landmarks can be performed fast by face alignment. For images of Helen

Facial Feature Dataset (LE et al., 2012), the landmark estimate can be done as fast as

about one millisecond per image, according to Kazemi and Sullivan (2014).

6.1.6 On the use of batch normalizartion

Lozej et al. (2018), while working with semantic segmentation of the iris, found

that the U-Net models of several depths not using batch normalization have performed

slightly better than their counterparts. This could be an interesting point to be explored.

However, it should be noted that the study have used only 200 samples correspond-

ing to 107 distinct subjects for training and testing (160 and 40 samples, respectively).

The batch size was not specified, but it is possible that it did not represent well statis-

tics of the actual dataset. Lange, Helfrich and Ye (2022) and Kolarik, Burget and Riha

(2020) also indicate that batch normalization works best using large batch size during

training. As the state-of-the-art segmentation convolutional neural network architectures

may use considerable amounts of memory, large batch size is often impossible to achieve

on current hardware.

http://www.ifp.illinois.edu/~vuongle2/helen/
http://www.ifp.illinois.edu/~vuongle2/helen/
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In a blog post Leo (2022), while working with a deep learning eye tracking appli-

cation, stated that updating batch normalization at inference time could further improve

its results. This would be specially interesting as it may represent a form of calibration of

the segmentation model to a new user as the frames are presented to the model.

Test-time batch-normalization and adaptation of batch-norm statistics were stud-

ied in Yang et al. (2022b) and Hu et al. (2021) and are a recent topic. Variations of the

batch normalization layer were also studied recently (LANGE; HELFRICH; YE, 2022).

6.1.7 Hyperparameters optimization

Searching in a low-dimensional space is usually done with grid search, which

is less practical in high-dimensional spaces. Because the importance of each parameter

was not known a priori, random search was chosen to explore the hyperparameter space.

Furthermore, random sampling helps find good candidates faster (or, as it was shown,

shows that the candidates already chosen had a reasonable performance with pretraining)

and has helped to show a performance trend between the different topologies and models.

More sophisticated choices for hyperparameter tuning are also available, with ex-

amples being Bayesian Optimization and Hyperband, a speed-up variation of random

search with adaptive resource allocation and early-stopping (LI et al., 2018).

6.1.8 Pretraining

Yang et al. (2022a) have demonstrated that face obfuscation has minimal impact

on the accuracy of recognition models for many tasks and, in special, that in many cases,

features learned on obfuscated images are equally transferable. Using a dataset with face

obfuscation for pretraining would still be useful, as the model would still achieve faster

and better convergence by knowing simple shapes and even human-like palpebral fissures.

This is, however, out of the scope of this research in the current stage.

6.1.9 Training

Other Cost functions (or combinations of loss functions) could be used during

training. One example is focal loss, with a gamma value different of zero. An additional
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loss function penalizing the misclassification of closed images could be useful to further

improve the models’ ability to detect a fully closed eye.

6.1.10 Implementing an alert system based on palpebral fissure

Correctly considering non-blinks enhance system performance of blink detection

for preventing or diagnosing CSV, as noted by Pal et al. (2014), that have also pointed

out that it is less detrimental to detect CVS when it is absent than to no identify when it

actually occurs. This point should guide decision of developers and system designers.

If the person is constantly looking down, the effects of the drying of the ocular

surface may be reduced (TSUBOTA; NAKAMORI, 1993), partially reducing the effects

of computer syndrome vision. Based on this, a system designer developing an application

that alerts the user in case of a low count of blinks may consider that it is better to reckon

this situation as an incomplete blink, if this gives a better performance in general, to make

the system less intrusive.

Szczesna-Iskander and Quintana (2020) found that when a patient’s blink is forced

(unnaturally prolonged), noninvasive tear-film breakup time is statistically and clinically

significantly shorter than that observed for close-to-natural blinking conditions. Accord-

ing to the authors, forced blinks seem to induce more abrupt tear-film destabilization than

close-to-natural blinks, so precise instructions should be given to the subjects regarding

the blink type because it substantially impacts the assessment of tear-film stability mea-

surements and surface quality.

Szczesna-Iskander and Quintana (2020) research indicates that an application that

alerts the user to blink may benefit of instructing the user to perform short blinks, instead

of relying on a "compensation strategy" of long blinks that are not so effective.

Kim et al. (2021) indicates that there are effective trainings for increasing the

efficacy of the blink. Once the presence of incomplete blinks is detected, a professional

ophthalmologist may indicate these trainings.
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APPENDIX A — EAR AND DLIB MODEL PERFORMANCE IN IMAGES AS

FUNCTION OF IMAGE QUALITY

Ye et al. (2022) have analyzed the effects of image quality on the accuracy of hu-

man pose estimation and detection of eyelid opening/closing using Openpose and DLib.

Concerning pretrained Dlib v19.24.0 models for facial landmark position, the rate of

model failure remained acceptable at an image resolution of 60 x 60 pixels, a color depth

of 343 colors, a light intensity of 14 lux, and a Gaussian noise level of 4% (i.e., 4% of

pixels replaced by Gaussian noise).

The Figure A.1 and the Figure A.2 show EAR and model performance as a func-

tion of image quality using 100 images randomly selected each of the Closed Eyes in the

Wild (CEW) dataset (SONG et al., 2014), with closed eyes and open eyes, respectively.

http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html
http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html
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Figure A.1: EAR and model performance as a function of image quality using 100 images
with closed eyes of the Closed Eyes in the Wild Dataset

EAR and model performance in the closed-eyes dataset as a function of image quality using the

CEW Dataset (SONG et al., 2014). Panels (A) to (C) show the EAR estimates as a function of

image resolution, color depth, and gaussian noise, respectively. Panels (D) to (F) show the

percentage of missing values where the model failed to identify the face and/or both eyes as a

function of image resolution, color depth, and gaussian noise, respectively. Inserts show images

at different quality levels with overlaying model prediction. Data points ± error represent mean

value ± standard error of the mean (SEM). Statistical significance levels were for one-way

ANOVA with multiple comparisons using images of the best quality as the comparator. *:

P < 0.05, **: P < 0.01; ***: P < 0.001; ***: P < 0.0001.

Source: Ye et al. (2022).
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Figure A.2: EAR and model performance as a function of image quality using 100 images
with open eyes of the Closed Eyes in the Wild Dataset

EAR and model performance in the open-eyes dataset as a function of image quality using the

CEW Dataset (SONG et al., 2014). Panels (A) to (C) show the EAR estimates as a function of

image resolution, color depth, and gaussian noise, respectively. Panels (D) to (F) show the

percentage of missing values where the model failed to identify the face and/or both eyes as a

function of image resolution, color depth, and gaussian noise, respectively. Inserts show images

at different quality levels with overlaying model prediction. Data points ± error represent mean

value ± standard error of the mean (SEM). Statistical significance levels were for one-way

ANOVA with multiple comparisons using images of the best quality as the comparator. *:

P < 0.05, **: P < 0.01; ***: P < 0.001; ***: P < 0.0001.

Source: Ye et al. (2022).

The Figure A.3 shows EAR and model performance as a function of image res-

olution and light intensity for 42 images captured using a smartphone camera (Moto E

XT2052-1, 13 MP, f/2.0, 1/3.1), with the height of the face occupying approximately

half of the image height. The light intensity at the level of the face was measured using a

smartphone light meter application (Lux Meter (Light Meter), accessed on 15 July 2022).

https://play.google.com/store/apps/details?id=com.tsang.alan.lightmeter&hl=en_CA&gl=US
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Figure A.3: EAR and model performance as a function of image resolution and light
intensity

EAR and model performance as a function of image resolution and light intensity. Panels (A) and

(B) show the EAR estimates as a function of image resolution in faces with eyes closed. Panels

(C) and (D) show the same in faces with eyes open. Panels (E) to (F) show the percentage of

missing values where the model failed to identify the face and/or both eyes as a function of image

resolution in faces with eyes closed. Panels (G) and (H) show the same in faces with eyes open.

Inserts show images at different quality levels with overlaying model prediction. Data points ±

error represent mean value ± standard error of the mean (SEM). Statistical significance levels

were for one-way ANOVA with multiple comparisons using images of the best quality as the

comparator. *: P < 0.05, **: P < 0.01; ***: P < 0.001; ***: P < 0.0001.

Source: Ye et al. (2022).

One interesting aspect is that the model positioning the landmarks seems to per-

form better with open eyes images, even with greater image quality, and even when only

one person is considered.
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APPENDIX B — EXAMPLES OF CONNECTED-COMPONENT ANALYSIS OF

IMAGES WITH BOTH EYES OPEN FOR THE GENERATED DATASET

The Figure B.1 shows the output of the connected-component analysis (CCA) and

contour detection for the sample 00030 of the generated dataset. The image, an overlay of

the image and the segmentation mask, and the segmentation mask are shown. The image

shows a typical case of the dataset, with a person with both eyes open, facing the camera

(frontal head pose). There is palpebral fissure asymmetry, as discussed in subsection 2.1

Palpebral fissure, blink and computer use, but the area of the palpebral fissure and the

ratio are relatively close.

Figure B.1: CCA of sample 00030

Source: Author.

The Figure B.2 and Figure B.3 show the output of the CCA and contour detection

for the samples 25986 and 14042, respectively, with moderate to strong out of the plane

rotation. Figure B.2 shows a person squinting one eye and in a moderate out of the plane

rotation (about approximately 20◦). The yaw angle provokes a reduction of the distance

of the centroids and of the width of palpebral fissure further from camera (increasing

the ratio). Figure B.3 shows a person with a strong non-frontal head rotations (about

approximately 60◦). Here, we have a ratio of the height to width of 1. As the palpebral

fissure aspect ratio was not defined in 3D, it loses discriminability in both cases. In the
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first situation, estimating the gaze direction may be a form to compensate for the rotation.

Figure B.2: CCA of sample 25986: person squinting one eye with head rotation

Source: Author.

Figure B.3: CCA of sample 14042: almost face profile

Source: Author.

The Figure B.4, Figure B.6, and Figure B.5 show the output of the CCA and con-

tour detection for the samples 06371 and 06874, respectively. These represent situations



128

that may be particularly hard even for humans to define the state of the eye, or if the frame

is part of a blink or not, without context. If the whole face is available, as in the proposed

approach, the facial expression that is given to the model may help. Using temporal infor-

mation about the opening and closing time for a blink event, as discussed in section 2.1.1

Eyeblink may also be useful in these situations.

Figure B.4: CCA of 06371: person squinting eyes with moderate head rotation

Source: Author.

Figure B.4 also shows a moderate horizontal out of the plane rotation (about ap-

proximately 30◦). The person appears to be singing, making a vivid facial expression with

a wide open mouth.

Figure B.5 shows a person smiling, and with the image resized or in lower res-

olution, it is difficult to judge the state of the eyes, probably even more with only the

periorbital region was available.
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Figure B.5: CCA of sample 13708: person squinting eyes

Source: Author.

Figure B.6: CCA of sample 06874: person looking downwards

Source: Author.

When the person has a downward gaze, as in Figure B.6, the palpebral fissure

height, area, and ratio are rather small, when the person face is parallel to the camera.

This situation can be confounded by a blink analysis system as an incomplete blink (or
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even a blink).

The Figure B.7 shows the output of the CCA and contour detection for the sample

08240 of the generated dataset sample. Pure in-plane rotation like in Figure B.7 are rare

in the CelebAMask-HQ dataset. The most common form of rotation is out of the plane

rotation.

Figure B.7: CCA of sample 08240: in-plane rotation (greater than 30◦)

Source: Author.

As in-plane rotation is not common in ordinary activity of a computer user, and

08240 eyes proportionally to the rest of the image are rather small compared to the rest of

the dataset, the image was considered an outlier and was discarded.

https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
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APPENDIX C — WIDTH (IN PIXELS) OF THE PALPEBRAL FISSURE

MULTIPLIED BY THE COSINE OF THE YAW ANGLE

Table C.1 shows the width (in pixels) of the palpebral fissure multiplied by the

cosine of the yaw angle θ . Cells in the unfilled background region indicate unaffected

values. The other regions indicate, starting in the region neighboring the unaffected one,

1 pixel difference (yellow), 2, 3, 4 and 5 or more pixels difference (shade of red, which

occupies the region containing the lower right), respectively. For small angles, inferior to

approximately 10◦, the width is not affected.

Table C.1 could also reflect the effects of out-of-plane rotations of the head in the

intraocular distance, if the value of the distance were rounded to an integer value. In this

case, the yellow region goes one line up, to the row of 7.5◦, for a width of 56 pixels. It

should be noted, however, that for larger measures of length, the error of one or two pixels

is less significant than it is for the palpebral fissure width. This is shown in Table C.2.

Even though Table C.1 and Table C.2 indicate yaw angles of 0◦ to 60◦, observe

that Occupational Safety and Health Administration (n.d.) indicates that monitors should

not be farther than 35◦ degrees to the left or right. Also, it recommends that the center

of the computer monitor should normally be located between 15% and 20% below the

horizontal eye level and that the entire visual area of the display screen should be located

in a manner that ensures that the downward viewing angle is never greater than 60◦.
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Table C.1: Width (in pixels) of the palpebral fissure multiplied by the cosine of the yaw angle θ

Width
(pixels) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

θ( ◦) cosθ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
2.5 0.999 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
5 0.996 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

7.5 0.991 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
10 0.985 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 32 33 34 35 36 37 38 39 40 41 42 43 44

12.5 0.976 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
15 0.966 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 43

17.5 0.954 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43
20 0.94 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 39 40 41 42

22.5 0.924 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19 20 21 22 23 24 25 26 27 28 29 30 30 31 32 33 34 35 36 37 38 39 40 41 42
25 0.906 2 3 4 5 5 6 7 8 9 10 11 12 13 14 14 15 16 17 18 19 20 21 22 23 24 24 25 26 27 28 29 30 31 32 33 34 34 35 36 37 38 39 40 41

27.5 0.887 2 3 4 4 5 6 7 8 9 10 11 12 12 13 14 15 16 17 18 19 20 20 21 22 23 24 25 26 27 27 28 29 30 31 32 33 34 35 35 36 37 38 39 40
30 0.866 2 3 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 23 24 25 26 27 28 29 29 30 31 32 33 34 35 36 36 37 38 39

32.5 0.843 2 3 3 4 5 6 7 8 8 9 10 11 12 13 13 14 15 16 17 18 19 19 20 21 22 23 24 24 25 26 27 28 29 30 30 31 32 33 34 35 35 36 37 38
35 0.819 2 2 3 4 5 6 7 7 8 9 10 11 11 12 13 14 15 16 16 17 18 19 20 20 21 22 23 24 25 25 26 27 28 29 29 30 31 32 33 34 34 35 36 37

37.5 0.793 2 2 3 4 5 6 6 7 8 9 10 10 11 12 13 13 14 15 16 17 17 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 31 32 33 33 34 35 36
40 0.766 2 2 3 4 5 5 6 7 8 8 9 10 11 11 12 13 14 15 15 16 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 28 29 30 31 31 32 33 34 34

42.5 0.737 1 2 3 4 4 5 6 7 7 8 9 10 10 11 12 13 13 14 15 15 16 17 18 18 19 20 21 21 22 23 24 24 25 26 27 27 28 29 29 30 31 32 32 33
45 0.707 1 2 3 4 4 5 6 6 7 8 8 9 10 11 11 12 13 13 14 15 16 16 17 18 18 19 20 21 21 22 23 23 24 25 25 26 27 28 28 29 30 30 31 32

47.5 0.676 1 2 3 3 4 5 5 6 7 7 8 9 9 10 11 11 12 13 14 14 15 16 16 17 18 18 19 20 20 21 22 22 23 24 24 25 26 26 27 28 28 29 30 30
50 0.643 1 2 3 3 4 5 5 6 6 7 8 8 9 10 10 11 12 12 13 14 14 15 15 16 17 17 18 19 19 20 21 21 22 23 23 24 24 25 26 26 27 28 28 29

52.5 0.609 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 16 17 18 18 19 19 20 21 21 22 23 23 24 24 25 26 26 27 27
55 0.574 1 2 2 3 3 4 5 5 6 6 7 7 8 9 9 10 10 11 11 12 13 13 14 14 15 15 16 17 17 18 18 19 20 20 21 21 22 22 23 24 24 25 25 26

57.5 0.537 1 2 2 3 3 4 4 5 5 6 6 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 16 16 17 17 18 18 19 19 20 20 21 21 22 23 23 24 24
60 0.5 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23

Cells in the unfilled background region indicate unaffected values. The other regions indicate, starting in the region neighboring the unaffected one, 1 pixel
difference (yellow), 2, 3, 4 and 5 or more pixels difference, respectively. For small angles, inferior to approximately 10◦, the width is not affected.

Source: Author.
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Table C.2: Percentage error of width (in pixels) of the palpebral fissure multiplied by the cosine of the yaw angle θ compared to original witdh
Width
(pixels) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

θ( ◦) cosθ

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.5 0.999 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0.996 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7.5 0.991 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0.985 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 2 2 2 2 2

12.5 0.976 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2
15 0.966 0 0 0 0 0 0 0 0 0 0 0 0 0 7 6 6 6 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 4

17.5 0.954 0 0 0 0 0 0 0 0 0 9 8 8 7 7 6 6 6 5 5 5 5 4 4 4 4 4 4 3 3 3 3 6 6 6 6 5 5 5 5 5 5 5 5 4
20 0.94 0 0 0 0 0 0 0 11 10 9 8 8 7 7 6 6 6 5 5 5 5 4 4 4 8 7 7 7 7 6 6 6 6 6 6 5 5 5 5 5 7 7 7 7

22.5 0.924 0 0 0 0 0 14 13 11 10 9 8 8 7 7 6 6 6 5 10 10 9 9 8 8 8 7 7 7 7 6 6 9 9 9 8 8 8 8 8 7 7 7 7 7
25 0.906 0 0 0 0 17 14 13 11 10 9 8 8 7 7 13 12 11 11 10 10 9 9 8 8 8 11 11 10 10 10 9 9 9 9 8 8 11 10 10 10 10 9 9 9

27.5 0.887 0 0 0 20 17 14 13 11 10 9 8 8 14 13 13 12 11 11 10 10 9 13 13 12 12 11 11 10 10 13 13 12 12 11 11 11 11 10 13 12 12 12 11 11
30 0.866 0 0 25 20 17 14 13 11 10 9 17 15 14 13 13 12 11 16 15 14 14 13 13 12 12 15 14 14 13 13 13 12 15 14 14 14 13 13 13 12 14 14 14 13

32.5 0.843 0 0 25 20 17 14 13 11 20 18 17 15 14 13 19 18 17 16 15 14 14 17 17 16 15 15 14 17 17 16 16 15 15 14 17 16 16 15 15 15 17 16 16 16
35 0.819 0 33 25 20 17 14 13 22 20 18 17 15 21 20 19 18 17 16 20 19 18 17 17 20 19 19 18 17 17 19 19 18 18 17 19 19 18 18 18 17 19 19 18 18

37.5 0.793 0 33 25 20 17 14 25 22 20 18 17 23 21 20 19 24 22 21 20 19 23 22 21 20 19 22 21 21 20 19 22 21 21 20 19 22 21 21 20 20 21 21 20 20
40 0.766 0 33 25 20 17 29 25 22 20 27 25 23 21 27 25 24 22 21 25 24 23 22 25 24 23 22 25 24 23 23 22 24 24 23 22 24 24 23 23 24 24 23 23 24

42.5 0.737 50 33 25 20 33 29 25 22 30 27 25 23 29 27 25 24 28 26 25 29 27 26 25 28 27 26 25 28 27 26 25 27 26 26 25 27 26 26 28 27 26 26 27 27
45 0.707 50 33 25 20 33 29 25 33 30 27 33 31 29 27 31 29 28 32 30 29 27 30 29 28 31 30 29 28 30 29 28 30 29 29 31 30 29 28 30 29 29 30 30 29

47.5 0.676 50 33 25 40 33 29 38 33 30 36 33 31 36 33 31 35 33 32 30 33 32 30 33 32 31 33 32 31 33 32 31 33 32 31 33 32 32 33 33 32 33 33 32 33
50 0.643 50 33 25 40 33 29 38 33 40 36 33 38 36 33 38 35 33 37 35 33 36 35 38 36 35 37 36 34 37 35 34 36 35 34 36 35 37 36 35 37 36 35 36 36

52.5 0.609 50 33 50 40 33 43 38 44 40 36 42 38 36 40 38 41 39 37 40 38 41 39 38 40 38 41 39 38 40 39 41 39 38 40 39 38 39 38 40 39 38 40 39 40
55 0.574 50 33 50 40 50 43 38 44 40 45 42 46 43 40 44 41 44 42 45 43 41 43 42 44 42 44 43 41 43 42 44 42 41 43 42 43 42 44 43 41 43 42 43 42

57.5 0.537 50 33 50 40 50 43 50 44 50 45 50 46 43 47 44 47 44 47 45 48 45 48 46 48 46 48 46 45 47 45 47 45 47 46 47 46 47 46 48 46 45 47 45 47
60 0.5 50 33 50 40 50 43 50 44 50 45 50 46 50 47 50 47 50 47 50 48 50 48 50 48 50 48 50 48 50 48 50 48 50 49 50 49 50 49 50 49 50 49 50 49

Cells in the unfilled background region indicate unaffected values. indicate percentage values inferior to 2.5%; , between 2.5% and 5%; , between 5% and
7.5%; , between 7.5% and 10%; , between 10% and 25%; , greater than 25%. For small angles, inferior to approximately 10◦, the width is not affected.

Source: Author.
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The Figure C.1 shows some examples of head pose variation in the CAS-PEAL

database. The vertical head out of the plane rotations (pitch angle) variations are ±30◦

and 0◦ and the horizontal ones (yaw angle) are ±67◦, ±45◦, 22◦ and 0◦.

Figure C.1: Sample head pose images in the CAS-PEAL database

Source: image from Kim et al. (2017); CAS-PEAL database (GAO et al., 2007) samples.

The Figure C.2 shows some sample head pose images of the Pointing’04 database.

In then, the pitch variations are from −60◦ to 60◦, with two extreme poses, at ±90◦. The

yaw variations are from −90◦ to 90◦.

Figure C.2: Sample head pose images of the Pointing’04 database

Source: image from Kim et al. (2017); Pointing’04 database (GOURIER, 2004) samples.

Figure C.1 and Figure C.2 (the reader is referred to the online high resolution ver-

https://www.sciencedirect.com/science/article/pii/S0262885616301858#f0055
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sion of the image available in Kim et al. (2017)) also suggest that, for a pitch angle close

to 0◦, the height of the palpebral fissure is unchanged to yaw angles up to close to 45◦.

The width of the eye further from camera reduces, making the ratio height/width to in-

crease. Even if detecting complete blinks may not suffer loss in performance for a perfect

model (as the predicted segmentation mask would be empty), detecting incomplete blinks

would require some actions: only the greatest palpebral fissure to be considered, other

features other than the palpebral fissure ratio to be used, the gaze angle to be estimated

are some examples.

https://www.sciencedirect.com/science/article/pii/S0262885616301858#f0055
https://www.sciencedirect.com/science/article/pii/S0262885616301858#f0055
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APPENDIX D — TABLES OF RESULTS OF EXPERIMENTS

All models were trained and evaluated in 2 CPUs Intel Xeon and GPU. The CPU

usable memory is 12 GB. In almost all experiments covered here, the GPU Model is the

Tesla T4. One experiment test is shown with GPU V100-SXM2-16GB, only to inform

the inference time impact when changing the GPU.

The Table D.1 displays the results for the experiments with CelebAMask-HQ

dataset, in descending order for the Dice score. The Table D.2 summarizes metrics values,

while the Table D.3 displays the inference time experiments results.

The Table D.4 displays the results for the experiments with CelebAMask-HQ and

CEW for pretraining.

The Table D.5 shows the result for the test set (and open eyes test set) for the

trained models.
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Table D.1: Results of metrics for pretraining with CelebAMask-HQ dataset only

Experiment
Type Model Backbone LR

L2
λ

Loss
Value

Dice
Score

IoU
Score

Open
Eyes
Loss
value

Open
Eyes
Dice
Score

Open
Eyes
IoU
Score

Best
Epoch Objective

Manual 1 UNet MobileNetV2 0.0015 0.005 0.1214 0.8885 0.808 0.1152 0.8946 0.8134 5 bce_dice_loss
Manual 1 LinkNet ResNet18 0.0015 0.005 0.1212 0.8878 0.8065 0.115 0.8927 0.8108 5 bce_dice_loss
Manual 3 UNet MobileNetV2 0.0015 0.005 0.1204 0.8877 0.8073 0.1141 0.8935 0.8124 9 bce_dice_loss
Manual 3 LinkNet ResNet18 0.0015 0.005 0.1234 0.8861 0.8042 0.1172 0.8911 0.8086 5 bce_dice_loss
Manual 2 UNet MobileNetV2 0.0015 0.005 0.1247 0.8858 0.8045 0.1185 0.891 0.8091 5 bce_dice_loss
Manual 1 UNet ResNet18 0.0015 0.005 0.1235 0.8852 0.8028 0.1173 0.8909 0.808 5 bce_dice_loss
Manual 2 UNet ResNet18 0.0015 0.005 0.1249 0.8838 0.8008 0.1187 0.8898 0.8062 5 bce_dice_loss
Manual 2 LinkNet ResNet18 0.0015 0.005 0.1263 0.8832 0.7993 0.1201 0.8888 0.8043 5 bce_dice_loss
Manual 3 UNet ResNet18 0.0015 0.005 0.1262 0.8828 0.7996 0.1201 0.8883 0.8044 5 bce_dice_loss
Random 15 2 UNet MobileNetV2 0.000211 0.016854 0.1315 0.8825 0.7993 0.1253 0.8874 0.8035 5 Dice (max)
Random 15 3 UNet MobileNetV2 0.000211 0.016854 0.1371 0.8801 0.7953 0.131 0.8858 0.8003 5 Dice (max)
Random 15 1 UNet MobileNetV2 0.000211 0.016854 0.1358 0.88 0.7949 0.1296 0.8857 0.7999 5 Dice (max)
Random 24 UNet MobileNetV2 0.000136 0.090372 0.1349 0.8795 0.7941 0.1288 0.8832 0.7971 - bce_dice_loss
Random 15 2 UNet ResNet18 0.000333 0.015180 0.1337 0.8781 0.7924 0.1276 0.8837 0.7973 6 Dice (max)
Random 24 UNet ResNet18 0.000923 0.022989 0.1343 0.8766 0.7911 0.1318 0.8781 0.7919 - bce_dice_loss
Random 15 1 UNet ResNet18 0.000333 0.015180 0.1382 0.8753 0.7878 0.1321 0.8813 0.7931 3 Dice (max)
Random 15 3 UNet ResNet18 0.000333 0.015180 0.1396 0.8718 0.7838 0.1334 0.8773 0.7885 9 Dice (max)
Manual V100 LinkNet MobileNetV2 0.0015 0.005 0.1534 0.8578 0.7625 0.1474 0.8631 0.7672 10 bce_dice_loss
Manual 3 LinkNet MobileNetV2 0.0015 0.005 0.1554 0.8561 0.7603 0.1494 0.8615 0.765 5 bce_dice_loss
Manual 2 LinkNet MobileNetV2 0.0015 0.005 0.1593 0.8527 0.7542 0.1533 0.8581 0.7589 10 bce_dice_loss
Random 24 LinkNet ResNet18 0.000923 0.022989 0.1628 0.8511 0.7552 0.16 0.8525 0.7558 - bce_dice_loss
Random 15 3 LinkNet MobileNetV2 0.000923 0.022989 0.1614 0.8507 0.7529 0.1554 0.8553 0.7567 14 Dice (max)
Manual 1 LinkNet MobileNetV2 0.0015 0.005 0.1626 0.8505 0.7523 0.1566 0.855 0.7561 10 bce_dice_loss
Random 15 2 LinkNet MobileNetV2 0.000923 0.022989 0.1613 0.8504 0.7519 0.1554 0.8557 0.7565 10 Dice (max)
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Experiment
Type Model Backbone LR

L2
λ

Loss
Value

Dice
Score

IoU
Score

Open
Eyes
Loss
value

Open
Eyes
Dice
Score

Open
Eyes
IoU
Score

Best
Epoch Objective

Random 15 1 LinkNet MobileNetV2 0.000923 0.022989 0.1618 0.8502 0.7507 0.1558 0.8555 0.7553 10 Dice (max)
Random 24 LinkNet MobileNetV2 0.000420 0.062136 0.1788 0.8363 0.7357 0.1773 0.8378 0.7365 - bce_dice_loss
Random 15 2 LinkNet ResNet18 0.000353 0.034600 0.2039 0.8094 0.695 0.1983 0.814 0.6988 9 Dice (max)
Random 15 1 LinkNet ResNet18 0.000353 0.034600 0.2156 0.7993 0.6806 0.2101 0.8033 0.6837 9 Dice (max)
Random 15 3 LinkNet ResNet18 0.000353 0.034600 0.2212 0.7936 0.6729 0.2156 0.7984 0.6768 10 Dice (max)

Source: Author.



139

Table D.2: Metrics summary of experiments with only CelebAMask-HQ

Type Model Backbone Dice Score IoU Score Open eyes Dice Score Open eyes IoU Score

max mean std mean std max mean std mean std

Manual
UNet Mobile.V2 0.8885 0.8874 0.0014 0.8066 0.0019 0.8946 0.8930 0.0018 0.8116 0.0023

LinkNet ResNet18 0.8878 0.8857 0.0023 0.8033 0.0037 0.8927 0.8909 0.0020 0.8079 0.0034
UNet ResNet18 0.8852 0.8839 0.0012 0.8011 0.0016 0.8909 0.8897 0.0013 0.8062 0.0018

Random 15 UNet Mobile.V2 0.8825 0.8809 0.0014 0.7965 0.0024 0.8874 0.8863 0.0010 0.8012 0.0020
Random UNet Mobile.V2 0.8795 0.8795 - 0.7941 - 0.8832 0.8832 - 0.7971 -

Random 15 UNet ResNet18 0.8781 0.8751 0.0031 0.7880 0.0043 0.8837 0.8808 0.0033 0.7930 0.0044
Random UNet ResNet18 0.8766 0.8766 - 0.7911 - 0.8781 0.8781 - 0.7919 -
Manual LinkNet Mobile.V2 0.8561 0.8531 0.0028 0.7556 0.0041 0.8615 0.8582 0.0033 0.7600 0.0045
Random LinkNet ResNet18 0.8511 0.8511 - 0.7552 - 0.8525 0.8525 - 0.7558 -

Random 15 LinkNet Mobile.V2 0.8507 0.8504 0.0003 0.7518 0.0011 0.8557 0.8555 0.0002 0.7562 0.0007
Random LinkNet Mobile.V2 0.8363 0.8363 - 0.7357 - 0.8378 0.8378 - 0.7365 -

Random 15 LinkNet ResNet18 0.8094 0.8008 0.0079 0.6828 0.0112 0.8140 0.8052 0.0080 0.6864 0.0112
The experiment with GPU V100-SXM2-16GB was omitted here.

Source: Author.
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Experiment
Type

Model Backbone LR
L2
λ

Dice
Score

CPU
Freq.
(GHz)

Inference time
30 batches
(size: 32,
10 runs)

Inference time
for 1 image
in batch

Inference time
960 images (10
runs): predict

Inference time
960 images
(10 runs): call

Manual 1 UNet Mobile.V2 0.0015 0.005 0.8885 2.3 3.54 s ± 910 ms 3.69 ± 0.948 ms 0.067 ± 0.021 s 0.110 ± 0.015 s
Manual 1 LinkNet ResNet18 0.0015 0.005 0.8878 2 2.72 s ± 186 ms 2.83 ± 0.194 ms 0.073 ± 0.018 s 0.069 ± 0.009 s
Manual 3 UNet Mobile.V2 0.0015 0.005 0.8877 2 3.82 s ± 646 ms 3.98 ± 0.673 ms 0.077 ± 0.052 s 0.118 ± 0.017 s
Manual 3 LinkNet ResNet18 0.0015 0.005 0.8861 2 5.03 s ± 917 ms 5.24 ± 0.955 ms 0.072 ± 0.027 s 0.069 ± 0.010 s
Manual 2 UNet Mobile.V2 0.0015 0.005 0.8858 2 4.98 s ± 902 ms 5.19 ± 0.94 ms 0.069 ± 0.027 s 0.115 ± 0.017 s
Manual 1 UNet ResNet18 0.0015 0.005 0.8852 2 3.34 s ± 983 ms 3.48 ± 1.02 ms 0.066 ± 0.016 s 0.066 ± 0.009 s
Manual 2 UNet ResNet18 0.0015 0.005 0.8838 2 3.72 s ± 1.06 s 3.88 ± 1.1 ms 0.068 ± 0.020 s 0.067 ± 0.010 s
Manual 2 LinkNet ResNet18 0.0015 0.005 0.8832 2 4.61 s ± 1.02 s 4.80 ± 1.06 ms 0.068 ± 0.018 s 0.068 ± 0.018 s
Manual 3 UNet ResNet18 0.0015 0.005 0.8828 2 2.76 s ± 185 ms 2.88 ± 0.193 ms 0.070 ± 0.018 s 0.065 ± 0.009 s
Random 15 2 UNet Mobile.V2 0.000211 0.016854 0.8825 2 4.47 s ± 1.39 s 4.66 ± 1.45 ms 0.069 ± 0.022 s 0.109 ± 0.015 s
Random 15 3 UNet Mobile.V2 0.000211 0.016854 0.8801 2.2 4.48 s ± 1.05 s 4.67 ± 1.09 ms 0.069 ± 0.022 s 0.110 ± 0.015 s
Random 15 1 UNet Mobile.V2 0.000211 0.016854 0.88 2 4.27 s ± 973 ms 4.45 ± 1.01 ms 0.069 ± 0.025 s 0.113 ± 0.016 s
Random 24 UNet Mobile.V2 0.000136 0.090372 0.8795 2.3 4.02 s ± 1.17 s 4.19 ± 1.22 ms 0.066 ± 0.026 s 0.108 ± 0.015 s
Random 15 2 UNet ResNet18 0.000333 0.015180 0.8781 2 3.20 s ± 788 ms 3.33 ± 0.821 ms 0.070 ± 0.022 s 0.067 ± 0.010 s
Random 24 UNet ResNet18 0.000923 0.022989 0.8766 2.3 3.83 s ± 1.2 s 3.99 ± 1.25 ms 0.069 ± 0.018 s 0.067 ± 0.010 s
Random 15 1 UNet ResNet18 0.000333 0.015180 0.8753 2 4.62 s ± 1.04 s 4.81 ± 1.08 ms 0.069 ± 0.019 s 0.067 ± 0.010 s
Random 15 3 UNet ResNet18 0.000333 0.015180 0.8718 2.2 3.96 s ± 1.14 s 4.13 ± 1.19 ms 0.067 ± 0.017 s 0.066 ± 0.009 s
Manual V100 LinkNet Mobile.V2 0.0015 0.005 0.8578 2.2 1.43 s ± 365 ms 1.49 ± 0.38 ms 0.065 ± 0.022 s 0.124 ± 0.018 s
Manual 3 LinkNet Mobile.V2 0.0015 0.005 0.8561 2 2.70 s ± 419 ms 2.81 ± 0.436 ms 0.062 ± 0.022 s 0.118 ± 0.016 s
Manual 2 LinkNet Mobile.V2 0.0015 0.005 0.8527 2 3.44 s ± 1.1 s 3.58 ± 1.15 ms 0.065 ± 0.027 s 0.122 ± 0.018 s
Random 24 LinkNet ResNet18 0.000923 0.022989 0.8511 2 2.68 s ± 340 ms 2.79 ± 0.354 ms 0.067 ± 0.018 s 0.076 ± 0.011 s
Random 15 3 LinkNet Mobile.V2 0.000923 0.022989 0.8507 2.2 4.19 s ± 1.89 s 4.36 ± 1.97 ms 0.080 ± 0.078 s 0.124 ± 0.019 s
Manual 1 LinkNet Mobile.V2 0.0015 0.005 0.8505 2 3.10 s ± 929 ms 3.23 ± 0.968 ms 0.071 ± 0.036 s 0.126 ± 0.017 s
Random 15 2 LinkNet Mobile.V2 0.000923 0.022989 0.8504 2 3.49 s ± 1.49 s 3.64 ± 1.55 ms 0.070 ± 0.024 s 0.126 ± 0.021 s
Random 15 1 LinkNet Mobile.V2 0.000923 0.022989 0.8502 2 2.86 s ± 341 ms 2.98 ± 0.355 ms 0.066 ± 0.023 s 0.119 ± 0.017 s
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Table D.3 continued from previous page

Experiment
Type

Model Backbone LR
L2
λ

Dice
Score

CPU
Freq.
(GHz)

Inference time
30 batches
(size: 32,
10 runs)

Inference time
for 1 image
in batch

Inference time
960 images (10
runs): predict

Inference time
960 images
(10 runs): call

Random 24 LinkNet Mobile.V2 0.000420 0.062136 0.8363 2.3 2.77 s ± 346 ms 2.89 ± 0.36 ms 0.082 ± 0.026 s 0.142 ± 0.035 s
Random 15 2 LinkNet ResNet18 0.000353 0.034600 0.8094 2 2.75 s ± 441 ms 2.86 ± 0.459 ms 0.068 ± 0.018 s 0.075 ± 0.011 s
Random 15 1 LinkNet ResNet18 0.000353 0.034600 0.7993 2 2.81 s ± 642 ms 2.93 ± 0.669 ms 0.069 ± 0.018 s 0.075 ± 0.010 s
Random 15 3 LinkNet ResNet18 0.000353 0.034600 0.7936 2.2 2.79 s ± 727 ms 2.91 ± 0.757 ms 0.071 ± 0.024 s 0.077 ± 0.011 s

Source: Author.
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N Model Backbone
Loss
Value

Dice
Score

IoU
Score

Op en
Eyes
Loss
value

Open
Eyes
Dice
Score

Open
Eyes
IoU
Score

Best
Epoch

Inference time
30 batches
(size: 32,
10 runs)

Inference time
960 images
(10 runs): predict

Inference time
960 images
(10 runs): call

3 UNet Mobil.V2 0.1205 0.8894 0.8091 0.1143 0.8940 0.8130 7 4.78 s ± 831 ms 0.070 ± 0.023 s 0.116 ± 0.016 s
2 LinkNet ResNet18 0.1232 0.8855 0.8027 0.1216 0.8868 0.8034 14 3.25 s ± 895 ms 0.070 ± 0.021 s 0.068 ± 0.009 s
1 UNet ResNet18 0.1242 0.8850 0.8023 0.1236 0.8851 0.8017 15 3.73 s ± 1.18 s 0.069 ± 0.018 s 0.070 ± 0.010 s
1 UNet Mobil.V2 0.1255 0.8847 0.8033 0.1231 0.8859 0.8038 10 4.35 s ± 1.31 s 0.070 ± 0.023 s 0.115 ± 0.016 s
3 UNet ResNet18 0.1263 0.8847 0.8016 0.1236 0.8851 0.8014 12 4.20 s ± 1.13 s 0.071 ± 0.018 s 0.072 ± 0.011 s
3 LinkNet ResNet18 0.1250 0.8844 0.8018 0.1247 0.8842 0.8010 19 3.74 s ± 1.07 s 0.069 ± 0.019 s 0.069 ± 0.009 s
2 UNet ResNet18 0.1256 0.8838 0.8012 0.1242 0.8845 0.8013 14 4.78 s ± 1.25 s 0.069 ± 0.018 s 0.069 ± 0.010 s
2 UNet Mobil.V2 0.1269 0.8833 0.8007 0.1215 0.8868 0.8036 9 4.47 s ± 1.23 s 0.066 ± 0.022 s 0.111 ± 0.023 s
1 LinkNet ResNet18 0.1270 0.8825 0.7988 0.1265 0.8824 0.7982 15 2.88 s ± 282 ms 0.071 ± 0.026 s 0.071 ± 0.010 s
2 LinkNet Mobil.V2 0.1519 0.8590 0.7646 0.1459 0.8642 0.7691 9 2.80 s ± 296 ms 0.067 ± 0.029 s 0.119 ± 0.016 s
3 LinkNet Mobil.V2 0.1547 0.8577 0.7627 0.1487 0.8619 0.7661 9 2.79 s ± 332 ms 0.065 ± 0.027 s 0.124 ± 0.017 s
1 LinkNet Mobil.V2 0.1631 0.8489 0.7499 0.1571 0.8537 0.7540 7 2.77 s ± 292 ms 0.065 ± 0.023 s 0.124 ± 0.017 s

Source: Author.
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Table D.5: Results of tests with CelebAMask-HQ and Closed Eyes in the Wild dataset for the trained models

N Model Backbone
Loss
Value

Dice
Score

IoU
Score

Loss
Value

Dice
Score

IoU
Score

Inference time
30 batches
(size: 32,
10 runs)

Inference time
for 1 image
in batch

Inference time
960 images (10
runs): predict

Inference time
960 images
(10 runs): call

2 UNet MobileNetV2 0.1153 0.8939 0.8149 0.1125 0.8952 0.8157 4.28 ± 1.31 s 4.46 ± 1.36 ms 0.082 ± 0.025 s 0.132 ± 0.021 s
1 UNet MobileNetV2 0.1165 0.8929 0.8139 0.1105 0.8971 0.8175 4.73 ± 1.19 s 4.93 ± 1.24 ms 0.084 ± 0.045 s 0.130 ± 0.022 s
3 UNet MobileNetV2 0.1177 0.8918 0.8126 0.1123 0.8952 0.8154 4.07 ± 1.29 s 4.24 ± 1.34 ms 0.083 ± 0.024 s 0.132 ± 0.021 s

Source: Author.
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APPENDIX E — CELEBAMASK-HQ DISCARDED SAMPLES

Table E.1 shows the discarded samples from the base dataset CelebAMask-HQ

dataset (LEE et al., 2020):

Table E.1: CelebAMask-HQ dataset (LEE et al., 2020) discarded samples.

Sample Observation

Problems with samples with no eyes and no glasses
10219 One eye is visible
12633 Partial Visible eyes (noise)
19336 Visible eyes
23297 Visible eyes

Problems with samples with only left eye annotated
07501 Eyeglass and only partial eye visible
15048 Both eyes visible; only left was annotated
20054 Both eyes visible; only left was annotated
25107 Both eyes visible; only left was annotated
25110 Both eyes visible; only left was annotated
25287 Both eyes visible; only left was annotated
28813 Left ear was annotated
Problems with samples with only right eye annotated
01192 Both eyes visible; only right was annotated
06086 Both eyes visible; only right was annotated
16907 Both eyes visible; only right was annotated
17881 Both eyes visible; only right was annotated
28146 Wrong annotation

Problems with samples with both eyes annotated
01840 Left ear was also annotated
02110 Outlier; eyes small
02807 Right eyebrow was also annotated
03177 Left ear was also annotated
06132 Left ear was also annotated
06136 Right ear was also annotated
06392 Right eyebrow was also annotated
07642 Right eyebrow was also annotated
07646 Left ear was also annotated
08181 Left eyebrow was also annotated
08240 Outlier; eyes small and in-plane head rotation
09956 Right ear was also annotated
14191 Right ear was also annotated
14400 Eyebrows were also annotated
14402 Eyebrows were also annotated
14531 Right eyebrow was also annotated
14698 Right eyebrow was also annotated
15537 Right ear was also annotated
16115 Right eyebrow was also annotated

https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask_HQ.html
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Table E.1 continued from previous page

Sample Observation

16122 Right eyebrow was also annotated
16264 Right eyebrow was also annotated
16637 Left ear was also annotated
16642 Left ear was also annotated
16823 Ears were also annotated
16993 Left eyebrow was also annotated
17239 Right ear was also annotated
18042 Left eyebrow was also annotated
18056 Right eyebrow was also annotated
18563 Right ear was also annotated
19008 Right eyebrow was also annotated
19120 Left ear was also annotated
19156 Left ear was also annotated
19262 Right eyebrow was also annotated
19381 Left ear was also annotated
20624 Left eyebrow was also annotated
20637 Left eyebrow was also annotated
21078 Left ear was also annotated
21492 Right ear was also annotated
21525 Right eyebrow was also annotated
23142 Outlier; eyes small
24035 Left ear was also annotated
24145 Right eyebrow was also annotated
26120 Left eyebrow was also annotated
27699 Right ear was also annotated
27923 Left ear was also annotated
28233 Left ear was also annotated

Source: Author.
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APPENDIX F — CLOSED EYES IN THE WILD DISCARDED SAMPLES

Table F.1 shows the discarded samples from the base dataset Closed Eyes in the

Wild dataset (SONG et al., 2014):

Table F.1: Closed Eyes in the Wild (SONG et al., 2014) discarded samples.

Sample Original file name Observation

30001 closed_eye_0002.jpg_face_2.jpg One open eye from another person
30005 closed_eye_0012.jpg_face_1.jpg Low resolution
30009 closed_eye_0019.jpg_face_1.jpg Low resolution, min. image size 69
30010 closed_eye_0020.jpg_face_1.jpg Partial open eyes
30011 closed_eye_0021.jpg_face_1.jpg Low resolution
30015 closed_eye_0033.jpg_face_2.jpg Partial open eyes
30016 closed_eye_0033.jpg_face_3.jpg Low resolution, min. image size 66
30017 closed_eye_0034.jpg_face_4.jpg Low resolution, min. image size 65
30019 closed_eye_0038.jpg_face_1.jpg One partial open eye
30024 closed_eye_0059.jpg_face_2.jpg Partial open eyes
30031 closed_eye_0074.jpg_face_1.jpg Low resolution, person looking down
30036 closed_eye_0086.jpg_face_2.jpg One partial open eye
30037 closed_eye_0087.jpg_face_1.jpg One partial open eye
30038 closed_eye_0089.jpg_face_1.jpg Partial open eyes
30046 closed_eye_0107.jpg_face_1.jpg Low resolution, possible 1 open eye
30050 closed_eye_0132.jpg_face_1.jpg Low resolution, min. image size 66
30051 closed_eye_0139.jpg_face_1.jpg Low resolution
30065 closed_eye_0178.jpg_face_1.jpg Partial open eyes
30069 closed_eye_0183.jpg_face_1.jpg Low resolution, min. image size 60
30072 closed_eye_0189.jpg_face_1.jpg Partial open eyes
30073 closed_eye_0189.jpg_face_2.jpg Partial open eyes
30079 closed_eye_0207.jpg_face_1.jpg Partial open eyes
30080 closed_eye_0207.jpg_face_2.jpg Low resolution
30085 closed_eye_0218.jpg_face_1.jpg One partial open eye
30090 closed_eye_0232.jpg_face_2.jpg One partial open eye
30092 closed_eye_0237.jpg_face_1.jpg Low resolution
30095 closed_eye_0243.jpg_face_1.jpg One partial open eye
30098 closed_eye_0247.jpg_face_2.jpg One partial open eye
30100 closed_eye_0249.JPG_face_1.jpg Low resolution
30102 closed_eye_0251.jpg_face_1.jpg One partial open eye
30103 closed_eye_0253.jpg_face_3.jpg Low resolution, min. image size 69
30111 closed_eye_0276.jpg_face_2.jpg Low resolution
30112 closed_eye_0279.jpg_face_2.jpg Low resolution, min. image size 71
30113 closed_eye_0280.jpg_face_2.jpg Low resolution
30118 closed_eye_0296.jpg_face_3.jpg Low resolution
30120 closed_eye_0302.jpg_face_2.jpg One partial open eye
30125 closed_eye_0315.jpg_face_1.jpg One partial open eye
30126 closed_eye_0318.jpg_face_1.jpg Low resolution
30132 closed_eye_0336.jpg_face_1.jpg Low resolution, person looking down

http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html
http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html
http://parnec.nuaa.edu.cn/_upload/tpl/02/db/731/template731/pages/xtan/ClosedEyeDatabases.html


147

Table F.1 continued from previous page

Sample Original file name Observation

30133 closed_eye_0341.jpg_face_2.jpg Partial open eyes
30135 closed_eye_0344.jpg_face_2.jpg Low resolution, possible 1 open eye
30137 closed_eye_0346.jpg_face_1.jpg Low resolution
30138 closed_eye_0347.jpg_face_2.jpg One open eye from another person
30139 closed_eye_0348.jpg_face_5.jpg One open eye from another person
30147 closed_eye_0374.jpg_face_1.jpg Low resolution
30150 closed_eye_0380.jpg_face_1.jpg Low resolution
30154 closed_eye_0397.jpg_face_1.jpg Low resolution
30155 closed_eye_0397.jpg_face_2.jpg Low resolution
30158 closed_eye_0402.jpg_face_1.jpg Low resolution
30160 closed_eye_0409.jpg_face_1.jpg Low resolution, possible 1 open eye
30162 closed_eye_0418.jpg_face_2.jpg Low resolution, possible 1 open eye
30175 closed_eye_0460.jpg_face_1.jpg Possible looking down
30179 closed_eye_0469.jpg_face_1.jpg Low resolution
30181 closed_eye_0476.jpg_face_1.jpg Possible looking down
30185 closed_eye_0489.jpg_face_2.jpg Low resolution, image effect
30186 closed_eye_0492.jpg_face_1.jpg Drawing if 1 closed eye not visible
30187 closed_eye_0493.jpg_face_1.jpg Partial open eyes
30188 closed_eye_0494.jpg_face_1.jpg Low resolution
30202 closed_eye_0554.jpg_face_3.jpg Low resolution
30211 closed_eye_0573.jpg_face_2.jpg <- UNSURE, looking down?
30224 closed_eye_0619.jpg_face_1.jpg Low resolution, possible 1 open eye
30226 closed_eye_0621.jpg_face_2.jpg Low resolution, min. image size 64
30227 closed_eye_0622.jpg_face_1.jpg Low resolution, min. image size 63
30228 closed_eye_0625.jpg_face_2.jpg Low resolution
30229 closed_eye_0627.jpg_face_1.jpg Low resolution
30231 closed_eye_0636.jpg_face_1.jpg Open eyes

30232 closed_eye_0638.jpg_face_1.jpg One open eye from another person
30236 closed_eye_0644.jpg_face_1.jpg Partial open eyes
30241 closed_eye_0656.jpg_face_1.jpg Low resolution, min. image size 62
30244 closed_eye_0665.jpg_face_1.jpg Low resolution
30245 closed_eye_0666.jpg_face_1.jpg Low resolution
30252 closed_eye_0682.jpg_face_3.jpg One partial open eye
30258 closed_eye_0693.jpg_face_2.jpg Low resolution, min. image size 71
30259 closed_eye_0693.jpg_face_3.jpg One open eye
30261 closed_eye_0696.jpg_face_4.jpg Low resolution
30262 closed_eye_0698.jpg_face_1.jpg Partial open eyes
30273 closed_eye_0735.jpg_face_4.jpg One partial open eye
30274 closed_eye_0736.jpg_face_1.jpg Low resolution, possible 1 open eye
30276 closed_eye_0740.jpg_face_1.jpg Low resolution
30283 closed_eye_0754.jpg_face_1.jpg Low resolution
30284 closed_eye_0766.jpg_face_1.jpg Low resolution
30285 closed_eye_0767.jpg_face_2.jpg Low resolution, possible 1 open eye
30286 closed_eye_0767.jpg_face_3.jpg One partial open eye
30287 closed_eye_0769.jpg_face_3.jpg Low resolution, possible 1 open eye
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30290 closed_eye_0772.jpg_face_2.jpg One partial open eye
30292 closed_eye_0778.jpg_face_1.jpg Low resolution, min. image size 55
30293 closed_eye_0780.jpg_face_1.jpg One partial open eye
30298 closed_eye_0788.jpg_face_2.jpg One open eye from another person
30311 closed_eye_0823.jpg_face_2.jpg One open eye from another person
30314 closed_eye_0833.jpg_face_1.jpg One partial open eye
30315 closed_eye_0836.jpg_face_1.jpg Low resolution
30317 closed_eye_0841.jpg_face_2.jpg Low resolution
30318 closed_eye_0843.jpg_face_1.jpg Low resolution, min. image size 69
30319 closed_eye_0847.jpg_face_1.jpg Low resolution
30326 closed_eye_0860.jpg_face_1.jpg Low resolution
30329 closed_eye_0864.jpg_face_1.jpg Low resolution, min. image size 63
30330 closed_eye_0865.jpg_face_1.jpg Low resolution
30335 closed_eye_0880.jpg_face_1.jpg Low resolution
30345 closed_eye_0894.jpg_face_1.jpg Low resolution, possible 1 open eye
30348 closed_eye_0900.jpg_face_2.jpg One open eye from another person
30352 closed_eye_0906.jpg_face_1.jpg UNSURE, looking down?
30355 closed_eye_0917.jpg_face_3.jpg One partial open eye
30356 closed_eye_0918.jpg_face_1.jpg Low resolution
30357 closed_eye_0918.jpg_face_4.jpg Low resolution
30359 closed_eye_0919.jpg_face_3.jpg Partial open eyes
30374 closed_eye_0986.jpg_face_1.jpg Low resolution (sunglass?)
30375 closed_eye_0987.jpg_face_1.jpg One partial open eye
30382 closed_eye_1023.jpg_face_1.jpg One open eye from another person
30386 closed_eye_1049.jpg_face_1.jpg One open eye from another person
30389 closed_eye_1056.jpg_face_2.jpg Low resolution
30395 closed_eye_1080.jpg_face_1.jpg Low resolution
30399 closed_eye_1101.jpg_face_2.jpg Partial open eyes
30401 closed_eye_1104.jpg_face_1.jpg One partial open eye
30405 closed_eye_1113.jpg_face_3.jpg Low resolution
30407 closed_eye_1117.jpg_face_1.jpg Low resolution
30411 closed_eye_1126.jpg_face_1.jpg Low resolution
30412 closed_eye_1127.jpg_face_1.jpg Low resolution, 1 partial open eye
30424 closed_eye_1155.jpg_face_1.jpg Partial open eyes
30439 closed_eye_1208.jpg_face_1.jpg Low resolution, possible 1 open eye
30445 closed_eye_1229.jpg_face_1.jpg One open eye from another person
30454 closed_eye_1244.jpg_face_1.jpg Low resolution, possible 1 open eye
30455 closed_eye_1246.jpg_face_3.jpg Low resolution
30457 closed_eye_1249.jpg_face_1.jpg Low resolution
30458 closed_eye_1249.jpg_face_2.jpg Partial open eyes
30459 closed_eye_1253.jpg_face_1.jpg Possible 1 open eye
30463 closed_eye_1263.jpg_face_1.jpg Reflection
30464 closed_eye_1264.jpg_face_2.jpg Low resolution
30467 closed_eye_1267.jpg_face_1.jpg One partial open eye
30468 closed_eye_1269.jpg_face_1.jpg Partial open eyes
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30470 closed_eye_1272.jpg_face_1.jpg One partial open eye
30471 closed_eye_1274.jpg_face_1.jpg Low resolution
30472 closed_eye_1276.jpg_face_2.jpg Low resolution, possible 1 open eye
30473 closed_eye_1276.jpg_face_6.jpg Partial open eyes
30474 closed_eye_1277.jpg_face_1.jpg Low resolution, looking down
30475 closed_eye_1278.jpg_face_1.jpg Low resolution, possible 1 open eye
30476 closed_eye_1278.jpg_face_3.jpg Partial open eyes
30478 closed_eye_1281.jpg_face_1.jpg Low resolution
30479 closed_eye_1282.jpg_face_1.jpg Low resolution, possible 1 open eye
30484 closed_eye_1291.jpg_face_3.jpg One partial open eye
30491 closed_eye_1301.jpg_face_2.jpg One partial open eye
30495 closed_eye_1310.jpg_face_1.jpg Low resolution, possible 1 open eye
30501 closed_eye_1319.jpg_face_1.jpg One partial open eye
30503 closed_eye_1322.jpg_face_1.jpg One open eye from another person
30505 closed_eye_1324.jpg_face_1.jpg Partial open eyes
30506 closed_eye_1325.jpg_face_1.jpg Low resolution
30509 closed_eye_1328.jpg_face_2.jpg Low resolution, possible 1 open eye
30514 closed_eye_1333.jpg_face_10.jpg low resolution
30517 closed_eye_1336.jpg_face_2.jpg One open eye from another person
30518 closed_eye_1338.jpg_face_1.jpg One open eye from another person
30520 closed_eye_1343.jpg_face_1.jpg Partial open eyes
30521 closed_eye_1344.jpg_face_1.jpg Low resolution
30525 closed_eye_1351.jpg_face_2.jpg Low resolut., possible partial open eyes
30528 closed_eye_1356.jpg_face_10.jpg partial open eyes
30534 closed_eye_1362.BMP_face_2.jpg Low resolution, min. image size 73
30538 closed_eye_1363.jpg_face_1.jpg Partial open eyes
30543 closed_eye_1376.jpg_face_2.jpg Drawing
30547 closed_eye_1383.jpg_face_1.jpg Low resolution
30550 closed_eye_1388.jpg_face_2.jpg Low resolut., possible partial open eyes
30552 closed_eye_1394.jpg_face_1.jpg Partial open eyes
30553 closed_eye_1394.jpg_face_3.jpg Low resolution, min. image size 73
30554 closed_eye_1394.jpg_face_4.jpg Low resolution
30557 closed_eye_1409.jpg_face_1.jpg Low resolution
30558 closed_eye_1411.jpg_face_1.jpg Low resolution?
30569 closed_eye_1445.jpg_face_1.jpg Low resolut., possible partial open eyes
30573 closed_eye_1462.jpg_face_2.jpg One partial open eye
30575 closed_eye_1464.jpg_face_1.jpg Low resolution, min. image size 67
30577 closed_eye_1466.jpg_face_1.jpg Low resolution
30583 closed_eye_1479.jpg_face_1.jpg Low resolution
30584 closed_eye_1480.jpg_face_4.jpg Low resolution
30585 closed_eye_1481.jpg_face_1.jpg Partial open eyes
30586 closed_eye_1483.jpg_face_1.jpg Low resolution, 1 partial open eye
30588 closed_eye_1486.jpg_face_2.jpg Partial open eyes
30589 closed_eye_1486.jpg_face_4.jpg Low resolut., possible partial open eyes
30590 closed_eye_1488.jpg_face_1.jpg Low resolution, min. image size 65
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30591 closed_eye_1489.jpg_face_1.jpg Low resolution
30592 closed_eye_1489.jpg_face_2.jpg Low resolution
30595 closed_eye_1495.jpg_face_1.jpg One open eye from another person
30597 closed_eye_1497.jpg_face_1.jpg Low resolut., possible partial open eyes
30603 closed_eye_1505.jpg_face_1.jpg One open eye from another person
30605 closed_eye_1507.jpg_face_3.jpg Low resolution
30606 closed_eye_1507.jpg_face_5.jpg Low resolution
30607 closed_eye_1508.jpg_face_1.jpg Low resolution
30608 closed_eye_1508.jpg_face_2.jpg Low resolution
30609 closed_eye_1508.jpg_face_3.jpg Low resolution
30613 closed_eye_1515.jpg_face_1.jpg Low resolution
30619 closed_eye_1531.jpg_face_1.jpg Partial open eyes
30621 closed_eye_1535.jpg_face_2.jpg Partial open eyes
30622 closed_eye_1536.jpg_face_1.jpg One partial open eye
30623 closed_eye_1537.jpg_face_1.jpg Partial open eyes
30633 closed_eye_1556.jpg_face_3.jpg Low resolution
30634 closed_eye_1558.jpg_face_1.jpg Low resolution
30638 closed_eye_1567.jpg_face_1.jpg Low resolution, min. image size 65
30640 closed_eye_1571.jpg_face_2.jpg One partial open eye
30645 closed_eye_1580.jpg_face_1.jpg Partial open eyes
30652 closed_eye_1594.jpg_face_1.jpg One open eye from another person
30653 closed_eye_1600.jpg_face_1.jpg Low resolution
30658 closed_eye_1618.jpg_face_2.jpg Low resolution
30668 closed_eye_1641.jpg_face_1.jpg Low resolution
30669 closed_eye_1641.jpg_face_2.jpg Low resolution
30670 closed_eye_1641.jpg_face_3.jpg Low resolution
30673 closed_eye_1648.jpg_face_2.jpg Low resolution, min. image size 64
30681 closed_eye_1661.jpg_face_3.jpg Partial open eyes
30684 closed_eye_1668.jpg_face_1.jpg One partial open eye
30687 closed_eye_1671.jpg_face_1.jpg Partial open eyes
30688 closed_eye_1673.jpg_face_2.jpg Low resolution
30692 closed_eye_1680.jpg_face_1.jpg Low resolution, 1 partial open eye
30693 closed_eye_1681.jpg_face_2.jpg Partial open eyes
30696 closed_eye_1691.jpg_face_3.jpg One partial open eye
30697 closed_eye_1692.jpg_face_1.jpg Low resolution
30703 closed_eye_1702.BMP_face_1.jpg Low resolut., possible partial open eyes
30704 closed_eye_1702.BMP_face_2.jpg Low resolut., possible partial open eyes
30706 closed_eye_1707.jpg_face_2.jpg Low resolut., possible partial open eyes
30708 closed_eye_1712.jpg_face_4.jpg One open eye from another person
30709 closed_eye_1713.jpg_face_1.jpg Low resolution, possible 1 open eye
30712 closed_eye_1722.jpg_face_3.jpg UNSURE
30713 closed_eye_1730.jpg_face_1.jpg Low resolution
30717 closed_eye_1742.jpg_face_1.jpg Low resolution, possible 1 open eye
30724 closed_eye_1761.jpg_face_1.jpg Low resolut., possible partial open eyes
30725 closed_eye_1762.jpg_face_1.jpg Low resolution



151

Table F.1 continued from previous page

Sample Original file name Observation

30726 closed_eye_1763.jpg_face_2.jpg Low resolution
30728 closed_eye_1768.jpg_face_1.jpg Low resolution
30729 closed_eye_1769.jpg_face_2.jpg Low resolution
30730 closed_eye_1770.jpg_face_1.jpg Partial open eyes
30731 closed_eye_1773.jpg_face_1.jpg Low resolution
30736 closed_eye_1782.jpg_face_3.jpg One open eye from another person
30740 closed_eye_1789.jpg_face_1.jpg Low resolution
30741 closed_eye_1796.jpg_face_1.jpg Partial open eyes
30743 closed_eye_1804.jpg_face_1.jpg Low resolution
30744 closed_eye_1805.jpg_face_1.jpg Low resolution
30745 closed_eye_1806.jpg_face_1.jpg Low resolut., possible partial open eyes
30746 closed_eye_1807.jpg_face_1.jpg Low resolution
30748 closed_eye_1810.jpg_face_1.jpg Low resolution
30754 closed_eye_1823.jpg_face_1.jpg Low resolution
30755 closed_eye_1825.jpg_face_1.jpg Partial open eyes
30761 closed_eye_1844.png_face_2.jpg Low resolution
30765 closed_eye_1850.jpg_face_1.jpg Low resolution, min. image size 65
30766 closed_eye_1850.jpg_face_2.jpg Low resolut., possible partial open eyes
30767 closed_eye_1853.jpg_face_1.jpg Low resolution
30770 closed_eye_1858.jpg_face_1.jpg Partial open eyes
30771 closed_eye_1858.jpg_face_2.jpg Partial open eyes
30772 closed_eye_1859.jpg_face_1.jpg Low resolution
30775 closed_eye_1866.jpg_face_1.jpg One open eye from another person
30776 closed_eye_1867.jpg_face_1.jpg One partial open eye
30782 closed_eye_1879.jpg_face_2.jpg Partial open eyes
30784 closed_eye_1884.jpg_face_2.jpg Low resolution
30790 closed_eye_1894.jpg_face_1.jpg UNSURE, looking down?
30793 closed_eye_1902.jpg_face_4.jpg Low resolution, possible 1 open eye
30794 closed_eye_1903.jpg_face_1.jpg Low resolution, possible 1 open eye
30795 closed_eye_1905.jpg_face_1.jpg Low resolution
30797 closed_eye_1922.jpg_face_2.jpg One open eye from another person
30802 closed_eye_1934.png_face_1.jpg Low resolution
30803 closed_eye_1935.jpg_face_1.jpg Low resolution
30808 closed_eye_1942.jpg_face_2.jpg Low resolution
30810 closed_eye_1944.jpg_face_1.jpg Low resolut., possible partial open eyes
30811 closed_eye_1946.jpg_face_2.jpg Low resolut., possible partial open eyes
30813 closed_eye_1952.jpg_face_1.jpg Low resolution
30818 closed_eye_1958.jpg_face_1.jpg Partial open eyes
30823 closed_eye_1966.jpg_face_1.jpg Low resolution, min. image size 70
30829 closed_eye_1982.jpg_face_1.jpg Low resolution
30836 closed_eye_2005.jpg_face_2.jpg Low resolution
30837 closed_eye_2008.jpg_face_1.jpg Low resolution, possible 1 open eye
30838 closed_eye_2010.jpg_face_1.jpg Low resolution
30842 closed_eye_2018.jpg_face_1.jpg Image effects, not clear face contours
30843 closed_eye_2019.jpg_face_1.jpg Low resolution
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30844 closed_eye_2021.jpg_face_1.jpg Low resolution
30845 closed_eye_2024.jpg_face_1.jpg Low resolution, min. image size 71
30846 closed_eye_2025.jpg_face_2.jpg Low resolution, partial open eyes
30850 closed_eye_2030.jpg_face_2.jpg Low resolution
30851 closed_eye_2031.jpg_face_1.jpg Low resolut., possible partial open eyes
30856 closed_eye_2038.jpg_face_2.jpg Low resolution
30860 closed_eye_2046.jpg_face_1.jpg Low resolution
30862 closed_eye_2049.jpg_face_1.jpg Low resolution
30863 closed_eye_2050.jpg_face_1.jpg Low resolution, min. image size 64
30867 closed_eye_2064.jpg_face_1.jpg Low resolut., possible partial open eyes
30869 closed_eye_2071.jpg_face_1.jpg Low resolution
30871 closed_eye_2075.jpg_face_1.jpg Low resolut., possible partial open eyes
30872 closed_eye_2078.jpg_face_3.jpg Low resolution, min. image size 74
30874 closed_eye_2087.jpg_face_2.jpg Low resolution
30877 closed_eye_2094.jpg_face_1.jpg Low resolution
30878 closed_eye_2095.jpg_face_1.jpg Low resolution
30879 closed_eye_2097.jpg_face_1.jpg One open eye from another person
30881 closed_eye_2099.jpg_face_1.jpg Low resolution, possible 1 open eye
30886 closed_eye_2114.jpg_face_2.jpg Low resolution, possible 1 open eye
30888 closed_eye_2118.jpg_face_1.jpg One open eye from another person
30890 closed_eye_2123.jpg_face_2.jpg Low resolution, possible 1 open eye
30893 closed_eye_2128.BMP_face_1.jpg One partial open eye
30895 closed_eye_2132.jpg_face_3.jpg One partial open eye
30896 closed_eye_2136.jpg_face_3.jpg Partial open eyes
30902 closed_eye_2142.jpg_face_2.jpg One partial open eye
30903 closed_eye_2144.jpg_face_2.jpg Partial open eyes
30904 closed_eye_2145.jpg_face_4.jpg Low resolution, possible 1 open eye
30905 closed_eye_2146.jpg_face_1.jpg One partial open eye
30906 closed_eye_2147.jpg_face_2.jpg Low resolution
30914 closed_eye_2164.jpg_face_1.jpg Low resolution, possible 1 open eye
30915 closed_eye_2165.jpg_face_1.jpg Partial open eyes
30921 closed_eye_2172.jpg_face_1.jpg Partial open eyes
30922 closed_eye_2179.jpg_face_2.jpg Partial open eyes
30926 closed_eye_2188.jpg_face_1.jpg Partial open eyes
30931 closed_eye_2203.jpg_face_2.jpg Partial open eyes
30932 closed_eye_2205.jpg_face_2.jpg Image effects, not clear face features
30933 closed_eye_2207.jpg_face_1.jpg Low resolution, min. image size 64
30936 closed_eye_2214.jpg_face_2.jpg Low resolution, min. image size 72
30942 closed_eye_2222.jpg_face_1.jpg Low resolution, min. image size 65
30945 closed_eye_2234.jpg_face_1.jpg Low resolution
30946 closed_eye_2234.jpg_face_2.jpg Low resolution
30947 closed_eye_2234.jpg_face_3.jpg Low resolution
30948 closed_eye_2238.jpg_face_1.jpg Low resolution
30950 closed_eye_2243.jpg_face_2.jpg Partial open eyes
30952 closed_eye_2247.jpg_face_1.jpg One partial open eye
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30956 closed_eye_2251.jpg_face_1.jpg Low resolution
30960 closed_eye_2259.jpg_face_1.jpg Partial open eyes
30961 closed_eye_2260.jpg_face_2.jpg Low resolution
30973 closed_eye_2304.jpg_face_16.jpg low resolution
30977 closed_eye_2313.jpg_face_1.jpg Partial open eyes
30989 closed_eye_2344.jpg_face_1.jpg Low resolution, min. image size 59
30991 closed_eye_2352.jpg_face_1.jpg Low resolution
30992 closed_eye_2352.jpg_face_2.jpg Low resolution, 1 partial open eye
30999 closed_eye_2372.jpg_face_1.jpg Partial open eyes
31000 closed_eye_2372.jpg_face_2.jpg Low resolution
31001 closed_eye_2373.jpg_face_1.jpg Low resolution
31004 closed_eye_2378.jpg_face_1.jpg Partial open eyes
31006 closed_eye_2380.jpg_face_1.jpg Low resolution
31014 closed_eye_2391.jpg_face_1.jpg Image effects
31017 closed_eye_2395.jpg_face_1.jpg Low resolut., possible partial open eyes
31021 closed_eye_2405.jpg_face_1.jpg Low resolution, min. image size 66
31022 closed_eye_2406.jpg_face_1.jpg Low resolution
31037 closed_eye_2446.jpg_face_1.jpg Low resolution
31039 closed_eye_2448.jpg_face_1.jpg Low resolution, min. image size 54
31046 closed_eye_2478.jpg_face_1.jpg Low resolution
31047 closed_eye_2481.jpg_face_1.jpg Low resolution, possible 1 open eye
31061 closed_eye_2506.jpg_face_1.jpg Low resolution
31064 closed_eye_2511.jpg_face_1.jpg Low resolution
31066 closed_eye_2513.jpg_face_2.jpg Partial open eyes
31071 closed_eye_2526.BMP_face_2.jpg One partial open eye
31074 closed_eye_2531.jpg_face_1.jpg Low resolution
31082 closed_eye_2549.jpg_face_1.jpg Low resolution
31083 closed_eye_2551.jpg_face_3.jpg Low resolution
31084 closed_eye_2552.jpg_face_1.jpg Low resolution
31085 closed_eye_2557.jpg_face_1.jpg Low resolution
31086 closed_eye_2562.jpg_face_1.jpg Drawing
31093 closed_eye_2582.jpg_face_1.jpg Low resolution
31094 closed_eye_2585.jpg_face_1.jpg Low resolution, min. image size 63
31095 closed_eye_2586.jpg_face_1.jpg Low resolution, min. image size 74
31099 closed_eye_2601.jpg_face_1.jpg Low resolution, min. image size 74
31101 closed_eye_2605.jpg_face_1.jpg Low resolution
31102 closed_eye_2608.jpg_face_1.jpg Low resolution, min. image size 65
31103 closed_eye_2612.jpg_face_1.jpg Low resolution, min. image size 56
31105 closed_eye_2617.jpg_face_2.jpg Low resolution, min. image size 70
31111 closed_eye_2631.jpg_face_1.jpg Low resolution
31112 closed_eye_2634.jpg_face_1.jpg Low resolution, min. image size 61
31115 closed_eye_2643.jpg_face_1.jpg Low resolution
31118 closed_eye_2648.jpg_face_1.jpg Partial open eyes
31119 closed_eye_2651.jpg_face_1.jpg Low resolution
31120 closed_eye_2657.jpg_face_1.jpg Low resolution
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31126 closed_eye_2666.jpg_face_1.jpg Low resolution, min. image size 65
31127 closed_eye_2670.jpg_face_1.jpg Low resolution
31130 closed_eye_2680.jpg_face_2.jpg Low resolution
31131 closed_eye_2681.jpg_face_2.jpg Low resolution
31134 closed_eye_2689.jpg_face_4.jpg Low resolution, min. image size 65
31154 closed_eye_2736.jpg_face_1.jpg Drawing
31156 closed_eye_2738.jpg_face_1.jpg Low resolution, min. image size 68
31162 closed_eye_2750.jpg_face_1.jpg Low resolution
31163 closed_eye_2752.jpg_face_1.jpg Low resolution, min. image size 70
31166 closed_eye_2757.BMP_face_1.jpg One open eye from another person
31187 closed_eye_2804.jpg_face_1.jpg Low resolution, min. image size 66

Source: Author.
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